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Abstract

This paper proposes a multicomponent topology optimization method that considers assemblability. Gener-

ally, it is difficult to consider assemblability in topology optimization; however, in this study, we achieve it

by introducing a fictitious physical model. To perform multicomponent topology optimization, the extended

level set method is used to represent multiple components. First, the assembly constraints are formulated

using a fictitious physical model limited to two components. Then, by considering stepwise assembly, the

constraint is extended to three or more components. In addition, topology optimization algorithms are

constructed using the finite element method. Several numerical examples demonstrate that the proposed

method can obtain structures with assemblability and has low initial structure dependence.

Keywords: Topology optimization, Assemblability, Extended level set method, Multicomponent design,

Fictitious physical model, Finite element method, FreeFEM

1. Introduction

Topology optimization methods are used to create and design the optimal shape of structures based

on mathematical and physical evidence, and topology optimization is attracting increasing attention as it

provides the highest degree of design freedom among structural optimization methods because it permits

topology changes. Topology optimization was initially proposed by Bendsøe and Kikuchi [1]. Since then,

several topology optimization methods have been developed, e.g., the density method [2, 3], the homogenized

design method [4, 5], and the level set method [6–9]. Recently, it has been reported that these methods

have been applied to a wide range of design problems, e.g., the vibration problem [10, 11], heat conduction

problems [12–14], electromagnetic problems [15, 16], and acoustic problems [17, 18]. Topology optimization

has also been employed in the design phase of industrial products. Examples include the design optimiza-

tion of material reinforcement to improve automobile body rigidity [19] and the structural performance
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and stability enhancement of a commercial aircraft vertical stabilizer component [20]. However, topology

optimization is essentially a method to design the shape of a single device or component; thus, it cannot be

used to comprehensively design an entire mechanical structure.

Therefore, in this study, we attempt to realize such a design. First, we propose a structural optimization

method that considers assemblability. One way to achieve assemblability in topology optimization is the

uniform cross-section surface constraint [8, 21] in the level set-based topology optimization. The reaction–

diffusion equation is commonly used to update the level set function in level set-based topology optimization.

In the reaction–diffusion equation, the coefficients of the diffusion term can be extended to a second-order

tensor, and equal-section constraints can be imposed by setting the component corresponding to a certain

direction to be sufficiently large. This is expected to result in a shape that can be assembled; however, it can

be excessive as a constraint and may not result in a high-performance structure. In topology optimization

methods, manufacturability and assemblability are often formulated based on cavity exclusion constraints

[22–27] and optimization of a joint distribution [28]; however, these approaches are not always sufficient to

ensure assemblability. Assemblability can also be achieved using heuristic or nongradient approaches. For

example, Luo et al. [29] proposed a framework to partition 3D objects in additive manufacturing based

on binary space partitioning. In addition, Attene [30] introduced a heuristics algorithm for disassembly

and packing of 3D objects. Zhou et al. [31] and Guirguis et al. [32] presented multicomponent topology

optimization methods based on a genetic algorithm. Genetic algorithms have also been used in part decom-

position techniques in additive manufacturing processes [33–36]. However, gradient-based approaches are

preferable from a computational perspective because multicomponent optimization requires a large number

of design variables. In the proposed method, geometric constraints are represented implicitly using a ficti-

tious physical model, which allows constraint violation during the optimization process, and this result in

geometric constraints with low initial structure dependency.

One advantage of having assemblability in mechanical structures is the ease of designing with multi-

ple materials. Recently, in the design of mechanical structures, increasing attention is being paid to design

methods that organically combine multiple materials with different properties. By combining multiple mate-

rials, seemingly contradictory properties, e.g., high strength and low weight, can be achieved simultaneously.

It has been reported that some structural designs, e.g., negative thermal expansion, can only be realized

using multiple materials [37]. The multimaterial level set (MMLS) method [38] and vector valued level set

(VVLS) method [39] are two examples of multimaterial representations based on level set methods. The

MMLS method is characterized by an asymmetric technique for defining materials, which makes it more

dependent on the initial structure, and this effect becomes increasingly apparent when the number of ma-

terial types increases. The VVLS method is characterized by its symmetric material representation and

low dependence on the initial structure. However, it has asymmetry at the interface that divides the level

set function space, which affects regularization. The extended level set (X-LS) method [40] eliminates the
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asymmetry in the VVLS method and achieves complete symmetry in the material definition.

In this study, we use the extended level set (X-LS) method and propose a topology optimization method

that considers multiple components and assemblability.

The remainder of this paper is organized as follows. In Section 2, we outline topology optimization based

on the X-LS method, and in Section 3, we formulate the assembly constraints based on a fictitious physical

model. In Section 4, we formulate the mean compliance minimization problem considering the assembly

constraints. In Section 5, we describe the optimization algorithm and a concrete numerical implementation

method. In Section 6, we present a numerical analysis example to confirm the validity and effectiveness of

the proposed method. Finally, conclusions are given in Section 7. Note that a detailed derivation of the

topological derivatives is presented in the Appendix for a fictitious physical model.

