1	Short Communication
2	
3	The Subdivision of the Genus <i>Eremothecium</i> Borzi emend. Kurtzman (1995)*
4	
5	Taweesak Malimas, ¹ Huong Thi Lan Vu, ² Pattaraporn Yukphan, ³ Somboon Tanasupawat, ⁴
6	Yuzo Yamada, ^{3,5,6,**}
7	
8	¹ Microbial Laboratory Biosafety Level-1, 46 M, 9 Nongphus, Muangsuang, Roi-Et 45220,
9	Thailand
10	² Department of Microbiology, Faculty of Biology and Biotechnology, University of
11	Science, Vietnam National University-HCM City, 227 Nguyen Van Cu Street, Ward 4,
12	District 5, Hochiminh City, Vietnam
13	³ Microbial Diversity and Utilization Team, Thailand Bioresource Research Center
14	(TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National
15	Science and Technology Development Agency (NSTDA), 113 Thailand Science Park,
16	Phaholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
17	⁴ Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences,
18	Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330,
19	Thailand
20	⁵ JICA Senior Overseas Volunteer, Japan International Cooperation Agency, Shibuya-ku,
21	Tokyo 151-8559, Japan
22	⁶ Laboratory of Applied Microbiology (Professor Emeritus), Department of Agricultural
23	Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
24	422-8529, Japan
25	
26	*A preliminary report was presented (Yamada, 2023).
27	**Corresponding author E-mail: ymdy333@kdt.biglobe.ne.jp
28	

29 ABSTRACT

30 In the family Saccharomycetaceae, the genus *Eremothecium* Borzi emend. Kurtzman 31 (1995) included the five species, which were on the whole characterized by the complex 32 distribution of isoprenoid quinone homologues (Q-5, Q-6, Q-7 and Q-9) as well as of 33 needle-shaped ascospore ornamentation. However, the calculated pair-wise sequence 34 similarities among the five species were very low (94.7 - 96.5%) in the 26S rRNA gene 35 D1/D2 domain sequences and so on. The experimental data obtained indicated that the 36 emended genus was not taxonomic homogeneous- but heterogeneous-natured, showing that 37 the five species should be accommodated to their own separate five genera as Eremothecium 38 cymbalariae, Nematospora corvli, Ashbya gossypii, Crebrothecium ashbyi and Holleva 39 sinecauda.

40

41 Keywords: Crebrothecium ashbyi; Nematospora coryli; Eremothecium cymbalariae;
42 Ashbya gossypii; Holleya sinecauda.

43

44

The genus *Holleya* was introduced on the basis of the exceptional distribution of ubiquinone-9 (Q-9) as respiratory quinone with the needle-shaped ascospore-forming species, *Holleya sinecauda* (= *Nematospora sinecauda* Holley) (Yamada 1986).

48 In the phylogenetic analysis based on the partial base sequencing (Yamada and 49 Nagahama 1991), Holleya sinecauda (Q-9) represented one base substitution in positions 50 1685 - 1835, 151 bases of 26S rRNA, but considerable base substitutions, i.e., seven bases, 51 when compared with Nematospora coryli (Q-6 or Q-5, Yamada et al. 1981) in positions 52 1451 - 1618, 168 bases of 18S rRNA, demonstrating that the genus Holleva was not similar 53 phylogenetically but separable from the genus Nematospora. Incidentally, the base 54 substitutions were only four between Nematospora coryli and Saccharomyces cerevisiae but 55 eight between Holleya sinecauda and Saccharomyces cerevisiae.

56 Kurtzman (1995) compared the genera *Ashbya*, *Eremothecium*, *Holleya* and 57 *Nematospora* by use of the 580 base-sequences near the 5'-end of 26S rDNA. The 58 experimental results showed that the five species of the four genera were closely related and 59 the taxa were of little divergence. As a conclusion, all the species concerned were placed in 60 the single genus *Eremothecium* Borzi emend. Kurtzman.

61

This paper deals with the presently available sequence data and gives the different conclusion that the five species are not closely related but phylogenetically independent from one another to constitute their own taxonomic homogeneous-natured genera, as previously reported (Yamada 2023).

