
Boosting the Magnetic Field of a Torus-shaped

Conductive Fluid via Poloidal Flow
Mamoru Otsuki1*

1*Independent, Tokyo, Japan.

Corresponding author(s). E-mail(s): gangankeisun@nifty.com;

Abstract

Researchers have struggled to understand the mechanism underlying the forma-
tion of celestial magnetic fields. Currently, the generation of axisymmetric and
poloidal magnetic fields can be solved by complex convection arguments. There
are also claims of simple convection, but these claims are not purely simple
axisymmetric convection claims. This paper addresses a truly simple axisymmet-
ric poloidal convection and magnetic field. To calculate the electrical components,
this paper introduces a theory that separates the vector potential into inductance
and current in a relational formula. The reason is to consider the mutual influ-
ence between distant circuits in terms of mutual inductance. That is, consider
that each circuit is electrically affected by all other circuits. A solution that con-
siders mutual influence can be obtained by using multiples of these equations as
simultaneous equations and numerically calculating them as eigenvalue problems.
The change in current is subsequently calculated from the change in inductance.
Using this method, the generation of a simple axisymmetric poloidal magnetic
field from axisymmetric poloidal convection is demonstrated. These concepts are
novel, and we believe that these findings will contribute to further elucidating
the formation mechanism of celestial magnetic fields. This work also disproves
Cowling’s theorem.

Keywords: poloidal flow, dynamo theory, inductance, numerically calculated
eigenvalues, celestial magnetic field

1 Introduction

1.1 Magnetic Field Study of Celestial Bodies

Researchers have long struggled to understand the mechanism underlying the for-
mation of celestial magnetic fields. Research in this field could progress through the
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discovery of a new underlying mechanism. Currently, the generation of axisymmetric
and poloidal magnetic fields can be solved by complex convection arguments.

For example, the famous foundations for elucidating the mechanism of the for-
mation of celestial magnetic fields are the ω effect[1], the α effect[2], and Cowling’s
theorem[3].

Taking the Sun as an example, the magnetic field in the plane perpendicular to the
axis of rotation of the Sun is called the toroidal magnetic field, and the magnetic field
in the plane parallel to the axis of rotation is called the poloidal magnetic field. The
same is true for convection. According to Cowling’s theorem, axisymmetric convection
does not generate a stable axisymmetric magnetic field, either poloidal or toroidal.

The ω effect generates a toroidal magnetic field from a poloidal magnetic field
where a gradient in angular velocity exists. Since the rotation of the surface of the Sun
is faster at the equator than at the poles, an angular velocity gradient exists. If the
initial magnetic field is poloidal, the magnetic field is stretched such that the angular
velocity gradient winds it up, and the poloidal magnetic field becomes toroidal. If the
toroidal magnetic field is changed to a poloidal magnetic field, the magnetic field may
be amplified. However, no such effect was found. In the end, the result was in favour
of Cowling’s theorem.

The α effect assumes a velocity field that twists a magnetic field. The concept is to
twist the toroidal magnetic field in some places and direct it in the poloidal direction.
Therefore, if an α effect is added to the ω effect, mutual exchange of magnetic fields
is possible, and the magnetic field may be amplified. However, this approach is not
as easy to use as described above. Researchers have combined these effects with com-
plex convection to further elucidate the mechanism of magnetic field generation[4][5].
To our knowledge, few papers[6][7][8] have argued for the generation of magnetic
fields by simple convection. However, these claims are not purely simple axisymmetric
convection claims.

The notion that a magnetic field is generated by complex convection or that an
axisymmetric magnetic field does not occur constrains the study. A discussion of
the generation of magnetic fields by complex convection is meaningful and necessary.
However, in the observations, the difference between the axis of rotation and the mag-
netic axis is not large for the main celestial bodies in the solar system1, especially
for Saturn[9]. A theory that convection and magnetic fields are simply axisymmetric
could facilitate a discussion.

Clarifying that simpler convection can generate a magnetic field will further
advance research in this field. This paper2 explores the possibility of generating a
magnetic field by convection, which is simpler.