2. Extended level set-based topology optimization

Here, we describe topology optimization based on the X-LS method used in this study.

2.1. Level set method

Before explaining the X-LS method, we first explain the conventional level set method.

The topology optimization problem uses the following characteristic function χ to represent the object

region Ω to be designed.

χ =

1 for x ∈ Ω

0 for x ∈ D\Ω.
(1)

However, this characteristic function can be changed in infinitesimal intervals; thus, the topology optimiza-

tion problem with characteristic function χ as a design variable is an ill-posed problem. Therefore, based on

regularization, the level set-based topology optimization method [8] forms this as a well-posed problem. In

this method, the shape of the structure to be designed is represented by the isosurface of a scalar function

called the level set function, and regularization can be achieved by determining the smoothness of the level

set function appropriately.

In the level set method, the characteristic function χϕ is defined as follows using the level set function ϕ:

χϕ =

1 for ϕ(x) ≥ 0

0 for ϕ(x) < 0.

(2)

In this method, the optimization problem is formulated with the level set function ϕ(x) as the design

variable. Next, we describe how the level set function is updated. In level set-based topology optimization

[8], a virtual time t is introduced, and the topology optimization problem is replaced by a time evolution
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problem for ϕ to update the level set function based on the reaction–diffusion equation as follows:

∂ϕ

∂t
= −K(DTJ − τ∇2ϕ), (3)

where K > 0 is a proportionality constant, DTJ is the topological derivative, and τ > 0 is a regularization

parameter. Here, the topological derivative DTJ is the ratio of the variation of the objective function J

to the volume or area of the small region Ωε when a small region Ωε > 0 is inserted into the structure

represented by region Ω. DTJ is defined as follows:

DTJ(x0) = lim
ε→0

J(ε)− J(0)

f(ε)
. (4)

Here, x0 is the central coordinate of Ωε, and f(ε) is a function that depends on ε and is defined such that

the above limit exists.

2.2. Extended level set method

In the following, we briefly describe the X-LS method [40], which extends the level set method described

above to multiple materials.

In the X-LS method, the X-LS function ϕij(x) defined in the real space Rd (where d is the dimension

of the problem) is employed rather than the conventional level set function. Figure 1 shows a conceptual

diagram of the X-LS method.

Figure 1: Concept of X-LS method. Material domains and X-LS functions.

The X-LS function ϕij(i ̸= j) and the domain of each material i, j correspond as follows:
ϕij(x) > 0 if x ∈ Ωi

ϕij(x) = 0 if x ∈ Γij

ϕij(x) < 0 if x ∈ Ωj ,

(5)
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where Ωi,Ωj are the regions occupied by materials i, j, respectively, and Γij is their boundary. To satisfy

the symmetry in Eq. (5), we assume that the X-LS function satisfies the following equality:

ϕij = −ϕji. (6)

Here, the characteristic function χm, which indicates the region of the mth phase, is defined as follows:

χm(x) =

1 if x ∈ Ωm

0 if x ∈ D\Ωm,

(7)

where Ωm denotes the region of the mth phase. In the X-LS method, the characteristic function of the mth

phase χm is expressed using the X-LS function ϕij as follows:

χm(x) =
∏
i ̸=m

H(ϕim), (8)

where H(s) is a Heaviside function:

H(s) =

1 if s ≥ 0

0 if s ≤ 0.

(9)

As can be seen from the Equation (6), there areM(M−1)/2 independent components in the X-LS function.

In addition, one of the M phases should be assigned to each coordinate x; thus, the X-LS function satisfies

the following. ∑
m

χm(ϕim) = 1. (10)

Next, we discuss the update of the X-LS function. In the X-LS method, as in the level set method described

in Section 2.1, the X-LS function is updated as a time evolution problem expressed by the following reaction–

diffusion equation:
∂ϕij
∂t

= −K(DijJ − τij∇2ϕij), (11)

where t is a virtual time, K > 0 is a constant, τij is a coefficient for regularization, and DijJ is an extended

topological derivative (expressed using the conventional topological derivative Dij
T J), which is defined as

follows:

DijJ = Dkj
T J −Dki

T J, (12)

where the topological derivative Dij
T J is the ratio of the variation of the objective function to the volume

or area of the small region when a small region of material j and radius ε > 0 is inserted into the region of

material i. Note that the extended topological derivatives is explained in detail in Section 4.2.
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3. Formulation of assembly constraints using fictitious physical models

Here, we formulate geometric constraints that consider assemblability in consideration of multiple com-

ponents.

We attempt to manufacture multiple components separately and assemble them to form a single structure.

However, evaluating the assemblability of separately manufactured components is very difficult due to the

positional relationship and interference with other components. In addition, it is even more difficult to

optimize an assembled whole structure simultaneously.

