1	Short Communication
2	
3	The Generic Circumscription of <i>Tetrapisispora</i> Ueda-Nishinura et Mikata (1999)
4	(Saccharomycetaceae): The Proposal of Nishimuraea gen. nov.
5	
6	Taweesak Malimas, ¹ Huong Thi Lan Vu, ² Pattaraporn Yukphan, ³ Somboon Tanasupawat, ⁴
7	Yuzo Yamada, ^{3,5,6,*}
8	
9	¹ Microbial Laboratory Biosafety Level-1, 46 M, 9 Nongphus, Muangsuang, Roi-Et 45220,
10	Thailand
11	² Department of Microbiology, Faculty of Biology and Biotechnology, University of
12	Science, Vietnam National University-HCM City, 227 Nguyen Van Cu Street, Ward 4,
13	District 5, Hochiminh City, Vietnam
14	³ Microbial Diversity and Utilization Team, Thailand Bioresource Research Center
15	(TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National
16	Science and Technology Development Agency (NSTDA), 113 Thailand Science Park,
17	Phaholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
18	⁴ Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences,
19	Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330,
20	Thailand
21	⁵ JICA Senior Overseas Volunteer, Japan International Cooperation Agency, Shibuya-ku,
22	Tokyo 151-8559, Japan
23	⁶ Laboratory of Applied Microbiology (Professor Emeritus), Department of Agricultural
24	Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
25	422-8529, Japan
26	
27	*Corresponding author E-mail: ymdy333@kdt.biglobe.ne.jp.
28	

29 ABSTRACT

30	The genus <i>Tetrapisispora</i> was introduced with the following four species; <i>T. arboricola</i> , <i>T.</i>
31	iriomotenensis, T. nanseiensis and T. phaffii (the type species). Later, the three species
32	were additionally accpmmodated to the genus; T, blattae, T. fleetii and T. namnaonensis.
33	Of the seven species, Tetrapisispora blattae represented an abnormally long branch in the
34	phylogenetic trees based on the 26S rRNA gene D1/D2 domain and the 18S rRNA gene
35	sequences derived from the neighbour-joining method. The calculated pair-wise 26S
36	rRNA gene D1/D2 domain sequence similarities were extremely low (81.2 - 95.7%)
37	within the genus. Except for <i>T. blattae</i> , the similarities were 90.3 - 95.7% among the
38	remaining five species. From the data obtained, Nishimuraea gen. nov. was proposed
39	along with Nishimuraea blattae comb. nov.
40	
41	Keywords: Tetrapisispora phaffii; Tetrapisispora blattae; Tetrapisispora namnaonensis;
42	Nishimuraea gen. nov.; Nishimuraea blattae comb. nov.
43	
44	
45	The genus Tetrapisispora Ueda-Nishimura et Mikata was introduced for the following
46	four species, T. arboricola, T. iriomotenensis, T. nanseiensis and T. phaffii (= Kluyvero-
47	myces phaffii) (Ueda-Nishimura and Mikata 1999). Subsequently, T, blattae, (= Kluyvero-
48	myces blattae), T. fleetii and T. namnaonensis were included in the genus (Kurtzman 2003;
49	Kurtzman et al. 2004; Sumpradit et al. 2005).
50	Of the seven species, T. blattae was characterstic of an extremely long branch in the
51	phylogenetic trees (Lachance 2011; Sumpradit et al. 2005). Especially, T. blattae was
52	located outside the cluster comprised of the remaining six species and then connected
53	surprisingly to that of Lachancea thermotolerans (= Zygosaccharomyces thermo-
54	tolerans)/Zygosaccharomyces rouxii in the phylogenetic tree based on the D1/D2 domain
55	of the LSU rDNA derived from the neighbour-joining method (Sumpradit et al. 2005).
56	

57 This paper deals with the presently available sequence data and gives the different 58 conclusion that *T. blattae* constitutes an independent taxon at the generic level since the 59 species has an abnormally long branch and the phylogenetic position of the species is not 60 found inside the cluster of *T. phaffii*, the type species and the remaining five.

