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ABSTRACT: Doppler weather radars are powerful tools for investigating the inner-core structure

and intensity of tropical cyclones (TCs). The Doppler velocity can provide quantitative information

on the vortex structure in the TCs. The Generalized Velocity Track Display (GVTD) technique

has been used to retrieve the axisymmetric circulations and asymmetric tangential flows in the

TCs from ground-based single-Doppler radar observations. GVTD can have limited applicabil-

ity to asymmetric vortices due to the closure assumption of no asymmetric radial flows. The

present study proposes a new closure formulation that includes asymmetric radial flows, based

on the Helmholtz decomposition. Here it is assumed that the horizontal flow is predominantly

rotational and expressed with a streamfunction, but limited inclusion of wavenumber-1 divergence

is available. Unlike the original GVTD, the decomposition introduces consistency along radius

by requiring to solve equations simultaneously. The new approach, named GVTD-X, is applied to

analytical vortices and a real TC with asymmetric structures. This approach makes the retrieval

of axisymmetric flow relatively insensitive to the contamination from asymmetric flows and the

error in the storm center locations. For an analytical vortex with a wavenumber-2 asymmetry, the

maximum relative error of the axisymmetric tangential wind retrieved by GVTD-X is less than

2% at the radius of the maximum wind speed. In practical applications, errors can be evaluated

by comparing results for different maximum wavenumbers. When applied to a real TC, GVTD-X

largely suppressed an artificial periodic fluctuation that occurs in GVTD from the aliasing of the

neglected asymmetric radial flows.

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

2



SIGNIFICANCE STATEMENT: The Generalized Velocity Track Display (GVTD) used to esti-45

mate circulations in tropical cyclones (TCs) with single-Doppler weather radars can have limited46

applicability to strongly asymmetric TCs due to the assumption of no asymmetric radial winds in47

the retrieval formulations. The present study proposes a new closure allowing asymmetric radial48

winds in GVTD. The relative error of the axisymmetric tangential wind in an asymmetric perfect49

vortex from the new approach is less than 2% at the radius of the maximumwind speed. In applying50

to a real TC with an elliptical eyewall, we found that the new approach can largely suppress an51

artificial evolution of the tangential winds in the original GVTD retrieval.52

Keywords: Tropical cyclone, Doppler weather radar, Typhoon, Hurricane, Mesoscale meteorology53

1. Introduction54

Doppler weather radar can capture wind fields in areas with water condensates (i.e., around55

precipitation clouds). It is a powerful tool for the investigation of dynamics and kinematic structure56

in mesoscale systems such as tropical cyclones (TCs). In the North Atlantic, airborne Doppler57

radars have been used to reveal the three-dimensional wind fields in field campaigns of TCs,58

although the frequency of the observation is limited due to flight limitations (e.g., Houze et al.59

2006, 2007; Bell et al. 2012). In contrast, ground-based Doppler radars cannot be deployed, but60

they can be operated continuously over time to capture the temporal evolution of the TCs. The high-61

frequency observations with them have been used to investigate the evolution of the circulation,62

vortex Rossby waves (VRWs), and asymmetric eyewall in the TC inner core (e.g., Muramatsu63

1986; Shimada et al. 2018; Shimada and Horinouchi 2018; Cha et al. 2020; Dai et al. 2021).64

The Doppler velocity from the ground-based single radar observations captures only the velocity65

component along the radar beam. This intrinsic limitation makes the retrieval of complete wind66

fields from single radar observations unavailable. Therefore, to estimate wind fields, assumptions67

suitable to observational targets are needed.68

In the context of TC studies, Lee et al. (1999) developed the ground-based velocity track display69

(GBVTD). The GBVTD technique is to estimate both symmetric and asymmetric tangential winds70

as well as the symmetric component of radial wind in a vortex by the Fourier decomposition71

of the Doppler velocity V𝑑 for a nonlinear angle 𝜓 which is dependent on both azimuths with72
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respect to the vortex center and the radar location. On the basis of the retrieved axisymmetric73

circulations, angular momentum, vertical vorticity, and pressure perturbation associated with the74

vortex can be also calculated (Lee et al. 2000; Lee and Wurman 2005; Lee and Bell 2007). The75

GBVTD technique has several limitations. The use of the nonlinear angle leads to the distortion76

of asymmetric flows and narrow retrieval area (𝑟 < 𝑅𝑇 ; 𝑟 and 𝑅𝑇 are the radius from the vortex77

center and the distance between the Doppler radar location and the vortex center, respectively). The78

closure assumption of GBVTD neglects asymmetric radial winds, which can degrade the retrieval79

of tangential winds (e.g., Lee et al. 2006). Murillo et al. (2011) showed a systematic difference80

of 6 m s−1 in the axisymmetric tangential wind between the single-Doppler radar retrieval by the81

GBVTD method and dual-Doppler radar retrieval at around the radius of maximum wind speed82

(RMW) in Hurricane Danny (1997).83

Jou et al. (2008, J08) resolved the limitations due to the use of the nonlinear angle by simply84

using the azimuth with respect to the vortex center linear angle and the Fourier decomposition of a85

new variableV𝑑𝑅𝐷/𝑅𝑇 for the linear angle, where 𝑅𝐷 is the distance from the radar location to the86

target (Generalized VTD; GVTD). The GVTD technique allows us to apply the Doppler velocity87

retrieval beyond the radius of 𝑅𝑇 , and it improves the accuracy of the retrieved circulations.88

Cha and Bell (2021) validated the GVTD retrieval from the single-Doppler radar observations89

with the airborne dual-Doppler radar retrieval in Hurricane Matthew (2016), and reduced retrieval90

errors due to translation of the vortex by improving the formulations of the horizontally uniform91

winds in the GVTD method.92

In regions that TCs often approach, such as the US, Japan, Taiwan, China, and the Philippines,93

observation networks by ground-based Doppler radars have been established with high-frequency94

volume scans or single plan-position-indicator (PPI) surveillance every 5 or 10 min. Thus, the95

detailed evolution of the TC circulation can be observed by the high-frequency Doppler radar96

networks. The GBVTD/GVTD techniques are useful to retrieve or estimate TC intensity from97

these operational ground-based Doppler radars. On the basis of the GBVTD technique, Shimada98

et al. (2016) estimated the intensity of 22 TCs approaching Japan from the ground-based single-99

Doppler radar observations and compared it with the best track from the Regional Specialized100

Meteorological Center (RSMC) Tokyo. They showed that the estimate of the GBVTD-based101

intensity is comparable to or better than those of Dvorak and satellite microwave-derived estimates.102
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The GBVTD/GVTD techniques have been used to not only assess the TC intensity but also to103

understand the dynamics of intensity and structure changes in TCs. Shimada et al. (2018) used104

the GBVTD to retrieve the inner-core circulation in Typhoon Goni (2015) from ground-based105

single-Doppler radar observations in the Okinawa Islands, and they investigated processes of the106

rapid intensification and contraction of the annular eyewall in Goni after the dissipation of the107

inner eyewall in an eyewall replacement cycle. They also discussed a key process with the absolute108

angular momentum budget diagnosed from the retrieved circulations. Cha et al. (2020) investigated109

asymmetric structure in the polygonal eyewall during the rapid intensification of HurricaneMichael110

(2018). They retrieved the asymmetric components of the hurricane tangential wind by the GVTD111

technique and compared the azimuthal propagating speed with the theory in the VRWs. Dai et al.112

(2021) used the GBVTD technique to examine the axisymmetric vorticity profiles and to investigate113

the evolution of the vortex structure in Typhoon Lekima (2019) with concentric eyewalls (CEs)114

before its landfall in China. They hypothesized a possibility of convection intensification in the115

outer eyewall associated with the outward propagation of the inner-eyewall VRWs.116

It is known that the GBVTD and GVTD techniques sometimes yield large errors because of117

their closure assumption to set asymmetric radial winds to zero. This is because some Fourier118

components of asymmetric radial winds project onto the line-of-sight winds in the same way119

as the wavenumber-0 tangential winds do (see section 2c). Lee et al. (2006) reported that the120

retrieved axisymmetric tangential wind can have a relative error of about 20% at around the RMW121

through the GBVTD analysis for an idealized vortex with an elliptical eyewall which is composed122

of wavenumber-2 VRWs and an axisymmetric Rankine vortex. Proper evaluation of asymmetric123

winds would improve the axisymmetric tangential wind retrieval, but to naively retain them as124

variables make the retrieval equations unclosed (Lee et al. 1999). A single-component wind125

measurement does not resolve the two horizontal wind components, so some a priori restrictions126

are necessary.127

In the present study, a new closure and different retrieval formulas from those in the GVTD128

technique are proposed to solve the problem by allowing non-zero radial winds. Here we make use129

of the nature that flows associated with TCs are predominantly rotational. In the new approach,130

on the basis of the Helmholtz decomposition theorem, asymmetric streamfunction and velocity131

potential (instead of the radial and tangential winds) are used to remove the assumption of no132
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asymmetric radial winds in the GVTD technique. As will be shown in this paper, a single133

Doppler observation can be used to constrain the streamfunction that governs rotational flow.134

Moreover, non-zero asymmetric velocity potential is allowed to some extent, allowing divergent135

flow up to wavenumber 1. Another novelty is that, unlike GBVTD and GVTD that solve equations136

independently at each radius, the new approach uses simultaneous equations to solve for the entire137

radial grid points at once. The simultaneous solution introduces consistency along radius.138

The accuracy of the retrieval in the new approach is assessed by being applied to analytical139

vortices. Moreover, the new approach and GVTD technique are applied to the retrieval of ax-140

isymmetric tangential winds in a real typhoon with elliptical eyewalls observed by an operational141

single-Doppler radar. We discuss the advantages and limitations of the new approach through a142

comparison with the GVTD results.143

2. The new approach144

The new approach in the present study follows most of the geometry and coordinate in GVTD. In145

contrast to GVTD, the new approach adopts 1) the closure assumptions to contain asymmetric radial146

winds by the separation of the horizontal winds between the rotational and divergent components147

based on the Helmholtz decomposition theorem and 2) the retrieval formulations based on the148

least-square method over the entire area from the radar observation. Thus, the new approach is149

named as the GVTD-X (from the pronunciation of GVTD-HeCs which is an abbreviation of GVTD150

with the Helmholtz-decomposition-based Closure assumptions).151

a. Geometry and symbols152

We introduce geometry setting and definition of wind components in the present study, which is153

somewhat different from those in the earlier studies (Lee et al. 1999, J08). A subtle but important154

difference is that we use the storm-motion velocity as the background velocity, which is justified155

in what follows.156

As in Fig. 1, we set the 𝑥 axis along the direction from the radar to the storm center for162

convenience. Suppose a point A at (𝑟, 𝜃), where 𝑟 and 𝜃 are radius and azimuthal angle on the polar163

coordinate with the origin of the storm center "T". The unit vector along the line of sight from the164

radar to the point A is k = 1
𝛿
(𝜌+cos𝜃, sin𝜃) on the 𝑥-𝑦 coordinate, where 𝛿 ≡ 𝐷𝐴/𝑟 and 𝜌 ≡ 𝑅𝑇/𝑟.165
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Fig. 1. Geometry and symbols in the new approach. A horizontal wind is presented by radial and tangential

wind components (𝑈 and 𝑉) on the polar coordinates (𝑟, 𝜃) with the origin of the vortex center "T", and 𝑥 and 𝑦

components (𝑢 and 𝜐) on the Cartesian coordinates with the origin of the radar location at "O". The 𝑥 and 𝑦 axes

are parallel and normal to the line OT, respectively. For the target located at the point "A", the Doppler velocity

projected on the horizontal plane is represented byV𝑑 . Other symbols and lines are described in the main body.