Therefore, we focus on the fact that the assemblability of a structure can be attributed to decomposability,

which means that a structure can be decomposed into multiple components by following the assembly

procedure in reverse. If we seek to evaluate decomposability, we only need to consider a single structure,

i.e., the entire structure. Thus, decomposability can be easily incorporated into optimization of the entire

structure. Therefore, in this study, the assembly constraint is realized by evaluating the decomposability of

the entire structure obtained by the optimization calculation.

3.1. Geometrical requirements

First, we clarify the geometric requirements of decomposing a single component from an entire structure

comprising multiple components. Here, there are two primary shapes that are problematic in disassembly.

The first is called an undercut shape, which is a convex or concave shape that gets stuck when disassembling.

The second is an interior void shape in which other components are inserted into the structure and cannot

be removed. Examples of these two shapes are shown in Figure 2. If one of these shapes is included in

the overall structure, it cannot be disassembled. In other words, the assembly constraint is a geometric

constraint that excludes undercut and interior void shapes.

Figure 2: Undercut and interior void geometry.
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3.2. Fictitious physical model

If the designed structure is simple, it is easy to determine whether each component can be disassembled;

however, for a more complex structure, it may be difficult to evaluate its decomposability. In design pro-

cesses that use structural optimization methods, designers must analyze the decomposability of the obtained

structure and modify it in consideration of both structural optimization and decomposability. This requires

extensive knowledge, design experience, and trial and error. Thus, to solve this problem, we propose a

method to evaluate geometric features implicitly using a fictitious physical model technique [41, 42].

Here, to eliminate shapes that do not satisfy decomposability, we must consider a physical model that

has some value only in object regions that include undercut or interior void shapes. First, we must consider

the region through which a part passes when it is decomposed. For example, Figure 3 shows the region

through which component i in Figure 2 passes when it is disassembled to the left. This passthrough region

can be expressed as a shadow of component i when fictitious light is illuminated from the right. This shadow

region is shown in Figure 4. Similarly, we can express such a passthrough region by considering a fictitious

heat flow [42] in the same direction as the decomposition direction. In this study, for the ease of numerical

analysis, the fictitious heat field is introduced to represent the passage region.

Figure 3: Passthrough area of component i. Figure 4: Shadow area of component i.

For simplicity, we explain the introduction of a fictitious heat field ψ using a case with two components.

Here, assume that component i is decomposed from a structure comprising components i and j to the

specified direction di (left side), as shown in Figure 2. In this case, we consider fictitious internal heat

generation in the region of component i. Note that the amount of heat generated is proportional to the

difference between 1 and the heat value ψi(x) at that point, i.e., (1 − ψi(x)). Here, it is assumed that the

entire analysis region is filled with an anisotropic material having high thermal conductivity in the specified

direction di. Considering a fictitious heat flow along the prescribed direction di from the boundary Γin on

the right side of the analysis domain, we obtain a fictitious temperature distribution (Figure 5) in the steady

state, i.e., a distribution where the temperature is ψi = 1 downstream of component i and ψi = 0 in the rest

of the domain. Therefore, by extracting only the region of component j from the high-temperature region
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where ψi = 1, we can obtain a model that has large values only in regions that include undercut or interior

void shapes, as shown in Figure 6.

Figure 5: Fictitious heat field ψi. Figure 6: High-temperature domains in component j.

The high-temperature region and component j, i.e., the region where ψiχj has a large value, is where

the assembly constraint is violated. Here, χj is a characteristic function that takes a value of 1 in the region

of component j and 0 in other regions. Thus, we can exclude undercut and interior void shapes and impose

constraints on the decomposition of component i by minimizing the following functional:

Fj =

∫
D

ψiχj dΩ. (13)

Note that the subscript of Fj is j because Equation (13) is a constraint function for the region of component

j. ψi is a fictitious heat field where heat is generated in the region of component i and flows in the specified

direction di. ψi is obtained by solving the following steady advection–diffusion equation.
−L2div(Ai · ∇ψi) + LV di · ∇ψi = βχi(1− ψi) in D

ψi = 0 on Γin

ni · ∇ψi = 0 on ∂D\Γin,

(14)

where Ai is the diffusion coefficient tensor, β is a parameter representing the degree of internal heating

of the object region, L is the representative length for dimensionlessness, ni is the outward unit normal

vector, and V is the velocity of advection. Here, the diffusion coefficient tensor sets the prescribed direction

component to be greater than the other components, i.e., Ai is expressed as follows:

Ai = di ⊗ di + ε

N−1∑
m=1

em ⊗ em, (15)

where N is the space dimension, em denotes the orthonormal basis in the orthonormal complementary space

of d, and ε > 0 is a tiny constant.
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In the two-component case, decomposing component i to the left is equivalent to decomposing component

j in the opposite direction (i.e., to the right). Thus, the decomposability of component i is also satisfied by

considering the heat field ψj generated from component j that flows in the direction dj(= −di), as shown

in Figure 7, and excluding the region in Figure 8 represented by ψjχi. In this case, the constraint function

for component i is expressed as follows:

Fi =

∫
D

ψjχi dΩ. (16)

Therefore, to consider the symmetry of components i and j, we define a new constraint function, i.e., the

product of two constraint functions, as a constraint function on decomposition of components i and j as

follows:

Jij = Fi · Fj (17)

=

∫
D

ψjχi dΩ ·
∫
D

ψiχj dΩ. (18)

Figure 7: Fictitious heat field ψj . Figure 8: High-temperature domains in component i.

