1	Association of sightseeing tourists and COVID-19
2	outbreak: A case study of a resort island
3	
4	Short title: Sightseeing tourists and COVID-19 outbreak
5	
6	$\mathbf{L}_{\mathbf{r}}$ $\mathbf{L}_{\mathbf{r}}$ $\mathbf{L}_{\mathbf{r}}$ $\mathbf{L}_{\mathbf{r}}$ $\mathbf{L}_{\mathbf{r}}$ $\mathbf{L}_{\mathbf{r}}$ $\mathbf{L}_{\mathbf{r}}$
7 8	Junko Kurita ¹⁾ , Yoshitaro Iwasaki ²⁾
	1) Department of Nursing, Faculty of Sports & Health Science, Daitobunka University,
9	1) Department of Nursing, Faculty of Sports & Health Science, Dattobulka University,
10	Saitama, Japan, Japan
11	2) Iwasaki Industrial Corporation, Kagoshima, Japan
12	
13	
14	Corresponding author: Junko Kurita, kuritaj@ic.daito.ac.jp
15 16	
10	
18	Keywords: COVID-19, airport users, effective reproduction number, hotel visitors, resort island,
19	sightseeing tourists
20	
21	ICMJE Statement
22	Contributors JK were responsible for the coordination of the study and analyzed the
23	data. YI set the data. All authors contributed to the writing of the final manuscript.

25 Abstract

Long-distance travel for sightseeing was believed to spread the COVID-19 outbreak. It 26was banned until 2022. However, details of travel effects on infectivity had never been 27examined. This study was conducted to assess long-distance travel effects on infectivity 28at a resort island, including a period when mutated strains were dominant. Unique daily 29data of Yakushima Airport users and visitors at a major hotel in Yakushima were used 30 to evaluate sightseeing tourism effects on newly confirmed COVID-19 patients. During 31the study period of August 19, 2020 – August 10, 2022, the Omicron variant strain was 32dominant. Sightseeing tourists as represented by airport users were found to have no 33 significant effect on infectivity. Hotel visitors might have had a significant positive 34effect, but the expected magnitude of the effect was one patient, at most. Results 35 suggest that sightseeing tourists did not heavily affect the COVID-19 outbreak. 36 37

39 Introduction

40	In addition to ex ante evaluation, policy conducted by government should be
41	evaluated ex post facto. However, in Japan, these official evaluations are rarely done
42	because the government is held to a public posture of never making mistakes.
43	Particularly, countermeasures against the COVID-19 outbreak have never been
44	subjected to ex post evaluation. Because of the pandemic's scale and the lack of
45	knowledge and experience about COVID-19, ex ante evaluation might be difficult and
46	imprecise. However, ex post evaluation is also lacking. For example, long-distance
47	travel for sightseeing was believed to spread the outbreak. It was been banned until
48	2022. A report of one study [1] advocated this public stance, but it included many
49	mistakes. Its value as evidence was eventually discounted.
50	The study indicated that travel-associated COVID-19 incidence during July 22–26,
51	when the so-called "Go To Travel Campaign" GTTC had started, was much higher than
52	during the earlier periods of June 22 – July 21 or July 15–19. That study also compared
53	the period of August 8-31. Patient data of two types were used: onset date and the date
54	of positive testing.
55	Some odd points can be identified in the report of that study. The first is that the
56	proportion of people with a travel history during the GTTC period was almost

57	comparable to that of people during the two prior periods. Especially when the earlier
58	period was defined as July 15–19, the proportions of people with a travel history among
59	patients with an available onset date were smaller for the GTTC period than for the
60	prior period. However, the authors found significantly higher incidence during the
61	GTTC started period. Their findings might merely reflect the fact that the total number
62	of patients in the GTTC period was greater than during the prior period. In other words,
63	they did not control the underlying outbreak situation and therefore found incorrect
64	association. Comparison of incidence rates between the two periods would be valid if
65	the underlying outbreak situation other than the examining point was the same in the
66	two considered periods. Therefore, comparison of incidence rates between the two
67	periods might be inappropriate for this issue. At least, controlling for the potential
68	differences in outbreak situations is expected to be necessary. The underlying outbreak
69	situation, unrelated to GTTC, was reflected in the number of patients who had no travel
70	history or any sightseeing. To control for the underlying outbreak situation, analysis of
71	the share of patients with a travel history or sightseeing might be one procedure.
72	However, that share did not increase markedly during the GTTC starting period. This
73	finding indicates that the authors' results and conclusion are misleading.

