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Abstract This paper demonstrates that it is possible to induce axisymmetric magnetic fields by a poloidal flow to 

determine the effect on the magnetic field caused by a certain flow of a conductive fluid. Using a simultaneous 

equation expressed by inductances induced from the induction equation expressed by a vector potential and treating 

the current as an eigenvalue problem, it is shown that different current modes can exist. While there are many different 

expressions of the electromagnetic induction equation, the use of the simultaneous equation expressed by inductances 

is novel. Each mode varies according to its eigenvalue, which can be positive under certain conditions, resulting in an 

eigenvector that increases over time, thereby maintaining a magnetic field, at least in a poloidal flow. Several case 

studies based on the dimensions and plasma properties of a star are reviewed; however, there are no dimensional 

restrictions to the provided equations, which are expected to be appropriate for various applications. For example, the 

proposed methodology could be applied to enhance the understanding of specific phenomena occurring in celestial 

bodies (planets and stars). 

 

Keywords: Poloidal flow, dynamo theory, electromagnetic induction, inductance, conductive fluid, 

magnetohydrodynamics 

 

1. INTRODUCTION 

Over a century ago, Larmor hypothesized that the Sun’s magnetic field may be a result of 

electromagnetic induction caused by the flow of an electrically conductive fluid, which is now 
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known as the dynamo effect [1]. The dynamo theory describes the process of magnetic field 

generation by self-induction in electrically conducting fluids [2]. The mechanism driving the fluid 

flow depends on the system; in the case of planets and stars, convection is prominent, whereas 

turbulence or differential rotation plays a role in other systems. The mechanism that equilibrates 

the magnetic field is the Lorentz force in the momentum equation, which alters the flow 

sufficiently to prevent it from further amplifying the field [3]. Although mainly used in 

astrophysics and geophysics, magnetohydrodynamic theories such as the dynamo theory are also 

relevant in plasma physics, metallurgy, and liquid sodium [4] experiments used to simulate the 

molten core of the Earth. 

While dynamo theorems clarify the conditions under which dynamos can exist, there are 

many anti-dynamo theorems (ADTs) that specify conditions under which dynamos cannot be 

maintained. The first ADT was proposed by Cowling in 1934 [5]; it states that an axisymmetric 

magnetic field cannot be maintained by axisymmetric fluid motion [6], and non-axisymmetric 

modes are needed to explain the dynamo mechanism. This is known as Cowling's ADT or the 

axisymmetric ADT. Axisymmetric magnetic fields are generally decomposed by ohmic losses into 

a poloidal field and an azimuthal component. Differential rotation or other mechanisms can stretch 

the poloidal field, thereby converting it into an azimuthal field. This process can amplify the 

magnetic field when the source is a poloidal field. However, in two-dimensional geometry, the 

poloidal field eventually decays because there is no corresponding source. The flow of the 

conducting fluid is assumed to advect the poloidal field; however, because of axisymmetry, the 

poloidal field cannot be amplified by this mechanism [7]. 

This ADT has been very difficult to comprehensively prove. It was revisited relatively 

recently, and some open questions were answered [8]. This ADT has been considered for 
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stationary and dynamic systems, non-solenoid flows, variable conductivity, and other specific 

cases. This theorem has been well proven for many specific cases; however, the substantial 

complexity of magnetohydrodynamic systems implies that there may be some cases wherein the 

theorem does not hold. In general, the ADTs all highlight that successful dynamos have a low 

degree of symmetry. 

In previous studies, it was assumed that axisymmetric magnetic fields do not occur with 

simple convection (but require aspects such as turbulence). However, this study assumes a case 

where this can be true. Because of the extraordinary complexity of natural and experimental 

systems involving conducting fluids, simplifications are made to the mathematics to enable 

analysis [2]. One of the most successful methods is kinematic dynamo analysis, where the types 

of fluid motion that can sustain a dynamo are generally investigated by solving the magnetic 

induction equation, often in the form of 𝜕𝜕𝑡𝑡𝐵𝐵 = 𝑅𝑅𝑚𝑚∇ ×  (𝑢𝑢 × 𝐵𝐵) + ∇2𝐵𝐵. Here, B is the magnetic 

flux density, u is the velocity, and Rm is the magnetic Reynolds number of the conductive fluid, 

which quantifies the effectiveness of the fluid motion in amplifying the magnetic field against 

decay due to electrical resistance [9]. Many different induction equations have been presented. 