66

67 The phylogenetic tree based on the 26S rRNA gene D1/D2 domain sequences (LSU 68 D1/D2) was constructed by the neighbour-joining method for the five species (Fig. 1). The 69 phylogenetic branches of the five species were somewhat shorter than that (94.0%; Table 1) 70 between Vanderwaltozyma polyspora and Saccharomyces cerevisiae in the family 71 Sacharomycetaceae. However, the branch lengths were almost the same as that (95.7%) 72 between Dipodascopsis uninucleata and Lipomyces starkeyi in the family Lipomycetaceae 73 used as reference standards. Among the five species, the calculated pair-wise sequence 74 similarities were 94.7 - 96.5%; i.e., below 98% (Table 1). By the way, the 98% or more 75 sequence similarities were necessary to constitute the taxonomic homogeneous-natured 76 genera (Yamada et al. 2022; Vu et al. 2022a, b; Yamada 2023).

For example, the calculated sequence similarity between *Holleya sinecauda* and *Eremothecium cymbalariae* was 95.9%, which was almost the same as that (95.7%) between *Dipodascopsis uninucleata* and *Lipomyces starkeyi* (Yamada et al. 2022). In addition, the similarity (96.5%) between *Holleya sinecauda* and *Nematospora coryli* was lower than that (97.5%) between *Kawasakia arxii* and *Lipomyces starkeyi*. The results obtained above represented that the five species within the genus *Eremothecium* emend. Kurtzman (1995) should be unequivocally divided into five genera respectively (Table 1).

85 In the phylogenetic tree based on the 18S rRNA gene sequences (SSU) derived from 86 the neighbour-joining method for the five species (Fig. 2), the phylogenetic branches of 87 the five species were on the whole shorter, when compared with those of the phylogenetic 88 tree based on LSU D1/D2. The pair-wise sequence similarities were high (98.4 - 99.4%) 89 (Table 2). On the other hand, the sequence similarity between Vanderwaltozyma polyspora 90 and Saccharomyces cerevisiae utilized as reference standards was also high as well 91 (98.8%). The phylogenetic data obtained above suggested that the base substitutions in 92 SSU were abnormally slow when compared with those of LSU and such a curious nature 93 appeared to be distributed widely in the members of the family Saccharomycetaceae, since 94 the reference standards also showed very high sequence similarity (98.8%) (Table 2). The two experimental data indicated that the five species should be classified in the separate 95 96 five genera.

97

98 Kurtzman and de Hoog (2011) represented the phylogenetic tree of the genus 99 Eremothecium emend. based on the concatenated gene sequences from LSU rRNA, SSU rRNA, 5.85/alignable ITS rRNA, mitochondrial SSU rDNA, cytochrome oxidase II and 100 101 translation elongation factor 1α . Since there was no information about the total number of 102 used bases, it was temporally designated as 5500. The phylogenetic branch-lengths were 103 measured by use of a ruler, and the pair-wise sequence similarities were calculated among 104 the five species. The calculated results gave almost the same sequence similarity, i.e., 93.8 105 - 96.7% and of course below 98% (Table 3).

106

107 As described above, the five species assigned to the genus *Eremothecium* emend. were 108 adequate to be placed in five genera respectively. Chemotaxonomically and morphologically, 109 the five species were complex in contrast to other members (Q-6) of the family 110 Saccharomycetaceae (Yamada et al. 1977, 1981, 1987; Yamada 1986; Kurtzman 1995). To

111	distinguish the taxonomic small and unique group, the subfamily Eremothecioideae was
112	appropriately given.
113	
114	The subfamily Eremothecioideae subfam. nov. (Saccharomycetaceae)
115	Cells are globose or cylindrical. Multilateral budding. Pseudohyphae and true hyphae
116	are present. Asci form 8-32 ascospores, which are generally acicular (Kurtzman and de
117	Hoog 2011). MycoBank number is 848430.
118	The type grnus is <i>Eremothecium</i> Borzi.
119	
120	Genus I Eremothecium Borzi MB1883
121	Eremothecium cymbalariae Borzi (1888) MB235811
122	Q-7(Q-6)-equipped (Yamada et al. 1987).
123	
124	Genus II Nematospora Peglion MB3441
125	Nematospora coryli Peglion (1897) MB222583
126	Synonym: Eremothecium coryli (Peglion) Kurtzman (1995)
127	Q-6-equipped (Q-5 only in the type strain) (Yamada et al. 1977, 1981).
128	
129	Genus III Ashbya Guillielmond MB389
130	Ashbya gossypii (Ashby et Nowell) Guillielmond (1928) MB266255
131	Synonym: Eremothecium gossypii (Ashby et Nowell) Kurtzman (1995)
132	Q-6-equipped (Yamada et al. 1987).
133	
134	Genus IV Crebrothecium Routien MB1283
135	Crebrothecium ashbyi Routien (1949) MB266255
136	Synonym: Eremothecium ashbyi (Guillielmond) Kurtzman (1995)
137	Q-6(Q-7)-equipped (Yamada et al. 1987).
138	

