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Abstract Cowling's theorem asserts that applying the first-order derivative of the stream function of the 

magnetic field results in a value of zero and its second-order derivative does not result in a value of zero. 

Thus, a contradiction to the magnetic maximum or minimum pole in the electromagnetic induction 

equation occurs. However, a different interpretation of this assertion is presented in this paper. If Ohm's 

law in Cowling's theorem includes an electromotive force due to a vector potential, this equation can be 

satisfied, which is why the magnetic flux fluctuates. The self-excitation mechanism causes these 

fluctuations. In this paper, a theory that decomposes vector potential into inductance and current is 

introduced, and it is solved as an eigenvalue problem. Considering the suppression of convection by the 

Lorentz force is equally essential to understanding the stability of the magnetic fields. 
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1. INTRODUCTION 

Cowling's theorem [1] states that axisymmetric magnetic fields are not maintained 

in the axisymmetric convection of conductive fluids. Some of the reasons for this are as 

follows. The first-order derivative of the stream function of the magnetic field is zero, 

and its second-order derivative is not zero. Applying these results to the magnetic 

maximum or minimum pole (hereafter abbreviated as pole) causes a contradiction in the 
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electromagnetic induction equation. However, a different interpretation of this assertion 

is presented in this paper. 

Unless otherwise explained, symbols or similar symbols with the same meaning as 

in Cowling's theorem are used in this chapter only. In Cowling's theorem, Equation (2) 

does not include an electromotive force due to the vector potential calculated through 

Ohm's law. 

𝐽𝐽 = 𝜎𝜎(𝑐𝑐∧𝑯𝑯 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑉𝑉) 

It is added as shown below. 

𝐽𝐽 = 𝜎𝜎 �𝑐𝑐∧𝑯𝑯 −
𝟏𝟏
𝝕𝝕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑉𝑉� 

Reflecting this in the electromagnetic induction equation and organizing it yields the 

following: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
𝜎𝜎𝜇𝜇0

�𝜕𝜕
2𝜕𝜕

𝜕𝜕𝜛𝜛2 + 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑧𝑧2

− 1
𝜛𝜛
𝜕𝜕𝜕𝜕
𝜕𝜕𝜛𝜛
� + 1

𝜛𝜛
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜛𝜛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜛𝜛

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧
�   (c1) 

What happens if we substitute 𝜕𝜕𝜕𝜕
𝜕𝜕𝜛𝜛

= 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 0, 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝑧𝑧2

≠ 0 and 𝜕𝜕
2𝜕𝜕

𝜕𝜕2𝜛𝜛2 ≠ 0 in this 

equation? Of course, the right side does not become zero, and the left side fluctuates. 

That is, even if there is a specific pole and its second-order derivative value is not zero, 

this equation is satisfied. 

It can be understood that the magnetic flux decreases due to attenuation according to 

the first term on the right side. If the contradiction can be eliminated in this way in 

terms of a specific pole in attenuation, there will be no contradiction even if the 

magnetic flux increases. For example, a mechanism that acts like a negative resistance 

(𝜎𝜎 < 0 for conductivity) is considered equivalently. Therefore, a self-excitation 

mechanism will be considered later. 
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However, even if such a thing were to happen, it would be unreasonable to 

unilaterally increase it. We must think that in the long run, it will either stop or vibrate. 

This needs to be examined dynamically, but this is not the scope of this study. 

However, the stability of the magnetic field can be maintained by the suppression of 

convection by the Lorentz force. This is because in the case of convection of moderate 

strength, when the current grows significantly, convection is suppressed by the Lorentz 

force. 

As an example, the self-excitation mechanism is explained in detail below using a 

numerical calculation that decomposes the vector potential into inductance and current. 

In addition, the numerical calculation results are also introduced. 

The inductance is important for understanding this example. Here, an overview of 

how inductance is handled is described. As an axisymmetric convection, poloidal 

convection is considered. Since it is a convection of a conductive fluid, it is thought that 

multiple coaxially toroidal circular electrical circuits (hereinafter referred to as coils) 

move as a bundle in a poloidal manner. The inductance referred to above is the 

inductance of these coils. It refers to both the self-inductance and mutual inductance 

between the coils. 

When the coil moves in a poloidal manner, the coil moves in the radial direction and 

the cylindrical axial direction of the cylindrical coordinates. Then, the coil crosses the 

existing magnetic field and generates electricity. This power generation is self-excited, 

and it is solved as an eigenvalue problem. 