157

158

159

160

161

𝐷𝐴 is the distance of the line OA in Fig. 1. The horizontal wind (𝑢, 𝜐) in the 𝑥-𝑦 coordinate is166

related to the Doppler velocityV𝑑 as follows:167

V𝑑

𝛿

𝜌
= 𝑢 + 1

𝜌
(𝑢 cos𝜃 +𝜐 sin𝜃). (1)

Following the conventional definition inmost TC studies, 𝑢 and 𝜐 are expressed by the storm-motion168

velocity (𝑢𝑆, 𝜐𝑆) and the storm-relative tangential (𝑉) and radial (𝑈) winds as,169


𝑢

𝜐

 =

𝑢𝑆 +𝑈 cos𝜃 −𝑉 sin𝜃
𝜐𝑆 +𝑈 sin𝜃 +𝑉 cos𝜃

 . (2)
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Equation (1) is then rewritten as170

V𝑑

𝛿

𝜌
=V𝑆

𝛿

𝜌
+𝑈

(
1
𝜌
+ cos𝜃

)
−𝑉 sin𝜃, (3)

where V𝑆 ≡ 𝜌

𝛿
𝑢𝑆 + 1𝛿 (𝑢𝑆 cos𝜃 + 𝜐𝑆 sin𝜃) is the line-of-sight component of the storm motion from171

the radar.172

Our wind separation in Eq. (2) is different from what is used in the original GBVTD and GVTD173

techniques, which use the mean flow (𝑢𝑀 , 𝜐𝑀) as the background:174


𝑢

𝜐

 =

𝑢𝑀 +�̂� cos𝜃 − �̂� sin𝜃
𝜐𝑀 +�̂� sin𝜃 + �̂� cos𝜃

 . (4)

Here, (�̂�, �̂�) is the horizontal winds relative to the mean flow, which is rarely used in TC studies.175

Their methods retrieve (�̂�, �̂�) rather than (𝑈, 𝑉). When (𝑢𝑀 , 𝜐𝑀) ≠ (𝑢𝑆, 𝜐𝑆), (�̂�, �̂�) ≠ (𝑈, 𝑉).176

In the polar coordinate, their difference, which is a uniform flow, takes the form of a wavenumber-1177

non-divergent and non-rotational flow inwhich tangential and radial winds have an equal amplitude.178

It does not have a wavnumber-0 component, but its mis-retrieval can bias the wavenumber-0179

tangential flow. Note that asymmetric radial wind is set to zero in GBVTD and GVTD, so they180

cannot properly express uniform flow differences. Thus, the retrieved axisymmetric winds are181

different whether Eq. (3) or (4) is used.182

b. A review of GVTD183

In the GVTD technique of J08, V𝑑𝛿/𝜌, �̂� and �̂� are expressed by the Fourier series on the 𝜃184

coordinate:185

V𝑑

𝛿

𝜌
= 𝐴0 +

𝑁∑︁
𝑘=1

𝐴𝑘 cos (𝑘𝜃) +
𝑁∑︁
𝑘=1

𝐵𝑘 sin (𝑘𝜃), (5)

�̂� = �̂�0 +
𝑁−1∑︁
𝑘=1

�̂�𝐶,𝑘 cos (𝑘𝜃) +
𝑁−1∑︁
𝑘=1

�̂�𝑆,𝑘 sin (𝑘𝜃), (6)

�̂� = �̂�0 +
𝑁−1∑︁
𝑘=1

�̂�𝐶,𝑘 cos (𝑘𝜃) +
𝑁−1∑︁
𝑘=1

𝑈𝑆,𝑘 sin (𝑘𝜃), (7)
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where 𝐴𝑘 (�̂�𝐶,𝑘 , �̂�𝐶,𝑘 ) and 𝐵𝑘 (�̂�𝑆,𝑘 , �̂�𝑆,𝑘 ) are the cosine and sine components of V𝑑𝛿/𝜌 (𝑉, 𝑈)186

for the azimuthal wavenumber−𝑘 , respectively. In substituting Eqs. (5), (6), and (7) into Eq. (1),187

a set of simultaneous equations is established from the amplitude in each azimuthal wavenumber:188

𝑢𝑀 = 𝐴0−
1
𝜌
�̂�0 +

1
2
�̂�𝑆,1−

1
2
�̂�𝐶,1, (8)

�̂�0 = −𝐵1−𝐵3 +
1
𝜌

[
−𝜐𝑀 +�̂�𝑆,1 +�̂�𝑆,3

]
+�̂�𝑆,2, (9)

�̂�0 =
𝐴0 + 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4

1+ (1/𝜌) −�̂�𝐶,1−�̂�𝐶,2−�̂�𝐶,3−𝑢𝑀 , (10)

�̂�𝑆,𝑘 = 2𝐴𝑘+1−2
1
𝜌
�̂�𝐶,𝑘+1 + �̂�𝑆,𝑘+2−�̂�𝐶,𝑘+2−�̂�𝐶,𝑘 , (11)

�̂�𝐶,𝑘 = −2𝐵𝑘+1 + �̂�𝐶,𝑘+2 +�̂�𝑆,𝑘 +�̂�𝑆,𝑘+2 +2
1
𝜌
�̂�𝑆,𝑘+1. (12)

𝑢𝑀 and 𝜐𝑀 are the Cartesian 𝑥- and 𝑦-components of the mean flow (parallel and normal to the line189

between the radar and the vortex center), respectively (Fig. 1). For any truncating wavenumber 𝑁 ,190

the total number of the simultaneous equations is always less than the total number of the unknown191

variables. It means that a closure assumption is required to get the unique solution. Lee et al.192

(1999) and J08 assumed that all of the radial components of asymmetric flows associated with the193

vortex will be much smaller than others (i.e., �̂�𝐶,𝑘 = �̂�𝑆,𝑘 = 0). If they are actually non-zero, to194

neglect them in Eqs. (9) and (10) biases the retrieval of the axisymmetric velocities �̂�0 and �̂�0;195

this effect can be understood as an aliasing due to incorrect assumption. Thus, the assumption196

can be an obstacle to the application of the GBVTD and GVTD methods to TCs with significant197

asymmetries such as elliptical or polygonal eyewall. Even for an axisymmetric vortex advected by198

a mean flow, to assume �̂�𝐶,1 = �̂�𝑆,1 = 0 biases its flow retrieval if the mean flow, whether prescribed199

or retrieved, has an error, since the error induces non-zero wavenumber-1 components, such as the200

sensitivity experiments of the VM series in J08.201

c. Formulation of the new method202

In contrast to the closure assumption in GBVTD andGVTD,we attempt to include non-negligible203

asymmetric radial wind components in the closure of the new method. From Eq. (3), the Doppler204
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velocityV′
𝑑
of a storm-relative horizontal wind V can be expressed as follows:205

V′
𝑑𝛿 ≡ (V𝑑 −V𝑆) 𝛿 = −𝑉𝜌 sin𝜃 +𝑈𝜌 cos𝜃 +𝑈. (13)

On the basis of the Helmholtz decomposition theorem, the storm-relative wind V can be de-206

composed into the rotating component (Vrot), divergent component (Vdiv), and non-rotating and207

non-divergent component over the entire domain (Vnon):208

V = Vnon +Vrot +Vdiv. (14)

The decomposition can be expressed by the streamfunction Φ(𝑟, 𝜃) for Vrot +Vnon and the velocity209

potential Ψ(𝑟, 𝜃) for Vdiv:210

𝑉rot +𝑉non = − 𝜕Φ

𝜕𝑟
, (15)

𝑈rot +𝑈non =
𝜕Φ

𝑟𝜕𝜃
, (16)

𝑉div = − 𝜕Ψ

𝑟𝜕𝜃
, (17)

𝑈div = − 𝜕Ψ

𝜕𝑟
. (18)

where 𝑉rot +𝑉non, 𝑈rot +𝑈non are tangential and radial components of Vrot +Vnon, and 𝑉div, 𝑈div211

are tangential and radial components of Vdiv. Note that globally non-rotating and non-divergent212

flow can be expressed with streamfunction and/or velocity potential. To make the decomposition213

unique, we express such flow exclusively with the streamfunction. Φ and Ψ are expressed by the214

Fourier expansion along the azimuth (𝜃):215

Φ(𝑟, 𝜃) = Φ0(𝑟) +
𝑁∑︁
𝑘=1

[
Φ𝑆,𝑘 (𝑟) sin (𝑘𝜃) +Φ𝐶,𝑘 (𝑟) cos (𝑘𝜃)

]
, (19)

Ψ(𝑟, 𝜃) = Ψ0(𝑟) +
𝐿∑︁

𝑘=1

[
Ψ𝑆,𝑘 (𝑟) sin (𝑘𝜃) +Ψ𝐶,𝑘 (𝑟) cos (𝑘𝜃)

]
, (20)

10



where 𝑁 and 𝐿 are the truncating wavenumbers. Thus, Eqs. (15) to (18) can be expressed as216

follows:217

𝑉rot +𝑉non =𝑉0(𝑟) −
𝑁∑︁
𝑘=1

[
𝜕Φ𝑆,𝑘

𝜕𝑟
sin (𝑘𝜃) + 𝜕Φ𝐶,𝑘

𝜕𝑟
cos (𝑘𝜃)

]
, (21)

𝑈rot +𝑈non =
1
𝑟

𝑁∑︁
𝑘=1

{
𝑘
[
Φ𝑆,𝑘 (𝑟) cos (𝑘𝜃) −Φ𝐶,𝑘 (𝑟) sin (𝑘𝜃)

]}
, (22)

𝑉div = − 1
𝑟

𝐿∑︁
𝑘=1

{
𝑘
[
Ψ𝑆,𝑘 (𝑟) cos (𝑘𝜃) −Ψ𝐶,𝑘 (𝑟) sin (𝑘𝜃)

]}
, (23)

𝑈div =𝑈0(𝑟) −
𝐿∑︁

𝑘=1

[
𝜕Ψ𝑆,𝑘

𝜕𝑟
sin (𝑘𝜃) + 𝜕Ψ𝐶,𝑘

𝜕𝑟
cos (𝑘𝜃)

]
, (24)

where218

𝑉0 ≡ −𝜕Φ0

𝜕𝑟
, 𝑈0 ≡ −𝜕Ψ0

𝜕𝑟
. (25)

To ensure that Vnon is held exclusively in Φ, we relate Ψ to divergence 𝐷 as follows:219

Ψ𝑘 =

∫ ∞

0
𝑟′𝐺𝑘 (𝑟;𝑟′)𝐷𝑆,𝑘 (𝑟′)𝑑𝑟′ sin (𝑘𝜃) +

∫ ∞

0
𝑟′𝐺𝑘 (𝑟;𝑟′)𝐷𝐶,𝑘 (𝑟′)𝑑𝑟′cos (𝑘𝜃), (𝑘 > 0), (26)

220

𝐷 =

𝐿∑︁
𝑘=1

[
𝐷𝑆,𝑘 (𝑟) sin (𝑘𝜃) +𝐷𝐶,𝑘 (𝑟) cos (𝑘𝜃)

]
, (27)

where 𝐺𝑘 is the radial Green function (i.e., the impulse response in the Poisson equation on the221

𝑟 − 𝜃 coordinates) for wavenumber 𝑘:222

𝐺𝑘 (𝑟;𝑟′) = − 1
2𝑘


(𝑟/𝑟′)𝑘 , (𝑟 ≤ 𝑟′)
(𝑟′/𝑟)𝑘 , (𝑟 > 𝑟′)

, (𝑘 ∈ N). (28)

Equation (26) is derived in Appendix A. If 𝐷𝑆,𝑘 = 𝐷𝐶,𝑘 = 0, Ψ𝑘 = 0, and thus 𝑈div = 𝑉div = 0.223

Therefore,𝑈non and 𝑉non are exclusively represented by Φ.224
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From Eqs. (14) and (21)−(25),V′
𝑑
in Eq. (13) is225

V′
𝑑𝛿 =

{
𝑁∑︁
𝑘=0

[
𝜕Φ𝑆,𝑘

𝜕𝑟
sin (𝑘𝜃) + 𝜕Φ𝐶,𝑘

𝜕𝑟
cos (𝑘𝜃)

]
+ 1
𝑟

𝐿∑︁
𝑘=1

{
𝑘
[
Ψ𝑆,𝑘 (𝑟) cos (𝑘𝜃) −Ψ𝐶,𝑘 (𝑟) sin (𝑘𝜃)

]}}
𝜌 sin𝜃

+
{
1
𝑟

𝑁∑︁
𝑘=1

{
𝑘
[
Φ𝑆,𝑘 (𝑟) cos (𝑘𝜃) −Φ𝐶,𝑘 (𝑟) sin (𝑘𝜃)

]}
−

𝐿∑︁
𝑘=0

[
𝜕Ψ𝑆,𝑘

𝜕𝑟
sin (𝑘𝜃) + 𝜕Ψ𝐶,𝑘

𝜕𝑟
cos (𝑘𝜃)

]}
(1+ 𝜌 cos𝜃). (29)

To discretize the system, we employ a radially staggered grid as shown in Fig. 1. Suppose that226

the Doppler velocityVo
𝑑
is obtained at the grid points (𝑟𝑖+1/2, 𝜃 𝑗 ), (𝑖 = 1, · · · ,𝑚−1, 𝑗 = 1, · · · , 𝑛),227

where the half-integer radii are shown by the black-solid arcs in Fig. 1, and 𝑚 and 𝑛 are the228

numbers of the radial and azimuthal grid points where Doppler velocities are defined, respectively.229

The radial and azimuthal grid intervals Δ𝑟 and Δ𝜃, respectively, are set uniform; non-uniform grid230

spacing along 𝑟 is treated in section 2f. The discretized Φ and 𝐷 are allocated to the integer-radii231

grid points (𝑟𝑖, 𝜃 𝑗 ), (𝑖 = 1, · · · ,𝑚, 𝑗 = 1, · · · , 𝑛) as shown by the black-dashed arcs in Fig. 1. The232

discretized form of Eq. (29) can be expressed as follows:233

V′
𝑑,𝑖+1/2, 𝑗𝛿 ≡

{
−𝑉0,𝑖+1/2 +

𝑁∑︁
𝑘=1

[
Φ𝑆,𝑘,𝑖+1−Φ𝑆,𝑘,𝑖

Δ𝑟
sin (𝑘𝜃 𝑗 ) +

Φ𝐶,𝑘,𝑖+1−Φ𝐶,𝑘,𝑖

Δ𝑟
cos (𝑘𝜃 𝑗 )