3.3. Application to three or more components

The case of three or more components can also be attributed to the two-component case by considering

stepwise decomposition. As an example, we discuss the case of four components (indexed by k, l,m, n).

Here, assume that we first decompose component k to the left (Step 1), then decompose component l to the

right (Step 2), and finally decompose components m and n up and down (Step 3).
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Figure 9: Step 1.

Figure 10: Step 2. Figure 11: Step 3.

When component k is decomposed to the left, the same constraint function used in the two-component

case can be defined by treating the remaining components l,m, n as a single component (Figure 9). In this

case, the constraint function can be expressed as follows:

Jk·lmn = Fk · Flmn (19)

=

∫
D

ψlmnχk dΩ ·
∫
D

ψkχlmn dΩ, (20)

where χlmn is the characteristic function that represents the area of the combined components l,m, n, and

ψlmn is the heat field generated from χlmn that flows to the right. Next, when decomposing component

l to the right, we treat the remaining components m,n as a single component (Figure 10) and define the
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constraint function as follows:

Jl·mn = Fl · Fmn (21)

=

∫
D

ψmnχl dΩ ·
∫
D

ψlχmn dΩ, (22)

where χmn is the characteristic function that represents the region of the combined components m,n, and

ψmn is the heat field heated from χmn that flows to the left. Finally, when components m,n are decomposed

into upper and lower parts (Figure 11), the constraint function is expressed as follows:

Jm·n = Fm · Fn (23)

=

∫
D

ψnχm dΩ ·
∫
D

ψmχn dΩ. (24)

Optimization to a structure in which these four components can be assembled in stages can be achieved by

minimizing the constraint function J̃ , which is the sum of the constraint functions Jk·lmn, Jl·mn, and Jm·n

corresponding to the above three stages of decomposition as follows:

J̃ = Jk·lmn + Jl·mn + Jm·n.. (25)

4. Formulation of optimization problems

The above assembly constraints can be easily incorporated into structural optimization to obtain an opti-

mal structure that achieves high performance with multicomponent assemblability. Here, we first formulate

the optimization problem, and then we derive the design sensitivity to the optimization problem.

4.1. Application to optimization problems

Assume a surface force t is acting on boundary Γt of an isotropic linear elastic body Ω fixed at boundary

Γu. Here, the displacement field is denoted u, the elastic tensor is denoted C, and the small strain tensor

is denoted ϵ(u) = (∇u + ∇uT )/2. The mean compliance minimization problem for m components with

assembly constraints is formulated as follows:

inf
ϕij

∫
Γt

t · u dΓ (26)

subject to :

J̃ = 0 (27)

E =

∫
Γt

t · u dΓ−
∫
D

ϵ(u) : C : ϵ(ũ) dΩ = 0 (28)∫
D
χidΩ∫

D
dΩ

− V max
i ≤ 0 i = 1, 2, ...,m, (29)

where J̃ is the constraint function of the assembly constraint defined in Equation (25), and V max
i is the

maximum percentage of the material area that component i can occupy.
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4.2. Sensitivity analysis

In the following, we derive the extended topological derivatives for the assembly constraints.

First, the extended topological derivative DijJ is defined using the conventional topological derivative

Dij
T J as follows:

DijJ = Dij
T J −Dji

T J, (30)

where Dij
T is the ratio of the variant of the objective function to the volume or area of the small region when

a small region of radius ε > 0 with component j is inserted into the region with component i.

Next, we derive the topological derivatives of the assembly constraints for the optimization problem of a

structure comprising two types of components i, j. Here, the objective function of the assembly constraint

for components i and j is expressed as follows:

Jij = Fi · Fj (31)

=

∫
D

ψjχi dΩ ·
∫
D

ψiχj dΩ. (32)

As shown in Figure 12, we consider a small change in the above objective function Jij when a small region

Ωε, i.e., component j, is inserted into the region of component i. Here, the topological derivative Dij
T J for

the assembly constraint is derived as follows:

Dij
T J = {β(1− ψi)ψ̃i + ψi}

∫
D

ψjχi dΩ+ {β(1− ψj)ψ̃j − ψj}
∫
D

ψiχj dΩ, (33)

where ψ̃i is an adjoint variable obtained by solving the following adjoint equation:

−L2div(Ai · ∇ψ̃i) + LVi · ∇ψ̃i + βχiψ̃i = χj . (34)

Note that the obtained topological derivatives can be applied to both two- and three-dimensional cases. The

corresponding derivation process is described in detail in the Appendix.