74	A second point is that the authors of that report referred to the period of August 8–
75	31, when GTTC was continuing. The proportion of patients with a travel history or
76	tourism was much smaller than in the GTTC period or the prior period. Although the
77	authors did not compare incidence during the period with that of either the prior period
78	or the GTTC period, the rate of incidence during the period in August was probably
79	lower than in other periods. In fact, some patients using GTTC might have been
80	included in the period, as described above. Their inclusion might be inconsistent with
81	the authors' conclusions.
82	A third point is that the whole of Japan showed the peak of newly infected persons
83	as July 23: the GTTC starting date. Therefore, we infer that GTTC might have reduced
84	infectiousness. We also consider climate conditions. At around the end of July, the rainy
85	season in Japan ceased; summer began, bringing higher temperatures. At least, GTTC
86	was insufficient to raise the number of patients and cancel out benefits from the
87	improved climate conditions. Taken together, these points suggest that GTTC might not
88	be the main factor determining the course of the outbreak.
89	Moreover, GTTC must also have increased the number of patients without travel
90	history if GTTC had a strong effect on the outbreak. For example, one can consider a
91	patient who traveled using GTTC on July 22 and 23, with subsequent onset on July 24.

92	This patient had a travel history with GTTC, but was not included in a group of patients
93	with a travel history whose onset date was included in the GTTC started period: July
94	27-31. Nevertheless, presymptomatic patients are well known to be infectious during
95	their symptomatic period [2]. This patient might infect hotel staff or persons in visited
96	areas. Such patients also had no travel history. Their onset dates were July 27 and 28.
97	They included a group of patients without travel history in the GTTC start period of
98	July 27–31. Therefore, GTTC certainly increased the number of patients without a
99	travel history, but it did not increase patients with a travel history in such cases. When
100	considering the effects of GTTC, it is therefore necessary to check the number of
101	patients irrespective of their travel history.
102	Finally, it is noteworthy that this study could have been done in mid-March or at
103	the end of March 2021, if those valuable data had been prepared. At that time, we found
104	the same results as those obtained from this study. In fact, this study was conducted in
105	2022, but similar research without the valuable data in this study was posted in January
106	4, 2021, and obtained the same results as those found for GTTC [3]. In general, ex ante
107	policy evaluation is necessary, but estimating its effects precisely was very difficult.
108	However, ex post evaluation can be done as soon as possible if preparation for it had

109	been planned before policy activation. If so, a policy banning long-distance travel
110	without any legitimate rationale could have been prevented in 2021 and thereafter.
111	Another study [4] found contrary evidence, indicating that the effective
112	reproduction number was significantly lower during the period when long-distance
113	travel was promoted. A study [5] of airport users at a local airport showed reduced
114	infectivity. These findings might be strong evidence casting doubt on the legitimacy and
115	rationale of the policy banning long-distance travel. However, these studies specifically
116	examined large areas: the former examined the entirety of Japan; latter was a prefecture,
117	for which only the original strain was examined. In general, for a larger study area, it is
118	expected to be more difficult to identify who traveled for long distance for sightseeing.
119	For that reason, the analysis might be more indirect. Moreover, the mutated strain was
120	well known to have higher infectivity than the original strain [6,7]. Therefore, some
121	probability exists that long-distance travel might affect the infectivity of the mutated
122	strain differently than the original strain. It must be analyzed in a much smaller area,
123	with inclusion of the period during which the mutated strain was dominant.
124	Therefore, the object of this study was confirmation of long-distance travel effects
125	on infectivity at a resort island during the period when the mutated strain was dominant.

126	We specifically examined Yakushima Island of Kagoshima prefecture, shown in Fig
127	1. It is a world Natural Heritage area, and therefore a famous tourist destination with
128	about 13,000 residents. Collaboration among epidemiologists and a leading company in
129	Yakushima operating the airport and hotels enhanced analyses conducted for this study.
130	Especially, we can use the daily numbers of Yakushima Airport users and visitors to a
131	major hotel in Yakushima. Official published data were monthly or annual data.
132	Therefore, we are unable to analyze the association among sightseeing tourists and
133	infectivity using data published to date.
134	As countermeasures against the COVID-19 outbreak in Japan, school closure and
135	voluntary event cancellation were required from February 27 to the end of March. Large
136	commercial events were cancelled. Subsequently, a state of emergency was declared on
137	April 7 extending through 25 May, requiring voluntary restriction against going out.
138	Businesses serving customers were shut down. During this period, the first peak was
139	reached on April 3. It then reemerged until July 29, as shown in Fig 1. However, the
140	GTTC started on July 22, with 50% government-subsidized travel and coupons issued
141	for shopping at tourist destinations. The program was aimed at reinforcing sightseeing
142	businesses, even though it presented some risk of expanding the outbreak. Thereafter,
143	GTTC continued to the end of December, by which time the third wave had emerged.