]
+ Δ𝑟

𝑟𝑖+1/2

𝐿∑︁
𝑘=1

𝑚−1∑︁
𝑙=1

{
𝜀𝑙𝑘𝑟

′
𝑙𝐺𝑘,𝑖+1/2,𝑙

[
𝐷𝑆,𝑘,𝑙 cos (𝑘𝜃 𝑗 ) −𝐷𝐶,𝑘,𝑙 sin (𝑘𝜃 𝑗 )

]}}
× 𝜌𝑖+1/2 sin𝜃 𝑗

+
{
𝑈0,𝑖+1/2−Δ𝑟

𝐿∑︁
𝑘=1

𝑚−1∑︁
𝑙=1

{
𝜀𝑙𝑟

′
𝑙

𝐺𝑘,𝑖+1,𝑙 −𝐺𝑘,𝑖,𝑙

Δ𝑟

[
𝐷𝑆,𝑘,𝑙 sin (𝑘𝜃 𝑗 ) +𝐷𝐶,𝑘,𝑙 cos (𝑘𝜃 𝑗 )

]}
+

𝑁∑︁
𝑘=1

[
𝑘
Φ𝑆,𝑘,𝑖+1 +Φ𝑆,𝑘,𝑖

2𝑟𝑖+1/2
cos (𝑘𝜃 𝑗 ) − 𝑘

Φ𝐶,𝑘,𝑖+1 +Φ𝐶,𝑘,𝑖

2𝑟𝑖+1/2
sin (𝑘𝜃 𝑗 )

]}
× (1+ 𝜌𝑖+1/2 cos𝜃 𝑗 ). (30)
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Here, we neglect 𝐷 at 𝑟 > 𝑟𝑚−1/2. This is because the flow field associated with it is non-divergent234

in the observational area of 𝑟 ≤ 𝑟𝑚−1/2, so it is expressed byΦ. We definedΦ and 𝐷 at half-integer235

radii as 𝑧𝑖+1/2 = 𝑧𝑖+𝑧𝑖+1
2 , where 𝑧 is any variable. For 𝑘 = 0, we do not use Φ and 𝐷 but define 𝑉0236

and 𝑈0 directly at half-integer radii. An integral operation of a variable 𝑧 arising from Eq. (26) is237

assessed in Eq. (30) as follows:238

∫ 𝑟𝑚

𝑟1

𝑧(𝑟)𝑑𝑟 ≈ Δ𝑟

2

[
𝑧1 + 𝑧𝑚−1 +2

𝑚−2∑︁
𝑖=2

𝑧𝑖

]
= Δ𝑟

𝑚−1∑︁
𝑖=1

𝜀𝑖𝑧𝑖, 𝜀𝑖 ≡

1/2, (𝑖 = 1,𝑚−1)
1, (otherwise)

The first derivative of a variable 𝑧 with 𝑟 at 𝑟𝑖+1/2 in Eq. (30) is assessed by the second-order239

centred difference approximation:240

𝑑𝑧

𝑑𝑟

����
𝑖+1/2

≈ 𝑧𝑖+1− 𝑧𝑖

Δ𝑟
.

In GVTD, retrieval is independently done for each radius. However, Eq. (30) combines all radii,241

so its retrieval needs to be done simultaneously. It introduces consistency across the radii.242

We solve Eq. (30) by using the least-square method with respect to V′
𝑑
𝛿, so the residual R is243

expressed as,244

R ≡
𝑛∑︁
𝑗=1

𝑚−1∑︁
𝑖=1

[
V′o

𝑑 𝛿−V′
𝑑𝛿
]2
𝑖+1/2, 𝑗 , (31)

whereV′o
𝑑
≡Vo

𝑑
−V𝑆. Based on the least-square method, the minimum of R is searched. Equation245

(30) can be expressed abstractly in the form of246

V′
𝑑,𝑖+1/2, 𝑗𝛿 =

𝑃∑︁
𝑙=1

𝛼𝑙 𝑓𝑙,𝑖+1/2, 𝑗 , (32)

where 𝑃 is the total number of the unknown variables (𝛼𝑙), which is the collection of the entire247

unknown variables on the right-hand-side of Eq. (30). 𝑓𝑙,𝑖+1/2, 𝑗 is the coefficient of 𝛼𝑙 , which is a248

sparse matrix with 𝑖 and 𝑗 . The set of the unknown variables to minimize R satisfies the following249

conditions:250

𝜕R
𝜕x = 0, (33)

x ≡ [𝛼1, · · · , 𝛼𝑙 , · · · , 𝛼𝑃]𝑇 . (34)
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For 𝜕R/𝜕𝛼𝑙 in Eq. (33),251

𝜕R
𝜕𝛼𝑙

=
∑︁
𝑖, 𝑗

𝑓𝑙,𝑖+1/2, 𝑗


𝑃∑︁

𝑞=1
𝛼𝑞 𝑓𝑞,𝑖+1/2, 𝑗 −V′o

𝑑,𝑖+1/2, 𝑗𝛿


=

𝑃∑︁
𝑞=1

[
𝛼𝑞

∑︁
𝑖, 𝑗

𝑓𝑞,𝑖+1/2, 𝑗 𝑓𝑙,𝑖+1/2, 𝑗 −
∑︁
𝑖, 𝑗

𝑓𝑙,𝑖+1/2, 𝑗V′o
𝑑,𝑖+1/2, 𝑗𝛿

]
= 0. (35)

From Eqs. (33) and (35), we obtain a set of the linear simultaneous equations for 𝛼𝑙 , (𝑙 = 1, · · · , 𝑃):252

𝐴x = b, (36)

where253

𝐴 ≡


𝑎1,1 · · · 𝑎1,𝑃
...

. . .
...

𝑎𝑃,1 · · · 𝑎𝑃,𝑃


, 𝑎𝑙,𝑞 ≡

∑︁
𝑖, 𝑗

𝑓𝑙,𝑖+1/2, 𝑗 𝑓𝑞,𝑖+1/2, 𝑗 , (37)

b ≡ [𝑏1, · · · , 𝑏𝑙 , · · · , 𝑏𝑃]𝑇 , 𝑏𝑙 ≡
∑︁
𝑖, 𝑗

𝑓𝑙,𝑖+1/2, 𝑗V′o
𝑑,𝑖+1/2, 𝑗𝛿. (38)

If the matrix 𝐴 is regular, the unknown variables 𝛼𝑙 have a unique set of solutions. However, the254

matrix 𝐴 can be irregular, so additional constraints are required to avoid the irregularity.255

Let’s consider a set of linear constraints for x to avoid the irregularity formally:256

𝐵x = y, (39)

where 𝐵 and y are known matrix and vector, respectively. The optimization problem Eq. (33) with257

the equality constraint Eq. (39) can be solved with the method of Lagrange multiplier:258

𝜕L
𝜕x = 0, (40)

𝜕L
𝜕λ

= 0, (41)

L(x, λ) ≡ R +2λ𝑇 (𝐵x−y) , (42)
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where L is a Lagrangian function, and λ is a vector consisted of Lagrange multipliers. Although259

Eqs. (40) and (41) are numerically solved in a practical manner, we briefly explain the analytical260

solution (x∗) of x for Eqs. (40) and (41):261

x∗ = 𝐴−1b+ 𝐴−1𝐵𝑇
[
𝐵𝐴−1𝐵𝑇

]−1 (y−𝐵𝐴−1b
)
. (43)

The first term on the right-hand-side of Eq. (43) is identical to the solution for Eq. (36), which262

is the condition for x to minimize R. The second term on the right-hand-side of Eq. (43) is the263

adjustment by the constraints (39). In the next section, specific formula of the constraints to avoid264

the irregularity are introduced.265

d. Inherent ambiguity and closure266

A single Doppler radar can measure only one wind component, so to retrieve two dimensional267

flow without any restriction is impossible. Suppose the homogeneous equation of Eq. (30) in268

which the left-hand-side is set to zero. If this homogeneous equation has a non-trivial solution, Eq.269

(30) or its least error version Eq. (33) is not uniquely solvable, leading to inherent ambiguity in the270

retrieval. Appendices B and C show that this is indeed the case; it occurs even when the number271

of azimuthal grid points is increased to infinity. Here we introduce a method to eliminate the non-272

trivial solution (or the inherent ambiguity) to make the problem solvable. The argument illuminates273

the interdependece among the Fourier components, which helps understand the behavior of GVTD274

and GBVTD like retrievals.275

On the basis of the discussion in Appendices B and C, we propose closure assumptions to276

eliminate the ambiguity in the retrieval:277

• The truncation wavenumber for Ψ is set to 𝐿 = 1 in Eq. (20).278

• Ψ𝑆,1 is also eliminated by setting 𝐷𝑆,1,𝑙 = 0 for all 𝑙.279

• The non-trivial solution in Φ𝑆,𝑘 and Φ𝐶,𝑘 for the wavenumber 𝑘 (2 ≤ 𝑘 ≤ 𝑁), which is280

proportional to 𝑟 𝑘 , is eliminated by setting zero at the outermost radius:281

Φ𝐶,𝑘 = Φ𝑆,𝑘 = 0, (𝑟 = 𝑟𝑚). (44)
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We further require 𝜕Φ𝐶,𝑘/𝜕𝑟 = 𝜕Φ𝑆,𝑘/𝜕𝑟 = 0 at 𝑟 = 𝑟𝑚−1/2, so we set282

Φ𝑆,𝑘,𝑚 = Φ𝑆,𝑘,𝑚−1 = 0, Φ𝐶,𝑘,𝑚 = Φ𝐶,𝑘,𝑚−1 = 0, (2 ≤ 𝑘 ≤ 𝑁). (45)

Equation (45) means that all asymmetric components of not only non-trivial flows but also283

rotational winds for the wavenumber 𝑘 vanish at 𝑟𝑚−1/2. Note that, if sufficient external284

information is somehowavailable, one can prescribe these values to non-zero. For example, the285

𝑘 = 2 ambiguity is associated with confluence/diffluence, which can exist in the environmental286

flow.287

• The ambiguity at 𝑘 = 1 can be treated similarly, but a remark is needed: Φ𝑆,1 does not have288

non-trivial solutions, so it should not be constrained. The cosine part can also be constrained289

by Φ𝐶,1,𝑚 = Φ𝐶,1,𝑚−1 = 0, but it is recommended to prescribe non-zero values to them, if290

possible, as shown in the next subsection.291

The above settings are necessary for accurate retrieval of Φ0 and 𝑉0 (Appendix C).292

e. Constraints for Φ𝐶,1293

In section 2d, it is stated that Φ𝐶,1 can be constrained by Φ𝐶,1,𝑚 = Φ𝐶,1,𝑚−1 = 0. In this case, the294

Cartesian 𝑦-component (perpendicular to the line between the radar and the vortex center) of the295

storm-relative mean winds at 𝑟𝑚−1/2,296

𝑑𝜐𝑀 ≡ 1
2𝜋

∫ 2𝜋

0
(𝜐(𝑟𝑚−1/2) −𝜐𝑆)𝑑𝜃,

becomes identical to 0. This is because297

𝑑𝜐𝑀 ≡ 1
2𝜋

∫ 2𝜋

0
(𝑈 sin𝜃 +𝑉 cos𝜃) 𝑑𝜃 = −1

2

[
Φ𝐶,1

𝑟
+ 𝜕Φ𝐶,1

𝜕𝑟

]
, (𝑟 = 𝑟𝑚−1/2) (46)

When the outermost radius 𝑟𝑚−1/2 is small enough (so that the storm-relative streamline around298

there is nearly closed), this is an adequate assumption. However, if 𝑑𝜐𝑀 is actually non-zero, to299

neglect it degrades the axisymmetric tangential-wind retrieval, as shown in what follows. This300

artifact is likely to occur when 𝑟𝑚−1/2 is large or the environmental shear is large. Since the301
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wavenumber-0 retrieval is especially important, it is recommended to estimate 𝑑𝜐𝑀 and prescribe302

it in the retrieval, when possible.303

From the structure of the wavenumber-1 ambiguity proportional to 𝑟 [Eq. (C15)], Eq. (46)304

indicates that Φ𝐶,1,𝑚−1/2/𝑟𝑚−1/2 = −𝑑𝜐𝑀 . Then, Eq. (C3) shows that there is a trade-off between305

𝑉0 = −𝜕Φ0/𝜕𝑟 and 𝜌−1Φ𝐶,1/𝑟 = −𝜌−1𝑑𝜐𝑀 = −(𝑟/𝑅𝑇 )𝑑𝜐𝑀 . Therefore, where 𝑟 ≃ 𝑅𝑇 , an error in306