These have been modified depending on the specific boundary conditions, geometry, scale, etc., 

of the system of interest. 

To the best of the author’s knowledge, most theoretical treatments express the 

electromagnetic induction formula in terms of B (or the magnetic field strength, H). However, the 

novelty of this study is that the induction formula is expressed in terms of the inductance. Thus, 

the current and vector potential can be expressed as toroidal coils, making it easier to observe the 

behavior of the current mode (as eigenvectors). Furthermore, the vector potential can be replaced 

by the inductance, enabling calculations using a common expression for the inductance. The 
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presented theory is expected to be useful for studying magnetic field generation in systems with 

various sizes and flow velocities. However, case studies assuming the dimensions and plasma 

conductivity of the Sun are used as examples. Other relevant topics could include planetary 

systems, plasma furnaces, and liquid sodium experiments. 

 

2. MECHANISM 

2.1 Description of the problem 

 

Fig. 1. Schematic of the toroidal geometry. 
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Fig. 2. Schematics of the (a) velocity of the fluid flow and (b) defined coils in the cross-section of 

convection (Y–Z plane in Fig. 1).  

To determine whether a magnetic field can fluctuate in the poloidal stream of a conductive 

fluid, a certain poloidal flow is set, and the induction equation (as a simultaneous equation 

expressed by inductances) is expressed in terms of toroidal vector potentials to calculate the current 

as an eigenvalue problem. The poloidal flow of a fluid occurs in a torus shape, as shown in Fig. 1, 

where U is the poloidal velocity, R0 is the radius of the poloidal flow, and ri is the radius of an 

example point on the torus from the Z axis. A representative cross-section of the torus (Y–Z plane 

in Fig. 1) is shown in Fig. 2(a). The stream is divided into toroidal segments for calculation as 

coils (Fig. 2(b)). In this figure, Z is the center axis, and Ra is the radial axis of the cylindrical 

coordinates (equivalent to the Y axis in Fig. 1), where the circle indicates the cross-section of the 

torus. Pc is the center of the flow, where r0 and z0 are the elements of Pc in the Ra and Z directions, 

respectively. Note that z0 is at the coordinates (0,0) and Pc is at (r0,0). In Fig. 2(a), P is a 
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representative position at which flow velocity vector U is calculated; ur and uz are elements of U 

in the Ra and Z directions, respectively; φ is an angle between the Ra axis and point P; and r is the 

element of P in the Ra direction. Fig. 2(b) shows the definition of the coils used to define the flow 

torus. Sixteen coils are considered, where n refers to the coil number. The dotted lines indicate the 

coaxial coils (i.e., the region occupied by the fluid), which are separated by thickness T. There are 

multiple coils that wind only once around the Z axis, and the coils move in the direction of U with 

radius R0. Electric current runs separately in each coil in the θ direction. Although the coils can 

move, the later calculation of the eigenvalues assumes the state of the coils in a brief moment, Δt. 

 

Fig. 3. Relationship between the electric current (I) and vector potential (A) for a set of any two 

coils shown in Fig. 2: (a) top view and (b) side view of the torus, and (c) 3D view of the coaxial 

coils. 

Figs. 3(a) and (b) show the top and side views, respectively, of a set of any two of the coaxial 

coils shown in Fig. 2 to explain the relationship between the electric current (I) and vector potential 

(A). In addition, Fig. 3(c) shows a 3D image of the coils to clarify their relationship with each 
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other. Each coil is arrayed coaxially with the Z axis, and they are parallel to each other. X, Y, and 

Z are the axes of the rectangular Cartesian coordinate system shown in Fig. 3. Cj is coil j, which 

has current Ij, and Ci is coil i, which obtains vector potential Aj induced by current Ij running in 

coil Cj. θ is the angle of rotation around the Z axis, starting from the Y axis. Here, ri and rj are the 

radii of Ci and Cj, respectively. Furthermore, dsi and dsj are minute lengths of Ci and Cj for 

integration, respectively, where dsi is placed on the X axis (θ = 0), and dsj is placed at θ with 

distance l between them to define the range of the integral. Idsj is the contribution to the current 

over dsj, where Adsj is the vector potential induced by Idsj. dAj is the element of Adsj in the X 

direction, and it is integrated with respect to θ to give Aj. Φi is the total flux linking Ci. 

