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Abstract 
In this paper, focus on the mathematical physical theorem of spinning mobile objects, and introduce its application to the 
vehicles. By using this theorem, and considering the velocity center point CV of the rotating moving object and the turning 
center point CT of the representative point of the object separately, it will be able to explain various vehicles motion with one 
simple concept. In addition, it will be possible to clearly explain that the intersection point of the wheels axes of an 
automobile does not necessarily become the turning center point. This concept can also be applied to improving the driving 
stability of vehicles and to making quick steering decisions in autonomous driving. Since this theorem can be widely applied 
to various mobile objects, it is expected to be applied to new fields other than vehicle using wheels. 
------------------------------------------------------------------------------------------------------------------------- 
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1. Introduction 

As the conventional mobility using wheels, in addition to automobiles, the omnidirectional vehicle like Schneider propeller 
type[1] and like carriage type[2], etc. have been proposed. But there is nothing that can explain all these movements in one 
concept. 
In the case of automobiles, it is often thought that the intersection point of the four wheels axes is the turning center point. 
But, if the steering angle is changed dynamically, the intersection point of the wheels axes is not always the turning center 
point. In this regard, there is no specific and systematic description. 
In this paper, introduce the one simple theorem about spinning mobile objects, and its application to mobility. Using this 

theorem, it will be able to explain various vehicle motion with a single concept. Also, it becomes clear that the intersection 
point of wheels axes does not necessarily become the turning center point. 
Specifically,  
Chapter 2 describes about theorems concerning spinning mobile object,  
Chapter 3 discusses the case which the theorem is applied to automobiles,  
Chapter 4 discusses the case which the theorem is applied to a two-wheel drive steering omnidirectional vehicle, 
Chapter 5 introduces about an example of an actual prototype. 
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2. The velocity center theorem of the spinning mobile object 

 

2.1 The theorem about Absolute velocity 𝑽𝑵
ሬሬሬሬሬ⃗  of any mass point N on the spinning mobile object U 

On the same plane, when the representative point CS on an object U moves velocity 𝑉஼ௌ
ሬሬሬሬሬሬ⃗  with spinning angular velocity 

𝛺௖௦,and with expansion/ contraction, 

Absolute velocity 𝑉ே
ሬሬሬሬ⃗  at any point N on the object U is expressed as follows, 

𝑉ே ሬሬሬሬሬ⃗ =  ට𝜀ଶ + 𝛺௖௦
ଶ𝑅𝑜𝑡 ቀ

𝜋

2
− 𝛼ቁ 𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗  

At this time、𝜀、𝛼、𝑅𝑜𝑡(θ) and other condition are as follows. 

・Point CS on the object U, mass point N, and velocity 𝑉஼ௌ
ሬሬሬሬሬሬ⃗  of point CS are coplanar 

・ε is proportionality constant of expands and contracts. An object U expands and contracts at a speed of 𝜀𝐿஼ௌିே. 

   𝐿஼ௌିே is the distance between point CS and point N. 

・𝑅𝑜𝑡(θ) is the rotation matrix that rotate θrad on the same plane S 

・α is a value that satisfies the following conditions. 

 sin(𝛼) = 𝜀/ට𝜀ଶ + 𝛺௖௦
ଶ ,  cos(𝛼) = 𝛺௖௦/ට𝜀ଶ + 𝛺௖௦

ଶ  

・The point CV is the position of the distanceห𝑉஼ௌ
ሬሬሬሬሬሬ⃗ ห/ට𝜀ଶ + 𝛺௖௦

ଶ from point CS,  

And the direction of 𝐶𝑆- 𝐶𝑉ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  is the direction from 𝑉஼ௌ
ሬሬሬሬሬሬ⃗  to π/2+α rad  

・𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗  is the vector from the point CV to the point N. 

Therefore, the speed ห𝑉ே
ሬሬሬሬ⃗ ห is ට𝜀ଶ + 𝛺௖௦

ଶห𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ ห (ห𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ ห is the distance from point CV to point N.), 

And the direction of 𝑉ே
ሬሬሬሬ⃗  is the direction from 𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗  to π/2 -α rad. 