𝑑𝜐𝑀 biases the mean tangential wind retrieval nearly by the same amount. The effect is small if307

𝑟 < 𝑅𝑇 , so retrieval near the center is less affected. One way to estimate 𝑑𝜐𝑀 is to use mean flow308

𝜐𝑀 from objective analysis, if 𝑟𝑚−1/2 is much larger than the inner-core radius:309

𝑑𝜐𝑀 = 𝜐𝑀 −𝜐𝑆 . (47)

f. Treatment of radius with insufficient sampling or unequally radial grids310

So far, we have assumed that sufficient observational data are available at all radial grid points311

to constrain the streamfunction up to 𝑘 = 𝑁 . However, Doppler weather radar observations require312

precipitating hydrometeor, so data-missing can be severe at some radii, which typically occurs313

around the moat of TCs with CEs. This problem can be avoided by skipping radii where insufficient314

data are available. To do so is straightforward in GVTD in which retrieval is independent along315

radii. However, the new method does not allow data missing that makes Eq. (30), which is over316

multiple radii, unsolvable. This problem can be solved by removing the radii with insufficient317

sampling, named unused radii, from the radial grid point set, making it unequally spaced.318

Let’s consider equally spaced radial grid point set (𝑟𝑖′+1/2, 𝑖′ = 1,2, · · · ). If azimuthal sampling is324

insufficient at radii from 𝑟𝑖1+1/2 to 𝑟𝑖2+1/2 (𝑖1 ≤ 𝑖′ ≤ 𝑖2), the radii are removed from the set, and grid325

indices are rearranged. Then, a new mid-point radius (𝑟𝑖) is introduced as shown in Fig. 2:326

𝑟𝑖 ≡
𝑟𝑖1 + 𝑟𝑖2+1
2

, 𝑟𝑖−1/2 ≡ 𝑟𝑖1−1/2, 𝑟𝑖+1/2 ≡ 𝑟𝑖2+3/2. (48)

In general, the new radius is not located on the original (i.e., equally radial) grids. The streamfunc-327

tion and divergence are defined at the radius (𝑟𝑖). Then, the velocities at the adjacent radii (𝑟𝑖±1/2)328

can be derived by using the parameters shown in Table 1. The velocities at the unused radii could329
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𝑟𝑖+1/2

𝑟

𝛷

𝑟𝑖−1/2

𝑟𝑖

ቤ
𝜕𝛷

𝜕𝑟
𝑖±1/2

≈
𝛷𝑖 − 𝛷𝑖±1

𝑟𝑖 − 𝑟𝑖±1
,

ഥ𝛷𝑖±1/2 ≡ 𝛼±𝛷𝑖±1 + 1 − 𝛼± 𝛷𝑖 ,

𝛼± ≡
𝑟𝑖 − 𝑟𝑖± Τ1 2

𝑟𝑖 − 𝑟𝑖±1
.

𝛹, 𝛷, 𝐷

Unused radii

𝑟𝑖−1 𝑟𝑖+1

𝑈, 𝑉, 𝑢, 𝑣, Vd

𝛷𝑖−1 𝛷𝑖 𝛷𝑖+1ഥ𝛷𝑖−1/2
ഥ𝛷𝑖+1/2

Fig. 2. A conceptual image for unused radii in a part of observations on the equally radial grids. The vertical

solid (dashed) lines with black indicate radii at which velocities (streamfunction and divergence) are defined.

Note that the index 𝑖 indicates the order of the unequally radial grids after the removal of the unused radii on

the equally radial grids. Adjusting symbols in the figure to the main body, 𝑟𝑖−1/2 ≡ 𝑟𝑖1−1/2, 𝑟𝑖+1/2 ≡ 𝑟𝑖2+3/2. The

conceptual image can be also applied to observations on the unequally radial grids.

319

320

321

322

323

Table 1. At radii (𝑟𝑖±1/2) in which velocities are defined, representation of parameters related to an arbitrary

function 𝑓 (𝑟𝑖) = 𝑓𝑖 on the equally (unequally) radial grids in the middle (right) column. 𝜇± ≡ (𝑟𝑖 − 𝑟𝑖±1/2) (𝑟𝑖 −

𝑟𝑖±1)−1.

332

333

334

Equal Unequal

𝑓𝑖±1/2
𝑓𝑖±1 + 𝑓𝑖

2
𝜇± 𝑓𝑖±1 + (1− 𝜇±) 𝑓𝑖

𝜕 𝑓

𝜕𝑟

����
𝑖±1/2

± 𝑓𝑖±1 − 𝑓𝑖

Δ𝑟

𝑓𝑖±1 − 𝑓𝑖

𝑟𝑖±1 −𝑟𝑖∫ ∞
0 𝑓 𝑑𝑟 Δ𝑟

∑𝑚
𝑖=1 𝜀𝑖 𝑓𝑖

∑𝑚−1
𝑖=1 (𝑟𝑖+1 −𝑟𝑖) ( 𝑓𝑖+1 + 𝑓𝑖)/2

be defined from the retrieval results, but we recommend not to do it by setting data missing there.330

That way, one can easily recognize data gap.331
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g. Use of multiple N and the error evaluation335

We have formulated GVTD-X to use a single maximum wavenumber 𝑁 , which is to be specified336

somehow. In practice, one can try retrievals for multiple values of 𝑁 , as will be explored in section337

4c. This will provide us with a guideline for choosing 𝑁 and the error evaluation.338

3. Application to analytical vortices339

a. Structures of analytical vortices340

Following Lee et al. (1999), J08, and Lee et al. (2006), GVTD-X is applied to two analytical341

vortices: 1) an axisymmetric Rankine vortex namedAX-VORTEX (Figs. 3a-3c) and 2) an elliptical342

vortex that superposes a wavenumber-2 VRW on the AX-VORTEX named VRW2-VORTEX (Figs.343

4a-4c). AX-VORTEX has the maximum wind speed of 50 m s−1 (= 𝑉max) at the RMW of 20 km344

(= 𝑟max):345

𝑉 =𝑉max
𝑟

𝑟max
, 𝑟 ≤ 𝑟max, (49)

𝑉 =𝑉max
𝑟max

𝑟
, 𝑟 > 𝑟max, (50)

which is made by Eqs. (28) and (29) in Lee et al. (1999). VRW2-VORTEX is a non-divergent346

vortex with wavenumber-2 vorticity (𝜁2) confined within 𝑟 = 2𝑟max:347

𝜁2 =


(𝑉𝑝/𝑟max) cos [2(𝜃 + 𝜃0)], (𝑟 ≤ 2𝑟max),

0, (𝑟 > 2𝑟max).
(51)

where 𝑉𝑝 = 10 m s−1, and 𝜃0 is an additional phase. The wavenumber-2 components of the348

tangential and radial winds (𝑉2 and𝑈2) are constructed as follows, respectively:349

𝑉2 = −
𝑉𝑝

𝑟max

[∫ 2𝑟max

0
𝑟′
𝜕𝐺2

𝜕𝑟
𝑑𝑟′

]
cos [2(𝜃 + 𝜃0)],

𝑈2 = −
𝑉𝑝

𝑟max
𝑟−1

[∫ 2𝑟max

0
2𝑟′𝐺2𝑑𝑟′

]
sin [2(𝜃 + 𝜃0)],

(52)

where𝐺2 is the Green function for the wavenumber-2. The maxima of𝑈2 and𝑉2 are 5 m s−1 and 3350

ms−1 at around the RMW, respectively. The integral and derivative for 𝑟 in Eq. (52) are numerically351
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Fig. 3. Comparison of (left) tangential and (middle) radial winds and (right) Doppler velocity between the

(top) true (i.e., analytical) vortex and (bottom) retrieval in AX-VORTEX (i.e., the axisymmetric Rankine vortex).

The contour intervals for the tangential wind and Doppler velocity are every 5 m s−1. The contours for the radial

wind are 0 m s−1, ±1 m s−1, ±2 m s−1, and ±4 m s−1. The color shade (m s−1) in the bottom panels means the

difference between the true and retrieved vortices. The virtual radar is located at (0,0).

358

359

360

361

362

conducted to specify the vorticity field in the vortex.1 The asymmetric streamfunctions, which352

are unknown variables in GVTD-X, can completely represent rotating winds (i.e., non-divergent353

vortices) in principle. Thus, GVTD-X can fully capture the asymmetric structure in VRW2-354

VORTEX, even the asymmetry of the radial winds. As with J08, we retrieve the flow patterns355

associated with these analytical vortices by GVTD-X from a virtual Doppler radar. The maximum356

(i.e., truncating) wavenumber of 3 for the streamfunction is used in the GVTD-X retrieval.357

b. Results363

Figure 3 shows the GVTD-X retrieval for AX-VORTEX. The projection of the retrieved circula-364

tions on the Doppler velocity is quantitatively consistent with the analytical profile (Figs. 3c and365

1The radial structure of the wavenumber-2 winds expressed by Eq. (52) is similar to Eqs. (3)−(6) in Lee et al. (2006)
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Fig. 4. As in Fig. 3, except for VRW2-VORTEX (i.e., the wavenumber-2 VRWs embedded in AX-VORTEX).

3f). The difference in the tangential wind between the analysis and retrieval is less than 1 m s−1366

over the whole area (Figs. 3a and 3d). Note that AX-VORTEX has no radial flows (Figs. 3b and367

3e).368

Figure 4 shows the GVTD-X retrieval for VRW2-VORTEX. The projection of the retrieved369

circulations on the Doppler velocity is quantitatively consistent with the analytical profile (Figs. 4c370

and 4f). The difference in the tangential wind between the analytical and retrieved vortices is less371

than 1 m s−1 over a wide range from the center (Fig. 4d). A region where the difference is greater372

than 1 m s−1 exists near the outermost radius. The relatively large difference is mainly due to the373

constraint to eliminate asymmetric flows (the maxima of 𝑉2 = 0.55 m s−1 and 𝑈2 = 0.33 m s−1 in374

the analytical vortex) at the outermost radius [Eq. (45)]. The wavenumber-2 asymmetric radial375

flows can be mostly retrieved in GVTD-X (Figs. 4b and 4e) as we expect. We emphasize that376

the asymmetric radial flows can be reasonably captured in GVTD-X even if the artificial boundary377

conditions are given in the streamfunctions at the outermost radius. The asymmetries of the radial378

flows cannot be retrieved in the GBVTD/GVTD techniques due to their closure assumptions.379
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Fig. 5. Radial distributions of the retrieved axisymmetric (left) tangential and (right) radial winds in VRW2-

VORTEX for various 𝜃0 in Eq. (52), indicated by contours. For example, 𝜃0 = 0◦ and 180◦ are identical to the

case of Fig. 4. Top and bottom panels denote the GVTD-X and GVTD retrieval results, respectively. Shading

indicates the difference of the axisymmetric winds between the retrieved and true vortices. Contour intervals are

every 5 m s−1 in the left panels and every 1 m s−1 in the right panels.
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381
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383

384

We further examine the dependence of the azimuthal phase of the wavenumber-2 asymmetric385

structure on the retrieved axisymmetric circulations (𝑉0 and 𝑈0). Lee et al. (1999) examined the386

GBVTD retrieval for the wavenumber-2 vortices with the specific angle of 90◦, 135◦, and 180◦ in387

their Figs. 7 and 14. Following Lee et al. (1999), we continuously changed the azimuthal phase for388
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the wavenumber-2 structure in VRW2-VORTEX by sweeping 𝜃0 (−90◦ ≤ 𝜃0 ≤ 270◦) in Eq. (52).389

Figure 5 shows the retrieved axisymmetric circulations with continuously changing the azimuthal390

phase for the wavenumber-2 structure. The differences in the axisymmetric circulations between391

the GVTD-X retrieval and analysis are less than 1 m s−1 at all radii (Figs. 5a and 5b). We focus392

on the difference in the axisymmetric tangential wind at the RMW of 20 km between the retrieval393

and analysis. The difference in GVTD-X is much smaller than the difference of about 5 m s−1 in394

GVTD which has strong dependence of the retrieved axisymmetric winds on 𝜃0 (Figs. 5c and 5d).395

It indicates that the retrieval of the axisymmetric tangential wind can be improved by including396

asymmetric radial winds in the closure assumption.397

Following J08, we examined the sensitivities of errors in the storm-center estimateon to the405

retrieval of the axisymmetric tangential and radial winds in AX-VORTEX with the RMW of 30406

km. Figure 6 shows the retrieval results in a case of difference in the estimated storm center between407

the analysis and retrieval. As with GVTD, the tangential wind retrieved from GVTD-X had not408

only the axisymmetric component but also wavenumber-1 asymmetry. In contrast to GVTD, the409

GVTD-X retrieval had wavenumber-1 asymmetries of the radial wind (Fig. 6d). If the true storm410

center is at (𝑅𝑇 +Δ𝑥, Δ𝑦), winds associated with the storm can be expressed within the RMW as411

follows:412

𝑢 = − 𝑉max

𝑟max
(𝑦−Δ𝑦),

𝜐 =
𝑉max

𝑟max
(𝑥−𝑅𝑇 −Δ𝑥), ((𝑥−𝑅𝑇 −Δ𝑥)2 + (𝑦−Δ𝑦)2)1/2 ≤ 𝑟max).