 

2.2 Calculation of the magnetic properties 

To determine the fluctuation in the magnetic field in the coils described in the previous section, 

the current is calculated using a presentation of Ohm’s law that includes the electric field [10]. 

𝐽𝐽 = 𝜎𝜎(𝐸𝐸 + 𝑢𝑢 × 𝐵𝐵)           (1) 

Here, J is the current density; σ is the electric conductivity; u is the velocity of the conductive 

fluid; and B is the magnetic field, which can be found using Eq. (2); 𝑢𝑢 × 𝐵𝐵 is the motion of the 

electric field; and E is the electric field potential, which can be found using Eq. (3). 

𝐵𝐵 = ∇ × 𝐴𝐴            (2) 

𝐸𝐸 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ ∇𝜑𝜑′           (3) 

Here, 𝜑𝜑′ is a scalar potential, A is a vector potential, and t is time. 
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To derive an induction equation expressed in vector potentials from Ohm's law, these equations 

are combined as follows. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑢𝑢 × (∇ × 𝐴𝐴) = ∇𝜑𝜑′ − 𝐽𝐽

𝜎𝜎
          (4) 

To apply this induction equation for coils, the factor 2πr (r = coil radius) is multiplied as an integral 

around the coil on both sides of the equation because the current is the same around Cj. Assuming 

J = I/S, where I is the toroidal current and S is the cross-sectional area of the coil, then Eq. (4) is 

rewritten as follows. 

𝜕𝜕
𝜕𝜕𝑡𝑡

(2𝜋𝜋𝑟𝑟𝑖𝑖𝐴𝐴) − 𝑢𝑢 × (∇ × 2𝜋𝜋𝑟𝑟𝑖𝑖𝐴𝐴) = −2𝜋𝜋𝑟𝑟𝑖𝑖
𝜎𝜎

𝐼𝐼
𝑆𝑆
        (5) 

Here, 𝜑𝜑′ is ignored because it is assumed that the conductivity of the fluid is high. Furthermore, 

Eq. (6) shows the relationship between A and the inductance (L) [11]. Here, the total magnetic flux 

linking the coil, Φ, is used in place of L, where Φ = LI. The subscripts i and j refer to the coil 

numbers defined in Fig. 2, enabling the development of simultaneous equations. 

𝛷𝛷𝑖𝑖 = ∮ 𝐴𝐴𝑗𝑗𝑑𝑑𝑠𝑠𝑖𝑖𝐶𝐶𝑖𝑖
           (6) 

Here, Φi is the flux of coil Ci, and dsi is a minute part of coil Ci. 

In this arrangement of coils, all the coils are arrayed coaxially with the Z axis and parallel to each 

other. Thus, Aj is the same around Ci. Therefore, Φi = 2πriAj when Φi = LijIj. Then, the relationship 

between Lij and Aj is as follows. Lij is a matrix meaning inductance, but only the diagonal element 

is self-inductance, and the other elements are mutual inductance, so it is hereafter referred to as 

Mij. 
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𝐴𝐴𝑗𝑗 = 𝐼𝐼𝑗𝑗
2𝜋𝜋𝑟𝑟𝑖𝑖

𝑀𝑀𝑖𝑖𝑗𝑗           (7) 

By substituting Eq. (7) into Eq. (5), the following equation is obtained. 

𝜕𝜕
𝜕𝜕𝑡𝑡
�𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗� − 𝑢𝑢𝑖𝑖 × �∇ × 2𝜋𝜋𝑟𝑟𝑖𝑖𝐴𝐴𝑗𝑗� = −2𝜋𝜋𝑟𝑟𝑖𝑖

𝜎𝜎𝑆𝑆
𝐼𝐼𝑗𝑗        (8) 

Here, σ is the conductance of the fluid, and ri is the radius from the Z axis. However, the second 

term on the left-hand side of Eq. (8) is complicated. Thus, it must be dealt with separately. It is 

considered by decomposing the term as follows. 