In this paper, we suggest the generation of a purely simple axisymmetric magnetic
field via the following method.

1Note that this statement was made as a motivation for this study, and it is not known whether the
results of this study are reflected in the nature of these celestial magnetic fields

2An earlier version of our original manuscript is available on a preprint server[10].
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1.2 Methods for this Research

Before reading the following, it is necessary to understand the geometric structure of
convection and inductance described in this paper. The convection and coil settings
are described in detail in Section 2.1, Description of the Problem.

First, a formula is needed. We derive the basic electromagnetic induction equation
to determine whether power generation starts and lasts. The relevant electromag-
netic induction equations are expressed by the vector potential[11]. Furthermore, this
vector potential is converted into an expression of inductance[11]. This conversion sep-
arates the vector potential into an inductance component representing the geometric
structure of the fluid and an electrical component representing the current. With this
equation, it is possible to calculate the electric current generated from changes in the
geometric structure due to convection.

The reason is to consider the mutual influence between distant circuits in terms
of mutual inductance. That is, consider that each circuit is electrically affected by
all other circuits and cooperates to generate electricity. A solution that considers
mutual influence can be obtained by using multiples of these equations as simultaneous
equations and numerically calculating them as eigenvalue problems. The change in
current is subsequently calculated from the change in inductance.

This electromagnetic induction equation is set and combined in a plurality of cir-
cuits. As a solution, the eigenvalues and eigenvectors are obtained. These results imply
a change in the current and current distribution in the circuits. The results are shown
in the tables and figures, showing the possibility of generating magnetic fields and the
distribution of axisymmetric magnetic fields. Thus, it is shown that an axisymmetric
magnetic field can be generated from axisymmetric convection without particularly
complex convection.

1.3 The Role of the Formulas

A coil moving in a poloidal manner with convection moves in the radial direction and
the cylindrical axial direction of the cylindrical coordinates. In this way, the coil moves
in the existing magnetic field, and power generation occurs. The derived equation
shows the relationship between this convection and power generation. The power
generation also requires the generation of a stable magnetic field in the appropriate
direction. This process is called self-excitation power generation. For this purpose, the
equation is applied to a plurality of coils at different positions and solved as simulta-
neous equations. If power generation is recognised as a result of the calculation, the
possibility of overall self-excited power generation of the torus can be explained.

1.4 Other Contents

Here, the possibility of growth of the magnetic field is shown, but the stability of the
magnetic field is not indicated. We believe that a stable magnetic field is possible in
relation to convection. However, since convection behaviour is not the subject of this
paper, we discuss only the possibility of maintaining the stability of the magnetic field.
This possibility is shown in Section 4.2, Possibility of Magnetic Field Stabilisation. The
relationship with Cowling’s theorem and others are discussed in Section 4, Discussion.
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2 Mechanism

2.1 Description of the Problem

In this paper, we solve and discuss axisymmetric convection and magnetic fields via
numerical calculations. Here, the geometric structure of convection and the knowledge
necessary to calculate coil inductances are explained via figures.

To determine whether a magnetic field can fluctuate in the poloidal stream of
a conductive fluid, a certain poloidal flow is set, and the electromagnetic induction
equation is expressed in terms of toroidal vector potentials. The poloidal flow of a
fluid occurs in a torus shape (Fig. 1). The upper figure is the whole, and the bottom
figure is the cross section, where U is the poloidal velocity, R0 is the radius of the
poloidal flow, and r is the radius of an example position on the torus from the Z axis.
The number of coils in the coil bundle is infinite. Here, only a part of the coils shown
below are considered.