(53)

From Eq. (53), the radial and tangential winds with respect to the estimated storm center (𝑅𝑇 ,0)413

are expressed as follows:414

𝑈 = 𝑢 cos𝜃 +𝜐 sin𝜃

=
𝑉max

𝑟max
(Δ𝑦 cos𝜃 −Δ𝑥 sin𝜃), (54)

𝑉 = −𝑢 sin𝜃 +𝜐 cos𝜃

=𝑉max
𝑟

𝑟max
− 𝑉max

𝑟max
(Δ𝑦 sin𝜃 +Δ𝑥 cos𝜃). (55)
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Fig. 6. Horizontal distributions of the (a) 𝑥-, (b) 𝑦-, (c) tangential, and (d) radial winds retrieved by GVTD-X

with an error of the estimated vortex center in AX-VORTEX with the RMW of 30 km. The estimated storm

center is located at 𝑅𝑇 = 85 km from the radar. The true center position has the difference of Δ𝑥 = −5 km from

the estimated center. Note that the Cartesian coordinates (𝑥, 𝑦) follow Fig. 1 as shown in the red vectors. Thus,

the true and estimated centers are located at (𝑅𝑇 +Δ𝑥,0) and (𝑅𝑇 ,0) on the Cartesian coordinates, respectively.

The contour intervals in (a)−(c) and (d) are every 5 m s−1 and 1, 2, 4, and 6 m s−1, respectively. The difference

from the analytical vortex is shown by the color shade.
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Equations (54) and (55) indicate that errors of the storm-center estimation in the retrieval cause415

spurious signals, which cannot be interpreted as physical phenomena such aswavenumber-1VRWs,416

in both wavenumber-1 components of the radial and tangential winds.2 In fact, the retrieval errors417

in 𝑥- and 𝑦-components of the GVTD-X-retrieved winds are less than those in the radial and418

tangential winds which depend on the storm center (Figs. 6a and 6b).419

2Equations (54) and (55) also indicate that the spurious signals are amplified as the distance from the true center increases, as shown in J08.
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Fig. 7. (a) The axisymmetric tangential wind profiles of AX-VORTEX with respect to (black) the true center

located at 80 km from the radar and the misplaced storm centers at (red) 𝑅𝑇 = 85 km and (blue) 𝑅𝑇 = 90 km

and (b-i) the distributions of the maximum errors of the axisymmetric (middle) tangential and (bottom) radial

winds in AX-VORTEX with the RMW of 30 km by (b) and (f) GBVTD, (c) and (g) GVTD, and (d) and (h)

GVTD-X retrievals with errors of the storm center estimation. The errors are defined as the differences between

the retrieved and analytical winds with respect to each misplaced center. The abscissa and ordinate indicate the

distance of the estimated center as a function of 𝑥 and 𝑦 from the true center (𝑥 = 80 km, 𝑦 = 0 km). Panels (e)

and (i) indicate the distributions of the maximum differences in the tangential and radial winds of AX-VORTEX

with respect to the misplaced and true centers.
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We now focus on the axisymmetric components. To distinguish pure retrieval errors in ax-429

isymmetric winds from errors by the misplacement of the estimated storm center, we defined430
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the maximum retrieval errors as the maximum differences of the retrieved wavenumber-0 winds431

from the wavenumber-0 component of AX-VORTEX with respect to the misplaced center. The432

maximum differences between the winds in AX-VORTEX with respect to the misplaced and true433

centers are defined as the estimation errors of the storm center (Fig. 7a). Even if we can choose434

the perfect retrieval method, the retrieved winds have the estimation errors of the storm center435

(i.e., the maximum difference between the black and red or blue lines in Fig. 7a). Note that the436

errors by the misplacement were not separated from the retrieval errors in the C-series of J08.437

Figure 7 shows the dependence of the maximum retrieval errors of axisymmetric tangential and438

radial winds on the estimation errors of the storm center among GBVTD, GVTD, and GVTD-X.439

The maximum retrieval errors in the tangential and radial winds between GVTD-X and analysis440

was mostly less than 2 m s−1 within the storm-center misplacement of 10 km (Figs. 7d and 7h).441

The small retrieval errors for the misplacement were advantages of GVTD-X over GBVTD and442

GVTD (Figs. 7b, 7c, 7f, and 7g). On the other hand, the axisymmetric tangential wind of the443

analytical vortex with respect to the misplaced center increased the difference from the prescribed444

profile of the analytical vortex as the distance from the true center increases, independent on the445

retrieval methods (the red and blue lines in Fig. 7a or Fig. 7e). The errors for the tangential winds446

shown in the C-series of J08 mainly corresponds to the estimation errors of the storm center, rather447

than the retrieval errors. The radial wind has small errors for the misplacement of the estimated448

storm center (Fig. 7i). Thus, the errors in the GVTD-retrieved radial winds are mainly caused by449

ignoring the asymmetric radial winds in the closure assumptions.450

4. Application to a real observed typhoon451

a. Overview452

The GVTD-X technique is applied to a real typhoon. The target is Typhoon Haishen (2020),453

which had CEs in passing over the Okinawa region. After the secondary eyewall formation, the454

inner eyewall exhibited an elliptical structure, and the elliptical structure had a counterclockwise455

rotation with a period of about 1 h for wavenumber-2 components (Fig. 8). The deformation of456

the inner eyewall to the elliptical shape might be due to the barotropic interaction with the outer457

eyewall (e.g., Kossin et al. 2000; Lai et al. 2019). According to the knowledge from the barotropic458
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Fig. 8. Elliptical eyewalls in Typhoon Haishen (2020) captured by the JMA C-band operational Doppler radar

at Naze (the black stars). The color indicates the precipitation intensity (mm h−1) converted from the radar

reflectivity.

461

462

463

Table 2. The Doppler velocity data processing.

1. Dealiasing of the Doppler velocity beyond the Nyquist range (Yamauchi et al. 2006)

2. Interpolating from PPI to CAPPI (200-km radius and 10-km height from the radar)

3. Determining TC centers subjectively𝑎

4. Interpolating the Doppler velocity data from CAPPI to TC cylindrical coordinates

𝑎: Due to the strong asymmetric structure in Haishen, objective methods to determine the TC center, such as the GBVTD-simplex center-finding
algorithm (Lee and Marks 2000; Bell and Lee 2012), were not used in the present study.

point of view, it is expected that the asymmetric radial flow will be similar order to the asymmetric459

tangential flow, coinciding with the wavenumber-2 vorticity in the elliptic eyewall (Lai et al. 2019).460

We use the ground-based C-band Doppler radar operated by the Japan Meteorological Agency464

(JMA), located at Naze on the Amami Oshima island (Fig. 8). Following Shimada et al. (2016),465

the Doppler velocity data on the TC cylindrical coordinates at a height of 2 km are produced from466

constant altitude PPI (CAPPI) data (Table 2 and Fig. 9a). The radial and azimuthal grid spacings on467

the cylindrical coordinates are 2 km and 2.8125◦ (i.e., 128 samplings), respectively. The retrieval468

is performed within the innermost and outermost radii with missing less than 64 points along the469

azimuth. There are few sampling points in the moat of Haishen (Fig. 9a). If data missing along470

azimuth is greater than 64 at a radius in between the innermost and outermost radii, the radius is471

not used in retrieval by introducing the unused radius. The retrieved variables are𝑉0,𝑈0,Φ𝑆,𝑘 , and472

Φ𝐶,𝑘 (𝑘 ≤ 3 = 𝑁). The sensitivity of the use of different maximum wavenumbers to the retrieval is473

examined in section 4c.474
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Fig. 9. (a) A snapshot of the Doppler velocity in Typhoon Haishen at the 2-km height, (b) difference in

the Doppler velocity between the observation and retrieval in (a), and (c) the Doppler velocities of the (black)

observation and (red) retrieval at the radius of 60 km in (a). The snapshot is the time of Fig. 8a. The capital "R"

indicates the radar position.
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476

477

478

b. Results479

Figures 9b and 9c show the difference in the Doppler velocity between the observation and480

retrieval at a certain time. The difference in the Doppler velocity greater than 10 m s−1 is exhibited481

in the outer eyewall. The difference with the large amplitude is associated with high-wavenumber482

structures in azimuth, suggesting the difference is mainly due to divergent flows and rotational flows483

with higher wavenumbers at a convective scale (Fig. 8a). On the other hand, the low-wavenumber484

feature of the observed Doppler velocity is reasonably captured as shown in Fig. 9c.485

Figure 10a shows the time series of the retrieved axisymmetric tangential wind in GVTD-X with486

the outer constraint for Φ𝐶,1 of no storm-relative mean wind (i.e., 𝜐𝑀 = 𝜐𝑆). The inner eyewall is487

located within 20- to 40-km radii, and the outer eyewall is beyond the 60-km radius. The maximum488

of the retrieved axisymmetric tangential wind in the inner (outer) eyewall is more than 40 m s−1489

(50 m s−1) in the early period of the analysis. The tangential wind maximum in the outer eyewall is490

maintained in time. On the other hand, the tangential wind in the inner eyewall gradually decreases491

in time, which might be associated with an eyewall replacement cycle.492

We examined the sensitivity of the storm-relative mean wind (𝜐𝑀 ≠ 𝜐𝑆) in the outer constraint500

for Φ𝐶,1 to the axisymmetric tangential wind retrieval (Fig. 10b). The mean wind 𝜐𝑀 was501

calculated from the Japanese 55-year Reanalysis (JRA55; Kobayashi et al. 2015). The difference502
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Fig. 10. Radius-time cross-sections of axisymmetric tangential winds (color; m s−1) at the 2-km height

retrieved in Haishen based on (a) and (b) GVTD-X, (e) GVTD, and (f) reconstructed-GVTD. The GVTD-X

retrievals in (a) and (b) used the outer constraints of 𝜐𝑀 = 𝜐𝑆 and 𝜐𝑀 (≠ 𝜐𝑆) from the JRA55 dataset for Φ𝐶,1,

respectively [Eqs. (46) and (47)]. Panel (c) denotes the difference in the axisymmetric tangential winds between

(a) and (b). The evolution of 𝜐𝑀 −𝜐𝑆 is shown in (d). The reconstructed-GVTD profile is produced by aliasing

the asymmetric radial flows retrieved in GVTD-X to the axisymmetric tangential wind, based on Eq. (17) of J08.

The blue contours denote the axisymmetric tangential wind of 40 m s−1. In the retrievals of (e) and (f), 𝜐𝑀 = 𝜐𝑆 .
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494

495

496

497
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499

in the retrieved tangential winds between the 𝜐𝑀 ≠ 𝜐𝑆 and 𝜐𝑀 = 𝜐𝑆 constraints increased with the503

radius during certain periods (2300 UTC 05-0100 UTC 06, 0200 UTC-0300 UTC 06, and 0500504

UTC-0600 UTC 06 September), as shown in Fig. 10c. This feature is quantitatively explained505

by the dependency of the constraint for Φ𝐶,1 on radius (i.e., 𝑉0 = 𝜌−1(𝜐𝑀 −𝜐𝑆)), as discussed in506

section 2e (see also Figs. 10d and S1). It indicates that the constraint for Φ𝐶,1 at the outermost507

radius can influence the retrieval of the axisymmetric tangential wind at other radii. Thus, to assess508

the accurate storm-relative mean wind is important for the accurate retrieval.509

As a reference, we also performed the GVTD retrieval with 𝜐𝑀 = 𝜐𝑆 from the same Doppler510

velocity data (Fig. 10e). The evolution of the axisymmetric tangential wind in the GVTD retrieval511
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are in good agreement with those in the GVTD-X retrieval. On the other hand, the GVTD-retrieved512

tangential winds exhibited systematic fluctuation with a period of ∼ 1 h at around a 30-km radius513

in the inner eyewall, synchronized with the counterclockwise rotation of the elliptical shape of514

the inner eyewall (Fig. 8). The fluctuation of the tangential winds had an amplitude of about 5515

m s−1. The fluctuation is the aliasing (i.e., spurious signal) of the asymmetric radial flows to the516

axisymmetric tangential wind due to the closure in GBVTD and GVTD, as pointed out by Lee517

et al. (1999) and shown in Fig. 5c. It is also shown from the fact that the GVTD-retrieved winds518

can be reconstructed by the GVTD-X-retrieved 𝑉0−𝑈𝑆,2− (𝑈𝑆,1 +𝑈𝑆,3)𝜌−1, based on Eq. (17) of519