Like this, the speed of point N is determined by the distance from point CV to N. 

So, point CV defines as the velocity center point, and this theorem define as the velocity center point theorem of the spinning 

mobile object. Generally, the velocity center point CV doesn’t have to be on the rigid body U.  

 

The rotating mobile object U 

Speed contour lines 

Speed contour lines = ห𝑉஼ௌ
ሬሬሬሬሬሬ⃗ ห 

Speed contour lines = ห𝑉ே
ሬሬሬሬ⃗ ห 

𝑉஼ௌ
ሬሬሬሬሬሬ⃗  

𝑉ே
ሬሬሬሬ⃗  

Fig. 2.1‐1  The relationship between CS, CV and N of the rotating mobile object that is expanding or contracting  



 

 
 

2.2  The theorem about Absolute velocity 𝑽𝑵
ሬሬሬሬሬ⃗  of any mass point N on the spinning mobile rigid object U 

Especially, in case rigid objects, corresponds to ε = 0 in chapter 2.1. 

The point CV is the position of the distance ห𝑉஼ௌ
ሬሬሬሬሬሬ⃗ ห/|𝛺௖௦| from point CS,  

And its direction is the direction from 𝑉஼ௌ
ሬሬሬሬሬሬ⃗  to π/2 rad (When 𝛺௖௦  > 0, α = 0) or -π/2 rad (When 𝛺௖௦ < 0, α =π). 

So, the absolute velocity 𝑉ே
ሬሬሬሬ⃗  at any point N on the rigid object U is expressed as follows, 

𝑉ே
ሬሬሬሬ⃗ = 𝛺௖௦ 𝑅𝑜𝑡 ቀ

𝜋

2
ቁ 𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗   

Therefore, the speed ห𝑉ே
ሬሬሬሬ⃗ ห is |𝛺௖௦|ห𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ ห , 

And the direction of 𝑉ே
ሬሬሬሬ⃗  is the direction from 𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗  to π/2 rad (When 𝛺௖௦  > 0) or -π/2 rad (When 𝛺௖௦ < 0). 

 

 

 

In this paper, introduce the application of this theorem to mobility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

・ห𝐶𝑆- 𝐶𝑉ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ห = ห𝑉஼ௌ
ሬሬሬሬሬሬ⃗ ห/|𝛺௖௦| 

・ห𝑉ே
ሬሬሬሬ⃗ ห = |𝛺௖௦|ห𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ ห 

      = ห𝑉஼ௌ
ሬሬሬሬሬሬ⃗ หห𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ ห/ห𝐶𝑆- 𝐶𝑉ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ห 

 
𝑉ே
ሬሬሬሬ⃗  𝑉஼ௌ

ሬሬሬሬሬሬ⃗  

Speed contour lines 

Speed contour lines = ห𝑉ே
ሬሬሬሬ⃗ ห 

Speed contour lines = ห𝑉஼ௌ
ሬሬሬሬሬሬ⃗ ห 

Fig.2.2-1   The relationship between CS, CV and N of the rotating mobile rigid 

The rotating mobile rigid object U 



 

 
 

3. The relationship between this theorem and the motor vehicle movement 

In this chapter, introduce the case that the velocity center theorem of chapter 2.2 is applied to the motor vehicle movement. 

3.1  The rolling motion of the wheel 

As shown in Figure.3.1-1(A), in the case of the wheel rolling on the flat plane, the velocity center point CV is the contact 

point between the wheel and the flat plane. 

IF wheel’s radius is R and the rolling angular velocity is 𝛺஼ௌ,  

the moving speed of the velocity center point CV is 𝑅 𝛺஼ௌ(= ห𝑉஼௏
ሬሬሬሬሬሬ⃗ ห). 