𝑢𝑢𝑖𝑖 × �∇ × 𝐴𝐴𝑗𝑗� = �
𝑢𝑢𝑖𝑖𝑟𝑟
0
𝑢𝑢𝑖𝑖𝑖𝑖

� ×

⎣
⎢
⎢
⎢
⎡
1
𝑟𝑟𝑖𝑖
�−𝑟𝑟𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗
𝜕𝜕𝑖𝑖𝑖𝑖

�
0

1
𝑟𝑟𝑖𝑖
�𝜕𝜕𝑟𝑟𝑖𝑖𝜕𝜕𝑗𝑗𝑗𝑗

𝜕𝜕𝑟𝑟𝑖𝑖
� ⎦
⎥
⎥
⎥
⎤

= �
𝑢𝑢𝑖𝑖𝑟𝑟
0
𝑢𝑢𝑖𝑖𝑖𝑖

� ×

⎣
⎢
⎢
⎢
⎡ − 𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗

𝜕𝜕𝑖𝑖𝑖𝑖
0

1
𝑟𝑟𝑖𝑖
𝐴𝐴𝑗𝑗𝑗𝑗 + 𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗

𝜕𝜕𝑟𝑟𝑖𝑖 ⎦
⎥
⎥
⎥
⎤

=

�
0

−𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗
𝜕𝜕𝑖𝑖𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟(1
𝑟𝑟𝑖𝑖
𝐴𝐴𝑗𝑗𝑗𝑗 + 𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗

𝜕𝜕𝑟𝑟𝑖𝑖
)

0
�         (9) 

Here, rotAj is decomposed into cylindrical coordinates, and subscripts r, θ, and z indicate the 

component directions in cylindrical coordinates, namely, the radius from the Z axis, angular 

around the Z axis, and Z direction, respectively. Aj has a component only in the θ direction. Thus, 

the other components of Aj are omitted. Eq. (10) is obtained by multiplying Eq. (9) by 2πri, 

substituting Eq. (7) and including only the θ component. 

2𝜋𝜋𝑟𝑟𝑖𝑖 �−𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗
𝜕𝜕𝑖𝑖𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟 �
1
𝑟𝑟𝑖𝑖
𝐴𝐴𝑗𝑗𝑗𝑗 + 𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗

𝜕𝜕𝑟𝑟𝑖𝑖
�� = −𝑢𝑢𝑖𝑖𝑖𝑖

𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑖𝑖𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟 �
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 + 𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗

𝜕𝜕𝑟𝑟𝑖𝑖
�  

= −𝑢𝑢𝑖𝑖𝑟𝑟
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑟𝑟𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑖𝑖𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗        (10) 

 This is replaced by the second term on the left-hand side of Eq. (8) to obtain Eq. (11). 
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𝜕𝜕
𝜕𝜕𝑡𝑡
�𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗� − (−𝑢𝑢𝑖𝑖𝑟𝑟

𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑟𝑟𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑖𝑖𝑖𝑖

− 𝑢𝑢𝑖𝑖𝑟𝑟
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗) = −2𝜋𝜋𝑟𝑟𝑖𝑖

𝜎𝜎𝑆𝑆
𝐼𝐼𝑗𝑗𝑗𝑗    (11) 

𝜕𝜕
𝜕𝜕𝑡𝑡
�𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗� + 𝑢𝑢𝑖𝑖𝑟𝑟

𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑟𝑟𝑖𝑖

+ 𝑢𝑢𝑖𝑖𝑖𝑖
𝜕𝜕𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗
𝜕𝜕𝑖𝑖𝑖𝑖

+ 𝑢𝑢𝑖𝑖𝑟𝑟
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 = −2𝜋𝜋𝑟𝑟𝑖𝑖

𝜎𝜎𝑆𝑆
𝐼𝐼𝑗𝑗𝑗𝑗     (12) 

Since the first three terms on the left-hand side of Eq. (12) are equivalent to a total differential, 
they can be replaced as follows: 