 
1. MECHANISM 

2.1 Description of the problem 
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To determine whether a magnetic field can fluctuate in the poloidal stream of a 

conductive fluid, a certain poloidal flow is set, and the induction equation (as a 

simultaneous equation expressed by inductances) is expressed in terms of toroidal vector 

potentials to calculate the current as an eigenvalue problem. The poloidal flow of a fluid 

occurs in a torus shape, as shown in Fig. 1, where U is the poloidal velocity, R0 is the 

radius of the poloidal flow, and r is the radius of an example point on the torus from the 

Z axis. There are an infinite number of coils in the coil bundle. Here, only a part of the 

coils shown below will be considered. 

A representative cross-section of the torus (Y–Z plane in Fig. 1) is shown in Fig. 

2(a). The stream is divided into toroidal segments for calculation as coils (Fig. 2(b)). In 

this figure, Z is the center axis, and Ra is the radial axis of the cylindrical coordinates 

(equivalent to the Y axis in Fig. 1), where the circle indicates the cross-section of the torus. 

Pc is the center of the flow, where r0 and z0 are the elements of position Pc in the Ra and 

Z directions, respectively. Notably, z0 is at the coordinates (0,0), and Pc is at (r0,0). In Fig. 

2(a), P is a representative position at which the flow velocity vector U is calculated; ur 

and uz are the elements of U in the Ra and Z directions, respectively; φ is an angle between 

the Ra axis and Point P; and r is the element of Point P in the Ra direction. Fig. 2(b) shows 

the definition of the coils used to define the flow torus. Sixteen coils are considered, where 

n refers to the coil number. The dotted lines indicate the coaxial coils (i.e., the region 

occupied by the fluid), which are separated by the thickness T. There are multiple coils 

that wind only once around the Z axis, and the coils move in the direction of U with radius 

R0. Electric current runs separately in each coil in the θ direction that orbits the Z axis. 
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Although the coils can move, the later calculation of the eigenvalues assumes the state of 

the coils in a brief moment, Δt. 

Figs. 3(a) and (b) show the top and side views, respectively, of a set of any two of 

the coaxial coils shown in Fig. 2 to explain the relationship between the electric current 

(I) and vector potential (A). In addition, a 3D image of the coils is shown in Fig. 4 to 

clarify their relationship with each other. Each coil is arrayed coaxially with the Z axis, 

and they are parallel to each other. X, Y, and Z are the axes of the rectangular Cartesian 

coordinate system shown in Fig. 3. Cj is Coil j, in which the current Ij flows, and Ci is 

Coil i, which obtains the vector potential Aj induced by the current Ij running in Coil Cj. 

θ is the angle of rotation around the Z axis, starting from the Y axis. Here, ri and rj are the 

radii of Ci and Cj, respectively. Furthermore, dsi and dsj are minute lengths of Ci and Cj 

for integration, respectively, where dsi is placed on the X axis (θ = 0), and dsj is placed at 

θ with a distance l between them to define the range of the integral. Idsj is the contribution 

to the current over dsj, where Adsj is the vector potential induced by Idsj. dAj is the element 

of Adsj in the X direction, and it is integrated with respect to θ to obtain Aj. Φi is the total 

flux linking Ci. 

 

1.2 Calculation of the magnetic properties 

To determine the fluctuation in the magnetic field in the coils described in the previous 

section, the current is calculated using Ohm’s law with the electric field [2]. 

𝑱𝑱 = 𝜎𝜎(𝑬𝑬 + 𝑢𝑢 × 𝑩𝑩)         (1) 

Here, J is the current density; σ is the electric conductivity; u is the velocity of the 

conductive fluid; and B is the magnetic field, which can be found using Eq. (2); 𝒖𝒖 × 𝑩𝑩 is 
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the motion of the electric field; and E is the electric field potential, which can be found 

using Eq. (3). 

𝑩𝑩 = 𝛁𝛁 × 𝑨𝑨          (2) 

𝑬𝑬 = −𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕

+ 𝛁𝛁𝜑𝜑′         (3) 

Here, 𝜑𝜑′ is a scalar potential, A is a vector potential, and t represents the time. 

To derive an induction equation expressed in vector potentials from Ohm's law, 

these equations are combined as follows. 

𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕
− 𝒖𝒖 × (𝛁𝛁 × 𝑨𝑨) = 𝛁𝛁𝜑𝜑′ − 𝑱𝑱

𝜎𝜎
       (4) 

To apply this induction equation for coils, the factor 2πr (r = coil radius) is 

multiplied as an integral around the coil on both sides of the equation because the current 

is the same around Cj. Assuming J = I/S, where I is the toroidal current and S is the cross-

sectional area of the coil, Eq. (4) can be rewritten as follows: 

𝜕𝜕
𝜕𝜕𝜕𝜕

(2𝜋𝜋𝑔𝑔𝑖𝑖𝑨𝑨) − 𝒖𝒖 × (𝛁𝛁 × 2𝜋𝜋𝑔𝑔𝑖𝑖𝑨𝑨) = −2𝜋𝜋𝑟𝑟𝑖𝑖
𝜎𝜎

𝑰𝑰
𝑆𝑆
      (5) 

Here, 𝜑𝜑′  is ignored because it is assumed that going around along Ci at that 

gradient will result in a value of zero. Furthermore, Eq. (6) shows the relationship between 

A and the inductance L [3]. Here, the total magnetic flux linking the coil, Φ, is used in 

place of L, where Φ = LI. The subscripts i and j refer to the coil numbers defined in Fig. 

2, enabling the development of simultaneous equations. 

𝛷𝛷𝑖𝑖 = ∮ 𝑨𝑨𝑗𝑗𝑔𝑔𝑠𝑠𝑖𝑖𝐶𝐶𝑖𝑖
         (6) 

Here, Φi is the flux of Coil Ci, and dsi is a minute part of Coil Ci. 

In this arrangement of coils, all the coils are arrayed coaxially with the Z axis and parallel 

to each other. Thus, Aj is the same around Ci. Therefore, Φi = 2πriAj when Φi = LijIj. Then, 
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the relationship between Lij and Aj is as follows. Lij is a matrix that represents the 

inductance. Only the diagonal element represents the self-inductance, and the other 

elements represent the mutual inductance. Thus, it is hereafter referred to as Mij. 

𝑨𝑨𝑗𝑗 = 𝑰𝑰𝑗𝑗
2𝜋𝜋𝑟𝑟𝑖𝑖

𝑀𝑀𝑖𝑖𝑗𝑗         (7) 

As will be discussed later, both 𝑨𝑨𝑗𝑗 and 𝑰𝑰𝑗𝑗 have only a toroidal component along the coil. 

By substituting Eq. (7) into Eq. (5), the following equation is obtained. 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑀𝑀𝑖𝑖𝑗𝑗𝑰𝑰𝑗𝑗� − 𝒖𝒖 × �𝛁𝛁 × 2𝜋𝜋𝑔𝑔𝑖𝑖𝑨𝑨𝑗𝑗� = −2𝜋𝜋𝑟𝑟𝑖𝑖

𝜎𝜎𝑆𝑆
𝑰𝑰𝑗𝑗      (8) 

Here, σ is the conductance of the fluid, and ri is the radius from the Z axis. However, the 

second term on the left-hand side of Eq. (8) is complicated. Thus, it must be addressed 

separately. It is considered by decomposing the term as follows. 

𝒖𝒖 × �𝜵𝜵 × 𝑨𝑨𝑗𝑗� = �
𝑢𝑢𝑖𝑖𝑟𝑟
0
𝑢𝑢𝑖𝑖𝑧𝑧

� ×

⎣
⎢
⎢
⎢
⎡
1
𝑟𝑟𝑖𝑖
�−𝑔𝑔𝑖𝑖

𝜕𝜕𝑨𝑨𝑗𝑗𝑗𝑗
𝜕𝜕𝑧𝑧𝑖𝑖

�
0

1
𝑟𝑟𝑖𝑖
�𝜕𝜕𝑟𝑟𝑖𝑖𝑨𝑨𝑗𝑗𝑗𝑗

𝜕𝜕𝑟𝑟𝑖𝑖
� ⎦
⎥
⎥
⎥
⎤

= �
𝑢𝑢𝑖𝑖𝑟𝑟
0
𝑢𝑢𝑖𝑖𝑧𝑧

� ×

⎣
⎢
⎢
⎢
⎡ − 𝜕𝜕𝑨𝑨𝑗𝑗𝑗𝑗

𝜕𝜕𝑧𝑧𝑖𝑖
0

1
𝑟𝑟𝑖𝑖
𝑨𝑨𝑗𝑗𝑗𝑗 + 𝜕𝜕𝑨𝑨𝑗𝑗𝑗𝑗

𝜕𝜕𝑟𝑟𝑖𝑖 ⎦
⎥
⎥
⎥
⎤

=

�
0

−𝑢𝑢𝑖𝑖𝑧𝑧
𝜕𝜕𝑨𝑨𝑗𝑗𝑗𝑗
𝜕𝜕𝑧𝑧𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟(1
𝑟𝑟𝑖𝑖
𝑨𝑨𝑗𝑗𝑗𝑗 + 𝜕𝜕𝑨𝑨𝑗𝑗𝑗𝑗

