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Position-Commanding Anti-Sway Controller for 2-D Overhead Cranes
Under Velocity and Acceleration Constraints

Ryo Nishimoto and Ryo Kikuuwe

Abstract—This paper proposes an anti-sway controller for two-
dimensional overhead cranes. The controller is of the position-
commanding type, i.e., it sends position commands to the
position-controlled trolley, and it uses the sensor information of
the payload sway angle. The position commands are determined
so that the trolley tracks the desired position signal sent from
an upper-level controller and also so that the payload sway
is damped. The sway damping is realized by a leaky integral
controller, which employs a high-pass filtered time integral of
the sway angle. In addition, arbitrary limits can be imposed on
the first and second derivatives of the position command, and
thus it is applicable to cases where the desired position signal
from the upper-level controller is nonsmooth or discontinuous.
Due to these features, the controller is expected to be useful in
both human-operated and autonomous systems. The controller
was validated with a laboratory setup. This paper also presents
an algorithm that can be attached to the proposed controller to
prevent the overshoot, which can take place when the desired
position signal is discontinuous.

Index Terms—Overhead crane, Position command, Anti-sway
control, Velocity limits, Acceleration limits

I. INTRODUCTION

Suppression of the payload sway of overhead cranes is an
important issue in many industry sectors such as logistics,
warehousing, manufacturing, and construction [1]. For auto-
matic cranes, input shaping techniques are widely used [2]–[5],
in which the trolley is position-controlled to track predefined
trajectories that are carefully designed not to excite the sway
of the payload. This approach is not straightforward to apply
to cranes manually operated by human operators because the
position command from the human operator is intrinsically
unpredictable. In addition, input shaping techniques are not
suited to cope with disturbances such as wind and collisions.
To deal with such unpredictable factors, control techniques
employing appropriate sensor feedback are necessary.

In the majority of studies on feedback control of overhead
cranes, the control input is assumed to be the actuator force ap-
plied to the trolley [6]–[11]. The partial feedback linearization
[12] has been known to be useful to deal with the dynamics
of the whole crane system including the trolley [7], [8], [10].
It is however not easy to apply to systems with complicated
trolley dynamics, including the friction in the transmission and
the actuators. In addition, many of such methods assume that
the desired position signals are sufficiently smooth [6], [7],
[9].

In contrast, some studies [3], [4], [13]–[16] focus on over-
head crane systems of which the trolley is position-controlled.
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Such methods are practically more convenient because many
industrial actuators are integrated with optimized high-gain
position controllers. In such methods, one can assume that
the commanded position is accurately achieved as far as
it is within the hardware limits. This means that position-
commanding controllers need to provide sufficiently smooth
position command, i.e., with its first and second derivatives
being appropriately bounded. Model predictive control (MPC)
is a convenient tool to account for the bounds of the velocity
and acceleration [15], [17], but it is computationally costly
and requires accurate dynamics model of the system.

This paper proposes a feedback-based anti-sway controller
that gives position commands to the trolley. It assumes that
the swing angle is measured by a sensor and that the trolley is
accurately position-controlled. The controller incorporates an
integral-like term of the measured sway angle to suppress the
payload oscillation. It also imposes explicit upperbounds on
the first and second derivatives of the position command. Due
to these features, the controller is applicable to both human-
operated systems and autonomous systems. The effectiveness
of the proposed method is illustrated by some experimental
results using a laboratory setup.

The integral-like term to damp the payload sway is a main
feature of the presented controller. Some previous studies [6],
[7], [9] employed the time integral of the sway angle to
suppress the oscillation, but it can results in a steady-state
offset in the trolley position even after the payload sway
is settled. In the presented controller, the integral term is
implemented in a modified way so that the offset reduces to
zero almost in finite time once the payload sway is settled.

The rest of this paper is organized as follows. Section II
provides some mathematical preliminaries. Section III shows
the proposed controller and algorithm, and provides stability
analysis. Section IV presents some experimental results. Sec-
tion V shows an additional modification to the controller and
some experimental results. Section VI concludes this paper.