From the velocity center theorem of the chapter2.2, in the case of any mass point N which is on the wheel, 

 ห𝑉ே
ሬሬሬሬ⃗ ห is proportional to the distance from the point CV to N (ห𝑉ே

ሬሬሬሬ⃗ ห = |𝛺௖௦|ห𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ ห),  

and 𝑉ே
ሬሬሬሬ⃗  and 𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗  are always orthogonal.  

So, if point CV and point N overlap, ห𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ ห = 0, therefore ห𝑉ே
ሬሬሬሬ⃗ ห = 0. However, as mentioned before, ห𝑉஼௏

ሬሬሬሬሬሬ⃗ ห = 𝑅 𝛺஼ௌ. 

And the rolling motion of the wheel is represented by speed contour lines like figure3.1-1(B),  

and the two states(A)(B) in the figure 3.1-1 are equivalent. 

 
The figure3.1-2 shows an image of a wheel rolling on a curved surface with the center of curvature at point CT. 

In this case, the turning center of point CV and point CS are point CT, and point CV and point CT do not coincide.  

Next chapter, introduce an example where point CV and point CT coincide. 

 

 

 

 

The rotating mobile rigid object U 𝑉஼௏
ሬሬሬሬሬሬ⃗ =  

𝑉஼ௌ
ሬሬሬሬሬሬ⃗

1 + 𝜌𝑅
 

𝛺௏௖௦ሬሬሬሬሬሬሬ⃗ = 𝛺௏௖௩ሬሬሬሬሬሬሬ⃗ = 𝜌ห𝑉஼௏
ሬሬሬሬሬሬ⃗ ห =

𝜌ห𝑉஼ௌ
ሬሬሬሬሬሬ⃗ ห

|1 + 𝜌𝑅|
=

𝜌|𝑅 𝛺஼ௌ|

|1 + 𝜌𝑅|
 

 

𝜌 > 0 𝜌 < 0 

Ωୌ 

Fig.3.1‐1  The relationships between point CV and the rolling object on the flat surface 

Fig.3.1-2 The relationships between CS,CV,CT and the rolling object on the curved 



 

 
 

3.2 The turning motion of motor vehicle 

When turning while keeping a constant wheel angle in relation to the vehicle body, 

The velocity center points CV and the turning center point CT coincide and neither point moves. (Fig.3.2-1) 

 

 
Also, as shown in Fig.3.2-2,  

consider a circle centered on point CS and passing through the wheel (point N), If the tangent direction of the circle at point N 

is angle 0 rad, the steering angleφof the wheel (point N) is equal to the angle ∠CS-N-CV.  

If the angular velocity of the vehicle is 𝛺஼ௌ
ሬሬሬሬሬሬ⃗  , and the angular velocity of point CS’s velocity 𝑉஼ௌ

ሬሬሬሬሬሬ⃗  is 𝛺௏಴ೄሬሬሬሬሬሬሬሬ⃗
ሬሬሬሬሬሬሬሬሬ⃗ ,  

Point N moves around point CS at angular velocity 𝛺஼ௌ
ሬሬሬሬሬሬ⃗ − 𝛺௏಴ೄሬሬሬሬሬሬሬሬ⃗

ሬሬሬሬሬሬሬሬሬ⃗ .   

The steering angleφrad changes according to the movement of point N as seen from point CS. 

In the case of Fig.3.2-1, 𝛺஼ௌ
ሬሬሬሬሬሬ⃗ = 𝛺௏಴ೄሬሬሬሬሬሬሬሬ⃗

ሬሬሬሬሬሬሬሬሬ⃗ , so, the angular velocity of point N as seen from point CS is 0,  

therefore the value of angle ∠CS-N-CV remains the same, as a result, the steering angleφis constant. 

The appropriate position of point CS on the vehicle depends on the design concept and the situation. 

It will be discussed in the following chapters. 

 
 

 

 

Fig.3.2-2 The relationships between the steering angle and CS, CV  

 

φ 

φ 

Fig.3.2-1 The relationships between CV and CT of the automobile 



 

 
 

3.3 The motor vehicle movement that the velocity center point CV and the turning center point CT don’t coincide 

When the moving direction of point CS is in the θ rad direction relative to the vehicle center line,  

set the vehicle center point CV as shown in Fig.3.3-1(A), 

and set the wheel’s direction and its speed to satisfy the velocity center theorem of chapter2.2. 