- 139
- Genus V Holleva Yamada MB25105

140 Holleya sinecauda (Holley) Yamada (1986) MB131133

141 Synonym: *Eremothecium sinecaudum* (Holley) Kurtzman (1995)

- 142 Q-9(Q-8)-equipped (Yamada 1986).
- 143

The genus *Crebrothecium* Routien was synonymous with the genus *Eremothecium* Borzi (Kurtzman and de Hoog 2011). However, the present experimental data has shown that it is phylogenetically deniable, since the calculated sequence similarity was low but not high (96.5%, Table 1; 95.9%., Table 3; 96.6%, Yamada 2023). Additionally, the isoprenoid quinone homologue distributions were different from each other; Q-6(Q-7) in the genus *Crebrothecium* and Q-7(Q-6) in the genus *Eremothecium* (Yamada et al. 1987).

The five species classified in the subfamily Eremothecioideae were quite unique, differing from other members (Q-6) of the family Saccharomycetaceae. The complex distributions of isoprenoid quinone homologues as well as of needle-shaped ascospore ornamentation in the genus *Eremothecium* emend. was reasonable, since the emended genus was diverse and a taxonomic heterogeneous-natured taxon.

155

156 CONCLUSIONS

157 Kurtzman (1995, 2003) and Kurtzman and Robnett (1998) should notice the branch 158 lengths (= the so-called evolutionary distances) in the phylogenetic trees in the generic 159 designation or the generic concept. Namely, the longer the branches were, the more 160 taxonomic heterogeneous-natured taxa would be born.

According to the present authors' experiences, the calculated sequence similarities have to be 98% or more (beyond the so-called 98% barrier) in the species concerned to constitute a taxonomic homogeneous-natured genus (Yamada et al. 2022; Huong et al. 2022a, b; Yamada 2023).

165	The experimental data obtained above indicated that the present authors' generic concept,
166	i.e., the existence of taxonomic homogeneous-natured genera was phylogenetically and
167	taxonomically reasonable.
168	
169	ACKNOWLEDGEMENTS
170	The present authors express their sincere thanks for citing the experimental data of the
171	authors.
172	
173	Funding information
174	The present authors received no grant from any funding agency.
175	
176	Conflict of interest
177	The authors declare that there are no conflicts of interest.
178	
179	Author contributions
180	T. M., H.T.L. V., P. Y., S. T. and Y. Y. designed the study. T. M. performed the main
181	experiments. H.T.L. V. and P. Y. instructed the experiments. Y. Y. prepared the manuscript.
182	The detailed discussions were made among the five.
183	
184	REFERENCES
185	Kurtzman, C.P., 1995. Relationships among the genera Ashbya, Eremothecium, Holleya and
186	Nematospora determined from rDNA sequence divergence. J. Industr. Microbiol. 14:
187	523-530.
188	Kurtzman, C.P., 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and
189	other members of the Saccharomycetaceae and the proposal of the new genera
190	Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS
191	Yeast Res. 4: 233-245.

Kurtzman, C.P. & Robnett, C.J., 1998. Identification and phylogeny of ascomycetous yeasts
 from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie

194 van Leeuwenhoek **73**: 331-371.