𝑑𝑑
𝑑𝑑𝑡𝑡
�𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗� + 𝑢𝑢𝑖𝑖𝑟𝑟

1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 = −2𝜋𝜋𝑟𝑟𝑖𝑖

𝜎𝜎𝑆𝑆
𝐼𝐼𝑗𝑗𝑗𝑗  

𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

𝑑𝑑𝑡𝑡
𝐼𝐼𝑗𝑗𝑗𝑗 + 𝑀𝑀𝑖𝑖𝑗𝑗

𝑑𝑑𝐼𝐼𝑗𝑗𝑗𝑗
𝑑𝑑𝑡𝑡

+ 𝑢𝑢𝑖𝑖𝑟𝑟
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 = −2𝜋𝜋𝑟𝑟𝑖𝑖

𝜎𝜎𝑆𝑆
𝐼𝐼𝑗𝑗𝑗𝑗  

𝑑𝑑𝐼𝐼𝑗𝑗𝑗𝑗
𝑑𝑑𝑡𝑡

= 𝑀𝑀𝑖𝑖𝑗𝑗
−1(−𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

𝑑𝑑𝑡𝑡
𝐼𝐼𝑗𝑗𝑗𝑗 − 𝑢𝑢𝑖𝑖𝑟𝑟

1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 −

2𝜋𝜋𝑟𝑟𝑖𝑖
𝜎𝜎𝑆𝑆

𝐼𝐼𝑗𝑗𝑗𝑗)  

𝛬𝛬𝐼𝐼𝑗𝑗𝑗𝑗 = −𝑀𝑀𝑖𝑖𝑗𝑗
−1 𝑑𝑑𝑀𝑀𝑖𝑖𝑗𝑗

𝑑𝑑𝑡𝑡
𝐼𝐼𝑗𝑗𝑗𝑗−𝑀𝑀𝑖𝑖𝑗𝑗

−1𝑢𝑢𝑖𝑖𝑟𝑟
1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 − 𝑀𝑀𝑖𝑖𝑗𝑗

−1𝑅𝑅𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗      (13) 

Here, Λ indicates the eigenvalues. These simultaneous equations are used here to obtain the Λ 

values. Rij is a matrix of resistance, and a function of the coil’s circumference and cross-sectional 

area S, where S is calculated from the thickness T and the section of the flow course as S = 

(2πR0T)/16. Then, Rij = 2πri/(σS)=(16ri)/(σR0 T). Rij is a diagonal matrix because the voltage drop 

exists only for i = j. 

 In the coil description shown in Fig. 2, the coil’s cross-sectional area and shape are disregarded 

in the calculation of the inductance because these geometrical factors introduce a large degree of 

complexity. Therefore, the coil is treated as a thin line as an approximation in Fig. 3(a) and (b). 

Subsequently, Aj is calculated as follows [10]: 

𝐴𝐴𝑗𝑗 = 𝜇𝜇
4𝜋𝜋 ∮

𝐽𝐽
𝑙𝑙𝐶𝐶𝑗𝑗
𝑑𝑑𝑑𝑑 = 𝜇𝜇

4𝜋𝜋 ∮
𝐽𝐽𝑆𝑆
𝑙𝑙𝐶𝐶𝑗𝑗
𝑑𝑑𝑠𝑠𝑗𝑗 = 𝜇𝜇

4𝜋𝜋 ∮
𝐼𝐼𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗

cos 𝜃𝜃 𝑑𝑑𝑠𝑠𝑗𝑗 = 𝜇𝜇
4𝜋𝜋
𝐼𝐼𝑗𝑗 ∮

cos𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗
𝑑𝑑𝑠𝑠𝑗𝑗,    (14) 
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where 𝑙𝑙  is the distance between dsi and dsj, µ is the magnetic permeability, dV is the minute 

volume, S is the cross-sectional area of the current (i.e., the coil), Ij = JS is the current, and the 

directional element for dsi of Ij is 𝐼𝐼𝑗𝑗 cos𝜃𝜃. When Eq. (7) is substituted for Aj in Eq. (14). Eq. (15) 

is obtained. 

𝑀𝑀𝑖𝑖𝑗𝑗 = 2𝜋𝜋𝑟𝑟𝑖𝑖
𝐼𝐼𝑗𝑗

𝜇𝜇
4𝜋𝜋
𝐼𝐼𝑗𝑗 ∮

cos𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗
𝑑𝑑𝑠𝑠𝑗𝑗 = 2𝜋𝜋𝑟𝑟𝑖𝑖

𝜇𝜇
4𝜋𝜋 ∮

cos𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗
𝑑𝑑𝑠𝑠𝑗𝑗       (15) 

When µ is set to 4π × 10-7 H/m (vacuum conditions), Eq. (16) is obtained. 

𝑀𝑀𝑖𝑖𝑗𝑗 = 2𝜋𝜋𝑟𝑟𝑖𝑖 ∮
cos𝑗𝑗
𝑙𝑙𝐶𝐶𝑗𝑗
𝑑𝑑𝑠𝑠𝑗𝑗 × 10−7         (16) 

Mij is calculated by summation, where Cj is divided into k = 100 equal parts, Δsj, as follows. 