Figure 12: Insertion of small region Ωε.
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5. Numerical implementation

Here, we describe a concrete numerical implementation method based on the formulations given in the

previous sections.

5.1. Optimization algorithm

The optimization algorithm is summarized as follows.

Step 1 Give an appropriate initial value to the X-LS function ϕij .

Step 2 Compute the displacement fields u, heat fields ψ, and adjoint fields ψ̃ using the finite element

method.

Step 3 Evaluate the objective function and constraint function.

Step 4 If the objective function is converged, terminate the optimization calculation; otherwise, proceed

to Step 5.

Step 5 Compute the extended topological derivative DijJ .

Step 6 Calculate the reaction–diffusion equation using the finite element method and update the X-LS

function. Return to Step 2.

In this study, the FreeFEM++ [43] finite element analysis software was used for finite element analysis.

5.2. Approximating the characteristic function

Note that condition (10) to be satisfied by the X-LS function is not completely satisfied by the optimiza-

tion calculation, i.e., some regions cannot be assigned to any component. Thus, we define an approximate

characteristic function χ̂m that approximates Equation (8) as follows:

χ̂m =
∏
i ̸=m

H(ϕ̃im), (35)

where ϕ̃ij is an X-LS function whose zero isosurface in the approximated expression represents the

boundary surface between components i and j. This function is defined as follows:

ϕ̃im = χ̃m − χ̃i (36)

χ̃m =
∏
i

H̃(ϕim). (37)

However, the χ̃m function indicates the priority at which phase m is assigned at coordinate x. Phase m

with the largest χ̃m is assigned to coordinate x. Note that H̃(s) is an approximated Heaviside function that
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is defined as follows:

H̃(s) =


0 (s < −1)

1
2 + s[ 1516 − s2( 58 − 3

16s
2)] (−1 ≤ s ≤ 1)

1 (s > 1).

(38)

5.3. Sensitivity weighting

In the reaction–diffusion equation (Equation (11)), we can implement optimization that considers as-

semblability by adding the sensitivity J̃ ′ of the assembly constraint to the terms of the extended topological

derivative DijJ . Here, the strength of the assembly constraint can be changed by multiplying the sensitivity

J̃ ′ of the assembly constraint by the weight factor γ as follows:

∂ϕij
∂t

= −K(DijJ + γ J̃ ′ − τij∇2ϕij). (39)

The value of the weighting factor γ affects the optimal structure. For example, if weighting factor γ is too

small, the constraint is not satisfied. In contrast, if it is too large, the solution tends to be local. Parameter

γ is examined in detail in Section 6.

In the initial stage of the optimization calculation, if the assembly constraints are applied while the

boundaries of each component domain are unclear, the optimization calculation tends to become unstable.

Thus, in order to stabilize the calculation, the weight coefficient γ is set to 0 until the number of steps of

the calculation where the boundary definition becomes clear.

6. Numerical examples

In the following, to verify the validity and effectiveness of the proposed method, we present several

numerical examples for the multicomponent topology optimization problem with assemblability formulated

in the previous section.

Here, up to four types of components (plus the cavity region) are considered for optimization. Each com-

ponent is assumed to be an isotropic linear elastic material with a Young’s modulus of (E1, E2, E3, E4, Evoid) =

(100, 200, 400, 600, 0.1) GPa and a Poisson’s ratio of γm = 0.3. The modulus Evoid is used to represent the

cavity by making it sufficiently small compared to the other components (ersatz material approach [18]).

The following figures show the regions of component 1, 2, 3, 4 in red, blue, green, and yellow, respectively,

and the hollow regions are shown in gray.

6.1. Mean compliance minimization problem in two dimensions

Here, we apply the assembly constraints to the problem of minimizing the mean compliance of two

components in a two-dimensional plane stress field. Figure 13 shows the design domain D and boundary

conditions. In this case, the representative length L was set to 1.0, and the virtual time width ∆t for the 1
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step of the optimization was set to 0.1. In addition, the advection velocity V used in the steady advection–

diffusion equation was set to 100, and the small constant ε used in the diffusion coefficient tensor A was set

to 0.01. The weighting factor γ was set to 0 until the 5th step of calculation for stabilization, and from the

6th step, the predetermined value of the weighting factor was used.

Figure 13: Two-dimensional problem settings for mean compliance minimization.

First, the optimization calculations were performed under the constraint that the first component (red)

decomposes to the right and the second component (blue) decomposes to the left. Here, the regularization

factor τ was set to 1.0× 10−4 for all i, j, and the weight factor γ for the assembly constraint was set to 0.1.

The maximum percentage of the volume of each component to the design area in the volume constraint was

(V1, V2, V
void
max ) = (25, 25, 100)%. In addition, the initial value of the X-LS function was set to ϕij = 0 for all

i, j.

(a) Step 20. (b) Step 50. (c) Step 100. (d) Optimal configuration.