𝜕𝜕𝑟𝑟𝑖𝑖
)

0
�       (9) 

Here, rotAj is decomposed into cylindrical coordinates, and Subscripts r, θ, and z indicate 

the component directions in the cylindrical coordinates, namely, the radius from the Z 

axis, the angle around the Z axis, and the Z direction, respectively. Then, since the current 

only runs through the toroidal coil, only the toroidal 𝑨𝑨𝑗𝑗𝑗𝑗 component remains with the 

vector potential. Furthermore, since it is uniform in the toroidal direction, the 𝜕𝜕
𝜕𝜕𝑗𝑗

 

component is zero, and the description is excluded. Therefore, Aj has a component that is 
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only in the θ direction. Thus, the other components of Aj are omitted. Eq. (10) is obtained 

by multiplying Eq. (9) by 2πri, substituting Eq. (7) and including only the θ component. 

2𝜋𝜋𝑔𝑔𝑖𝑖 �−𝑢𝑢𝑖𝑖𝑧𝑧
𝜕𝜕𝑨𝑨𝑗𝑗𝑗𝑗
𝜕𝜕𝑧𝑧𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟 �
1
𝑔𝑔𝑖𝑖
𝑨𝑨𝑗𝑗𝑗𝑗 +

𝜕𝜕𝑨𝑨𝑗𝑗𝑗𝑗
𝜕𝜕𝑔𝑔𝑖𝑖

�� = −𝑢𝑢𝑖𝑖𝑧𝑧
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑧𝑧𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟 �
1
𝑔𝑔𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 +

𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑔𝑔𝑖𝑖

� 

= −𝑢𝑢𝑖𝑖𝑟𝑟
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑟𝑟𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑧𝑧
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑧𝑧𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗      (10) 

  This is replaced by the second term on the left-hand side of Eq. (8) to obtain Eq. 

(11). 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗� − (−𝑢𝑢𝑖𝑖𝑟𝑟

𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑟𝑟𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑧𝑧
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑧𝑧𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗) = −2𝜋𝜋𝑟𝑟𝑖𝑖

𝜎𝜎𝑆𝑆
𝐼𝐼𝑗𝑗𝑗𝑗  (11) 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗� + 𝑢𝑢𝑖𝑖𝑟𝑟

𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑟𝑟𝑖𝑖

+ 𝑢𝑢𝑖𝑖𝑧𝑧
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑧𝑧𝑖𝑖

+ 𝑢𝑢𝑖𝑖𝑟𝑟
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 = −2𝜋𝜋𝑟𝑟𝑖𝑖

𝜎𝜎𝑆𝑆
𝐼𝐼𝑗𝑗𝑗𝑗   (12) 

The fourth term on the left side becomes rapidly weak when moving away from 

the cylindrical axis, so it will be omitted hereafter. Since the first three terms on the left-

hand side of Eq. (12) are equivalent to a total differential, they can be replaced as 

follows: 

𝑔𝑔
𝑔𝑔𝜕𝜕
�𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗� = −

2𝜋𝜋𝑔𝑔𝑖𝑖
𝜎𝜎𝜎𝜎

𝐼𝐼𝑗𝑗𝑗𝑗 

When the equation is transformed and arranged, Eq. (13) is obtained. 

 

𝑔𝑔𝑀𝑀𝑖𝑖𝑗𝑗

𝑔𝑔𝜕𝜕
𝐼𝐼𝑗𝑗𝑗𝑗 + 𝑀𝑀𝑖𝑖𝑗𝑗

𝑔𝑔𝐼𝐼𝑗𝑗𝑗𝑗
𝑔𝑔𝜕𝜕

= −
2𝜋𝜋𝑔𝑔𝑖𝑖
𝜎𝜎𝜎𝜎

𝐼𝐼𝑗𝑗𝑗𝑗 

𝑔𝑔𝐼𝐼𝑗𝑗𝑗𝑗
𝑔𝑔𝜕𝜕

= 𝑀𝑀𝑖𝑖𝑗𝑗
−1(−

𝑔𝑔𝑀𝑀𝑖𝑖𝑗𝑗

𝑔𝑔𝜕𝜕
𝐼𝐼𝑗𝑗𝑗𝑗 −

2𝜋𝜋𝑔𝑔𝑖𝑖
𝜎𝜎𝜎𝜎

𝐼𝐼𝑗𝑗𝑗𝑗) 

𝛬𝛬𝐼𝐼𝑗𝑗𝑗𝑗 = −𝑀𝑀𝑖𝑖𝑗𝑗
−1 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

𝑑𝑑𝜕𝜕
𝐼𝐼𝑗𝑗𝑗𝑗 − 𝑀𝑀𝑖𝑖𝑗𝑗

−1𝑅𝑅𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗      (13) 

Here, Λ indicates the eigenvalues. These simultaneous equations are used here to 

obtain the Λ values. Rij is a matrix of the resistance and a function of the coil’s 



9 

 

 

circumference and cross-sectional area S, where S is calculated from the thickness T and 

the section of the flow course as S = (2πR0T)/16. Then, Rij = 2πri / (σS) =(16ri)/(σR0 T). 