𝑀𝑀𝑖𝑖𝑗𝑗 ≒ 2𝜋𝜋𝑟𝑟𝑖𝑖 ∑
cos𝑗𝑗𝑘𝑘∆𝑠𝑠𝑗𝑗

𝑙𝑙𝑘𝑘
100
𝑘𝑘=1 × 10−7        (17) 

𝑙𝑙𝑘𝑘 = �(𝑟𝑟𝑛𝑛cos 𝜃𝜃𝑘𝑘 − 𝑟𝑟𝑛𝑛′)2 + (𝑟𝑟𝑛𝑛 sin𝜃𝜃𝑘𝑘)2 + (𝑧𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛′)2      (18) 

The angle of a specific coil, n, is given by φn = 2πn/16, as shown in Fig. 2, where rn = r0 + R0cosφn 

and zn = R0sinφn. Here, n’ is another coil number. Earlier, i and j were used in the mutual inductance 

calculations to distinguish between coils that received electromotive force and coils that had a 

current flow. However, in this case, n and n’ are any two of the coils. Here, ( ̇ ) is the same as 𝑑𝑑
𝑑𝑑𝑡𝑡

 

below. �̇�𝑀𝑖𝑖𝑗𝑗 is calculated as the difference in 𝑀𝑀𝑖𝑖𝑗𝑗 induced by the flow velocity over a period of a 

minute, divided by Δt (1.0×10-6 s). The velocity U shown in Fig. 2 depends on the φn of each coil 

and is calculated as follows: 

|𝑈𝑈| = 𝜔𝜔𝑅𝑅0,𝑢𝑢𝑟𝑟 = − |𝑈𝑈|sinφ𝑛𝑛,  𝑢𝑢𝑖𝑖 = |𝑈𝑈|cosφ𝑛𝑛,      (19) 
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where ω is the angular velocity of the flow. Furthermore, 𝑀𝑀𝑖𝑖𝑗𝑗
−1 is the inverse matrix of Mij. 

3. RESULTS AND DISCUSSION 

Here, several eigenvalue case studies are described based on Eq. (13), as presented in the 

previous section. Four different cases are defined, as shown in Table 1. Table 2 lists the 

eigenvalues (Λ1–Λ16). Positive values contribute to the eigenvector increasing over time, while 

negative values make it decrease over time. The positive values are highlighted in bold in the table. 

The general conditions assumed in the calculations of the eigenvalues were σ = 1.0 × 104 S/m 

(based on typical plasma conductivity [12]) and T=0.1R0. 

In the case of condition 1, Λ16 is the Λ value with the largest positive value, which implies 

that the eigenvector increases in magnitude over time. The number of positive eigenvalues depends 

on the size of the system and the flow velocity. Therefore, in the case of condition 2 (with a higher 

ω than condition 1 but the same system dimensions), five of the Λ values are positive. Therefore, 

increasing the flow velocity causes the eigenvector magnitude to increase over time. In the case of 

condition 3, with a lower ω but the same dimensions as condition 1, all the Λ values are negative. 

Therefore, the eigenvector would only decrease, and the magnetic field would not be sustained 

over time. In the case of condition 4, the dimensions are a magnitude larger than those for condition 

1. Because ω is an angular velocity, it scales proportionally. Thus, ω was decreased accordingly 

by an order of magnitude to make it comparable with condition 1. In this case, five of the Λ values 

are positive. Therefore, it is easier to increase the eigenvector over time (i.e., maintain a magnetic 

field) for larger systems. 

Note that Eq. (13) implies that the −𝑀𝑀𝑖𝑖𝑗𝑗
−1�̇�𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗  term may become positive (i.e., �̇�𝑀𝑖𝑖𝑗𝑗 

becomes negative) because �̇�𝑀𝑖𝑖𝑗𝑗 depends on the velocity of the fluid. Therefore, the eigenvalue (Λ) 
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is also dependent on the velocity, and some of the eigenvalues may be positive, i.e., eigenvectors 

that grow over time. The inductance has no effect on the −𝑀𝑀𝑖𝑖𝑗𝑗
−1𝑢𝑢𝑖𝑖𝑟𝑟

1
𝑟𝑟𝑖𝑖
𝑀𝑀𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 term because 𝑀𝑀𝑖𝑖𝑗𝑗