A representative cross section (Z-Y plane) of the torus is shown (Fig. 2(a)). The
stream is divided into toroidal segments for calculation as coils (Fig. 2(b)). That is,
Fig. 2(a) and (b) show the right half of the cross section of Fig. 1. Z is the centre
axis, and Ra is the radial axis of the cylindrical coordinates (equivalent to the Y
axis in Fig. 1), where the circle indicates the cross section of the torus. Pc is the
centre of the flow, where r0 and z0 are the elements of position Pc in the Ra and Z
directions, respectively. Notably, P0 is at the coordinates (0,0), and Pc is at (r0,0). P
is a representative position at which the flow velocity vector U is calculated; ur and uz

are the elements of U in the Ra and Z directions, respectively; θ is the angle between
the position P and Ra axis; and r is the element of position P in the Ra direction (Fig.
2(a)). The coils used to define the flow torus are defined in Fig. 2(b). Sixteen coils
are considered, where n indicates the number of the coil. The dotted lines indicate
the coaxial coils (i.e., the region occupied by the fluid), which are separated by the
thickness T . Multiple coils wind only once around the Z axis, and the coils move in the
direction of U with radius R0. Therefore, the circumference of each coil expands and
contracts. The electric current runs separately in each coil in the ϕ direction, which
orbits the Z axis. Although the coils can move, the later calculation of the eigenvalues
assumes that they are motionless in a brief moment ∆t.

The top and side views of a set of any two coaxial coils are shown (Figs. 3(a) and
(b)). These figures explain the relationship between the electric current I and vector
potential[11] A for the calculation of inductances[11]. X, Y, and Z are the axes of the
rectangular Cartesian coordinate system (Fig. 3). Cj is Coil j, in which the current Ij
flows, and Ci is Coil i, which obtains the vector potential[11]Aj induced by the current
Ij running in Coil Cj . ϕ is the angle of rotation around the Z axis, starting from the
Y axis. Here, ri and rj are the radii of Ci and Cj , respectively. Furthermore, dsi and
dsj are infinitesimal lengths of Ci and Cj , respectively, on each coil for integration,
where dsi is placed on Ci (ϕ = 0) and where dsj is placed on Pjϕ at ϕ with a distance
l between them. Idsj is the contribution to the current over dsj , where Adsj is the
vector potential induced on dsi by Idsj . Aj is the element of Adsj in the X direction.
Φi is the total flux linked in Ci. The side view is also a schematic version of Fig. 2. The
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Fig. 1 Schematic of the toroidal geometry. This schematic is an approximate geometric outline of
convection set by numerical calculations. A torus-like conductive fluid flows in a poloidal direction
U. The upper figure is the whole, and the bottom figure is the cross section.

Fig. 2 Schematics of the (a) velocity of the fluid flow and (b) defined coils in the cross section of
the convection (Z-Y or Z-Ra plane). This figure is a cross section of Fig. 1 and shows settings such
as the arrangement of the virtual coils used in the numerical calculations.

symbols are the same as those in Fig. 2. The dashed circle approximately indicates the
convection of the fluid. Pj and Pi are the positions of the two coils in the Z-Ra plane.

In addition, a 3D image of the coils is shown to clarify their relationships with each
other (Fig. 4). Each coil is arrayed coaxially with the Z axis, and the coils are parallel
to each other.

2.2 Calculation of the magnetic properties

In the numerical calculations in this paper, the electromagnetic induction equations are
applied to multiple coils, and the current is calculated by combining these equations to
solve them as an eigenvalue problem. Here, the underlying electromagnetic induction
equation is derived. In addition, a method for calculating the inductance to be included
in the numerical calculation is described.
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Fig. 3 Relationship between the electric current I and vector potential A for the set of coils shown
in Fig. 2: (a) top view and (b) side view of the coils on the torus. Two virtual coils are used to explain
how to calculate self- and mutual inductance.

2.2.1 Derivation of Basic Formulas

As a source equation for determining the relationship between the electric current and
magnetic field, Ohm’s law[11] is used with an electric field to calculate the current as
follows:

J = σ (E+ u×B) (1)

Here, J is the current density; σ is the electrical conductivity; u is the velocity of
the conductive fluid; B is the magnetic field, which can be found via (2); u×B is the
motion of the electric field; and E is the electric field potential, which can be found
via (3)[11] as follows:

B = ∇×A (2)

E = −∂A

∂t
−∇φ (3)

Here, φ is a scalar potential, A is a vector potential[11], and t represents the time.
To derive an induction equation expressed in vector potentials from Ohm’s law,

these equations are combined as follows:

∂A

∂t
− u× (∇×A) = −∇φ− J

σ
(4)
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Fig. 4 3D view of the coaxial coils. A bird’s-eye view is used to facilitate imagining the arrangement
of the virtual coil.