Rij is a diagonal matrix because the voltage drop exists only for i = j. 

 The inductance used in the example calculation is as follows. In the coil description 

shown in Fig. 2, the coil’s cross-sectional area and shape are disregarded in the calculation 

of the inductance because these geometrical factors introduce a large degree of complexity. 

Therefore, the coil is treated as a thin line as an approximation in Figs. 3(a) and (b). 

Subsequently, Aj is calculated as follows [2]: 

𝑨𝑨𝑗𝑗 = 𝜇𝜇
4𝜋𝜋 ∮

𝑱𝑱
𝑙𝑙𝐶𝐶𝑗𝑗
𝑔𝑔𝑉𝑉 = 𝜇𝜇

4𝜋𝜋 ∮
𝑱𝑱𝑆𝑆
𝑙𝑙𝐶𝐶𝑗𝑗
𝑔𝑔𝑠𝑠𝑗𝑗 = 𝜇𝜇

4𝜋𝜋 ∮
𝑰𝑰𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗

cos 𝜃𝜃 𝑔𝑔𝑠𝑠𝑗𝑗 = 𝜇𝜇
4𝜋𝜋
𝑰𝑰𝑗𝑗 ∮

cos𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗
𝑔𝑔𝑠𝑠𝑗𝑗,  (14) 

where 𝑙𝑙  is the distance between dsi and dsj, µ is the magnetic permeability, dV is the 

minute volume, S is the cross-sectional area of the current (i.e., the coil), Ij = JS is the 

current, and the directional element for dsi of Ij is 𝑰𝑰𝑗𝑗 cos 𝜃𝜃. When Eq. (7) is substituted for 

Aj in Eq. (14). Eq. (15) can be obtained. 

𝑀𝑀𝑖𝑖𝑗𝑗 = 2𝜋𝜋𝑟𝑟𝑖𝑖
𝐼𝐼𝑗𝑗

𝜇𝜇
4𝜋𝜋
𝐼𝐼𝑗𝑗 ∮

cos𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗
𝑔𝑔𝑠𝑠𝑗𝑗 = 2𝜋𝜋𝑔𝑔𝑖𝑖

𝜇𝜇
4𝜋𝜋 ∮

cos𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗
𝑔𝑔𝑠𝑠𝑗𝑗     (15) 

Here, Figs. 3(a) and (b) and Eq. (15) are used to explain the tendency of the 

inductance changing due to convection. Since the variable zi is not included in Eq. (15), 

𝑀𝑀𝑖𝑖𝑗𝑗 changes only with ri. Therefore, the inductances change only due to the movement 

in the Y (Ra) direction of the convection, and there is no change in the Z direction. The 

fact that the coil crosses the existing magnetic field and generates power is due to a 

change in inductance. Therefore, power generation occurs only by the radial movement 

of convection. Notably, zi is contained in Eq. (18). 𝑙𝑙𝑘𝑘 will be described later. However, 

it cannot be modified in the partial derivative of the inductance. This is because the 
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partial derivative has a principle that does not change anything other than the target 

variable, so the pair of mutual inductance cannot be changed. 

When µ is set to 4π × 10-7 H/m (vacuum conditions), Eq. (16) is obtained. 

𝑀𝑀𝑖𝑖𝑗𝑗 = 2𝜋𝜋𝑔𝑔𝑖𝑖 ∮
cos𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗
𝑔𝑔𝑠𝑠𝑗𝑗 × 10−7      (16) 

Mij is calculated by summation, where Cj is divided into k = 100 equal parts, Δsj, as 

follows. 

𝑀𝑀𝑖𝑖𝑗𝑗 ≒ 2𝜋𝜋𝑔𝑔𝑖𝑖 ∑
cos𝑗𝑗𝑘𝑘∆𝑠𝑠𝑗𝑗

𝑙𝑙𝑘𝑘
100
𝑘𝑘=1 × 10−7     (17) 

𝑙𝑙𝑘𝑘 = ��𝑔𝑔𝑖𝑖cos𝜃𝜃𝑘𝑘 − 𝑔𝑔𝑗𝑗�
2 + (𝑔𝑔𝑖𝑖 sin𝜃𝜃𝑘𝑘)2 + �𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗�

2
    (18) 

The angle of a specific coil, n, is given by φn = 2πn/16, as shown in Fig. 2, where rn = r0 

+ R0 cosφn and zn = R0 sinφn. Earlier, i and j were used in the mutual inductance 

calculations to distinguish between the coils that received electromotive force and the 

coils that had a current flow. Each number n is replaced by i or j for any two of the coils. 