61

62 The phylogenetic tree based on the 26S rRNA gene D1/D2 domain sequences (LSU 63 D1/D2) was constructed by the neighbour-joining method (Fig. 1). Tetrapisispora phaffii, 64 the type species was connected to T. namnaonensis and T. fleetii first and then to the 65 remaining three species, T. iriomotensis, T. nanseiensis and T. arboricola. The phylo-66 genetic branches of the six species were very long within the genus. The lengths of the 67 species almost corresponded to those of the nine species in the different genera (Fig. 1). 68 Tetrapisispora blattae, the remaining one was surprisingly located outside the six species 69 as well as the nine species used for reference standards.

70 The calculated pair-wise sequence similarities were 81.2 - 95.7% within the genus and 71 90.3 - 95.7% among the five species except for *T. blattae* (Table 1). The calculated values 72 were neither '98% or more' nor 'beyond the so-called 98% wall' (Yamada et al., 2022; Vu 73 et al., 2022a, b; Malimas et al., 2023a-d). In contrast, the sequence similarity between T. 74 blattae and T. phaffii was quite low (82.6%), the value of which was much lower than that 75 (88.8%) between T. blattae and Saccharomyces cerevisiae and to that (87.7%) between T. 76 *blattae* and *Vanderwaltozyma polyspora*. Incidentally, the sequence similarity between V. 77 polyspora and S. cerevisiae was 93.8%. From the phylogenetic data obtained above, T. 78 blattae was quite unique.

79

In the phylogenetic tree based on the 18S rRNA gene sequences (SSU) (Fig. 2), the branches were on the whole shorter among the species examined, as shown and discussed previously (Malimas et al., 2003a-d). The five species of the genus *Tetrapisispora* represented quite short phylogenetic branches in contrast to those of LSU D1/D2.

84	However, it is of great interest that there was almost no change in the branch length of T .
85	blattae.
86	The calculated pair-wise sequence similarities were very high (99.3 - 99.8%) among

87 the five species except for *T. blattae* (Table 2). In contrast, the sequence similarity between

88 *T. blattae* and *T. phaffii* was quite low (94.4%), the value of which was the same as that

- 89 (94.4%) between *T. blattae* and *S. cerevisiae* and also to that (94.4%) between *T. blattae*
- 90 and *V. polyspora*. Incidentally, the sequence similarity between *V. polyspora* and *S.*
- 91 *cerevisiae* was 98.9%. From the phylogenetic data obtained above, *T. blattae* was quite

92 unique.

93

Tetrapisispora blattae was different phylogenetically from the remaining six species of
the genus. Therefore, the species is adequate to be taxonomically distinguished at the
generic level.

97

98 The family Saccharomycetaceae

99

100 *Nishimuraea* Malimas, Vu, Yukpnan, Tanasupawat et Yamada gen. nov.

101

102 Nishimuraea (Ni.shi'mu.ra.e.a. N. L. fem. n. Nishimuraea, Nishimura, in honour of

103 Dr. K. Ueda-Nishimura, Institute for Fermentation, Osaka, Japan, who contributed greatly104 in the yeast systematics)

Growth is butyrous, glossy and white to cream coloured (Lachance 2011). Cells are globose to ellipsoid and occur singly, in pairs or in chains. Pseudohyphae and true hyphae are not formed. Ascus arises from diploid cells, and one to eight or more spherical to ellipsoidal ascospores are produced. The spores are liberated from the ascus soon (Lachance 2011). Glucose and galactose are fermented. Growth occurs on glucose,

- 110 galactose and glycerol. Q-6 is present (Lachance 2011).
- 111

MycoBank number is 848291.

112	
113	Nishimuraea blattae (Henninger et Windisch) Malimas, Vu, Yukphan, Tanasupawat et
114	Yamada comb. nov.
115	Basionym: Kluyveromyces blattae Henninger et Windisch, Arch. Microbiol. 109: 155.
116	1976.
117	The type strain is CBS 8765. Mycobank number is 848292.
118	Synonym: Tetrapisispora blattae (Henninger et Windisch) Kurtzman (2003).
119	
120	As described above, Nishimuraea blattae is extremely unique phylogenetically. The
121	additional species are expected to be described in the genus Nishimuraea.
122	
123	ACKNOWLEDGEMENTS
124	The present authors express their sincere thanks for citing the experimental data of the
125	authors.
126	
127	Funding information
128	The present authors received no grant from any funding agency.
129	
130	Conflict of interest
131	The authors declare that there are no conflicts of interest.
132	
133	Author contributions
134	T. M., H.T.L. V., P. Y., S. T. and Y. Y. designed the study. T. M. performed the main
135	experiments. H.T.L. V. and P. Y. instructed the experiments. Y. Y. prepared the manuscript.
136	The detailed discussions were made among the five.
137	