II. MATHEMATICAL PRELIMINARIES

This paper uses the following notations:

sgn(x) ≜
{

x/|x| if x ̸= 0
[−1, 1] if x = 0

(1)

satA(x) ≜

 −A if x ≤ −A
x if |x| < A
A if x ≥ A

(2)

N[−A,A](x) ≜


(−∞, 0] if x = −A
0 if |x| < A
[0,∞) if x = A
∅ if |x| > A

(3)
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gsat(a, x, b) ≜

 a if x ≤ a
x if a < x < b
b if x ≥ b

(4)

ssq(x, ε) ≜ sgn(x)(
√
|x|+ ε−

√
ε) (5)

where A > 0, a ≤ b, and ε ≥ 0. The set-valued functions sgn
and N are referred to as the set-valued sign function and the
normal cone [18], respectively. The single-valued functions
sat and gsat are the saturation function and a generalized
saturation function, respectively. The single-valued function
ssq can be referred to as a relaxed sign-preserving square root,
which is Lipschitz for all x if ε > 0 and reduces to the sign-
preserving square root, which is non-Lipschitz at x = 0, if
ε = 0.

The functions sgn, sat, and N satisfy the following rela-
tions:

y ∈ A sgn(x− y) ⇐⇒ y = satA(x) (6)
y ∈ x−N[a,b](y) ⇐⇒ y = gsat(a, x, b). (7)

These relations can be proven as follows:

y ∈ sgn(x− y)

⇐⇒ ((y = −A) ∧ (x− y < 0)) ∨ ((y ∈ [−A,A])

∧ (x− y = 0)) ∨ ((y = A) ∧ (x− y > 0))

⇐⇒ ((y = −A) ∧ (x < −A)) ∨ ((|y| < A)

∧ (y = x)) ∨ ((y = A) ∧ (x > A))

⇐⇒ y = satU (x). (8)
y ∈ x−N[a,b](y)

⇐⇒ ((y ∈ x− (−∞, 0]) ∧ (y = a))

∨ ((y = x) ∧ (a < y < b))

∨ ((y ∈ x− [0,∞)) ∧ (y = b))

⇐⇒ ((y = a) ∧ (x ∈ (−∞, a]))

∨ ((a < x < b) ∧ (y = x))

∨ ((y = b) ∧ (x ∈ [b,∞))

⇐⇒ ((y = a) ∧ (x ≤ a)) ∨ ((a < x < b)

∧ (y = x)) ∨ ((y = b) ∧ (x ≥ b))

⇐⇒ y = gsat(a, x, b). (9)

When a = −A and b = A, (7) reduces to the following:

y ∈ x−N[−A,A](y) ⇐⇒ y = satA(x). (10)

The function ssq satisfies the following:

∂ ssq(x, ε)

∂x
=

1

2
√

|x|+ ε
. (11)

We also have the following relation:

y − u = −A ssq(y, ε)

⇐⇒ y = u−A ssq(u, (
√
ε+A/2)2) (12)

for A > 0. It can be verified by checking all possible signs of
y and u.

O

Fig. 1. Dynamics model of a 2-D overhead crane.

III. PROPOSED METHOD

A. Dynamics Model of 2-D overhead crane

The dynamics model of a two-dimensional (2-D) overhead
crane is shown in Fig. 1. Considering the kinetic energy, the
potential energy, and the Lagrangian of the payload, one can
straightforwardly derive the equation of motion of the payload
as follows:

mℓ2θ̈ +mgℓ sin θ +mℓp̈c cos θ = ℓf (13)

where pc is the trolley position, θ is the payload swing
angle, m is the payload mass, ℓ is the wire length, g is the
gravitational acceleration, and f is the external force acting
on the payload. We assume that the trolley accurately follows
the command position from the controller, and thus the trolley
position and the command position are both represented by pc.
We also assume that the wire length ℓ is constant, and that the
swing angle θ ∈ [−π/2, π/2] is measured by an angle sensor.