J083 (Figs. 10e and 10f). The new closure including asymmetric radial flows can eliminate the520

aliasing, and retrieve the axisymmetric tangential winds even in cases of asymmetric vortices.521

Figure 11 shows the wavenumber-2 winds in GVTD-X. The wavenumber-2 winds in the inner522

eyewall had a confluent-difluent flow pattern. From the phase relation between𝑈 andΦ or vorticity,523

they are out of phase by 𝜋/2. In fact, the inflows and outflows for the wavenumber 2 are not located524

on the major and minor axes of the ellipse of the inner eyewall, which is consistent with a numerical525

simulation (Figs. 3 and 4 in Lai et al. 2019). It indicates that GVTD-X can retrieve consistently526

asymmetric flows by including the radial components.527

c. Error evaluation from the consistency by changing 𝑁530

So far, we have left the choice of maximum wavenumber 𝑁 arbitrary in GVTD-X. Considering531

the aliasing in the discrete Fourier transform, Lee et al. (2000) proposed to set the maximum532

wavenumber at each radius from the longest contiguous data gap along azimuth. However, unlike533

GBVTD or GVTD, all radii are combined in GVTD-X, so the same approach is not necessarily534

fruitful. Here we examine the consistency of the retrieval by varying 𝑁 . Such examination can be535

used not only to set 𝑁 but also to estimate retrieval errors, which was unavailable with GBVTD or536

GVTD.537

Figure 12a shows the axisymmetric tangential winds by considering the storm-relative mean538

wind (𝜐𝑀 ≠ 𝜐𝑆) as in Fig. 10b but for averaging the results with 𝑁 = 2, 3, and 4. We examine539

consistency across 𝑁 by using the coefficient of variation (CV), which is defined as the standard540

3Eq. (17) in J08 is easily rearranged:
𝑉0 −𝑈𝑆,2 −𝜌−1

(
𝑈𝑆,1 +𝑈𝑆,3

)
= −𝐵1 −𝐵3 −𝜌−1𝜐𝑀 .

The left-hand side is identical to the GVTD-retrieved axisymmetric tangential wind because of𝑈𝑆,2 =𝑈𝑆,1 =𝑈𝑆,3 = 0. Thus, we can reconstruct
the GVTD-retrieved axisymmetric tangential wind by the GVTD-X-retrieved 𝑉0 −𝑈𝑆,2 − (𝑈𝑆,1 +𝑈𝑆,3)𝜌−1.
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Fig. 11. As in Fig. 8a, except for superposing the wavenumber-2 components of the GVTD-X-retrieved

rotating winds by arrows at 0320 UTC on 06 September 2020.

528

529

deviation divided by the mean over the 𝑁 values (Fig. 12b). High CVs (> 10%) are exhibited near541

the moat (at around 0100 UTC 06 September 2020, particularly) and the outermost radii. The areas542

with the high CV values correspond to radii with relatively fewer sampling numbers (Fig. 12c).543

Figure 13a shows the frequency distribution of the CV in terms of sampling gaps. As the percentage544

of the sampling number increases, the CV tends to decrease. Particularly, when the percentage of545

the sampling number is greater than 75% of the whole azimuthal angle at a radius, small CV values546

(< 10%) are mostly exhibited in the retrievals among the three cases. The assessment clarifies that547

the retrieved axisymmetric tangential winds with the maximum wavenumber of 3 (Fig. 10b) is548

robust, except for the radii with a relatively less percentage of the sampling number (< 75%) near549

the moat and outer boundary (Fig. 12c). As a reference, the frequency distribution of the CV in550

the largest single data gap based on Lee et al. (2000) is also shown Fig. 13b. As with Fig. 13a,551
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Fig. 12. Radius-time cross-sections of (a) the average and (b) the coefficient of variation for the axisymmetric

tangential winds retrieved among the three cases with different maximumwavenumbers of 2, 3, and 4 at the 2-km

height. As in Fig. 10b, the outer constraint of 𝜐𝑀 ≠ 𝜐𝑆 forΦ𝐶,1 is given in the three cases. Panel (c) denotes the

percentage of the azimuthal sampling number at each radius and time.

555

556

557

558

small CV values (< 10%) concentrate on small data gaps (< 90◦). The concept of the largest single552

data gap might be still useful for the assessment of the robust retrieval in the new method which553

requires the radial continuity of the asymmetric streamfunctions.554

The statistical features (mean, standard deviation, and CV) in the retrievals with different maxi-563

mumwavenumbers can be used as a guideline for the robust retrieval of the axisymmetric tangential564

winds in GVTD-X. For example, we can trust the retrieval near the storm center with low standard565

deviations, compared with that near the moat and outermost radii with high standard deviations566

due to less sampling number in Haishen. The decrease in the axisymmetric tangential wind within567

a 40-km radius (i.e., in the inner eyewall) can be an actual vortex evolution, associated with the568

inner eyewall decay (Fig. 14). Note that the statistical features do not indicate errors from truth.569

In retrieving the axisymmetric winds, we can use the mean and standard deviation over different570

𝑁 , instead of the retrievals from a single 𝑁 . Although the statistical features over 𝑁 =2, 3, and 4571

were used in the present study, a set of the maximum wavenumbers is changeable. Moreover, we572

can determine the most representative 𝑁 by examining the standard deviation for each case.573
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Fig. 13. The frequency distribution (color; %) of the coefficient of variation for the retrieved axisymmetric

tangential winds among the three cases in each (a) sampling number (the percentage for the total number of the

sampling 𝑁𝑡 = 128 at a radius) and (b) largest single data gap. The coefficient of variation is calculated by the

retrieval results at all radii and times in Fig. 12.
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560
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5. Concluding remarks576

GBVTD and GVTD assumed the closure of no asymmetric radial flows in the retrieval formula.577

In the present study, we proposed a new closure assumption and retrieval formulas in GVTD,578

being allowed to include asymmetric radial flows, named as GVTD-X. Based on the Helmholtz579

decomposition theorem, streamfunction and velocity potential are used in the retrieval, in contrast580

to asymmetric winds in GVTD. The asymmetric radial winds are represented by the azimuthal581

gradient of the retrieved asymmetric streamfunctions. Another novelty is that, unlike GBVTD and582

GVTD that solve equations independently at each radius, GVTD-X uses simultaneous equations583

to solve for the entire radial grid points at once. The simultaneous solution introduces consistency584

along radius. We proposed a guideline for an error estimation of the retrieval by statistical585

features (i.e., mean, standard deviation, and coefficient of variation) over the GVTD-X-retrieved586

axisymmetric tangential winds with different maximum wavenumbers.587

The GVTD-X retrieval was applied to analytical vortices. In the case of the Rankine vortex with588

wavenumber-2 VRWs, the difference in the tangential winds between the analytical and retrieved589
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Fig. 14. Radial distributions of the mean and standard deviation of the GVTD-X-retrieved axisymmetric

tangential winds over 𝑁 = 2, 3, and 4. The whisker plot indicates the standard deviation.

574

575

vortices was less than 1 m s−1 near the RMW (the relative error of ≤ 2%). On the other hand, errors590

of the retrieved tangential winds increased near the outermost radius of the retrieval area because591

of additional constraints required for the asymmetric streamfunctions at the outermost radius in592

the retrieval. The sensitivity of the GVTD-X retrieval to the misplacement of the estimated593

storm center was compared with those in GBVTD and GVTD. The GVTD-X retrieval errors of594

the axisymmetric tangential and radial winds are the smallest of the three methods, which is an595

advantage over the other methods.596

The GVTD-X technique was applied to the axisymmetric tangential winds in concentric eyewalls597

with an elliptical shape of Typhoon Haishen (2020) observed by a ground-based Doppler radar.598

GVTD-X estimated the axisymmetric tangential wind of about 40 m s−1 in the inner eyewall. The599

estimated tangential wind gradually decreased. The GVTD-X retrieval was qualitatively consistent600

with that in GVTD. However, the GVTD-retrieved axisymmetric tangential winds exhibited the601

fluctuation with the period of 1 h in the inner eyewall, which was synchronized with the coun-602
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terclockwise rotation of the elliptical shape of the inner eyewall. The fluctuation in GVTD was603

mostly reduced by the GVTD-X retrievals. We concluded that the systematic fluctuation was a604

spurious signal mainly due to the closure assumption of GVTD. Note that the GVTD-X-retrieved605

axisymmetric tangential winds also depend on the storm-relative mean wind even in following606

the guideline based on the statistical features, so the accurate estimation of the mean wind is also607

required.608

In the future, the validity of GVTD-X should be investigated by the application to various609

typhoons. Moreover, we should assess the accuracy of the GVTD-X retrieval by comparison with610

full-physics numerical model results (Shimada et al. 2016) or other observations such as dual611

Doppler analysis (Cha and Bell 2021). Finally, GVTD-X can retrieve asymmetric vorticity fields612

associated with vortices. Thus, the new technique can be useful for evaluating theoretical and613

modelling studies of internal dynamics such as VRWs, which has been developed on barotropic614

frameworks (e.g., Montgomery and Kallenbach 1997; Schubert et al. 1999; Kossin et al. 2000;615

Kossin and Schubert 2001; Lai et al. 2019).616

35



Acknowledgments. This study used the DCL of the GFD-Dennou-Club (http://www.gfd-617

dennou.org/library/dcl/) drawing library. This work was supported by a Japan Society for the618

Promotion of Science (KAKENHI) grant numbers JP19H00705 and JP21H04992.619

Data availability statement. The codes for GVTD-X are available from620

https://github.com/tomonori-93/GVTD-X (Tsujino 2023). The JMA Doppler radar data are avail-621

able through the Japan Meteorological Business Support Center (JMBSC) and the Meteorological622

Research Consortium, a framework for research cooperation of the JMA and the Meteorological623

Society of Japan. The JRA-55 data are available from https://rda.ucar.edu/datasets/ds628.0/.624

APPENDIX A625

Constraint for the velocity potential626

To include the non-rotating and non-divergent winds in asymmetric streamfunctions, the asym-627

metric velocity potential Ψ is constrained by divergence 𝐷:628 [
𝜕2

𝜕𝑟2
+ 1
𝑟

𝜕

𝜕𝑟
+ 𝜕2

𝑟2𝜕𝜃2

]
Ψ𝑘 (𝑟, 𝜃) = 𝐷𝑘 (𝑟, 𝜃). (A1)

For the Fourier components (Ψ𝑘 and 𝐷𝑘 ) for the wavenumber−𝑘 ,629

Ψ𝑘 (𝑟, 𝜃) = Ψ𝑆,𝑘 (𝑟) sin (𝑘𝜃) +Ψ𝐶,𝑘 (𝑟) cos (𝑘𝜃),

𝐷𝑘 (𝑟, 𝜃) = 𝐷𝑆,𝑘 (𝑟) sin (𝑘𝜃) +𝐷𝐶,𝑘 (𝑟) cos (𝑘𝜃),
(A2)

Equation (A1) in the wavenumber−𝑘 is reduced to the radial structure equations:630

[
𝜕2

𝜕𝑟2
+ 1
𝑟

𝜕

𝜕𝑟
− 𝑘2

𝑟2

] 
Ψ𝑆,𝑘

Ψ𝐶,𝑘

 =

𝐷𝑆,𝑘

𝐷𝐶,𝑘

 , (𝑘 ∈ N). (A3)

The impulse response of a source at 𝑟′ in Eq. (A3) can be expressed by the Green function in Eq.631

(28). Thus, the solutions of Eq. (A3) can be expressed as superposition of 𝐺𝑘 and 𝐷𝑆,𝑘 or 𝐷𝐶,𝑘 :632


Ψ𝑆,𝑘 (𝑟)
Ψ𝐶,𝑘 (𝑟)

 =
∫ ∞

0
𝑟′𝐺𝑘 (𝑟;𝑟′)


𝐷𝑆,𝑘 (𝑟′)
𝐷𝐶,𝑘 (𝑟′)

 𝑑𝑟′, (A4)
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Thus, Ψ𝑘 in Eq. (A2) can be expressed by Eq. (A4):633

Ψ𝑘 (𝑟, 𝜃) =
∫ ∞

0
𝑟′𝐺𝑘 (𝑟;𝑟′)𝐷𝑆,𝑘 (𝑟′)𝑑𝑟′ sin (𝑘𝜃) +

∫ ∞

0
𝑟′𝐺𝑘 (𝑟;𝑟′)𝐷𝐶,𝑘 (𝑟′)𝑑𝑟′cos (𝑘𝜃). (A5)

APPENDIX B634

Degree of freedom in Equation (30)635

If we suppose 𝐿 ≤ 𝑁 in Eq. (20), the Fourier expansions of𝑈 and 𝑉 can be written as636