Figure 14: Intermediate results and optimal configuration with assembly constraints. The red and blue regions represent the

first and second components, respectively.

Next, the optimization calculation was performed under the constraint that the decomposition directions

of the two components are switched, i.e., the first component (red) decomposes to the left, and the second

component (blue) decomposes to the right. Here, each parameter was set to value identified in the previous

example.
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(a) Step 20. (b) Step 50. (c) Step 100. (d) Optimal configuration.

Figure 15: Intermediate results and optimal configuration with assembly constraints (assembly direction reversed). The red

and blue regions represent the first and second components, respectively.

Finally, for comparison, the results of the optimization calculation for γ = 0, i.e., without assembly

constraints, are shown in Figure 16.

(a) Step 20. (b) Step 50. (c) Step 100. (d) Optimal configuration.

Figure 16: Intermediate results and optimal configuration without assembly constraints.

As can be seen, the boundary shapes obtained from the optimization calculations are clear and smooth,

and the optimal structures are both structurally valid and clearly decomposable in the specified directions.

In addition, by switching the decomposition directions, components with a high Young’s modulus are pref-

erentially placed where stresses are concentrated, which confirms that both assemblability and stiffness are

optimized simultaneously. The mean compliance for each optimal configuration is 5.40 × 10−12 in Figure

14 and 5.14× 10−12 in Figure 15, compared to 5.12× 10−12 for the optimal configuration without assembly

constraints. Thus, we conclude that the assembly constraint was achieved while maintaining a small mean

compliance.

We also investigated the effect of the initial structure on the optimal configuration. Here, we performed

the optimization calculations with different initial structures under the constraint that the first component

(red) decomposes to the right and the second component (blue) decomposes to the left. The regularization

factor τij was set to 3.0 × 10−4 for all i, j, and the weight factor γ for the assembly constraint was set to

0.1. The maximum percentage of the volume of each component to the design area in the volume constraint

was set to (V1, V2, V
void
max ) = (25, 25, 100)%. The results are shown in Figure 20

(a) Step 0. (b) Step 20. (c) Step 50. (d) Optimal configuration.
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(a) Step 0. (b) Step 20. (c) Step 50. (d) Optimal configuration.

(a) Step 0. (b) Step 20. (c) Step 50. (d) Optimal configuration.

(a) Step 0. (b) Step 20. (c) Step 50. (d) Optimal configuration.

Figure 20: Intermediate results and optimal configuration with different initial structures.

As can be seen, the optimal structures obtained for the four different initial structures are nearly the

same. Here, the mean compliance value was 5.63× 10−12 for all of the optimal structures. In other words,

appropriate optimal structures were obtained for all initial structures. Thus, these results confirm that the

optimal structure obtained by the proposed method has little dependence on the initial structure.

In addition, the effect of the weight factor γ of the assembly constraint on the optimal structure was

investigated. Here, under the constraint that the first component (red) decomposes to the left and the

second component (blue) decomposes to the right, only the weight factor γ was varied without changing the

other parameters. The results are shown in Figure 21 – 24. In this example, the regularization factor τij

was set to 5.0× 10−4 for all i, j, the initial value of the X-LS function was set to ϕij = 0 for all i, j, and the

maximum percentage of the volume of each component in the volume constraint to the design domain was

set to (V1, V2, V
void
max ) = (25, 25, 100)%. The weight coefficients were γ = (0.001, 0.1, 10, 1000).

(a) Step 20. (b) Step 50. (c) Step 100. (d) Optimal configuration.

Figure 21: Intermediate results and optimal configuration for γ = 0.001.
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(a) Step 20. (b) Step 50. (c) Step 100. (d) Optimal configuration.

Figure 22: Intermediate results and optimal configuration for γ = 0.1.

(a) Step 20. (b) Step 50. (c) Step 100. (d) Optimal configuration.

Figure 23: Intermediate results and optimal configuration for γ = 10.

(a) Step 20. (b) Step 50. (c) Step 100. (d) Optimal configuration.

Figure 24: Intermediate results and optimal configuration for γ = 1000.

The mean compliance of each optimal structure is (5.24×10−12, 5.33×10−12, 5.34×10−12, 6.73×10−12)

for γ = (0.001, 0.1, 10, 1000), respectively. These results confirm that the assembly constraint is not satisfied

if weight factor γ is too small. In contrast, if γ is too large, the assembly constraint is satisfied early; however,

the solution tends to be local and less rigid.

6.2. Mean compliance minimization problem in three dimensions

To verify the practical applicability of the proposed method, it was applied to the optimal design problem

of a three-dimensional mechanical component. Figure 25 shows the fixed design domain, the nondesign

domain, and the boundary conditions. Here, the fixed design region is shown in gray, and the nondesign

region is shown in blue. In this case, the representative length L was set to 0.2. Component 2 was assigned

to the nondesign region. The initial value of the X-LS function was set to ϕij = 0, and the virtual time

width for a single optimization step was ∆t = 0.1. In addition, the advection velocity used in the steady

advection–diffusion equation was V = 10, and the small constant used in the diffusion coefficient tensor A

was ε = 0.01. The weight coefficient γ was set to 0 until the 10th step of calculation for stabilization, and

a predetermined value was used from the 11th step.