From (13), one can see that the swing of the crane system
is caused by the acceleration of the trolley. This paper aims to
present a controller of the position-commanding type; i.e., pc
is treated as the control input. Its first and second derivatives,
ṗc and p̈c, need to be designed so that they do not exceed the
actuator capacity.

B. Proposed controller

We propose a controller of which the continuous-time
representation is written as follows:

ṗr = satU
(
(pt − pr)/H

)
(14a)

ρ̇ ∈ θ − λ ssq(ρ, ε)−N[−Z/K,Z/K](ρ) (14b)
pp = pr +Kρ (14c)
pc ∈ pp −N[−V,V ](ṗc)−N[−A,A](p̈c). (14d)

The inputs to this controller are the desired position pd and
the measured sway angle θ, and the output is the position
command pc to the trolley. The variables pr, ρ, and pp
are internal state variables of the controller. The controller
parameters are U , H , λ, Z, K, V , and A, which are all
positive constants. The parameter ε is a small non-negative
constant, which can be zero in practice, as will be discussed
in Section III-E.
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Fig. 2. Block diagram of the proposed controller.

The block diagram of this control law is illustrated in Fig. 2.
It can be divided into three parts. The first part is the reference
shaper, which corresponds to (14a). This part translates the
desired position pd to a reference position pr. With (14a), the
reference position pr exponentially converges to pd with the
time constant H , and its rate of change is upperbounded by
U . These parameters can be adjusted by considering how slow
the reference position pr should be.

The second part is the nonlinear leaky integral controller,
which corresponds to (14b)(14c). The sway angle θ is given to
the ‘nonlinear leaky integral’ (14b) and its output ρ is added
to the reference position pr to provide the secondary reference
position pp. As will be detained in the next Section III-C, the
quantity ρ acts similarly to the time integral of θ but ρ decays
to zero when θ is settled into zero. In addition, due to the
effect of the third term in the right-hand side of (14b), ρ is
upperbounded by the parameter Z.

The last part is the command shaper, which corresponds
to (14d). The command shaper translates the secondary refer-
ence position pp into the position command pc by imposing
upperbounds on its first and second derivatives. It prevents the
controller from commanding the trolley beyond its capabilities.

C. Nonlinear Leaky Integral controller
The nonlinear leaky integrator (14b), which also appears in

Fig. 2, is motivated by some previous studies [6], [7], [9], in
which the integral term is used to damp the oscillation. Let us
consider the controller (14) in the case where no quantities are
saturated, (14b) is replaced by an ordinary integrator. Then, it
can be simplified into the following:

ρ̇ = θ (15a)
pc = pr +Kρ. (15b)

Substituting them into the plant dynamics (13) results in the
following:

ℓθ̈ +Kθ̇ cos θ + g sin θ = f/m− p̈r cos θ. (16)

It implies that the term proportional to K acts as a damping
term for the swing angle θ, and thus a large K value con-
tributes to a quick convergence of θ to zero.

One problem of the integral controller (15) is that, even
after the swing angle θ is settled into zero, there may remain
a steady-state offset Kρ between the trolley position pc and
the reference position pr. The previous studies [6], [7], [9]
have shown that ρ converges to zero if the initial sway angle
is zero and there is no disturbance, but it would remain non-
zero otherwise. One remedy for this drawback is to add a
feedback term to (15a) as follows:

ρ̇ = θ − λ1ρ (17)

where λ1 > 0 is a positive constant. The dynamics (17) can be
said to be a linear leaky integrator, which acts as an integrator
in the frequency higher than 2πλ1 and the output ρ decays to
zero with the time constant λ1 once the input θ is settled to
zero. The drawback of (17) is that the decay of ρ is asymptotic,
which can be too slow in practice.

