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Abstract. In this article, we give a mathematical model for the pattern of post-vaccination
mortality by using the Erlang distribution.

Introduction

Fukushima et al. present a histogram [2, Figure 2] with the number of days from COVID-19
vaccination to death on the horizontal axis and the number of deaths on the vertical axis, based
on a report from the Ministry of Health, Labour and Welfare (MHLW). Furthermore, we can
find a similar histogram whose peak appears on the second day and then decreases in [7, Figure
S1]. In the natural sciences, it is important to give mathematical interpretations to natural
phenomena. For example, projectile motion and wave motion are mathematically described
by parabolas and trigonometric functions, respectively. However, there are no mathematical
explanation of the histograms above until now.

Here we give a mathematical interpretation or model for the histogram [2, Figure 2]. More
precisely, this article suggests that the histogram can be approximated by the modified Erlang
distribution. Note that the Erlang distribution of the parameters (n, λ) is a model in which
small changes occur n times with a constant average incidence λ to cause a failure. When
dealing with short-term deaths within 5 days, Stirling’s formula and numerical computations
indicate that the parameter n in the Erlang distribution is smaller than 5, which suggests
sudden death of vaccine recipients.

This paper is structured as follows: Section 1 introduces some probability distributions based
on [8] and [9] related to this subject; Section 2 gives a review of Kiyoshi Itô’s argument in [5,
Chapter 3.4] and provides an analogue or generalization of his argument; Section 3 explains
mathematically that the histogram [2, Figure 2] can be approximated by a modified Erlang
distribution; Section 4 contains some notes on how to choose parameters.

1. Associated distributions

An exponential distribution is a distribution in probability theory and statistics that de-
scribes, for example, the time intervals between events according to a Poisson process (a process
in which events occur continuously, independently, and with a constant average incidence). Be-
cause of this property, the exponential distribution is often used as a model of random failure.
The mean, mode, variance, probability density function, and cumulative distribution function
of the exponential distribution with the parameter λ are as follows, respectively:

1

λ
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1
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, λe−λx, 1− e−λx.
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It is known that for n random variables X1, . . . , Xn which are independent from each other
and follow the exponential distribution of parameter λ, the sum of these random variables
Sn = X1 + · · ·+Xn follows the Erlang distribution with the parameters (n, λ). Therefore, the
Erlang distribution of the parameters (n, λ) is a model in which small changes occur n times
with a constant average incidence λ to cause a failure. Clearly, the Erlang distribution of (1, λ) is
an exponential distribution with a parameter λ. The mean, mode, variance, probability density
function, and cumulative distribution function of the Erlang distribution with the parameters
(n, λ) are as follows:

n

λ
,

n− 1

λ
,

n

λ2
,

λn

(n− 1)!
xn−1e−λx, 1− e−λx

n−1∑
l=0

(λx)l

l!
.

Since the Erlang distribution considers the failure with respect to a continuous time course,
we consider discrete cases such as the first day, the second day, etc. From the cumulative
distribution function of the Erlang distribution, the probability of small changes n times by
day k, where n and k are natural numbers, is given by

1−G(n, λ, k), G(n, λ, k) := e−λk

n−1∑
l=0

(λk)l

l!
.

Since the probability of small changes n times on day k is obtained by subtracting the proba-
bility of small changes n times by day k − 1 from the probability of small changes n times by
day k, the probability of small changes n times on day k can be expressed as:

G(n, λ, k − 1)−G(n, λ, k).

For k ≤ x < k + 1, let

η(n, λ, x) := G(n, λ, k − 1)−G(n, λ, k), θ(n, λ, x) := 1−G(n, λ, k).

Then, a distribution in which the probability density function is η(n, λ, x), that is, whose cumu-
lative distribution function is θ(n, λ, x), and both the probability density and the cumulative
distribution functions are 0 when x < 1, is called a modified Erlang distribution.

2. Itô’s argument

In this section, we summarize and generalize Itô’s argument appeared in [5, Chapter 3.4].
Let N(t) the number of radioactive atoms at time t. Then, the radioactive decay is described
by the following differential equation

d

dt
N(t) = −αN(t), N(0) = N,

where α is a disintegration constant (or exponential decay constant). As Kiyoshi Itô pointed
out, the number N(t) is always an integer, namely, N(t) is a discontinuous function. However,
it is well-know that any discontinuous function is non-differentiable. Hence, this argument is
not mathematically rigorous.