In the case of a motor vehicle, the intersection of the wheel axes is often said the turning center point. 

But point CV becomes the turning center point CT only when the steering angles are constant as shown in Fig.3.2-1. 

For example, if the representative point CS moves on a straight line as shown Fig.3.3-1(A), while the direction of travel of 

point CS remains constant, and θ is continuously changed to satisfy the velocity center theorem of chapter2.2. In this way, 

point CS goes straight ahead, while the vehicle body turns in the direction that approaches the posture shown in Fig.3.3-1(B). 

At this, the point CS moves straight, but there is no turning center point. Thus, the velocity center point CV and the turning 

center point CT don’t coincide. 

The representative point CS may be placed anywhere on the car body. For example, it can be taken to the edge of the vehicle 

as shown in Fig.3.3-1(C). As with (A), if taking a point CV satisfying the velocity center theorem of chapter2.2, be able to 

move the point CS in the direction of the arrow. If setting a point CS where it is likely to collide, it is useful when moving in a 

direction that avoids collision. 

The movements described in this chapter may be performed unconsciously by skilled drivers, but using this method, 

objective explanations are possible. 

Also, the range of θ is determined by the maximum steering angle of the front wheels. But the range of θ is larger when point 

CS is positioned forward than when point CS is positioned rearward. This is one of the reasons why many people are not 

good at driving in reverse. Where point CS is appropriate depends on the situation at the time. If the target of the orbit of point 

CS is not a straight line, but an arc, point CV moves closer to the center point of the arc (point CT). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) (A) (C) (D) 
Fig.3.3-1 The relationships between CV and CS of the vehicle  



 

 
 

3.4 Four-wheel steering movement 

If the concept of the previous chapter is applied to the four-wheel steering movement, it is shown as Fig.3.4-1. 

With respect to point CV of (B),  

the rear wheels are steered in reverse phase like(A) when point CV is close to point CS,  

and in same phase like (C) when point CV is far away from CS. 

Movements that was impossible with two-wheel steering vehicle, such as intentionally swing the vehicle body while the 

representative point CS is going straight, will become possible with four-wheel steering vehicle. 

Conversely, it is possible to make the vehicle more stable. The steering function is not just a function for curving, but it can 

become a more important function for improving driving stability and attitude control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Reverse phase (B) (C) Same phase 

Fig.3.4-1 The relationships between the steering angles and CV,CS of the four-wheel-steering vehicle 



 

 
 

4. Example of application to Omnidirectional vehicle, etc. 
 

In this chapter, using two-wheel steering vehicle like Fig.4-1, and show that omnidirectional vehicle, etc can be realized. 

 

 
In order to achieve more flexible motion, it is necessary to control the positional relationship between point CV and point CS 

appropriately. 

 

The angular velocity vector Ω௏ಿሬሬሬሬሬ⃗
ሬሬሬሬሬሬሬ⃗  of the absolute velocity 𝑉ே

ሬሬሬሬ⃗  of any point N on the rotational object is expressed as follows, 

𝛺௏ಿሬሬሬሬሬሬ⃗
ሬሬሬሬሬሬሬ⃗ =  𝛺௖௦  𝑒ேሬሬሬሬ⃗  −  

1

ห𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ ห
ଶ 𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗ × 𝑉஼௏

ሬሬሬሬሬሬ⃗  

𝑒ேሬሬሬሬ⃗  is the unit vector in the direction of the cross product of 𝐶𝑉- 𝑁ሬሬሬሬሬሬሬሬሬሬሬ⃗  and 𝑉ே
ሬሬሬሬ⃗ , 

 

Therefore,  

If the wheel position is point N, and when point N approaches point CV, care must be taken not to make ห𝛺௏ಿሬሬሬሬሬ⃗
ሬሬሬሬሬሬሬ⃗ ห too large.  