−1 

and 𝑀𝑀𝑖𝑖𝑗𝑗 almost cancel each other out. However, the velocity of the radius vector of coil i (uir), i.e., 

the speed of convection, depends on the coil position. Therefore, this term is positive if the velocity 

is negative. However, according to the calculations, the effect is negligible. In addition, the 

−𝑀𝑀𝑖𝑖𝑗𝑗
−1𝑅𝑅𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗  term is always negative and implies the attenuation of the eigenvalue. The 

inductance Mij in Eq. (15) is proportional to R0 and r0 because ri, l, and ds originate from R0 and 

r0. Furthermore, Rij is inversely proportional to R0 and r0 because in the equation 𝑅𝑅𝑖𝑖𝑗𝑗 =

(16𝑟𝑟𝑖𝑖)/(𝜎𝜎𝑅𝑅0𝑇𝑇), R0, T, and ri originate from and are inversely proportional to R0 and r0. Then, these 

terms are included in the −𝑀𝑀𝑖𝑖𝑗𝑗
−1𝑅𝑅𝑖𝑖𝑗𝑗𝐼𝐼𝑗𝑗𝑗𝑗 term. Larger systems imply that the eigenvectors are less 

likely to attenuate. This is clearly indicated by the results for the four presented conditions. When 

the inductance of coils changes by the flow velocity, the eigenvalues determined from the 

simultaneous equations (13) enable the interaction between changes in coil inductance, and 

resistance to be shown as a fluctuation in the toroidal current, which means a fluctuating magnetic 

field. 

 Some eigenvalues become positive under certain conditions, indicating that their 

eigenvector would increase over time. A positive eigenvalue increases its eigenvector (current 

mode that means each current of coils but note that the current is not determined by its absolute 

value and polarity because of the character of their eigenvector) exponentially. In contrast, a 

negative eigenvalue decreases its eigenvector exponentially. A decrease only occurs if there is a 

current mode corresponding to the existing negative eigenvalue, regardless of the magnitude of 

the negative eigenvalue. Of course, this is only true in a case where each eigenvector is orthogonal. 
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This calculation does not show perfect orthogonality; if the matrix on the right-hand side of Eq. 

(13) is separated into symmetric and alternating components, and the latter is not zero, indicating 

imperfect orthogonality. However, this is attributable to the coarse calculation. As a potential 

future work, numerical calculations are necessary to increase the order of the matrix and set the 

convection current over a wide area to evaluate the orthogonality of this system. However, this 

was beyond the scope of this theoretical contribution. Notably, even if the orthogonality is not 

perfect, the positive eigenvalues are expected to have some influence on the generated magnetic 

field. In the case of the large number of positive eigenvalues calculated in this study, it is expected 

that they would be dominant and increase the current eigenvector. The eigenvector of a negative 

eigenvalue is only influential if there is a current generated by the eigenvector of a positive 

eigenvalue. This can suppress the eigenvector with the positive eigenvalue but cannot reduce it to 

zero. Therefore, it is expected that the increasing trend in the eigenvector would be sustained by 

the positive eigenvalues, and the extent of this would depend on the specific conditions. 

 It is assumed that the balance between the first (current-induced inductance change) and 

third (loss-induced ohmic losses) terms on the right side is included in Eq. (13). The changes in 

the inductance and current terms are separated, and the inductance terms end up on the right-hand 

side of the equation, which is one of the reasons why the right-hand side of this equation and 

eigenvalues can be positive. Other theories do not have this viewpoint. Farrell and Ioannou also 

used an eigenvalue description of an electromagnetic induction equation (expressed in terms of B); 

however, only negative eigenvalues were observed [13]. The theoretical analysis provided here 

proposes that a poloidal axisymmetric magnetic field is generated by the poloidal flow of a fluid. 

As another important difference, many previous studies assumed that the magnetic field was 

generated as a result of turbulence [14], while I show here that this condition is not necessary. To 
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the best of the author’s knowledge, this is a novel idea, and there have been no other studies that 

calculated specific eigenvalues and showed how the magnetic field generation changed with the 

velocity of the fluid and the size of the system. 

 

Fig. 4. Examples of poloidal axisymmetric convection in a celestial body. The solid arrows 

indicate the fluid flow, while the dashed lines indicate the induced magnetic field. 