𝑈 =

𝑁∑︁
𝑘=1

𝑈𝑆,𝑘 sin (𝑘𝜃) +
𝑁∑︁
𝑘=0

𝑈𝐶,𝑘 cos (𝑘𝜃),

𝑉 =

𝑁∑︁
𝑘=1

𝑉𝑆,𝑘 sin (𝑘𝜃) +
𝑁∑︁
𝑘=0

𝑉𝐶,𝑘 cos (𝑘𝜃),
(B1)

In substituting Eq. (B1) into Eq. (13),637

V′
𝑑𝛿 =

𝑁∑︁
𝑘=1

[
𝑈𝑆,𝑘 sin (𝑘𝜃) + 𝜌𝑈𝑆,𝑘 sin (𝑘𝜃) cos𝜃 − 𝜌𝑉𝑆,𝑘 sin (𝑘𝜃) sin𝜃

]
+

𝑁∑︁
𝑘=0

[
𝑈𝐶,𝑘 cos (𝑘𝜃) + 𝜌𝑈𝐶,𝑘 cos (𝑘𝜃) cos𝜃 − 𝜌𝑉𝐶,𝑘 cos (𝑘𝜃) sin𝜃

]
. (B2)

From the following trigonometric identities:638

sin (𝑘𝜃) cos𝜃 = 1
2
[sin (𝑘 +1)𝜃 + sin (𝑘 −1)𝜃] ,

sin (𝑘𝜃) sin𝜃 = 1
2
[−cos (𝑘 +1)𝜃 + cos (𝑘 −1)𝜃] ,

cos (𝑘𝜃) cos𝜃 = 1
2
[cos (𝑘 +1)𝜃 + cos (𝑘 −1)𝜃] ,

cos (𝑘𝜃) sin𝜃 = 1
2
[sin (𝑘 +1)𝜃 − sin (𝑘 −1)𝜃] ,
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Equation (B2) can be expressed as follows:639

V′
𝑑𝛿 =𝑈𝐶,0 +

𝜌

2
(
𝑈𝐶,1−𝑉𝑆,1

)
+
[
𝑈𝐶,1 +

𝜌

2
(
−𝑉𝑆,2 +2𝑈𝐶,0 +𝑈𝐶,2

) ]
cos𝜃

+
[
𝑈𝑆,1 +

𝜌

2
(
𝑈𝑆,2−2𝑉𝐶,0 +𝑉𝐶,2

) ]
sin𝜃

+
𝑁−1∑︁
𝑘=2

{[
𝑈𝐶,𝑘 +

𝜌

2
(
𝑉𝑆,𝑘−1−𝑉𝑆,𝑘+1 +𝑈𝐶,𝑘−1 +𝑈𝐶,𝑘+1

) ]
cos (𝑘𝜃)

}
+
𝑁−1∑︁
𝑘=2

{[
𝑈𝑆,𝑘 +

𝜌

2
(
𝑈𝑆,𝑘−1 +𝑈𝑆,𝑘+1−𝑉𝐶,𝑘−1 +𝑉𝐶,𝑘+1

) ]
sin (𝑘𝜃)

}
+
[
𝑈𝐶,𝑁 + 𝜌

2
(
𝑉𝑆,𝑁−1 +𝑈𝐶,𝑁−1

) ]
cos (𝑁𝜃)

+
[
𝑈𝑆,𝑁 + 𝜌

2
(
𝑈𝑆,𝑁−1−𝑉𝐶,𝑁−1

) ]
sin (𝑁𝜃)

+ 𝜌

2
(
𝑉𝑆,𝑁 +𝑈𝐶,𝑁

)
cos (𝑁 +1)𝜃

+ 𝜌

2
(
𝑈𝑆,𝑁 −𝑉𝐶,𝑁

)
sin (𝑁 +1)𝜃. (B3)

Equation (B3) indicates that the retrieved V′
𝑑
𝛿 is expressed by the Fourier series on the right-640

hand-side up to wavenumber 𝑁 + 1. There, each Fourier coefficient consists of multiple Fourier641

coefficients of 𝑈 and 𝑉 . While the number of the Fourier coefficients in Eq. (B3) is 2𝑁 + 3, the642

total number of the Fourier coefficients of the two wind components in Eq. (B1) is 4𝑁 +2. Since643

the latter is greater, it is possible that non-zero wind can have no projection on V′
𝑑
𝛿. From Eq.644
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(B3),645

(𝑘 = 0) :𝑈𝐶,0 +
𝜌

2
(
𝑈𝐶,1−𝑉𝑆,1

)
= 0,

(𝑘 = 1) :𝑈𝐶,1 +
𝜌

2
(
−𝑉𝑆,2 +𝑈𝐶,0 +𝑈𝐶,0 +𝑈𝐶,2

)
= 0,

(𝑘 = 1) :𝑈𝑆,1 +
𝜌

2
(
𝑈𝑆,2−𝑉𝐶,0−𝑉𝐶,0 +𝑉𝐶,2

)
= 0,

(2 ≤ 𝑘 ≤ 𝑁 −1) :𝑈𝐶,𝑘 +
𝜌

2
(
𝑉𝑆,𝑘−1−𝑉𝑆,𝑘+1 +𝑈𝐶,𝑘−1 +𝑈𝐶,𝑘+1

)
= 0,

(2 ≤ 𝑘 ≤ 𝑁 −1) :𝑈𝑆,𝑘 +
𝜌

2
(
𝑈𝑆,𝑘−1 +𝑈𝑆,𝑘+1−𝑉𝐶,𝑘−1 +𝑉𝐶,𝑘+1

)
= 0,

(𝑘 = 𝑁) :𝑈𝐶,𝑁 + 𝜌

2
(
𝑉𝑆,𝑁−1 +𝑈𝐶,𝑁−1

)
= 0,

(𝑘 = 𝑁) :𝑈𝑆,𝑁 + 𝜌

2
(
𝑈𝑆,𝑁−1−𝑉𝐶,𝑁−1

)
= 0,

(𝑘 = 𝑁 +1) :𝑉𝑆,𝑁 +𝑈𝐶,𝑁 = 0,

(𝑘 = 𝑁 +1) :𝑈𝑆,𝑁 −𝑉𝐶,𝑁 = 0.

(B4)

The non-trivial solution of Eq. (B4) is the source of the ambiguity, which necessitates a closure as646

in GVTD (J08). The wind components of𝑈𝐶,𝑘 ,𝑈𝑆,𝑘 , 𝑉𝐶,𝑘 , and 𝑉𝑆,𝑘 are expressed by the Φ and Ψ647

from Eqs. (15)−(20):648

𝑈𝐶,0 = − 𝜕Ψ0

𝜕𝑟
=𝑈0,

𝑈𝐶,𝑘 =

[
𝑘

𝑟
Φ𝑆,𝑘 −

𝜕Ψ𝐶,𝑘

𝜕𝑟

]
,

𝑈𝑆,𝑘 = −
[
𝜕Ψ𝑆,𝑘

𝜕𝑟
+ 𝑘

𝑟
Φ𝐶,𝑘

]
,

𝑉𝐶,0 = − 𝜕Φ0

𝜕𝑟
=𝑉0,

𝑉𝐶,𝑘 = −
[
𝜕Φ𝐶,𝑘

𝜕𝑟
+ 𝑘

𝑟
Ψ𝑆,𝑘

]
,

𝑉𝑆,𝑘 =

[
𝑘

𝑟
Ψ𝐶,𝑘 −

𝜕Φ𝑆,𝑘

𝜕𝑟

]
.

(B5)
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Using Eq. (B5), Eq. (B4) can be expressed as follows:649

(𝑘 = 0) : − 𝜕Ψ0

𝜕𝑟
+ 𝜌

2

(
1
𝑟
Φ𝑆,1−

𝜕Ψ𝐶,1

𝜕𝑟
− 1
𝑟
Ψ𝐶,1 +

𝜕Φ𝑆,1

𝜕𝑟

)
= 0, (B6)

(𝑘 = 1) : 1
𝑟
Φ𝑆,1−

𝜕Ψ𝐶,1

𝜕𝑟
− 𝜌

𝜕Ψ0

𝜕𝑟
+ 𝜌

2

(
−2
𝑟
Ψ𝐶,2 +

𝜕Φ𝑆,2

𝜕𝑟
+ 2
𝑟
Φ𝑆,2−

𝜕Ψ𝐶,2

𝜕𝑟

)
= 0, (B7)

(𝑘 = 1) : − 𝜕Ψ𝑆,1

𝜕𝑟
− 1
𝑟
Φ𝐶,1 + 𝜌

𝜕Φ0

𝜕𝑟
+ 𝜌

2

(
−𝜕Ψ𝑆,2

𝜕𝑟
− 2
𝑟
Φ𝐶,2−

𝜕Φ𝐶,2

𝜕𝑟
− 2
𝑟
Ψ𝑆,2

)
= 0, (B8)

(2 ≤ 𝑘 ≤ 𝑁 −1) : 𝑘
𝑟
Φ𝑆,𝑘 −

𝜕Ψ𝐶,𝑘

𝜕𝑟
+ 𝜌

2

(
𝑘 −1
𝑟

Ψ𝐶,𝑘−1−
𝜕Φ𝑆,𝑘−1

𝜕𝑟
+ 𝑘 −1

𝑟
Φ𝑆,𝑘−1−

𝜕Ψ𝐶,𝑘−1
𝜕𝑟

)
− 𝜌

2

(
𝑘 +1
𝑟

Ψ𝐶,𝑘+1−
𝜕Φ𝑆,𝑘+1

𝜕𝑟
− 𝑘 +1

𝑟
Φ𝑆,𝑘+1 +

𝜕Ψ𝐶,𝑘+1
𝜕𝑟

)
= 0, (B9)

(2 ≤ 𝑘 ≤ 𝑁 −1) : − 𝜕Ψ𝑆,𝑘

𝜕𝑟
− 𝑘

𝑟
Φ𝐶,𝑘 +

𝜌

2

(
−𝜕Ψ𝑆,𝑘−1

𝜕𝑟
− 𝑘 −1

𝑟
Φ𝐶,𝑘−1 +

𝜕Φ𝐶,𝑘−1
𝜕𝑟

+ 𝑘 −1
𝑟

Ψ𝑆,𝑘−1

)
− 𝜌

2

(
𝜕Ψ𝑆,𝑘+1

𝜕𝑟
+ 𝑘 +1

𝑟
Φ𝐶,𝑘+1 +

𝜕Φ𝐶,𝑘+1
𝜕𝑟

+ 𝑘 +1
𝑟

Ψ𝑆,𝑘+1

)
= 0, (B10)

(𝑘 = 𝑁) : 𝑁
𝑟
Φ𝑆,𝑁 − 𝜕Ψ𝐶,𝑁

𝜕𝑟

+ 𝜌

2

(
𝑁 −1
𝑟

Ψ𝐶,𝑁−1−
𝜕Φ𝑆,𝑁−1

𝜕𝑟
+ 𝑁 −1

𝑟
Φ𝑆,𝑁−1−

𝜕Ψ𝐶,𝑁−1
𝜕𝑟

)
= 0, (B11)

(𝑘 = 𝑁) : − 𝜕Ψ𝑆,𝑁

𝜕𝑟
− 𝑁

𝑟
Φ𝐶,𝑁

− 𝜌

2

(
𝜕Ψ𝑆,𝑁−1

𝜕𝑟
+ 𝑁 −1

𝑟
Φ𝐶,𝑁−1−

𝜕Φ𝐶,𝑁−1
𝜕𝑟

− 𝑁 −1
𝑟

Ψ𝑆,𝑁−1

)
= 0, (B12)

(𝑘 = 𝑁 +1) : 𝑁
𝑟
Ψ𝐶,𝑁 − 𝜕Φ𝑆,𝑁

𝜕𝑟
+ 𝑁

𝑟
Φ𝑆,𝑁 − 𝜕Ψ𝐶,𝑁

𝜕𝑟
= 0, (B13)

(𝑘 = 𝑁 +1) : − 𝜕Ψ𝑆,𝑁

𝜕𝑟
− 𝑁

𝑟
Φ𝐶,𝑁 + 𝜕Φ𝐶,𝑁

𝜕𝑟
+ 𝑁

𝑟
Ψ𝑆,𝑁 = 0. (B14)

Equations (B6)-(B14) can be separated into two independent sets: set 𝐴 consisting of Φ𝑆,𝑖650

and Ψ𝐶, 𝑗 (𝑖 and 𝑗 are arbitrary integers) as in Eq. (B9), and set 𝐵 consisting of Φ𝐶,𝑖 and Ψ𝑆,𝑖651

as in Eq. (B10), if Φ0 and Ψ0 are renamed as Φ𝐶,0 and Ψ𝐶,0, respectively. It indicates that a652

mis-evaluation of Φ𝑆,𝑖, for example, can affect Φ𝑆 and Ψ𝐶 at different wavenumbers, but it does653

not affect Φ𝐶 and Ψ𝑆. We examine the specific structures of Φ and Ψ leading to ambiguity.654