But, For mobility, it may be useful to move the point CV appropriately, so that the limit value of ห𝛺௏ಿሬሬሬሬሬ⃗
ሬሬሬሬሬሬሬ⃗ ห when point N 

approaches point CV does not diverge. 

Such examples are described in Chapter4.2, 4.3, 5,etc. 

 

 

 

 

 

 

 

 

 

Fig4-1   The two-wheel-drive and steering mobility model 

The steel ball free castor  



 

 
 

4.1 Example 1 of omnidirectional movement   ( Frisbee type ) 

Take a velocity center point CV and a representative point CS as shown in Figure 4.1-1, and satisfy the velocity center 

theorem of chapter2.2, do from ①  to ⑧  continuously, while the moving object rotates counter-clockwise, the 

representative point CS moves in the direction of the arrow ( in Figure 4.1-1, it moves to the right). 

Figure 4.1-2 is the superimposed view of points CS and CV from ① to ⑧ in Figure 4.1-1. 

Figure 4.1-3 shows an example where the representative point CS can go at right angles from A to B to C route with zero 

stopping time by varying the distance between points CV and CS appropriately. 

Even in this case, the velocity center point CV (the intersection of the wheels axes) is not the turning center of point CS. 

If the distance between CS and CV is constant, and the CS goes straight, the trajectories of the wheels draw trochoid curves.  

The farther a point CV is from a point CS, the longer distance CS travels in one rotation.  

Here, the point CS is the center of the two wheels, but the representative point CS can be placed anywhere on the vehicle. 

 

 

 

 
Fig.4.1-3   Frisbee type; The trajectory of CV,CS and wheels  

Fig.4.1-2 Layered ①～⑧ of Fig.3.1-1 

Fig.4.1-1 Frisbee type; The relationships between each posture and wheels angles 



 

 
 

4.2  Example 2 of omnidirectional movement （ No steering wheel type ） 

As shown in Fig.4.2-1, point CV is the intersection of the wheel axis and the line passing through point CS which is 

perpendicular to the direction of travel of point CS.  By setting the speed of the wheel to the ratio of the distance from this 

point CV, point CS can move in any direction without steering the wheel.( Fig.4.2-1and Fig4.2-2 are examples of point CS 

moving to the right.) The representative point CS may be placed anywhere on the body, except on the wheel axis. (Same as 

chapter3.3) If the target orbit of point CS is an arc, point CV approaches the turning center point CT of point CS. 

(In the case that the trajectory of point CS is a straight line, the curvature ρ → 0, and the radius of the arc is infinity, so the 

point CV goes away from the point CS infinitely, as shown in Fig.4.2-2.) 

 

4.3  Example 3 of omnidirectional movement  ( Non-Frisbee type ) 

Frisbee type must continue to rotate, No steering wheel type requires the point CS to be away from the drive wheel axis. 

In this Chapter, Shows an example where the point CS can be moved in any direction, even if it is on the drive wheel axis and 

does not 1 to rotate. 

For example, if the two-wheel drive steering vehicle is moved as shown from ① to ⑧ in Fig.4.3-1, even if there is point 

CS on the wheel axis , point CS can be moved in the ξ direction from the center line of the vehicle. 

From ① to ⑧ are as follows; 

① : Consider the case where a stationary vehicle starts to move to the right as shown in ①. Point CV is at point CS. 

② : When point CV is gradually moved away from point CS, point CS moves to the right while the vehicle rotates 

counterclockwise. 

Fig.4.2-2   Non-steering type; The trajectory of CV, CS and wheels  

Fig.4.2-1   Non-steering type;  The relationships between CS and CV in each posture 



 

 
 

③ : The point CV is moved from ②to ③, and when point CV is at the position ③,, set the point CV to be on the center 

of the left wheel and the steering angle of the left wheel isφ. 

④ : After ③, point CV gradually moves away from point CS. 

⑤ : Finally, as in ⑤, the distance between point CV and point CS is +∞, so that the direction of travel of point CS and the 

direction of travel of both wheels are the same. 