Here, ( ̇ ) is the same as 𝑑𝑑
𝑑𝑑𝜕𝜕

. �̇�𝑀𝑖𝑖𝑗𝑗 is calculated as the difference in 𝑀𝑀𝑖𝑖𝑗𝑗 induced by the flow 

velocity over a period of a minute, divided by Δt (ex. 1.0×10-6 s). The velocity U shown 

in Fig. 2 depends on the φn of each coil and is calculated as follows: 

|𝑼𝑼| = 𝑟𝑟0
𝑟𝑟𝑖𝑖
𝜔𝜔𝑅𝑅0,𝑢𝑢𝑟𝑟 = − |𝑼𝑼|sinφ𝑛𝑛,  𝑢𝑢𝑧𝑧 = |𝑼𝑼|cosφ𝑛𝑛,   (19) 

where ω is the angular velocity of the flow. 𝑟𝑟0
𝑟𝑟𝑖𝑖

 is a coefficient that adjusts based on the 

position of 𝑔𝑔0 so that the flow rate satisfies the continuity equation. 

Furthermore, 𝑀𝑀𝑖𝑖𝑗𝑗
−1 is the inverse matrix of Mij. 

 

3. DISCUSSION AND RESULTS 
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3.1. Discussion 

Notably, Eq. (13) implies that the −𝑀𝑀𝑖𝑖𝑗𝑗
−1�̇�𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 term may become positive (i.e., 

�̇�𝑀𝑖𝑖𝑗𝑗 becomes negative) because �̇�𝑀𝑖𝑖𝑗𝑗 depends on the velocity of the fluid. Therefore, the 

eigenvalue (Λ) is also dependent on the velocity, and some of the eigenvalues may be 

positive, i.e., eigenvectors that increase over time. The inductance Mij in Eq. (15) is 

proportional to R0 and r0 because ri, l, and ds originate from R0 and r0. Therefore, �̇�𝑀𝑖𝑖𝑗𝑗 is 

also proportional to R0 and r0. On the other hand, the −𝑀𝑀𝑖𝑖𝑗𝑗
−1𝑅𝑅𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗  term is always 

negative and implies the attenuation of the eigenvalue. Furthermore, Rij is inversely 

proportional to R0 and r0 because in the equation 𝑅𝑅𝑖𝑖𝑗𝑗 = (16𝑔𝑔𝑖𝑖)/(𝜎𝜎𝑅𝑅0𝑇𝑇) , R0, T, and ri 

originate from and are inversely proportional to R0 and r0. Larger systems imply that the 

eigenvectors are less likely to attenuate. Since the effects of both above terms need to be 

viewed relatively, 𝑀𝑀𝑖𝑖𝑗𝑗
−1 in both sections is excluded. The above is clearly indicated by 

the results for the four presented conditions in the Results section. 

Moreover, obtaining the eigenvalue under which the induction term exceeds the 

attenuation term is necessary to specifically understand the process. When the inductance 

of the coils changes by the flow velocity, the eigenvalues determined from Eq. (13) enable 

the interaction between the changes in the coil inductance and resistance to be shown as 

a fluctuation in the toroidal current. This result indicates a fluctuating magnetic field. 

 Some eigenvalues become positive under certain conditions, indicating that their 

eigenvector would increase over time. A positive eigenvalue exponentially increases its 

eigenvector (the current mode indicates each current in the coils; however, notably, its 

absolute value and polarity are not determined because of the character of their 

eigenvector). In contrast, a negative eigenvalue exponentially decreases its eigenvector. 