To avoid this non-differentiability, Itô discussed as follows. Let p(t) the probability that each
atom survives (does not decay) until time t. Then we have

d

dt
p(t) = −αp(t), p(0) = 1.
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By solving the differential equation, we have

p(t) = e−αt.

Assign number to each atom and let Xn(t) = 1 or 0 based on whether the atom n survives
or not by time t. Then the total number of surviving atoms N(t) by time t is the stochastic
process expressed as

N(t) :=
N∑

n=1

Xn(t).

By taking the means of both sides of the equation, we obtain

E
(
N(t)

)
=

N∑
n=1

E
(
Xn(t)

)
=

N∑
n=1

p(t) = Np(t) = Ne−αt.

Let N be sufficiently large. Then, the numbers N(t) and E(N(t)) are very close to each other
according to the law of large numbers [10] if we ignore the extremely small probability. Kiyoshi
Itô (known as the founder of so-called Itô calculus) said that

In the former argument, we forcibly applied theory of ordinary differential equations.
However, we can consider naturally the latter argument in theory of probability.

Moreover, the later argument is much closer to the truth in the position on the scientific
understanding of radioactive decay.

Next, we consider an analogue or generalization of his argument. Recall that p(t) is the
probability that each atom does not decay until time t. We define q(t) by the probability that
each atom decays until time t. Then, clearly we have

q(t) = 1− p(t) = 1− e−αt.

It should be noted that the right hand side of the formula above coincides with the cumulative
distribution function of the exponential distribution with the parameter α. Let Ym(t) = 1 or
0 based on whether the atom m decays or not by time t. Then the total number of decayed
atoms M(t) by time t is the stochastic process given by

M(t) :=
M∑

m=1

Ym(t).

Taking the means of both sides of the equation above, we obtain

E
(
M(t)

)
=

M∑
m=1

E
(
Ym(t)

)
=

M∑
m=1

q(t) = Mq(t) = M
(
1− e−αt

)
.

Therefore, the exponential distribution is a mathematical model of the radioactive decay.
Now we consider the case 500 atoms has an exponential decay constant α and 200 atoms has

an exponential decay constant β. Let Ym(t) = 1 or 0 based on whether the atom m with the
disintegration constant α decays or not by time t and let Zn(t) = 1 or 0 based on whether the
atom n with the disintegration constant β decays or not by time t. Then the radioactive decay
of these 700 atoms are described by the following stochastic process given as

500∑
m=1

Ym(t) +
200∑
l=1

Zl(t).
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By taking the means of the stochastic process above, we have

500∑
m=1

E
(
Ym(t)

)
+

200∑
l=1

E
(
Zl(t)

)
= 500

(
1− e−αt

)
+ 200

(
1− e−βt

)
.

Therefore, we can handle the case when two types of atoms are mixed by modifying Itô’s
argument. Obviously, there is no need to limit the types of mixed atoms to two types, namely,
there is no problem with any number of types.

3. Mathematical model for patterns of post-vaccination mortality

Recall that the Erlang distribution of the parameters (n, λ) is a model in which small changes
occur n times with a constant average incidence λ to cause a failure and the Erlang distribution
of (1, λ) is an exponential distribution with a parameter λ. Consider a model in which a small
change occurs in the body after vaccination, and death occurs after n instances of the change.
Then the probability p(t) that each vaccine recipient will die by time t can be considered to
follow the Erlang distribution as discussed in Section 1, and is derived as follows:

p(t) = 1− e−λt

n−1∑
l=0

(λt)l

l!
.

Note that the right hand side of the formula above is the cumulative distribution function
of the Erlang distribution with the parameters (n, λ). Clearly, the above equation describes
the situation in continuous time, while Figure 2 in [2] shows the discrete time in days on the
horizontal axis. Therefore, it is necessary to use a modified Erlang distribution. In summary:

The percentage of people who die after vaccination causes a change at the rate λ and
the number of changes reaches n on day k can be approximated by

the modified Erlang distribution with the parameters (n, λ).