The presented controller (14) intends to adopt a nonlinear
feedback term as follows:

ρ̇ = θ − λ ssq(ρ, ε). (18)

With the dynamics (18), once θ is settled, |ρ| decays to less
than 4ε in finite time, and thus it contributes to a practically
faster decay of ρ than (17). This feature can be explained as
follows. Setting θ = 0 with (18) results in the following:

d|ρ|
dt

= −λ sgn(ρ) ssq(ρ, ε)

= −λ
√
|ρ|+ ε+ λ

√
ε

≤ −λ
√
|ρ|+ λ

√
ε

= −λ
√
|ρ|/2− (λ/2)(

√
|ρ| − 2

√
ε). (19)

Here, we should note that the solution of the differential
equation ẋ = −λ

√
x/2 is x = max(0,

√
x(t0)−λ(t−t0)/4)

2

for t ≥ t0 if x(t0) ≥ 0. Noting that (19) implies d|ρ|/dt ≤
−λ
√

|ρ|/2 if |ρ| ≥ 4ε, one obtains

|ρ| < max(4ε,
√

|ρ(t0)| − λ(t− t0)/4)
2), ∀t ≥ t0 (20)

from the comparison lemma (c.f., Section 3.4 of [19]). There-
fore, |ρ| ≤ 4ε is achieved in finite time and the reaching time
is less than (4/λ)max(0,

√
|ρ(t0)| − 2

√
ε).
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D. Discrete-time implementation

The discrete-time form of the controller (14) is derived by
the Backward (implicit) Euler discretization. Let T denotes
the timestep size and k denotes the integer representing the
discrete-time index. Although (14) includes many set-valued
functions, such functions can be removed from its discrete-
time representation by using some formula introduced in
Section II.

First, the reference shaper (14a) can be discretized as
follows:

pr,k − pr,k−1

T
= satU

(
pd,k − pr,k

H

)
. (21)

Using the relation (6), (21) can be rewritten as

pr,k − pr,k−1

T
∈ U sgn

(
pd,k − pr,k−1

T +H
− pr,k − pr,k−1

T

)
(22)

and it can also be rewritten as follow:

pr,k = satU

(
pd,k − pr,k−1

T +H

)
. (23)

Thus, one can see that (23) is the discrete-time representation
of the reference shaper (14a).

Next, the nonlinear leaky integrator (14b) can be discretized
as follows:

ρk − ρk−1

T
∈ θk − λ ssq(ρk, ε)−N[−Z/K,Z/K](ρk), (24)

which can be rewritten as follows:

ρk − ρ∗k ∈ −Tλ ssq(ρk, ε)−N[−Z/K,Z/K](ρk) (25a)

ρ∗k ≜ ρk−1 + Tθk. (25b)

By using (10) and (12), its equivalent form can be written as
follow:

ρk = satZ/K(a− Tλ ssq(a, (
√
ε+ Tλ/2)2)). (26)

Note that (26) can be seen as a closed-form solution of the
algebraic constraint (24) with respect to ρk, and also as the
discrete-time implementation of the nonlinear leaky integrator
(14b). Although (14b) involves a set-valued function that
cannot be computed directly, its discrete-time counterpart (26)
does not.

The command shaper (14d) can be discretized as follows:

pc,k ∈ pp,k −N[−V,V ](vc,k)−N[−A,A](ac,k) (27a)
vc,k = (pc,k − pc,k−1)/T (27b)
ac,k = (vc,k − vc,k−1)/T. (27c)

Eliminating pc,k and vc,k from (27) yields the following:

ac,k ∈ a∗c,k −N[α1,α2](ac,k)−N[−A,A](ac,k) (28)

where

a∗c,k ≜ (pp,k − (pc,k−1 + Tvc,k−1))/T
2 (29a)

α1 ≜ (−V − vc,k−1)/T (29b)

α2 ≜ (V − vc,k−1)/T. (29c)