- 195 Kurtzman, C.P. & de Hoog, G.S., 2011. Eremothecium Borzi emend. Kurtzman (1995). In:
- 196 Kurtzman, C.P., Fell, J.W. and Boekhout, T. (ed). The Yeasts: A Taxonomic Study, 5th
- 197 edition, vol. 2. London: Elsevier, p. 405-412.
- 198 Vu, H.T.L., Yukphan, P., Tanasupawat, S., Mikata, K. & Yamada, Y., 2022a. The revision
 199 of Schizosacchromycetaceae. Jxiv (DOI: https://doi.org/10.51094/jxiv.188).
- Vu, H.T.L., Yukphan, P., Tanasupawat, S. & Yamada, Y., 2022b. The generic
 circumscription of *Kockiozyma* (Lipomycetaceae). Jxiv (DOI:
 https://doi.org/10.51094/jxiv.221).
- Yamada, Y., 1986. *Holleya* gen. nov., an ascosporogenous yeast genus for the Q9-equipped
 organism whose ascospores are needle-shaped with smooth surfaces in their anterior
 half and concentric ridges in their posterior half and without appendages. J. Gen. Appl.
 Microbiol. 32: 447-449.
- Yamada, Y. & Nagahama, T., 1991. The molecular phylogeny of the ascomycetous yeast
 genus *Holleya* Yamada based on the partial sequences of 18S and 26S ribosomal
 ribonucleic acids. J. Gen. Appl. Microbiol. **37**: 199-206.
- Yamada, Y., Arimoto, M. & Kondo, K., 1977. Coenzyme Q system in the classification of
 some ascosporogenous genera in the families Saccharomycetaceae and Spermophthoraceae. Antonie van Leeuwebhoek 43: 65-71.
- Yamada, Y., Sasaki, J., Hou, C.F., Tahara, Y., Miranda, M. & Phaff, H.J., 1981. A new
 natural quinone, ubiquinone-5 isolated from an ascosporogenous yeast species, *Nematospora corvli. Agric. Biol. Chem.* 45: 2671-2673.
- 216 Yamada, Y., Banno, I., von Arx, J.A. & van der Walt, J.P., 1987. Taxonomic significance of
- the coenzyme Q system in yeasts and yeast-like fungi. In: de Hoog, G.S., Smith, M.Th.
- and Weijman, A.C.M. (ed). The Expanding Realm of Yeast-like Fungi. Amsterdam:
- Elsevier, p. 299-308.

220	Yamada, Y., Vu, H.T.L, Yukphan, P. & Tanasupawat, S., 2022. The revision of
221	Lipomycetaceae. Jxiv (DOI: https://doi.org/10.51094//jxiv.189).
222	Yamada, Y., 2023. The generic circumscription of <i>Eremothecium</i> emend. Kurtzma. Jxiv
223	(DOI: https://doi.org/1051094//jxiv.270)
224	
225	
226	
227	
228	The genus Eremothecium Borzi emend. Kurtzman (1995) (Saccharomycetaceae)の分割
229	
230	T. Malimas ¹⁾ , H.T.L. Vu ²⁾ , P. Yukphan ³⁾ , S. Tanasupawat ⁴⁾ , 山田雄三 ^{2),5),6)}
231	
232	¹⁾ Microbial Laboratory Biosafety Level-1, 46 M, Thailand
233	²⁾ Vietnam National University-HCM City, Vietnam
234	³⁾ Thailand Bioresource Research Center (TBRC), Thailand
235	⁴⁾ Chulalongkorn University, Thailand
236	⁵⁾ JICA Senior Overseas Volunteer, JICA
237	6静岡大学農学部 (名誉教授)
238	
239	The genus <i>Eremothecium</i> Borzi emend. Kurtzman (1995) には5種が含まれる. この
240	5種には呼吸鎖キノン系より眺めて、Q-5,Q-6,Q-7,Q-9と複雑な分布を示し、針状
241	子嚢胞子の ornamentation もまた複雑である. 本属内での塩基配列類似度は非常
242	に低く, 94.7-96.5%であった. このことは, 本属が分類学上極めてheterogeneous な
243	性質を持ち,それぞれが, homogeneousな5個の属 (<i>Eremothecium cymbalariae</i> ,
244	Nematospora coryli, Ashbya gossypii, Crebrothecium ashbyi, Holleya sinecauda) に分割
245	すべきであることが示された.
246	

Table 1. The pair-wise sequence similarity in the 26S rRNA gene D1/D2 domain sequences in the five species.