144	The third wave was larger than either of the prior two waves in December. Therefore,
145	GTTC was inferred as the main reason underlying the third wave [8].
146	However, although results were mixed, some research suggests that COVID-19
147	might be associated with climate conditions, at least in China [9–11]. Some studies
148	using cross-sectional international comparisons in Europe countries indicated no
149	association between climate conditions and COVID-19 outbreak surge dates [12]. If the
150	association was true for Japan as well, then GTTC might not have been the main reason
151	for the third wave in winter.
152	Moreover, mobility was inferred as the main cause of the outbreak dynamics, at
153	least for the first wave in Japan [13] as well as in the world [14]. However, one study
154	[15] showed that non-pharmaceutical interventions including lockdowns had a strong
155	effect on reducing transmission, at least in 11 European countries, until April. Another
156	study [16] of 131 countries found that the introduction and relaxation of lockdowns or
157	movement restrictions had limited effects on infectiousness, except for public event
158	bans, although their data were limited to the end of July 2021. Another report [17]
159	described that strict movement restrictions in Argentina from March were effective at
160	reducing mobility, but not in slowing the outbreak. These mixed results suggest that
161	those countermeasures might not affect mobility considerably.

162	How the numbers of visitors for sightseeing or those who traveled long distances
163	themselves affected the outbreak situation in rural areas had not been analyzed.
164	Certainly such information was likely to be less available for epidemiological analysis.
165	Of course, some annual or monthly data related to travel or sightseeing might be
166	available in general, but such data would be too aggregated, leaving too few data to
167	conduct statistical analyses for a short period of less than one year. Fortunately, we can
168	collaborate among epidemiologists, statisticians, and a company managing resort hotels
169	and buses to an airport in a rural area. Consequently, daily data of bus users from the
170	airport and visitors at these hotels are available. Therefore, we can test directly the
171 172	hypothesis that visitors for sightseeing and/or travelling long distance spread outbreak in rural areas. This hypothesis was the rationale for banning long distance travel during
172	the first and second states of emergency and served as the rationale for ceasing GTTC,
174	although it has not been analyzed and confirmed to date.

176 Materials and methods

Unique data for the daily number of Yakushima Airport users and visitors to a
major hotel in Yakushima were provided by Iwasaki Industrial Corporation of
Kagoshima prefecture, Japan. However, this information was not complete. Some

180	sightseeing tourists might have taken a jetfoil or ferry to Yakushima rather than using
181	the airline connecting Kagoshima, Osaka, and Tokyo. Moreover, some visitors stayed at
182	hotels in Yakushima other than the corporate hotel. The allowances for this
183	incompleteness of this information are discussed later.
184	The COVID-19 outbreak activity was measured by the daily number of newly
185	confirmed patients, including asymptomatic patients, among Yakushima residents. In
186	general, the outbreak situation was measured by the effective reproduction number
187	[5,18]. However, if a population is small, the effective reproduction number cannot be
188	estimated or cannot be estimated steadily because its denominator, the number of
189	patients who can infect others weighted by their infectivity, was too small or sometimes
190	zero. Even in the case of Yakushima, it was too volatile before January 2022 [19]. In
191	other words, no analysis using the effective reproduction number can be performed for
192	GTTC or the original, or Alpha or Delta variant strains. However, analyses using newly
193	confirmed patients were available even for the study period which included no patients.
194	Moreover, by emphasizing patients among residents, we can exclude some probability
195	of increasing the number of patients at Yakushima by tourists who probably were
196	infected outside Yakushima.