This leads us to believe that the histogram [2, Figure 2] is approximated by the modified Erlang
distribution. This can be validated by the following numerical computation. First, we divide [2,
Figure 2] into short-term mortality (within 5 days), medium-term mortality (6 to 15 days), and
long-term mortality (16 to 30 days), and assume that each of these follows the modified Erlang
distribution with parameters (3, 1.6), (3, 0.44), and (3, 0.14). Then their probability density
functions are as follows. The blue circles, orange squares, and green rhombus correspond to
the modified Erlang distribution (MED) with the parameters (3, 1.6), (3, 0.44), and (3, 0.14),
respectively (Figure 1).
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Figure 1. MED with parameters (3, 1.6), (3, 0.44), and (3, 0.14), 1 ≤ k ≤ 30
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As this graph shows, death within 5 days is also associated with intermediate or long-term
mortality. For this reason, although the numbers of short-term, medium-term, and long-term
deaths in [2, Figure 2] are 457, 220, and 66, respectively, we assume that 303 people fol-
low MED(3, 1.6), 320 people follow MED(3, 0.44), and 90 people follow MED(3, 0.14), where
MED(n, λ) is the modified Erlang distribution with the parameter (n, λ). Namely, we consider
the stochastic process

303∑
j=1

Xj(t) +
320∑
l=1

Yl(t) +
90∑

m=1

Zm(t), (♭)

where Xj(t) = 1 or 0 based on whether a person j, which follows MED(3, 1.6), is dead or not
by time t, Yl(t) = 1 or 0 based on whether a person l following MED(3, 0.44) is dead or not,
and let Zm(t) = 1 or 0 based on whether a person m following MED(3, 0.14) is dead or not by
time t. By taking the means of the stochastic process above, we have

303∑
j=1

E
(
Xj(t)

)
+

320∑
l=1

E
(
Yl(t)

)
+

90∑
m=1

E
(
Zm(t)

)
= 303θ(3, 1.6, t) + 320θ(3, 0.44, t) + 90θ(3, 0.14, t),

(♯)

where θ(n, λ, t) is the cumulative distribution function of MED(n, λ) defined in Section 1. Note
that (♭) and (♯) are close to each other by the law of large numbers if we ignore the extremely
small probability (see Section 2). Furthermore, since the attributes of vaccinated people differ
depending on their age and the presence or absence of underlying diseases, it is natural that the
duration of death differs. In other words, when the same medicine is administered to uniform
experimental animals, it is not necessary to choose three disintegration constants as above,
and it is sufficient to specify one disintegration constant. The reason for setting n = 3 will be
explained in the next section. The orange line below represents the line from [2, Figure 2], and
the blue line represents the line from

303η(3, 1.6, t) + 320η(3, 0.44, t) + 90η(3, 0.14, t), (⋆)

where η(n, λ, t) is the probability density function of MED(n, λ) (Figure 2).
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Figure 2. Comparison of (⋆) with [2, Figure 2], 1 ≤ k ≤ 30

In [2, Figure 2] (see Reference data 1), it can be seen that similar graphs are obtained when
only the data reported on May 26, June 9, June 23, July 7 and July 21 are used, in which
the peak appears on the second or third day and then decreases. It is reasonable to suspect
that λ = 1.6, the rate at which vaccine-induced changes occur, is too high. However, this is
because the histogram [2, Figure 2] was originally provided based on the ”Summary of Events
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Reported as Death after COVID-19 Vaccination” published by MHLW, and it is inevitable
that the population had a high rate of small changes caused by the vaccination. In [2, Figure
2], there is a possibility that some recipients were recorded as ”dead on the second day after
vaccination if death was confirmed the morning after the day of vaccination”. Furthermore,
if the vaccine was administered in the evening and the recipient died the next morning, less
than 24 hours had passed since vaccination. Hence, there is a large difference between deaths
recorded on the first day and the second day.

We can find a similar histogram whose peak appears on the second day and then decreases
in [7, Figure S1] (see Reference data 2). In addition, similar graphs are obtained when only
the data caused by BNT162b2 Vaccine and mRNA-1273 vaccine. Furthermore, we can find a
similar shape in [1, Figure 1] with the number of days from COVID-19 vaccination to symptom
on the horizontal axis and the number of patients of with myocarditis in Korea on the vertical
axis. Therefore, this phenomenon is not unique to post-vaccination mortality in Japan, but is
expected to occur in many side effects from COVID vaccine all over the world.

4. Reason for setting n = 3 and its meaning

This section explains that when n is large, short-term mortality within 5 days is quite different
in shape from [2, Figure 2]. To do this, we first consider the mode ρ of the Erlang distribution.
Based on [2, Figure 2], the ρ should satisfy:

1 < ρ :=
n− 1

λ
< 3.

If n ≥ 2 the variance of the Erlang distribution is

n

λ2
= n

ρ2

(n− 1)2
<

9n

(n− 1)2
.