Regarding the right-hand side of (28), we can see the follow-
ing:

N[α1,α2](x) +N[−A,A](x) = N[max(−A,α1),min(A,α2)](x)
(30)

By using (29) and (7), one can see that (28) can be equivalently
rewritten as follows:

ac,k = gsat(max(−A,α1), a
∗
c,k,min(A,α2)). (31)

This means that (31) is the closed-form solution of the
algebraic constraint (28) with respect to ac,k. One can see
that the discrete-time implementation of the command shaper
(14d) can be constructed from (31) to obtain ac,k and (27b)
and (27c) to obtain pc,k.

From these derivation, the algorithm of the proposed con-
troller (14) can be written as follows:

pr,k := pr,k−1 + T satU

(
pd,k − pr,k−1

T +H

)
(32a)

ρ∗k := ρk−1 + Tθk (32b)

ρk := satZ/K(ρ∗k − Tλ ssq(ρ∗k, (
√
ε+ Tλ/2)2)) (32c)

pp,k := pr,k +Kρk (32d)
a∗c,k := ((pp,k − pc,k−1)/T − vc,k−1)/T (32e)

ac,k := gsat
(
max

(
−A, (−vc,k−1 − V )/T

)
,

a∗c,k,min
(
A, (−vc,k−1 + V )/T

))
(32f)

vc,k := vc,k−1 + Tac,k (32g)
pc,k := pc,k−1 + Tvc,k. (32h)

It should be noted that the algorithm (32) does not include any
set-valued functions although its continuous-time representa-
tion (14) includes many such functions.

E. Stability Analysis

Behaviors of the whole system composed of the plant (13)
and the controller (14) are now discussed. As can be seen in
Fig. 2, the system can be seen as an open-loop combination
of the reference shaper and a closed-loop subsystem. Thus,
we here only focus on the closed-loop subsystem. In addition,
for the simplicity of the discussion, we only consider the case
where ρ, ṗc, and p̈c are not saturated. Then, the closed-loop
subsystem can be written as follows:

ρ̇ = θ − λ ssq(ρ, ε) (33a)
pc = pr +Kρ (33b)
θ̇ = ω (33c)

ℓω̇ = −g sin θ − p̈c cos θ + f/m. (33d)

In order to eliminate pc from (33), let us derive p̈c from
(33a) and (33b) as follows:

p̈c = p̈r +Kρ̈

= p̈r +K

(
θ̇ − λρ̇

2
√
|ρ|+ ε

)

= p̈r +
Kλ2 ssq(ρ, ε)

2
√

|ρ|+ ε
− Kλθ

2
√

|ρ|+ ε
+Kω. (34)
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By substituting (34) into (33), one can obtain the state-space
representation of the system as follows:

ẋ = F (x) +

 0
0
1

 f/m− p̈r cos θ

ℓ
(35a)

where

x ≜ [ρ, θ, ω]T , k ≜ g/ℓ, c ≜ K/ℓ, (35b)

F (x) ≜


1
0
λc

2
√
|ρ|+ ε

 (−λ ssq(ρ, ε) + θ)

+

 0
ω

−k sin θ − cω cos θ

 . (35c)

The closed-loop system (35), which is derived from (33),
has the following property:

Theorem 1. With the system (35), the origin x = 0 is
asymptotically stable if ε > 0 and fd ≡ p̈r ≡ 0.

Proof. It follows from the fact that the matrix

∂F (x)

∂x

∣∣∣∣
x=0

=


−λ

2
√
ε

1 0

0 0 1
−cλ2

4ε
−k +

cλ

2
√
ε

−c

 (36)

is Hurwitz if ε > 0.

Remark 1. The above result applies to all cases with arbitrar-
ily small ε > 0 but does no with ε = 0. The stability of the
case of ε = 0 may be able to be proven by using a nonsmooth
Lyapunov function in a similar approach to that in [20].