197 The period from infection to reporting was presumed to be several days. It includes

198	the incubation period, the period from onset to visiting a doctor, testing, and reporting.
199	In general, reporting was delayed for several days after infection. Therefore, we
200	regressed the number of newly confirmed patients with some delay on the number of
201	sightseeing tourists as well as other potential explanatory variables. Then, we sought the
202	best-fitting lag as measured by the adjusted determinant coefficient over a 0-30 day
203	delay.
204	The study period was defined as August 19, 2020 – April 10, 2022. Before this
205	period, no COVID-19 patient had been confirmed
206	We use some variables as explanatory variables. First, the sightseeing tourists to
207	Yakushima were counted through the number of Yakushima Airport users or number of
208	visitors in a corporate hotel. Because these two variables were presumed to be mutually
209	correlated, we used only one of them for regression analyses.
210	Average temperature and relative humidity data at Kagoshima prefecture were used
211	as climate conditions. Temperatures were measured in degrees Celsius. We obtained
212	data from the Japan Meteorological Agency
213	(https://www.data.jma.go.jp/gmd/risk/obsdl/index.php).
214	Additionally, we identified several remarkable countermeasures in Japan: four
215	state-of-emergency declarations, a travel campaign, and school closure and voluntary

216	event cancellation (SCVEC). The latter, SCVEC, extended from February 27 through
217	March in 2020: this countermeasure required school closure and cancellation of
218	voluntary events, and even cancellation of private meetings. The first state of
219	emergency was declared on April 7, 2020. It ceased at the end of May. It required
220	school closure, shutting down of some businesses, and voluntary restriction against
221	going out. To subsidize travel and shopping at tourist destinations, GTTC started on
222	July 22, 2020. It was halted at the end of December 2020.
223	The second state of emergency was declared on January 7, 2021 for the 11 most-
224	affected prefectures. These countermeasures required restaurant closure at 8:00 p.m.,
225	with voluntary restrictions against going out, but did not require school closure. They
226	continued through March 21, 2021.
227	To clarify associations among $R(t)$ and GTTC or valuable data in addition to
228	climate, mobility, and countermeasures except for GTTC, we used ordinary least
229	squares regression to regress the daily $R(t)$ on daily dummy variables for GTTC, and
230	daily data of airport limousine bus users and visitors at the resort hotels, as well as
231	dummy variables for daily climate, mobility, and dummy variables for countermeasures.
232	We used Google-provided mobility data showing stays at venues of six types, such as
233	restaurants, shopping malls or amusement centers; grocery stores or pharmacies; parks;

234	transition areas; workplaces; and homes (<u>https://www.google.com/covid19/mobility/</u>).
235	The data show a mobility comparison to a base day. It defined 100 if number of persons
236	staying at a type of place was the same as the base day.
237	We expected the sign of the explanatory variables to be the following: airport
238	limousine bus users and visitors at the resort hotels or GTTC increased infectivity if the
239	policy of banning long-distance travel was rational. Countermeasures such as the
240	emergency status or SCVEC were presumed to decrease infectivity. We adopted 5% as
241	the significance level.

242 **Results and discussion**

Figure 2 shows the newly confirmed cases of COVID-19 including asymptomatic 243cases through August 10, 2021 in Yakushima. The initial case was detected on August 24424519, 2020. However, cases were sporadic until 2022. From January 2022, the cases were reported continuously. They showed the largest peak in August when the Omicron BA.5 246247variant strain was dominant. This figure shows cases confirmed at Yakushima among visitors to Yakushima. 248249They caused no outbreak among Yakushima residents until 2021. In 2022, the 250confirmed cases in Yakushima residents and visitors were parallel, but visitors might not have caused outbreaks among residents. These findings suggest negation of the 251

252 legitimacy and rationality of the policy banning long-distance travel.

253	Figure 3 presents the number of Yakushima Airport users and visitors to a
254	corporate hotel. In April and May, 2020, when the first state of emergency was
255	declared, the values of the two variables decreased drastically. Subsequently, these
256	values recovered during the GTTC activated period until December 27, 2020 and
257	fluctuated in an almost identical range during GTTC.
258	Figure 4 shows the adjusted determinant coefficients with several delays, using
259	airport users or hotel visitors as a proxy for sightseeing tourists. As one might expect, a
260	15-day delay best fitted both variables we used. Therefore, hereinafter, the dependent
261	variable was the number of newly confirmed patients with a 15-day delay.
262	Table 1 presents the significant association of sightseeing tourists with the newly
263	confirmed 15-day delay, both for airport users and hotel visitors. The proxy of
264	sightseeing tourists was significant and positive. However, the estimated coefficients of
265	these variables were small: 0.0030141 and 0.0042166. Figure 2 shows that the
266	maximum number of airport users was less than 470 per day. The maximum number of
267	hotel visitors was less than 210 per day. Results show that 1.416627 and 0.885486 were
268	the estimated increases when airport users to hotel visitors changed from the minimum
269	number, 0, to the maximum: fewer than two persons. Therefore, the effect of