REFERENCES

139	Kurtzman, C.P., 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces
140	and other members of the Saccharomycetaceae and the proposal of the new genera
141	Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS
142	Yeast Res. 4: 233-245.
143	Kurtzman, C.P., Statzell-Tallman, A. & Fell, J. W., 2004. Tetrapisispora fleetii sp. nov., a
144	new member of the Saccharomycetaceae. Stud. Mycol. 50: 397-400.
145	Lachance, MA., 2011. Tetrapisispora Ueda-Nishimura & Mikata emend. Kurtzman
146	(2003) In: Kurtzman, C.P., Fell, J.W. and Boekhout, T. (ed). The Yeasts: A Taxonomic
147	Study, 5th edition, vol. 2. London: Elsevier, p. 859-866.
148	Malimas, T., Vu, H.T.L., Yukphan, P., Tanasupwat, S. & Yamada, Y., 2023a. The
149	subdivision of the genus Eremolthecium Borzi emend. Kurzman. Jxiv (DOI:
150	https://doi.org/10.51094/jxiv.285).
151	Malimas, T., Vu, H.T.L., Yukphan, P., Tanasupwat, S. & Yamada, Y., 2023b. The
152	reinstatement of the genus Kleckeraspora Niehaus (1932) (apiculate yeasts). Jxiv
153	(DOI: https://doi.org/10.51094/jxiv.317).
154	Malimas, T., Vu, H.T.L., Yukphan, P., Tanasupwat, S. & Yamada, Y., 2023c. The generic
155	circumscription of Kazachstania Zubkova (1971) (Saccharomycetaceae): The proposal
156	of the new genus Vanderwaltomyces. Jxiv (DOI: https://doi.org/10.51094/jxiv.328).
157	Malimas, T., Vu, H.T.L., Yukphan, P., Tanasupwat, S. & Yamada, Y., 2023d. The
158	subdivision of the genus Kazachstania Zubkova (1971) (Saccharomycetaceae). Jxiv
159	(DOI: https://doi.org/10.51094/jxiv.334).
160	Sumpradit, T., Limtong, S., Yongmanitchai, W., Kawasaki, H. & Seki, T., 2005.
161	Tetrapisispora namnaonensis sp. nov., a novel ascomycetous yeast species isolated
162	from forest soil of Nam Nao National Park, Thailand. Int. J. Syst. Evol. Microbiol.
163	55 :1735-1738.
164	Ueda-Nishimura, K. & Mikata, K., 1999. A new yeast genus, Tetrapisispora gen. nov.
165	Tetrapisispora iriomotensis sp. nov., Tetrapisispora nanseiensis sp. nov. and

166 *Tetrapisispora arboricola* sp. nov., from the Nansei Islands and reclassification of

167	Kluyveromyces phaffii (van der Walt) van der Walt as Tetrapisispora phaffii comb.
168	nov. Int. J. Syst. Bacteriol. 49: 1915-1924.
169	Vu, H.T.L., Yukphan, P., Tanasupawat, S., Mikata, K. & Yamada, Y., 2022a. The revision
170	of Schizosacchromycetaceae. Jxiv (DOI: https://doi.org/10.51094/jxiv.188).
171	Vu, H.T.L., Yukphan, P., Tanasupawat, S. & Yamada, Y., 2022b. The generic
172	circumscription of Kockiozyma (Lipomycetaceae). Jxiv (DOI:
173	https://doi.org/10.51094/jxiv.337).
174	Yamada, Y., Vu, H.T.L, Yukphan, P. & Tanaspawat, S., 2022. The revision of
175	Lipomycetaceae. Jxiv (DOI: https://doi.org/10.51094//jxiv.189).
176	
177	
178	Tetrapisispora 属の限界: 新属 Nishimuraea の提案
179	
180	T. Malimas ¹⁾ , H.T.L. Vu ²⁾ , P. Yukphan ³⁾ , S. Tanasupawat ⁴⁾ , 山田雄三 ^{2),5),6)}
181	
182	¹⁾ Microbial Laboratory Biosafety Level-1, 46 M, Thailand
183	²⁾ Vietnam National University-HCM City, Vietnam
184	³⁾ Thailand Bioresource Research Center (TBRC), Thailand
185	⁴⁾ Chulalongkorn University, Thailand
186	⁵⁾ JICA Senior Overseas Volunteer, JICA, Japan
187	⁶ 静岡大学農学部 (名誉教授)
188	
189	Tetrapitispora 属には7種が存在する. その中の1種, Tetrapisispora blattaeは異常
190	に長い系統枝を有し, the type species, <i>Tetrapisispora phaffii</i> をはじめとする他の6種
191	とは系統樹の上では、異なった挙動を示した. rRNA遺伝子塩基配列での7種の類
192	似度は, 81.2 - 95.7% と極めて低い値を示した. さらに, <i>T. blattae/T. phaffii</i> (the type
193	species) 間の塩基配列類似度は,82.6%であった. 従って,本種に対して属を別にす