Remark 2. The function ssq appears in (14b) in the
continuous-time representation and in (32c) in the discrete-
time algorithm. In (32c), the second argument of ssq is
(
√
ε + Tλ/2)2. This means that, even if one choose ε = 0

in the continuous-time representation (14), the gradient of the
ssq part in the discrete-time algorithm (32) is upperbounded
by 1/(Tλ). One can therefore infer that the aforementioned
analysis approximately applies to the case of ε = 0 in the
discrete-time domain, and setting ε = 0 would not cause
problems in practice.

IV. EXPERIMENTS

A. Setup

The controller was tested with a laboratory setup shown in
Fig. 3, which was composed of a single-axis linear motor,
a trolley, and a payload. The trolley was attached to the
slider part of the linear motor. An encoder with the resolution
3600 pulse/rev was used to measure the swing angle. The
axis of the encoder was connected to the center of the pulley.
The stroke of the linear motor was 0.35 m and its nominal
maximum speed was 0.6 m/s. The mass of the payload was
m = 0.150 kg and the length of the rope was ℓ = 0.38 m. The
linear motor was controlled by sending velocity (incremental

(a) 

(b) 

Fig. 3. Laboratory setup: (a) 2-D overhead crane, (b) configuration of the
trolley.

position) signal from a PC running the Windows OS. We set
the sampling interval to be T = 0.002 s. We used the following
parameters in all experiments: U = 0.4 m/s, H = 0.18 s,
K = 3.2 m/s, λ = 0.3 s−1/2, V = 0.5 m/s, A = 100 m/s2,
and Z = 0.16 m.

The proposed controller was compared with another simple
controller, which is written as follows:

ṗc = satV ((pd − pc)/Hw) . (37)

Note that it is exactly the same as (14a), which is the reference
shaper part of the proposed controller. The controller (37)
smooths the desired position pd into the command position
pc. The discrete-time implementation of (37) is as follows:

pc,k := pc,k−1 + T satV

(
pd,k − pc,k−1

T +Hw

)
. (38)

Parameter Hw was set as Hw = 0.6 s so that it results in
similar convergence behavior to that of the proposed controller.

B. Experiment I: Point-to-point (PTP) control

We investigated the anti-sway performance of the proposed
controller (32) in comparison to the simple reference smooth-
ing (38). At t = 0 s, the position of the trolley was set at
pc = 0 m and the payload was set at rest. The desired position
was set to be pd = 0.25 m for t > 1 s.

Results are shown in Fig. 4. It shows that the proposed
controller effectively suppressed the oscillation after the trolley
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Fig. 4. Experiment I: point-to-point (PTP) control. The horizontal dotted lines
indicate upper bounds of each variable.

Fig. 5. Experiment II: PTP control with initial sway. The horizontal dotted
lines indicate upper bounds for each variable.

reached the desired position under the velocity and accelera-
tion constraints, i.e., |ṗc| ≤ V and |p̈c| ≤ A. Meanwhile,
the payload continued oscillating with the simple reference
smoothing (38). With the controller (38), the maximum swing
angle was 0.210 rad (≈ 12.0◦) at t = 1.924 s while it was
−0.120 rad (≈−6.88◦) at t = 1.226 s with the proposed
controller (32). The maximum swing angle was suppressed

Fig. 6. Experiment III: PTP control under disturbance. The payload was hit
by an external object at the time indicated by the gray vertical lines.

about 42.9% by the proposed controller.
One may notice that both trolley position pc and the payload

position pc + ℓ sin θ exhibited overshoots before convergence.
This point will be discussed in the next Section V.

C. Experiment II: PTP control with initial sway

We also performed a set of experiments to check the
influence of the initial sway of the payload. At t = 6 s, the
trolley was at pc = 0 m and the payload was initially swaying.
Then, the desired position was set to be pd = 0.25 m for
t > 6 s.