270	sightseeing tourists was quite small in terms of public health, although the results are
271	significant. Atmospheric temperatures, coverage of second and third vaccinations, the
272	proportion of BA.5 lineage of the Omicron variant strain, the fourth state of emergency,
273	and the Olympic games expanded the outbreak. By contrast, GTTC, coverage of the
274	fourth vaccination, proportions of Alpha, Delta, BA.1 orBA.2 lineage, and the Omicron
275	variant strain curbed the outbreak. The fourth vaccine coverage results were as
276	expected, although those of the second and third vaccination coverage were opposite.
277	During the period when the outbreak was large, 2022, when the Omicron variant strain
278	was dominant, the vaccine coverage of the second and third doses had almost reached
279	their maximum. Therefore, the outbreak was greater during higher vaccine coverage of
280	the second or third dose. By contrast, the fourth vaccination was high in 2022, when the
281	number of newly confirmed patients was larger. If a waning effect of vaccination were
282	incorporated for analysis, then the estimation results might have differed.
283	Regarding variant strains, a major variant strain other than the BA.5 lineage of the
284	Omicron variant strain reduced the outbreak compared with the original strain. Those
285	results might be inconsistent with those of earlier studies [20-23].
286	The estimated coefficients of the BA.5 lineage were highest, followed by those of
287	the BA.2, BA.1, and Delta variant strains. The latter emergent variant strain expanded

the outbreak.

289	Conversely, GTTC was significant and negative in both specifications. That finding
290	might be strong evidence against the notion that GTTC expanded the outbreak. It is
291	consistent with results of an earlier study of GTTC [18]; it contradicts results of another
292	study [24].
293	Estimation results indicate that sightseeing tourists might not have expanded the
294	outbreak to any considerable degree. Although the findings were not strong evidence,
295	they might not support the legitimacy and rationale of banning sightseeing and long-
296	distance travel.
297	An accompanying study [19] found that the effective reproduction number in 2022
298	in Yakushima was not associated with sightseeing tourists. For this study, newly
299	confirmed patients among residents of Yakushima with a 15-day delay were positively
300	associated with the number of sightseeing tourists. Major differences between the two
301	studies were the denominators of the dependent variables. The dependent variable used
302	for the earlier study, the effective reproduction number, was dominated by its
303	denominator. By contrast, the dependent variable in this study, newly confirmed
304	patients, was not controlled. In this sense, to measure outbreak activity, the effective
305	reproduction number might be more appropriate than newly confirmed patients.

306	However, controlling the denominator in the earlier study prohibited analysis before
307	2022 because the denominators were too small or zero. For that reason, the effective
308	reproduction number was not calculable, or showed unstable fluctuation. Therefore, the
309	study period used for the earlier study excluded the period when original, Alpha and
310	Delta strains were dominant. Only during the period when Omicron was dominant in
311	2022 was the number of patients large, even in Yakushima. Therefore, the effective
312	reproduction number became calculable and stable. In other words, the effective
313	reproduction number might have been inappropriate for analyses before 2022. The
314	newly confirmed patients were more appropriate for consideration of the effects of
315	sightseeing to outbreak.
$\frac{315}{316}$	sightseeing to outbreak. The weakest point in the analyses used for this study might be the representation of
316	The weakest point in the analyses used for this study might be the representation of
316 317	The weakest point in the analyses used for this study might be the representation of unique data: the daily Yakushima Airport users and visitors in the corporate hotel.
316 317 318	The weakest point in the analyses used for this study might be the representation of unique data: the daily Yakushima Airport users and visitors in the corporate hotel. Unfortunately, no comparable daily data were available, but monthly comparable data
316317318319	The weakest point in the analyses used for this study might be the representation of unique data: the daily Yakushima Airport users and visitors in the corporate hotel. Unfortunately, no comparable daily data were available, but monthly comparable data were available. One is the monthly number of visitors to Yakushima using transport,
 316 317 318 319 320 	The weakest point in the analyses used for this study might be the representation of unique data: the daily Yakushima Airport users and visitors in the corporate hotel. Unfortunately, no comparable daily data were available, but monthly comparable data were available. One is the monthly number of visitors to Yakushima using transport, airlines, jet foils, and ferries [25]. Regarding airline and jet foil users, the numbers of