18



Figure 25: Three-dimensional problem settings.

First, for comparison, a numerical example of a three-dimensional model with four components without

assembly constraints, i.e., γ = 0, is shown in Figure 26. Here, the regularization factor τij was set to

1.0 × 10−3 for all i, j, and the maximum value of the ratio of the volume of each component to the design

area in the volume constraint was (V1, V2, V3, V4, V
void
max ) = (10, 10, 10, 10, 100)%.

Figure 26: Optimal configuration in three dimensions with four components without assembly constraints.

The mean compliance in the optimal structure was 4.16× 10−6.

Next, we show the results of the numerical analysis when assembly constraints were applied. In this

analysis, the weight factor of the assembly constraint was set to γ = 10.0, and the other parameters were

the same as the case shown in Figure 26. To obtain a structure with better performance, the decomposition
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direction should be set in a direction and order that are as natural as possible for the optimal structure

obtained without assembly constraints. Thus, as an example, for Fig. 26, the optimization calculation was

performed under the stepwise constraint that component 3 (green) decomposes to the left, component 4

(yellow) decomposes to the right, and then components 2 (blue) and 1 (red) are split into upper and lower

parts. The results are shown in Figure 27.

Figure 27: Optimal configuration in three dimensions with four components.

For the optimal structure, the mean compliance was found to be 4.44× 10−6. As shown in the Figures

28 and 29, the obtained optimal structure can be decomposed in the specified direction. In addition, the

mean compliance does not increase significantly compared to the unconstrained case, and the structure

is considered reasonable in terms of structural dynamics. Thus, these results confirm that the proposed

method can realize the stepwise assembly constraint in three dimensions with four components.
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Figure 28: Stepwise decomposition steps 1 and 2.

Figure 29: Stepwise decomposition step 3.
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7. Concusion

In this paper, we have proposed a multicomponent topology optimization method that considers assem-

blability. The primary findings of this study are summarized as follows.

1. We have clarified the geometric requirements in assembly constraints, i.e., excluding undercut and

interior void shapes.

2. The assembly constraints for two components were formulated using a fictitious heat field.

3. By considering assembly in stages, we extended the assembly constraints to more than three compo-

nents.

4. A concrete numerical analysis algorithm for a topology optimization method considering assembly

constraints was constructed.

5. Numerical analysis of two-dimensional design problems was performed to verify the proposed method.

・We obtained a structure with assemblability in a predefined direction.

・We have demonstrated that, even if the assembly directions are switched, optimization can be

realized by considering the properties of the component.

・We confirmed that the topology optimization by the proposed method has a low initial structure

dependence.

・The influence of the weight coefficient γ of the assembly constraint on the optimal structure was

investigated: if γ is too small, the assembly constraint is not satisfied, and if γ is too large, the

solution tends to be local and less rigid.

6. Through numerical examples, we have demonstrated that the proposed method can be applied to

three-dimensional design problems: we obtained a structure with predefined directional assemblability

without significantly reducing rigidity.

Potential future work is summarized as follows.

1. The proposed method’s applicability to optimization problems involving other physical fields, e.g.,

heat transfer, vibration, electromagnetic, acoustic, and fluid flow problems, should be verified.

2. The assembly direction of each component can also be optimized further.

3. Optimization considering stress at the boundary should be investigated further.
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Appendix A. Derivation of topological derivatives

Here, consider a situation where a small region Ωε, i.e., component j, is inserted into the region of

component i, as shown in Figure 12. In this case, the governing equation for ∀ψ̃m ∈ H1(Ω) (m = i, j) is

expressed as follows:

aε(ψ
ε
m, ψ̃m) = lε(ψ̃m) ∀ψ̃m ∈ H1(Ω), (A.1)

where aε(ψ
ε
m, ψ̃m), and lε(ψ̃m) are expressed as follows:

aε(ψ
ε
m, ψ̃m) =

∫
D

L2∇ψ̃m · (A∇ψε
m) dΩ+

∫
D

L(V · ∇ψε
m)ψ̃m dΩ

+

∫
D

βχmψ
ε
mψ̃m dΩ (A.2)

lε(ψ̃m) =


∫
Ωi\Ωε

βψ̃i dΩ (m = i)∫
Ωj∪Ωε

βψ̃j dΩ (m = j).