The results are shown in Fig.5. It shows that the proposed
controller suppressed the swaying motion and made the trolley
reach the desired position pd under velocity and acceleration
constraints. In contrast, with the reference smoothing (38), the
swaying motion continued without decaying.

D. Experiment III: PTP control under disturbance

Another set of experiments was performed to test the influ-
ence of disturbance. The payload was at rest in the beginning,
and the desired position pd was set to be 0.25 s for t > 0, and
in the middle of motion, the payload was hit by an external
object.

Fig. 6 shows the results of the proposed controller (32)
and the reference smoothing (38) where the payload was hit
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Fig. 7. Experiment IV: effects of the nonlinear leaky integral controller.

and was not hit. The gray vertical lines show the time at
which the payload was hit. The results show that the proposed
controller (32) suppressed the payload sway and that the
trolley eventually reached the desired position pd. With the
reference smoothing (38), the payload sway increased due to
disturbance.

E. Experiment IV: Nonlinearity of Leaky Integrator

Experiment IV was performed to illustrate the effect of the
nonlinear function ssq introduced in the leaky integrator (14b).
Recall that the nonlinear term involving the function ssq is
intended to realize finite-time convergence while using a linear
one would result in asymptotic convergence. For comparison,
this experiment used the saturated linear leaky integrator of
which the continuous-time representation was

ρ̇ ∈ θ − λ1ρ−N[−Z/K1,Z/K1](ρ). (39)

This integrator was implemented as the following algorithm:

ρk = satZ/K1
((ρk−1 + Tθ)/(1 + Tλ1)), (40)

which is the discrete-time representation of (39) obtained by
the backward Euler discretization. This experiment compared
the proposed algorithm (32) to the same algorithm with (32c)
being replaced by (40). The parameters for (40) were carefully
chosen as K1 = 2.3 m/s and λ1 = 1.5 s−1 so that it
achieved a similar magnitude of the swing angle and overshoot
to the proposed algorithm with the parameters used in other
Experiments.

The results are shown in Fig. 7, which shows that the trolley
position pc settled to the desired position pd faster with the
nonlinear one (32c) than with the linear one (40). The settling
time (± 2% ) of the nonlinear one (32c) was t = 3.90 s, and
that of the linear one (40) was t = 4.84 s. With the linear one

(40), the convergence of ρ was slow especially near ρ, and it
caused slower reaching of the trolley to the desired position
pd.

V. MODIFICATION OF CONTROLLER

Experimental results in the previous section show that the
proposed controller (32) resulted in some overshoots in the
trolley and payload positions. This feature may be seen as
problematic in some applications. This section provides a
variant of the controller (32) that prevents the overshoots. Its
block diagram is shown in Fig. 8; the only difference is an
add-on algorithm to provide an offset b to be added to the
desired position pd. This section details the add-on algorithm
and shows some experimental results.

A. Modification: an Add-on Algorithm

The overshoot caused by the proposed controller (32) can
be attributed to the fact that, when the trolley is decelerating
before reaching the desired position pd, the payload is pulled
toward the desired position pd by the inertial force. Therefore,
one idea to avoid this situation is that the trolley should stop
for a while before reaching the desired position.

A possible realization of this idea can be illustrated as in
Fig. 9. When the desired position pd is separated from the
current trolley position pc, an offset value b is added to pc
and the resultant value pt ≜ pd + b is used as a modified
desired position. A while after the trolley pc passes pd + b,
b is reduced to reach 0 in time T2. This procedure should be
initiated when the desired position pd is settled, meaning that
|pd,k−pd,k−1| is small enough. Based on this idea, we propose
the following algorithm to determine b:

Bk :=

{
r(pc,k−1 − pd,k) if |pd,k − pd,k−1| > QT
Bk−1 otherwise (41a)

Dk :=

 0 if 0 ≤ Bk < pc,k−1 − pd,k
0 if pc,k−1 − pd,k < Bk ≤ 0
Dk−1 + T otherwise

(41b)

bk :=

 Bk if 0 ≤ Dk < T1

bk−1 − TBk/T2 if T1 ≤ Dk < T1 + T2

0 otherwise.
(41c)

With this algorithm, the inputs are pd and pc, the output
is bk, and the current values {pd,k, Bk, Dk, bk} should be
reused as {pd,k−1, Bk−1, Dk−1, bk−1} in the next timestep.
The parameters are Q > 0, r ∈ (0, 1), T1 > 0, and T2 > 0,
which should be chosen appropriately. The variable Dk counts
the time spent after pc crosses pd +Bk.