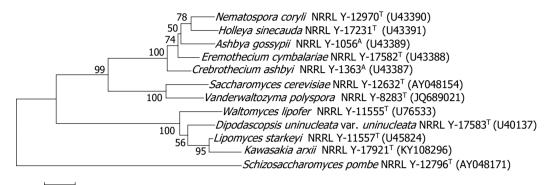
Species	1	2	3	4	5	6	7
1. Crebrothecium ashbyi	100						
2. Nematospora coryli	94.7	100					
3. Eremothecium cymbalaraie	96.5	96.3	100				
4. Ashbya gossipii	94.7	95.8	96.1	100			
5. Holleya sinecauda	95.2	96.5	95.9	94.9	100		
6. Saccharomyces cerevisiae	86.9	85.4	86.6	86.9	85.4	100	
7. Vanderaltozyma polyspora	87.5	85.9	87.1	86.8	86.4	94.0	100
Species	8	9	10	11			
8. Lipomyces starkaeyi	100						
9. Waltomyces lipofer	95.2	100					
10. Dipodascopsis uninucleata	95.7	94.0	100				
11. Kawasakia arxii	97.5	94.1	95.4	100			

The percent similarity was calculated by use of 573 - 630 bases. All the strains used were the type strains or the authentic strains (See Fig. 1).

Species	1	2	3	4	5	6	7
1. Crebrothecium ashbyi	100						
Speciematospora coryli	98 <mark>1</mark> 6	100 2		3	4		5
13 CErbnoobleeciumasyhh halaraie	9 <mark>806</mark>	99.0	100				
2.4NAnhtyagonsipoiryli	984 87	99.4 <mark>100</mark>	99.1	100			
35EHoullestresinecayddoalaraie	98.5	99.1 <mark>96.3</mark>	98.7	199 .1	100		
4.6. <mark>4.8.hbgharomijon</mark> s cerevisiae	964,97	97.2 <mark>95.8</mark>	97.0	90.7 .5	97. <mark>100</mark>	100	
5.7HKahdersitazymalapolyspora	96.2	96.9 <mark>96.5</mark>	96.8	99.79 .1	96. <mark>94.9</mark>	98.8	1000
Species	86	9 7	10	<mark>8</mark> 11	9		
6.8LLipanyzeesstarkaegyi	1						
79WWaltanzessilipgfer	9 5 .2	100 <mark>100</mark>					
8.9DDibadaseppesisuminueleata	95.67	97.5 <mark>94.0</mark>	100	100			
9.1 Kawasankia axrii	<u>967.95</u>	96.8 <mark>94.1</mark>	97.5	<mark>95</mark> 1.40	100		

The percent similarity was calculated by use of 1746 - 1790 bases. All the strains used were the type strains or the authentic strains (See Fig. 2).

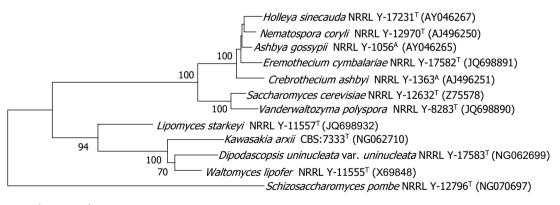
230


Table 3. The pair-wise sequence similarity in the five species.

Species	1	2	3	4	5
1. Ashbya gossypii	100				
2. Crebrothecium ashbyi	96.3	100			
3. Eremothaecium cymbalariae	96.1	95.9	100		
4. Nematospora cryli	95.1	95.4	96.7	100	
5. Holleya sinecauda	93.8	94.1	95.4	96.5	100

Data was cited from the phylogenetic tree based on the concatenated sequences from LSU, SSU, ITS, mitochondrial SSU, cytochrome oxidase II and elongation factor-1α (Kurtzman and de Hoog 2011). The percent similarities were calculated by use of the total 5500 bases.

- 2/4



0.02 K_{nuc}.

Fig. 1. The phylogenetic tree based on the 26S rRNA gene D1/D2 domain sequences with 559 bases for the five species derived from the neighbour-joining method. The numerals at the nodes of the respective branches indicate bootstrap values (%) deduced from 1000 replications.

0.01 Knuc.

Fig. 2. The phylogenetic tree based on the 18S rRNA gene sequences with 1661 bases for the five species derived from the neighbour-joining method. The numerals at the nodes of the respective branches indicate bootstrap values (%) deduced from 1000 replications.