12 

 

 

However, a negative eigenvalue means a decrease in its eigenvector (attenuation of the 

current state) but does not reduce the eigenvector of other eigenvalues (for example, 

positive eigenvalues). Of course, this is only true in a case where each eigenvector is 

orthogonal. This calculation does not show perfect orthogonality; if the matrix on the 

right-hand side of Eq. (13) is separated into symmetric and alternating components, and 

the latter is not zero, imperfect orthogonality occurs. However, this is attributable to the 

coarse calculation. As a potential future work, numerical calculations are necessary to 

increase the order of the matrix and set the convection current over a wide area to evaluate 

the orthogonality of this system. However, this was beyond the scope of this theoretical 

contribution. Notably, even if the orthogonality is not perfect, the positive eigenvalues 

are expected to have some influence on the generated magnetic field. In the case of the 

large number of positive eigenvalues calculated in this study, it is expected that they 

would be dominant and increase the current eigenvector. The eigenvector of a negative 

eigenvalue is only influential if there is a current generated by the eigenvector of a 

positive eigenvalue. This can suppress the eigenvector with the positive eigenvalue but 

cannot reduce it to zero. Therefore, it is expected that the increasing trend in the 

eigenvector would be sustained by the positive eigenvalues, and the extent of this would 

depend on the specific conditions. 

 

3.2. Results 

Here, several eigenvalue case studies are described based on Eq. (13), as presented 

in the previous section. Four different cases are defined, as shown in Table 1. Table 2 lists 

the eigenvalues Λ(λ1–λ16). Positive values contribute to the eigenvector increasing over 
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time, while negative values make it decrease over time. The positive values are 

highlighted in bold in the table. The general conditions assumed in the calculations of the 

eigenvalues were σ = 1.0 × 104 S/m (based on typical plasma conductivity [4]) and 

T=0.1R0. 

In the case of Condition 1, λ16 is the Λ value with the largest positive value, which 

implies that the eigenvector increases in magnitude over time. The number of positive 

eigenvalues depends on the size of the system and the flow velocity. Therefore, in the 

case of Condition 2, which has a higher ω than Condition 1 but the same system 

dimensions as Condition 1, three of the Λ values are positive. Therefore, increasing the 

flow velocity causes the eigenvector magnitude to increase over time. In the case of 

Condition 3, which has a lower ω than Condition 1 but the same dimensions as Condition 

1, all the Λ values are negative. Therefore, the eigenvector magnitude would only decrease, 

and the magnetic field would not be sustained over time. In the case of Condition 4, the 

dimensions are an order larger than those in Condition 1. Because ω is an angular velocity, 

it scales proportionally. Thus, ω was decreased accordingly by an order of magnitude to 

make it comparable with that of Condition 1. In this case, three of the Λ values are positive. 

Therefore, it is easy to increase the eigenvector magnitude over time (i.e., maintain a 

magnetic field) for larger systems. 

In addition, Table 3 shows an eigenvector (a current mode) of the maximum 

eigenvalue in Condition 1. This condition indicates that the absolute value of the current 

is maximized in Coil 6, which is highlighted in bold. This means that the current increases 

exponentially with its eigenvalue as an exponent while maintaining this mode. The 

magnetic field due to this also increases. This magnetic field is rotationally symmetric 
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with the axis of the cylindrical coordinates, but the position of this current is different 

from the center of the convection. Thus, the magnetic flux path is different from the 

convection path, as shown in Fig. 5. However, this figure symbolically depicts the 

magnetic field due to the thin convection assumed in the calculation example. 

 

4. CONCLUSION 

 Cowling's theorem states that the left side of Eq. (c1) should be zero for stability 

maintenance. Therefore, since the right side does not equal zero at the pole point, the 

axisymmetric magnetic field cannot be maintained because this equation cannot be 

satisfied. In my theory, this equation should include the electromotive force due to the 

vector potential. This leads to this equation showing that the magnetic field fluctuates. 

Since it fluctuates, it does not maintain stability, as Cowling's theorem suggests. However, 

my theory is that stability maintenance is achieved by the suppression of convection by 

the Lorentz force. Other theories do not have this viewpoint. To the best of the author’s 

knowledge, this is a novel idea; in addition, there have been no other studies that 

calculated specific eigenvalues and showed how the magnetic field generation changed 

with the velocity of the fluid and the size of the system. Therefore, I think the calculation 

method presented here for illustration is equally useful. 

The methodology presented here is relevant for conditions in which a poloidal 

axisymmetric magnetic field is generated. In the conductive fluid of a celestial body, 

poloidal convection may occur as a result of downflow due to a radial temperature 

gradient or chemical effects, as shown in Fig. 5. The sun and Earth have poloidal 

axisymmetric magnetic fields. However, the generation mechanism might be to some 

extent different from that assumed here. While this mechanism probably includes that 
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described here by the presented theory, for the moment, it is probably indistinguishable 

because it is mixed. 

What about artificial systems such as liquid sodium and plasma furnaces? Since 

the scale is small, it seems to be disadvantageous in terms of scale. Considering the scale 

alone, it seems impossible to cause this phenomenon. However, if it is artificial, 

convection can be devised. For example, concentrate convection near the cylindrical axis 

can be achieved. Closer to the cylindrical axis, stronger induction is possible. In addition, 

if the convection is very close to the cylindrical axis, the term deleted from Eq. (12) may 

be affected. Therefore, this mechanism can still occur regardless of the small scale. 