⑥ : The position of the wheel is the same as ⑤, but assume that point CV is on the opposite side of -∞. 

⑦ : Gradually bring point CV closer to point CS. This time, point CS moves to the right while rotating clockwise. 

Once the point CV reaches a specific point, move the point CV far away from point CS again, 

Adjust so that the final posture is like ⑧ . 

⑧ : In the position of ⑧, the speed of both wheels is the same, and the vehicle moves to the right, facing the front. 

 
Superimposing ① through ⑧ in Fig.4.3-1 results in Fig.4.3-2. 

 

If the target orbit of point CS is an arc which turning center is point CT,  

The position of point CV corresponding to Fig.4.3-2⑤⑥ is point CT. 

When viewed from point CS, the point CV which corresponding to Fig. 4.3-2④～⑤、⑥～⑦ is before and after the turning 

center point CT, finally point CV approaches the point CT. 

(In the case that the trajectory of point CS is a straight line, the curvature ρ → 0, and the radius of the arc is infinity, so the 

point CV is away from the point CS infinitely, as shown in Fig.4.3-2.) 

Fig.4.3-1   Non-Frisbee type; The relationships between CV and wheels angles in each posture 

Fig4.3-2   Non-Frisbee type; The trajectory image of CV,CS and wheels 



 

 
 

5. Prototype machine 

As shown in Fig. 5.1-1, the prototype is a two-wheel drive steering type which steering axis and wheel center of gravity are 

separated. 

The steering axis of the wheel is not a type that passes through the center of gravity of the wheel like the ideal model in 

Chapter 4. But the basic point of determining the point CV according to the velocity center theorem of chapter2.2 and 

determining the speed and direction of the wheel is the same. 

For example, if the motion shown in chapter4.3 is reproduced on a prototype, Fig.4.3-1 corresponds to Fig.5.1-2. 

In Figure 4.3-1③, the speed of the wheel that overlaps point CV is 0. On the other hand, in the prototype, steering axis and 

wheel center of gravity are separated, so  

In Fig. 5.1-2, the speed of the wheel does not become 0 even when the posture is like③a, and when the state is like ③b, the 

speed of the wheel that overlaps the point CV becomes zero, and the direction of rotation changes before and after that. 

 

 
Fig5.1-2 The prototype vehicle; The relationships between CV and wheels angles in each posture 

(b) The photograph (a) The configuration  

Fig5.1-1 The omnidirectional prototype vehicle 



 

 
 

 

6.  Results 

By using the theorem in this paper, various applications for wheeled vehicle were demonstrated. In addition, it was shown 

that the intersection point CV of the wheel axis is not necessarily the turning center. 

Because of a simple theorem, it is possible to apply it to improved driving stability, the rapid judgment of avoiding collisions 

in autonomous driving, etc., and it is thought that it will contribute to the development of new vehicle in the future. Also, 

since this theorem can be applied not only to vehicle using wheels but also to all moving objects, it is expected to be applied 

to various vehicle applications. 

Finally, as for the proof of the theorem, there are various types of proofs, such as proofs using coordinates, geometric proofs, 

and proofs using physical intuition, but those are not difficult proofs. So, those proofs omitted in this paper. 

 

 

7.  REFERENCES 

[1] Taro MAEDA ，Hideyuki ANDO ：A rotating mechanism for geometrically complete trochoid trajectory as a novel 

omnidirectional mobile mechanism with rolling wheels−A mechanism for omnidirectional mobility without omniwheels －、

No．10−4 Proceedings of the 2010JSME Conference on Robotics and Mechatronics，Asahikawa，Japan，June 13−16，2010、

2A2 − D11 

 
[2] Masayoshi Wada, Akira Takagi, Shunji Mori; A Mobile Platform with a Dual-wheel Caster-drive Mechanism for 

Holonomic and Omnidirectional Mobile Robots、JRSJ Vol.18No.8,pp.1166-1172.2000 

 

 