The methodology presented here is relevant for conditions where a poloidal axisymmetric 

magnetic field is generated. In the conductive fluid of a celestial body, poloidal convection may 

occur as a result of downflow due to a radial temperature gradient or chemical effects, as shown 

in Fig. 4. The Sun and Earth have poloidal axisymmetric magnetic fields. However, mainly the 

generation mechanism is different from that assumed here. While this mechanism probably 

includes that described here by the presented theory, for the moment, it is probably 

indistinguishable because it is mixed. In the liquid sodium experiments used to model the Earth’s 

core [4], it is difficult to obtain a smooth flow velocity, which is one of the assumptions made here. 
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In other words, because convection is generated by a propeller in this system now, the flow is 

disturbed, and the magnetic field generation described here is unlikely to occur. 

In another example, in a plasma reactor, if such convection is generated, a magnetic field 

is added in addition to the external magnetic field. Because a strong magnetic field is applied 

externally, the magnetic field generated by the fluid flow is also probably indistinguishable, and 

depending on the conditions, it may not occur. Moreover, this reactor is also too small, which is 

disadvantageous for this mechanism. Because it has been assumed that these magnetic fields are 

not generated in such systems, researchers may not have specifically looked for them for the 

moment. 

This paper shows calculations for a specific fluid flow (a thin layer of fluid under poloidal 

flow). The convection used in this paper is intended to provide a calculation example. If you know 

realistic convection, you can calculate it with that convection. Since the flow velocity can be set 

at any position, it is not necessary to be convection in a thin region such as the convection shown 

here. In other words, in the case of axisymmetric poloidal convection, it is possible to calculate by 

setting the convection distributed in an arbitrary region. Furthermore, it may not be circulating 

convection. 

To apply this theory to real systems, it is necessary to consider the dynamics with respect to 

the Lorentz force and other factors [15]. To demonstrate the possibility and magnitude of magnetic 

field generation as a function of the size and flow velocity of the system, the scale of the Sun and 

its corresponding plasma conductivity were assumed here as a representative example. 

However, the mathematics presented in this paper will be useful in the Sun, Earth and other 

celestial bodies, plasma furnaces, and sodium experiments in the future. 
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TABLES 

 

Table 1. Definitions of the case conditions 

Condition R0 (m) r0 (m) Ω (rad/s) 

1 1×103 1.1×103 2π(16×10-5) 

2 1×103 1.1×103 2π(16×10-4) 

3 1×103 1.1×103 2π(8×10-5) 

4 1×104 1.1×104 2π(16×10-6) 
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Table 2. Eigenvalues of the four conditions shown in Table 1. 

Eigenvalue Condition 1 Condition 2 Condition 3 Condition 4 

Λ1 -2.081×10-2 -4.893×10-2 -2.081×10-2 -4.893×10-4 

Λ2 -1.589×10-2 -4.017×10-2 -1.587×10-2 -4.017×10-4 

Λ3 -1.270×10-2 -2.888×10-2 -1.264×10-2 -2.888×10-4 

Λ4 -1.052×10-2 -2.184×10-2 -1.037×10-2 -2.184×10-4 

Λ5 -9.129×10-3 -2.114×10-2 -8.729×10-3 -2.114×10-4 

Λ6 -9.030×10-3 -1.821×10-2 -7.562×10-3 -1.821×10-4 

Λ7 -8.410×10-3 -1.526×10-2 -6.953×10-3 -1.526×10-4 

Λ8 -7.465×10-3 -1.155×10-2 -6.656×10-3 -1.155×10-4 

Λ9 -6.284×10-3 -7.354×10-3 -5.903×10-3 -7.354×10-5 

Λ10 -5.043×10-3 -4.669×10-3 -4.974×10-3 -4.669×10-5 

Λ11 -4.669×10-3 -2.654×10-3 -4.669×10-3 -2.654×10-5 

Λ12 -3.812×10-3 2.815×10-3 -4.036×10-3 2.815×10-5 

Λ13 -2.624×10-3 9.702×10-3 -3.189×10-3 9.702×10-5 

Λ14 -1.473×10-3 1.908×10-2 -2.556×10-3 1.908×10-4 

Λ15 -4.744×10-4 3.120×10-2 -2.013×10-3 3.120×10-4 

Λ16 5.746×10-4 4.011×10-2 -8.293×10-4 4.011×10-4 

 

 

 