The total number of equations in Eqs. (B6)-(B14), 𝐸 , is 2𝑁 + 3, and the number of variables655

(Φ0, Φ𝐶,1, · · · ,Φ𝑆,𝑁 , Ψ0, Ψ𝐶,1, · · · ,Ψ𝑆,𝐿), 𝐹, is 2𝑁 +2𝐿 +2. Therefore, Eq. (36) is unsolvable if656

𝐹 > 𝐸 . Even though, the nominal number of equations in Eq. (30) can be increased by increasing657
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the number of azimuthal grid points, it does not help because Eqs. (B6)-(B14) holds at the infinite658

resolution. To close the problem, 𝐿 needs to be either 0 (𝐹 = 𝐸 −1) or 𝐿 is 1 but one of Ψ𝐶,1 or659

Ψ𝑆,1 is set to zero (𝐹 = 𝐸).660

APPENDIX C661

Non-trivial solution of the homogeneous equation of Eq. (30) and interdependence among662

different wavenumbers663
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According to Appendix B, Eqs. (B6)−(B14) can be reduced:664

(𝑘 = 0) : − 𝜕Ψ0

𝜕𝑟
+ 𝜌

2

(
1
𝑟
Φ𝑆,1−

𝜕Ψ𝐶,1

𝜕𝑟
− 1
𝑟
Ψ𝐶,1 +

𝜕Φ𝑆,1

𝜕𝑟

)
= 0, (C1)

(𝑘 = 1) : 1
𝑟
Φ𝑆,1−

𝜕Ψ𝐶,1

𝜕𝑟
− 𝜌

𝜕Ψ0

𝜕𝑟
+ 𝜌

2

(
+𝜕Φ𝑆,2

𝜕𝑟
+ 2
𝑟
Φ𝑆,2

)
= 0, (C2)

(𝑘 = 1) : − 𝜕Ψ𝑆,1

𝜕𝑟
− 1
𝑟
Φ𝐶,1 + 𝜌

𝜕Φ0

𝜕𝑟
+ 𝜌

2

(
−2
𝑟
Φ𝐶,2−

𝜕Φ𝐶,2

𝜕𝑟

)
= 0, (C3)

(𝑘 = 2) : 2
𝑟
Φ𝑆,2 +

𝜌

2

(
1
𝑟
Ψ𝐶,1−

𝜕Φ𝑆,1

𝜕𝑟
+ 1
𝑟
Φ𝑆,1−

𝜕Ψ𝐶,1

𝜕𝑟

)
− 𝜌

2

(
−𝜕Φ𝑆,3

𝜕𝑟
− 3
𝑟
Φ𝑆,3

)
= 0, (C4)

(𝑘 = 2) : − 2
𝑟
Φ𝐶,2 +

𝜌

2

(
−𝜕Ψ𝑆,1

𝜕𝑟
− 1
𝑟
Φ𝐶,1 +

𝜕Φ𝐶,1

𝜕𝑟
+ 1
𝑟
Ψ𝑆,1

)
− 𝜌

2

(
3
𝑟
Φ𝐶,3 +

𝜕Φ𝐶,3

𝜕𝑟

)
= 0, (C5)

(3 ≤ 𝑘 ≤ 𝑁 −1) : 𝑘
𝑟
Φ𝑆,𝑘 +

𝜌

2

(
−𝜕Φ𝑆,𝑘−1

𝜕𝑟
+ 𝑘 −1

𝑟
Φ𝑆,𝑘−1

)
− 𝜌

2

(
−𝜕Φ𝑆,𝑘+1

𝜕𝑟
− 𝑘 +1

𝑟
Φ𝑆,𝑘+1

)
= 0, (C6)

(3 ≤ 𝑘 ≤ 𝑁 −1) : − 𝑘

𝑟
Φ𝐶,𝑘 +

𝜌

2

(
− 𝑘 −1

𝑟
Φ𝐶,𝑘−1 +

𝜕Φ𝐶,𝑘−1
𝜕𝑟

)
− 𝜌

2

(
𝑘 +1
𝑟

Φ𝐶,𝑘+1 +
𝜕Φ𝐶,𝑘+1

𝜕𝑟

)
= 0, (C7)

(𝑘 = 𝑁 ≥ 3) : 𝑁
𝑟
Φ𝑆,𝑁 + 𝜌

2

(
−𝜕Φ𝑆,𝑁−1

𝜕𝑟
+ 𝑁 −1

𝑟
Φ𝑆,𝑁−1

)
= 0, (C8)

(𝑘 = 𝑁 ≥ 3) : − 𝑁

𝑟
Φ𝐶,𝑁 − 𝜌

2

(
𝑁 −1
𝑟

Φ𝐶,𝑁−1−
𝜕Φ𝐶,𝑁−1

𝜕𝑟

)
= 0, (C9)

(𝑘 = 𝑁 +1 ≥ 3) : − 𝜕Φ𝑆,𝑁

𝜕𝑟
+ 𝑁

𝑟
Φ𝑆,𝑁 = 0, (C10)

(𝑘 = 𝑁 +1 ≥ 3) : − 𝑁

𝑟
Φ𝐶,𝑁 + 𝜕Φ𝐶,𝑁

𝜕𝑟
= 0. (C11)

Note that both Ψ𝑆,1 and Ψ𝐶,1 are explicitly described in Eqs. (C1) and (C2) for the discussion665

about the choice of the retrieved variable. In what follows, we suppose that 𝑁 ≥ 2, but to modify666

the argument to 𝑁 < 2 is trivial.667

Even though the number of the Fourier components of the velocity potential has been reduced to668

make 𝐹 ≤ 𝐸 , there still remains non-trivial flows that satisfy Eqs (C1)-(C11). This is because these669

42



equations are differential equations along 𝑟 , so non-trivial solutions are possible. The ambiguity670

arising from this fact can be solved by eliminating its solution, which is derived in what follows.671

From Eqs. (C10) and (C11),672

Φ𝑆,𝑁 = 𝐶𝑆,𝑁𝑟
𝑁 , Φ𝐶,𝑁 = 𝐶𝐶,𝑁𝑟

𝑁 , (𝐶𝑆,𝑁 ,𝐶𝐶,𝑁 = const.). (C12)

The flow represented by Eq. (C12) is non-rotational and non-divergent. Therefore, the673

wavenumber-𝑁 component of Vnon cannot be constrained by the single Doppler measurement.4674

By examining Eqs. (C6)-(C9) recursively to lower wavenumbers, we can understand that the675

ambiguity by the non-trivial solution is also associated with Vnon down to the wavenumber 2.676

For example, from Eq. (C8), the general solution of Φ𝑆,𝑁−1 is its specific solution plus the677

general solution of the homogeneous equation (i.e., − 𝜕Φ𝑆,𝑁−1
𝜕𝑟

+ 𝑁−1
𝑟
Φ𝑆,𝑁−1 = 0). The ambiguity is678

introduced by the latter, which is 𝐶𝑆,𝑁−1𝑟𝑁−1 (𝐶𝑆,𝑁−1 is an arbitrary constant). Likewise, the entire679

ambiguity takes the form of680

Φ𝑆,𝑘 = 𝐶𝑆,𝑘𝑟
𝑘 , Φ𝐶,𝑘 = 𝐶𝐶,𝑘𝑟

𝑘 , for 2 ≤ 𝑘 ≤ 𝑁. (C13)

The ambiguity for the wavenumber-1, from Eqs. (C4) and (C5), can be expressed as follows:681

Φ𝑆,1 +Ψ𝐶,1 = 𝐶𝑆,1𝑟, Φ𝐶,1−Ψ𝑆,1 = 𝐶𝐶,1𝑟, (𝐶𝑆,1,𝐶𝐶,1 = const.) (C14)

The radial structure of Ψ𝐶,1 (Ψ𝑆,1) is determined by divergence 𝐷𝐶,1(𝑟′) [𝐷𝑆,1(𝑟′)] and the Green682

function𝐺1(𝑟;𝑟′), which is proportional to 𝑟 at radii 𝑟 < 𝑟′, in Eq. (26). Therefore, by vanishing any683

divergence at and outside the outermost radius of the radar observation [i.e., 𝐷𝐶,1(𝑟′ ≥ 𝑟𝑚−1/2) = 0684

or 𝐷𝑆,1(𝑟′ ≥ 𝑟𝑚−1/2) = 0], we can remove the structure which is proportional to 𝑟 of Ψ𝐶,1 (Ψ𝑆,1) in685

Eq. (C14):686

Φ𝑆,1 = 𝐶𝑆,1𝑟, Φ𝐶,1 = 𝐶𝐶,1𝑟. (C15)

4The flow represented by the streamfunction for the wavenumber 𝑘, which is a proportional to 𝑟𝑘 , is often introduced as one of incompressible
potential flows around a stagnant point in textbooks of fluid dynamics (e.g., 2.7 in Batchelor 1967). The streamfunction for the wavenumber 1,
which is a proportional to 𝑟 , especially exhibits a horizontally uniform flow, related to the mean wind.
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In substituting 𝛷𝑆,1 in Eq. (C15) into Eqs. (C1) and (C2), we obtain the following relationships:687

𝜕𝛹0

𝜕𝑟
= 𝜌𝐶𝑆,1, (C16)

𝜕𝛹0

𝜕𝑟
=
1
𝜌
𝐶𝑆,1. (C17)

From Eqs. (C16) and (C17), 𝐶𝑆,1 = 0 is automatically satisfied without any constraints. Therefore,688

onlyΦ𝐶,1 for the wavenumber-1 components requires the constraints. We discuss the better choice689

of the velocity potential for the wavenumber 1 in the retrieval. When we select Ψ𝐶,1 (and Ψ𝑆,1 = 0)690

in the retrieval, from Eqs. (C1) and (C2) with Eq. (C14), we obtain691

−𝜕Ψ0

𝜕𝑟
+ 𝜌

(
1
𝑟
Φ𝑆1−𝐶𝑆,1 +

𝜕Φ𝑆1

𝜕𝑟

)
= 0, (C18)

1
𝑟
Φ𝑆1−𝐶𝑆,1 +

𝜕Φ𝑆1

𝜕𝑟
− 𝜌

𝜕Ψ0

𝜕𝑟
= 0. (C19)

From Eqs. (C18) and (C19), the solution for the axisymmetric structure is obtained:692

𝜕Ψ0

𝜕𝑟
= 0. (C20)

Equation (C20) indicates that the axisymmetric flow doesn’t have any interdependence and non-693

trivial flows if we select Ψ𝐶,1 in the retrieval and prescribe appropriate 𝐶𝑆,1 at the outermost radius694

(𝑟 = 𝑟𝑚−1/2). On the other hand, if we select Ψ𝑆,1 (and Ψ𝐶,1 = 0) in the retrieval, from Eqs. (C3)695

with Eq. (C14),696

−𝐶𝐶,1−
𝜕Φ𝐶,1

𝜕𝑟
− 1
𝑟
Φ𝐶,1 + 𝜌

𝜕Φ0

𝜕𝑟
= 0. (C21)

Equation (C21) indicates that the axisymmetric flows can have the ambiguity (i.e., 𝐶𝐶,1) even697

though we prescribe the ambiguity of Φ𝐶,1 at the outermost radius. In contrast to the choice698

of Ψ𝐶,1, Eq. (C21) has no counterpart to eliminate the ambiguity. Thus, in the choice of Ψ𝑆,1,699

additional constraints are needed. We conclude that Ψ𝐶,1 in the retrieval is the better choice for the700

wavenumber-1 velocity potential.701

The above argument indicates that we can eliminate the ambiguity associated with the non-trivial702

solution by introducing a constraint to fix all of 𝐶𝑆,𝑘 , (𝑘 = 2, · · · , 𝑁), and 𝐶𝐶,𝑘 , (𝑘 = 1, · · · , 𝑁).703

This can be done in various ways: for example, by specifying the values a priori at 𝑟 = 𝑟𝑚−1/2,704

44



Φ𝑆,𝑘,𝑚−1/2, (𝑘 = 2, · · · , 𝑁), Φ𝐶,𝑘,𝑚−1/2, (𝑘 = 1 · · ·𝑁). Since knowledge about them are usually705

limited, one can simply set them to 0. In this case, asymmetric radial winds vanish at 𝑟𝑚−1/2.706

Although it is not needed, we can further impose 𝜕Φ𝑆,𝑘/𝜕𝑟 = 𝜕Φ𝐶,𝑘/𝜕𝑟 = 0 at 𝑟𝑚−1/2 to eliminate707

asymmetric tangential winds too. Although we have not conducted a systematic comparison, we708

expect that this additional constraint would reduce spurious signals when data quality is not very709

good. Alternatively, if sufficient external information is available, one can specify non-zero values710

to Φ𝐶,𝑘 , Φ𝑆,𝑘 , and their derivatives at 𝑟𝑚−1/2. This is especially recommended for Φ𝐶,1, since it711

affects the axisymmetric tangential winds as shown in section 2e.712
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