This implies that when n is large enough, the variance of the Erlang distribution is very small.
The modified Erlang distribution is thought to be similar. However, [2, Figure 2] cannot be
approximated unless the distribution has a relatively large variance. This argument is more
effective when ρ is close to 1 because the variance of the Erlang distribution is small. Conversely,
if ρ is close to 3, we discuss as follows: when ρ satisfies the above condition, the number of
deaths up to day ρ/3 is bounded by∫ ρ/3

0

λn

(n− 1)!
xn−1e−λxdx ≤

∫ ρ/3

0

λnxn−1

(n− 1)!
dx =

1

n!

(λρ)n

3n

from e−x ≤ 1 for x ≥ 0 and the probability density function of the Erlang distribution. Let
F (n) be the right-hand side of the above equation, namely, we put

F (n) :=
1

n!

(λρ)n

3n
=

1

n!

(n− 1)n

3n
.

Then we have the following:

F (19) = 0.005009324157..., F (18) = 0.005669659528.., F (17) = 0.006425543377...,

F (16) = 0.007292903644..., F (15) = 0.008290908138..., F (14) = 0.009442804844...,

F (13) = 0.01077704189..., F (12) = 0.01232878279..., F (11) = 0.01414198851... .
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Next, we consider the cases n ≥ 20. Applying Stirling’s formula, which is given by

n! =
√
2πn

(n
e

)n
(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+O

(
n−5

))
(see [11, Speed of convergence and error estimates]), to n!, we have

F (n) =
(n− 1)n

n3n
1√

2π(n− 1)

( e

n− 1

)n−1(
1 +O(n−1)

)
=

√
n− 1

ne
√
2π

(e
3

)n(
1 +O(n−1)

)
.

Thus, when n ≥ 20, the above value is very small by

1

e
√
2π

= 0.1467626632...,
(e
3

)20

= 0.1391440191... .

Therefore, it is not necessary to consider when n ≥ 11 because the number of deaths by day
ρ/3 is too small if 1 < ρ < 3. By gradually decreasing n from n = 10, it can be understood
by numerical computation that n = 3 is optimal. In fact, for n = 10, 9, 8, 7, 6, 5, we obtain
the following graphs (Figures 3, 4, 5, 6, 7, and 8). The blue circles, orange squares, green
rhombus, red triangle, purple triangle, and brown circle correspond to ρ = 1, 1.2, 1.4, 1.6, 1.8, 2,
respectively.
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Figure 3. n = 10
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Figure 4. n = 9
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Figure 5. n = 8
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Figure 6. n = 7
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Figure 7. n = 6
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Figure 8. n = 5

Considering the balance of the height differences on the first, second, third, fourth, and fifth
days, it seems that [2, Figure 2] cannot be approximated by these figures. Therefore, n = 2, 3, 4
are candidates, but here, n = 3 is taken as the median value. Actually, when n = 2, 3, 4, we
have the following graphs (Figures 9, 10, and 11).

In the preceding discussion, it has been assumed that death occurs after a change occurring
n times, but the above discussion has shown that the optimal value of n is 3. That is, when
dealing with short-term deaths within 5 days, it would be expected that n may be greater
than 3, but not greater than 10. This has significant implications: death from three changes
means a dramatic worsening of the condition, which suggests sudden death. In fact, the 28-
year-old man described in [3] died suddenly of myocardial rhabdomyolysis 5 days after the
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Figure 11. n = 2

second vaccination. Furthermore, it is reported in [6] that a 14-year-old girl died suddenly of
fatal multi-organ inflammation 2 days after the third dose of the BNT1262b2 mRNA COVID-
19 vaccine (see also [4, Table 1 and Figure 4]). Therefore, this mathematical model is highly
rational.

Conclusion

The modified Erlang distribution of the parameters (n, λ) is a model in which small changes
occur n times with a constant average incidence λ to cause a failure. This article suggests
that the histogram [2, Figure 2], can be approximated using the modified Erlang distribution
by appropriately dividing it into short-term mortality, medium-term mortality, and long-term
mortality. Especially, for the short-term deaths within 5 days, the optimal value of n is 3,
which suggests a dramatic worsening of the condition. Actually, some papers [3], [4], and [6]
have reported sudden death after vaccination.
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Reference data 1: Histogram in [2, Figure 2]. The vertical axis is the number of deaths,
and the horizontal axis is the number of days after vaccination (day 1 refers to the day of
vaccination).

Reference data 2: Histogram in [7, Figure S1]. Number of reports of death per day following
vaccination, by manufacturer, to Vaccine Adverse Event Reporting System (VAERS)-December
14, 2020–June 14, 2022 (day 0 refers to the day of vaccination).
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