324	residents among all three transportation users cannot be disregarded completely.
325	Figure 5 shows all airline users, airline users who were not Yakushima residents, all
326	jetfoil users, jetfoil users who were not residents, and ferry users. Almost no airline
327	users were residents, but about half of jetfoil users were residents. The correlation
328	coefficient among all airline users and total three transportation users during the period
329	from January 2019 through December 2021 was 0.8858; its p value was 0.000. The
330	correlation coefficient among airport users including Yakushima residents and the sum
331	of visitors using an airline or jetfoil excluding Yakushima residents during January
332	2019 through September 2022 was 0.9236; its p value was 0.000. Therefore, we
333	conclude that all airline users represent all three transportation users or nonresident
334	visitors.
335	Other data used to confirm the unique data we used were monthly data of visitors at
336	another two major hotels in Yakushima, as shown in Fig 6. The correlation coefficient
337	among them from January 2020 through October 2022 was 0.7365; its p value was
338	0.000. Therefore, a corporate hotel providing daily data can represent other major hotel
339	and thus all hotel visitors in Yakushima.

324 residents among all three transportation users cannot be disregarded completely.

340	The present study has some limitations. First, this study examines only Yakushima,
341	Kagoshima prefecture. One cannot be assured that the same results hold for other
342	places, even for other locations in Japan or the entirety of Japan.
343	Second, regression analysis such as that used for this study does not indicate
344	causality. Although we inferred that the number of hotel visitors would expand the
345	outbreak, a larger outbreak might reinforce hotel visits. One must bear that possible
346	relation in mind when interpreting the results.
347	

348 Conclusions

349 We demonstrated that increased numbers of sightseeing tourists might not have

asso expanded the COVID-19 pandemic to any great degree. We conclude that the rationale

and fairness of the policy banning long distance travel were questionable.

352 The present study and its results are based on the authors' opinions: they do not

353 reflect any stance or policy of their affiliations.

354

355 Acknowledgments

We acknowledge the unique data providers as well as the great efforts of all staff at public health centers, medical institutions, and other facilities fighting the spread and destruction associated with COVID-19.

355

360	Ethical	considerations

361 All information about p	patients used for this study w	was collected under the Law of
-----------------------------	--------------------------------	--------------------------------

- 362 Infection Control, Japan and published by Yakushima town office [26]. Iwasaki
- 363 Industrial Company provided business recorded data about airport and jetfoil users and
- 364 hotel visitors. Information about two other hotels were provided voluntarily. Data about
- 365 airport or jetfoil users and hotel visitors included no personal or private information.
- 366 Therefore, there is no ethical issue related to this study.
- 367

368	Competing	Interests

369 No author has any conflict of interest, financial or otherwise, to declare in relation

to this study.

References

372	1.	Anzai A, Nishiura H. "Go To Travel" Campaign and Travel-Associated
373		Coronavirus Disease 2019 Cases: A Descriptive Analysis, July August 2020. J Clin
374		Med. 2021;10: 398.
375	2.	Kimball A, Hatfield KM, Arons M, James A, Taylor J, Spicer K, et al. Public
376		Health, Seattle & King County; CDC COVID-19 Investigation Team.
377		Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a
378		Long-Term Care Skilled Nursing Facility – King County, Washington, March
379		2020. Morb Mortal Wkly Rep. 2020;69: 377-381.
380	3.	Kurita J, Sugawara T, Ohkusa Y. Effects of climate conditions, mobility trends,
381		and countermeasures on the COVID-19 outbreak in Japan
382	4.	Kurita J, Sugawara T, Ohkusa Y. Infectivity of omicron BA.5 comparison with
383		original strain and other mutated strain of SARS-Cov-2 in
384		Japanhttps://jxiv.jst.go.jp/index.php/jxiv/preprint/view/123
385	5.	Kurita J, Iwasaki Y. Did Visitors for Sightseeing Actually Spread COVID-19
386		Outbreak dominated the original strain in Japan? Ex Post Evaluation for Banning of
387		Long Distance Travel, https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/226
388	6.	European Centre for Disease Prevention and Control. Epidemiological update:
389		SARS-CoV-2 Omicron sub-lineages BA.4 and BA.5.
390		https://www.ecdc.europa.eu/en/news-events/epidemiological-update-sars-cov-2-
391		omicron-sub-lineages-ba4-and-ba5 [accessed on August 22, 2022]
392	7.	National Institute of Infectious Diseases. Updated Situation of COVID-19 Outbreak
393		(July 13,2022) https://www.niid.go.jp/niid/ja/2019-ncov/11309-covid19-
394		ab90th.html (in Japanese) [accessed on August 20, 2022]
395	8.	The Nippon Communications Foundation, Japan to Suspend Go To Travel Program
396		Entirely Politics Dec 15, 2020 [accessed on November 22,2022]
397		https://www.nippon.com/en/news/yjj2020121400645/japan-to-suspend-go-to-
398		travel-program-entirely.html
399	9.	Shi P, Dong Y, Yan H, Zhao C, Li X, Liu W, et al. Impact of temperature on the
400		dynamics of the COVID-19 outbreak in China. Sci Total Environ. 2020;728:
401		138890.
402	10.	Tobias A, Molina T. Is temperature reducing the transmission of COVID-19?
403		Environ Res. 2020;186: 109553.