(A.3)

Note that the following equation should be satisfied before Ωε appears.

a0(ψm, ψ̃m) = l0(ψ̃m) ∀ψ̃m ∈ H1(Ω), (A.4)

where a0(ψm, ψ̃m), and l0(ψ̃m) are expressed as follows:

a0(ψm, ψ̃m) =

∫
D

L2∇ψ̃m · (A∇ψm) dΩ+

∫
D

L(V · ∇ψm)ψ̃m dΩ

+

∫
D

βχmψmψ̃m dΩ (A.5)

l0(ψ̃m) =

∫
Ωm

βψ̃m dΩ. (A.6)

At this time, the small change δJij in the objective function Jij defined in Equation (31) is expressed as

follows:

δJij = Jε
ij − Jij

= F ε
i · F ε

j − Fi · Fj

= (Fi + δF ε
i )(Fj + δF ε

j )− Fi · Fj

≃ δF ε
j · Fi + δF ε

i · Fj , (A.7)
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where δF ε
i is the small change in the objective function Fi, which is defined as follows:

δF ε
i = F ε

i − Fi

= {F ε
i − aε(ψ

ε
j , ψ̃j) + lε(ψ̃j)} − {Fi − a0(ψj , ψ̃j) + l0(ψ̃j)}

=

∫
Ωi\Ωε

ψε
j dΩ−

∫
Ωi

ψj dΩ

− aε(ψ
ε
j , ψ̃j) + a0(ψj , ψ̃j) + lε(ψ̃j)− l0(ψ̃j)

=

∫
Ωi\Ωε

(ψε
j − ψj) dΩ+

∫
Ωi\Ωε

ψj dΩ−
∫
Ωi

ψj dΩ

− aε(ψ
ε
j , ψ̃j) + a0(ψj , ψ̃j) + lε(ψ̃j)− l0(ψ̃j)

=

∫
Ωi\Ωε

(ψε
j − ψj) dΩ−

∫
Ωε

ψj dΩ

− aε(ψ
ε
j − ψj , ψ̃j)− (aε − a0)(ψj , ψ̃j) + (lε − l0)(ψ̃j). (A.8)

Here, (aε − a0)(ψj , ψ̃j), and (lε − l0)(ψ̃j) are expressed as follows:

(aε − a0)(ψj , ψ̃j) =

∫
Ωε

βψjψ̃j dΩ

(lε − l0)(ψ̃j) =

∫
Ωε

βψ̃j dΩ. (A.9)

Using the solution ψ̃ε
j obtained by solving the adjoint equation as expressed below, we can cancel the first

and third terms on the right-hand side of Equation (A.8) and avoid evaluating the heat field ψε
j .∫

D

L2∇η · (A∇ψ̃ε
j ) dΩ+

∫
D

L(V · ∇ψ̃ε
j )η dΩ+

∫
D

βχjψ̃ε
jη dΩ =

∫
Ωi\Ωε

η dΩ. (A.10)

In this case, Equation (A.8) is expressed using the adjoint field ψ̃ε
j as follows:

δF ε
i =

∫
Ωε

βψ̃j
ε
dΩ−

∫
Ωε

βψjψ̃ε
j dΩ−

∫
Ωε

ψj dΩ

=

∫
Ωε

β(1− ψj)ψ̃ε
j dΩ−

∫
Ωε

ψj dΩ (A.11)

Similarly, the small change δF ε
j of the objective function Fj can be obtained as follows:

δF ε
j =

∫
Ωε

β(1− ψi)ψ̃ε
i dΩ+

∫
Ωε

ψi dΩ, (A.12)

where ψ̃ε
i is the solution to the following adjoint equation:∫

D

L2∇η · (A∇ψ̃ε
i ) dΩ+

∫
D

L(V · ∇ψ̃ε
i )η dΩ+

∫
D

βχiψ̃ε
i η dΩ =

∫
Ωj∪Ωε

η dΩ. (A.13)
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Thus, Equation (A.7) can be expressed as follows:

δJij =

{∫
Ωε

β(1− ψi)ψ̃ε
i dΩ+

∫
Ωε

ψi dΩ

}
· Fi +

{∫
Ωε

β(1− ψj)ψ̃ε
j dΩ−

∫
Ωε

ψj dΩ

}
· Fj

≃
{∫

Ωε

β(1− ψi)ψ̃i dΩ+

∫
Ωε

ψi dΩ

}
· Fi +

{∫
Ωε

β(1− ψj)ψ̃j dΩ−
∫
Ωε

ψj dΩ

}
· Fj

≃ |Ωε| {β(1− ψi)ψ̃i + ψi}
∫
D

ψjχi dΩ+ |Ωε| {β(1− ψj)ψ̃j − ψj}
∫
D

ψiχj dΩ

≃ (πε2){β(1− ψi)ψ̃i + ψi}
∫
D

ψjχi dΩ+ (πε2){β(1− ψj)ψ̃j − ψj}
∫
D

ψiχj dΩ.

(A.14)

Therefore, the topological derivative Dij
T J can be expressed as follows:

Dij
T J = lim

ε→0

δJij
πε2

= {β(1− ψi)ψ̃i + ψi}
∫
D

ψjχi dΩ+ {β(1− ψj)ψ̃j − ψj}
∫
D

ψiχj dΩ. (A.15)
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