In this paper, calculations for a specific fluid flow (a thin layer of fluid under 

poloidal flow) are performed. The convection used in this paper is intended to provide a 

calculation example. If realistic convection is known, it can be calculated. Since the flow 

velocity can be set at any position, convection in a thin region, such as the convection 

shown here, is not necessary. In other words, axisymmetric and poloidal convection can 

be calculated by setting the convection to be distributed in an arbitrary region. 

To apply this theory to real systems, it is necessary to consider the dynamics with 

respect to the Lorentz force and other factors [5]. To demonstrate the possibility and 

magnitude of the magnetic field generation as a function of the size and flow velocity of 

the system, the scale of the sun and its corresponding plasma conductivity were assumed 

here as a representative example. However, I think that the mathematics presented in this 

paper will be useful in studies regarding the sun, Earth and other celestial bodies, plasma 

furnaces, and sodium experiments. 
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FIGURES 

 
Fig. 1. Schematic of the toroidal geometry. 

 

 

Fig. 2. Schematics of the (a) velocity of the fluid flow and (b) defined coils in the cross-

section of the convection (Y–Z plane in Fig. 1). 
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Fig. 3. Relationship between the electric current (I) and vector potential (A) for a set of 

any two coils shown in Fig. 2: (a) top view and (b) side view of the torus. 

 

Fig. 4. 3D view of the coaxial coils. 
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Fig. 5. Examples of the poloidal axisymmetric convection in a celestial body. The solid 

arrows indicate the fluid flow, while the dashed lines indicate the induced magnetic field. 
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FIGURES 

Table 1. Definitions of the case conditions. 
Condition R0 (m) r0 (m) ω (rad/s) 

1 1.0×103 2.0×103 2π(3.0×10-4) 
2 1.0×103 2.0×103 2π(3.0×10-3) 
3 1.0×103 2.0×103 2π(2.0×10-4) 
4 1.0×104 2.0×104 2π(3.0×10-5) 

 
Table 2. Eigenvalues Λ of the four conditions shown in Table 1. 

Eigenvalues Condition 1 Condition 2 Condition 3 Condition 4 
λ1 -5.295×10-2 -5.953×10-2 -5.290×10-2 -5.952×10-4 
λ2 -3.228×10-2 -3.852×10-2 -3.224×10-2 -3.852×10-4 
λ3 -2.297×10-2 -2.779×10-2 -2.292×10-2 -2.779×10-4 
λ4 -1.770×10-2 -2.757×10-2 -1.766×10-2 -2.757×10-4 
λ5 -1.434×10-2 -1.999×10-2 -1.433×10-2 -1.999×10-4 
λ6 -1.203×10-2 -1.449×10-2 -1.205×10-2 -1.449×10-4 
λ7 -1.066×10-2 -1.087×10-2 -1.073×10-2 -1.087×10-4 
λ8 -8.974×10-3 -1.022×10-2 -9.006×10-3 -1.022×10-4 
λ9 -8.860×10-3 -7.772×10-3 -8.902×10-3 -7.772×10-5 
λ10 -6.559×10-3 -6.767×10-3 -6.481×10-3 -6.767×10-5 
λ11 -6.490×10-3 -5.103×10-3 -6.461×10-3 -5.103×10-5 
λ12 -5.036×10-3 -3.838×10-3 -4.539×10-3 -3.838×10-5 
λ13 -4.193×10-3 -2.299×10-3 -4.137×10-3 -2.299×10-5 
λ14 -3.101×10-3 1.034×10-3 -2.945×10-3 1.034×10-5 
λ15 -1.770×10-3 3.203×10-3 -1.864×10-3 3.203×10-5 
λ16 6.924×10-4 2.332×10-2 -3.298×10-5 2.332×10-4 
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Table 3. Eigenvector (Current Mode) of the Maxim Eigenvalue on Condition 1. 
Coil numbers Eigenvector (Current Mode) 

0 4.844×10-2 
1 8.094×10-2 
2 1.300×10-1 
3 2.060×10-1 
4 3.193×10-1 
5 4.637×10-1 
6 5.711×10-1 
7 4.900×10-1 
8 2.006×10-1 
9 -1.664×10-2 
10 -6.302×10-2 
11 -4.861×10-2 
12 -2.820×10-2 
13 -1.005×10-2 
14 6.949×10-3 
15 2.535×10-2 

 
 