194 ることが可能であり、新属 Nishimuraea および Nishimuraea blattae comb. nov. を

195 ともに提案した.

.

196

197

Species	1	2	3	4	5	6	7	8
1. T. phaffii	100							
2. T. iriomotensis	90.3	100						
3. T. nanseiensis	90.7	91.9	100					
4. T. arboricola	91.2	93.2	95.7	100				
5. T. namnaonensis	91.3	92.4	92.1	93.1	100			
6. N. blattae	82.6	81.6	81.8	82.3	81.2	100		
7. S. cerevisiae	81.9	84.2	83.9	84.8	84.1	88.8	100	
8. V. polyspora	81.2	83.0	82.5	83.0	82.3	87.7	93.8	100
Species	9	10	11	12				
9. L. starkeyi	100							
10. W. lipofer	95.2	100						
11. D. uninucleata	95.7	94.0	100					
12. <i>K. arxii</i>	97.5	94.1	95.4	100				

Table 1. The pair-wise sequence similarity in the 26S rRNA gene D1/D2 domain sequences in *Tetrapisispora* species.

T, *Tetrapisispora*; *N*, *Nishimuraea*: *S*, *Saccharomyces*; *V*. *Vanderwaltozyma*; *L*, *Lipomyces*; *W*, *Waltomyces*; *D*, *Dipoascopsis*; *K*, *Kawasakia*. The total sequences were of 549 - 568 bases. The type strains were used.

Species	1	2	3	4	5	6	7	8
1. T. phaffii	100							
2. T. iriomotensis	99.6	100						
3. T. nanseiensis	99.5	99.4	100					
4. T. arboricola	99.5	99.3	99.8	100				
5. T. namnaonensis	99.8	99.5	99.7	99.6	100			
6. N. blattae	94.4	94.4	94.3	94.4	94.4	100		
7. S. cerevisiae	96.0	96.1	96.2	96.1	96.1	94.4	100	
8. V. polyspora	96.0	96.1	96.0	96.0	96.1	94.4	98.9	100
Species	9	10	11	12				
9. L. starkeyi	100							
10. W. lipofer	95.5	100						
11. D. uninucleata	95.7	97.6	100					
12. K. arxii	95.9	96.7	97.5	100				

Table 2. The pair-wise sequence similarity in the 18S rRNA gene sequences in Tetrapisispora species.

T, *Tetrapisispora*; *N*, *Nishimuraea*; *S*, *Saccharomyces*; *V*, *Vanderwaltozyma*; *L*, *Lipomyces*; *W*, *Waltomyces*; *D*, *Dipoascopsis*; *K*, *Kawasakia*. The total sequences were of 1705 - 1734 bases. The type strains were used.

0.02 Knuc.

Fig, 1. The phylogenetic tree based on the 26S rRNA gene D1/D2 domain sequences with 524 bases derived from the neighbour-joining method. The numerals at the nodes of respective branches indicate bootstrap values (%) deduced from 1000 replications.

0.01 Knuc.

Fig, 2. The phylogenetic tree based on the 18S rRNA gene sequences with 1672 bases derived from the neighbour-joining method. The numerals at the nodes of respective branches indicate bootstrap values (%) deduced from 1000 replications.