B. Experiments

We investigated the performance of the modified controller
with the add-on algorithm (41) by using the experimental setup
introduced in Section IV. The parameters were set as: Q =
0.02 m/s, r = 0.25, T1 = 0.25 s, and T2 = 0.25 s. The other
parameters were set to the same values as those in Section IV.

Fig. 10 shows the results of PTP control from a resting
position. The experimental conditions were identical to those
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Fig. 8. Block diagram of the modified controller with the add-on algorithm (41).

Fig. 9. Concept of the modified controller.

Fig. 10. PTP Control with the modified controller.

of Experiment I in Section IV-B. It shows that the add-
on algorithm (41) effectively reduced the overshoot and the

Fig. 11. PTP Control with initial sway with the modified controller.

settling time without causing an increase in the swing angle.
With the original controller (32), the maximum overshoot was
0.05 m and the settling time (±2 %) was t = 3.90 s. In
contrast, with the add-on algorithm (41), they were reduced to
0.003 m and t = 2.32 s, respectively.

Fig. 11 shows the results of PTP control with an initial
sway, which was performed in the same conditions as those
of Experiment II in Section IV-C. It shows that the add-
on algorithm (41) suppresses the overshoot even when the
payload is swinging at the beginning of the motion.

Fig. 12 shows the results of PTP control under disturbance
in the same conditions as Experiment III in Section IV-D. In
these experiments, the payload was initially at rest, the desired
position pd was moved by 0.25 m at t = 0, and the payload
was hit by an external object in the middle of the motion.
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Fig. 12. PTP Control under disturbance with the modified controller. The
payload was hit by an external object at the time indicated by the gray vertical
lines.

Fig. 13. Experimental setup of the human operation of the crane.

The results show that the add-on algorithm (41) suppresses
the overshoot and oscillation even under disturbance, which is
unpredictable to the controller.

We also performed an experiment in which the experimenter
operated the setup through a gamepad as shown in Fig. 13.
Here, the position of the gamepad stick was mapped to the
desired position command pd. The results are shown in Fig. 14.
As can be seen in Fig. 14, the experimenter performed several
back-and-forth motions slowly and rapidly, resulting in often
discontinuous position commands. It can be seen that the

Fig. 14. Human operation of the crane with the modified controller. Note that
the scale of the vertical axis of the trolley position pc and payload position
are not the same as those in other experiments.

method effectively suppressed the overshoot and sway even
under highly variable position commands.

VI. CONCLUSION

This paper has proposed a position-commanding anti-sway
controller for 2-D overhead cranes. It is for crane systems of
which the trolleys are equipped with stiff low-level position
controllers, and it requires the sensory information of the
payload sway angle. The main feature of the controller is
that upperbounds of velocity and acceleration can be explicitly
specified by controller parameters. In addition, it employs
a nonlinear integral-like term to damp the payload sway
without causing an offset in the trolley position. The controller
can be used even when the desired position commands are
discontinuous and unpredictable, and thus it is usable for
both human-operated and automatic cranes. The controller was
validated with a laboratory setup. A small modification to the
controller to suppress overshoots has also been presented.

Future work should address the inclusion of hoisting actions
and the extension to three-dimensional cranes. In addition,
the clarification of parameter tuning guidelines would also
be necessary. Human factor analyses, such as those in [21],
should also be sought to clarify better parameter settings that
are suited for human-operated applications.
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