11. Yao Y, Pan J, Liu Z, Meng X, Wang W, Kan H, et al. No association of COVID-19 404 transmission with temperature or UV radiation in Chinese cities. Eur Respir J. 405406 2020;55: 2000517. 407 12. Walrand S. Autumn COVID-19 surge dates in Europe correlated to latitudes, not to 408 temperature-humidity, pointing to vitamin D as contributing factor. Scientific 409 Reports. volume 11, Article number: 1981 (2021) https://www.nature.com/articles/s41598-021-81419-w 410 411 13. Kurita J, Sugawara T, Ohkusa Y. Mobility data can reveal the entire COVID1-19 outbreak course in Japan. MEDRXIV/2020/081315 412413https://www.medrxiv.org/content/10.1101/2020.04.26.20081315v3 414 14. Bergman N, Fishman R. Mobility Reduction and Covid-19 Transmission Rates.doi: 415 15. Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. 416 Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020;584(7820): 257--261. doi: 10.1038/s41586-020-2405-7. 41716. Li Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, et al. Usher Network 418 419 for COVID-19 Evidence Reviews (UNCOVER) group. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying 420421reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. 422Lancet Infect Dis. 2021;21: 193--202. DOI:https://doi.org/10.1016/S1473-3099(20)30785-4? 42342417. Larrosa JMC. SARS-CoV-2 in Argentina: Lockdown, mobility, and contagion. J Med Virol 2020. doi: 10.1002/jmv.26659. 42518. Kurita J, Sugawara T, Ohkusa Y. Estimating Event Ban Effects on COVID-19 426 427Outbreak in Japan. Journal of Health Science and Development. 2021;4. 428 https://www.innovationinfo.org/articles/JHSD/JHSD-137.pdf 42919. Kurita J. Iwasaki Y. Did visitors for sightseeing actually spread COVID-19 430 outbreak dominated the omicron variant strain in Japan ? A case study at resort 431island. https://doi.org/10.51094/jxiv.232 432 20. Leung K, Shum MHH, Leung GM, Lam TTY, Wu JT. Early transmissibility 433 assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, 434October to November 2020. Euro. Surveill. 2021;26: 2002106. doi: 10.2807/1560-7917.ES.2020.26.1.2002106. 435436 21. Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T, et al. Changes in symptomatology, reinfection, and transmissibility associated with the 437SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 2021;6: 438439 e335-e345.

440 22. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. 441Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538): eabg3055. doi: 10.1126/science.abg3055. 44244323. Zhao S, Lou J, Cao L, Zheng H, Chong MKC, Chen Z, et al. Quantifying the 444transmission advantage associated with N501Y substitution of SARS-CoV-2 in the UK: an early data-driven analysis. J. Travel Med. 2021;28: taab011. 445446 24. Anzai A, Nishiura H. "Go To Travel" Campaign and Travel-Associated 447Coronavirus Disease 2019 Cases: A Descriptive Analysis, July-August 2020. J. Clin. Med. 2021;10: 398. https://doi.org/10.3390/jcm10030398 448 44925. Tanegashima and Yakushima Tourism Association. Survey of visitors to 450Tanegashima and Yakushima. 31 June, 2022 (in Japanese) 26. Yakushima Town Office. Situation of the COVID-19 infected in Yakushima 451http://www.town.yakushima.kagoshima.jp/t_yakushima/wp-452content/uploads/2022/09/20220919_Infection_status-2.pdf (in Japanese) [accessed 453

454 on November, 21, 2022].

Table 1: Estimation results of association among newly confirmed with 15 day delay

and Yakushima Airport users or hotel visitors from August 19, 2020 through August 10,

	Yakushima Airport users		Hotel visitors	
Explanatory variable	Estimated	p value	Estimated	<i>p</i> value
	coefficient		coefficient	
Yakushima Airport users/	<mark>0.0030141</mark>	0.000	<mark>0.0042166</mark>	0.000
Hotel visitors				
Temperature	<mark>0.0278003</mark>	0.003	<mark>0.0350133</mark>	0.000
Humidity	-0.004591	0.277	-0.003881	0.366
Place: Restaurant, shopping mall	-0.0015924	0.854	0.0002047	0.982
or amusement				
Place: Grocery store or pharmacy	-0.0043603	0.644	-0.0024424	0.799
Place: Park	0.0001898	0.960	0.0019607	0.608
Place: Transition	-0.0073791	0.333	-0.0036488	0.650
Place: Workplace	-0.0000363	0.997	0.0005131	0.957
Place: Home	-0.0070095	0.847	-0.0021283	0.955
2 nd state of emergency	-0.4253346	0.053	-0.4051802	0.070
3rd state of emergency	0.0446091	0.814	-0.0277672	0.885
GTTC	-0.9382708	0.000	-0.9651931	0.000
Vaccine coverage of the second	<mark>0.1529007</mark>	0.000	<mark>0.1479414</mark>	0.000
dose with lag (%)				
Vaccine coverage of the third dose	<mark>0.0656881</mark>	0.000	<mark>0.0698412</mark>	0.000
with lag (%)				

Vaccine coverage of the fourth	-0.6860188	0.000	<mark>-0.6539192</mark>	0.000
dose with lag (%)				
Share of Alpha variant strain (%)	<mark>-0.0086424</mark>	0.019	<mark>-0.0086599</mark>	0.021
Share of Delta variant strain (%)	-0.1295698	0.000	<mark>-0.1244489</mark>	0.000
Share of Omicron BA.1 variant	<mark>-0.1036224</mark>	0.000	<mark>-0.0988985</mark>	0.000
strain (%)				
Share of Omicron BA.2 variant	-0.177287	0.000	<mark>-0.173618</mark>	0.000
strain (%)				
Share of Omicron BA.5 variant	<mark>0.1004268</mark>	0.000	<mark>0.1023614</mark>	0.000
strain (%)				
4th state of emergency	<mark>3.045889</mark>	0.000	<mark>2.920672</mark>	0.000
Olympic	1.088278	0.000	1.13071	0.000
constant	-0.0113576	0.973	0.2163709	0.520
Adjusted R ²	0.9718		0.9709	

458 Note: Yellow highlights show significance, except for constant terms. The number of

459 observations was 732.

461 Figure 1: Map of Kagoshima prefecture and Yakushima.

465 Figure 2: Newly confirmed patients in Yakushima through August 10, 2022.

466 (persons)

468 Note: Black bars show newly confirmed patients who did not live at Yakushima; gray

469 bars show newly confirmed patients among Yakushima residents. The source of newly

470 confirmed patients was <u>http://www.town.yakushima.kagoshima.jp/info-living/31331/</u>

471 Figure 3: Yakushima Airport users and hotel visitors.

472 (hotel visitor)

(Yakushima Airport users)

474 Note: Gray bars show the number of visitors to a corporate hotel (left scale). The black

475 line shows the number of Yakushima Airport users (right scale).

477 hotel visitors.

480 Note: The gray line represents the adjusted determinant coefficients using airport users
481 as sightseeing tourists of regression for newly confirmed patients with several days'
482 delay. The blue line represents the adjusted determinant coefficients using hotel visitors

483 as sightseeing tourists.

484 Figure 5: Monthly numbers of visitors using transport, airline, jet foil and ferry, by

485 residence.

486

Note: The red line represents Yakushima Airport users including Yakushima residents. 487 The red thin line represents Yakushima Airport users excluding Yakushima residents. 488 Similarly, the black line represents jetfoil users including Yakushima residents and 489 490 black thin line represents jetfoil users excluding Yakushima residents. The gray line represents ferry users who cannot be discerned as Yakushima residents, or not. The 491 correlation coefficient among airport users including Yakushima residents and all 492visitors including Yakushima residents during January, 2019 through December, 2021, 493 was 0.8858 and its p value was 0.000. The correlation coefficient among airport users 494

495	including Yakushima residents and the sum of visitors using airline or jetfoil excluding
496	Yakushima residents during January, 2019 through September, 2022, was 0.9236 and its
497	p value was 0.000. Unfortunately, because ferry users excluding Yakushima residents
498	were not identified, we are unable to define all visitors excluding Yakushima residents.
499	Moreover, data about ferry users in 2022 were not available; not all visitors including
500	ferry users were defined in 2022.

502 (persons)

505 other major hotels in Yakushima. Correlation coefficients among them from January

506 2020 through October 2022 were 0.7365; its *p* value was 0.000.