To apply this induction equation for coils, the factor 2πri (ri=coil Ci radius) is
multiplied as an integral around the coil on both sides of the equation because A and
the current density are the same around Ci.

∂

∂t
(2πriA)− u× (∇× 2πriA) = −2πri

σ
J (5)

Here, φ is ignored because it is assumed that going around along Ci at that gradient
will result in a value of zero. In this paper, the left-side second term of (5) is referred
to as the induction term, and right-side of (5) is referred to as the attenuation term.
Furthermore, (6) shows the relationship between A and the inductance[11] (L). Here,
the total magnetic flux linking the coil, Φ, is used in place of L, where Φ = LI. The
subscripts i and j refer to the coil numbers defined in Fig. 2, enabling the development
of simultaneous equations.

Φi =

∮
Ci

Ajdsi (6)

Here, Φi is the flux of coil Ci, and dsi is an infinitesimal part of coil Ci. In this
arrangement of coils, all the coils are arrayed coaxially with the Z axis and parallel
to each other. Thus, Aj is the same around Ci. Therefore, Φi = 2πriAj . When Φi =
LijIj , the relationship between Lij and Aj is as follows. Lij is a matrix representing
inductance, but only the diagonal element is self-inductance, and the other elements
are mutual inductances, so it is hereafter referred to as Mij .

Aj =
Ij
2πri

Mij ,Ajϕ =
Ijϕ
2πri

Mij (7)

Aj and Ij have only a toroidal component (indicated by the subscript ϕ) along
the coil. Using (7), the vector potential is separated into an inductance component
that expresses the structure of the fluid (electric circuits) and an electrical component
that expresses the current. The reason is to consider the mutual influence between
distant circuits in terms of mutual inductance. The change in current is subsequently

7



calculated from the change in inductance. By substituting (7) into (5), the following
equation is obtained:

∂

∂t
(MijIjϕ)− [u× (∇× 2πriAj)]ϕ = −2πri

σ
Ji = −2πri

σ
Jiϕ (8)

Here, σ is the conductance of the fluid, and ri is the radius from the Z axis.
The current density J i of the attenuation term is also described as Jiϕ since it has
only a ϕ direction component. However, the second term on the left-hand side of (8)
is complicated. Thus, it must be addressed separately. This term is considered by
decomposing it as follows:

u× (∇×Aj) =

 uir

0
uiz

×


1
ri

(
−ri

∂Ajϕ

∂zi

)
0

1
ri

(
∂riAjϕ

∂ri

)


=

 uir

0
uiz

×

 −∂Ajϕ

∂zi
0

1
ri
Ajϕ +

∂Ajϕ

∂ri


=

 0

−uiz
∂Ajϕ

∂zi
− uir

(
1
ri
Ajϕ +

∂Ajϕ

∂ri

)
0

 (9)

Here, rotAj is decomposed into cylindrical coordinates, and the subscripts r, ϕ,
and z indicate the component directions in cylindrical coordinates, namely, the radius
from the Z axis, the angle around the Z axis, and the Z direction, respectively. Since the
current only runs through the toroidal coil, only the toroidal Ajϕ component remains
with the vector potential. Furthermore, since it is uniform in the toroidal direction,
the ∂

∂ϕ component is zero, and the description is excluded. Therefore, Aj only has a

component in the ϕ direction. Thus, the other components of Aj are omitted. (10)
is obtained by multiplying (9) by 2πri, substituting (7) and including only the ϕ
component as follows:

2πri

[
−uiz

∂Ajϕ

∂zi
− uir

(
1

ri
Ajϕ +

∂Ajϕ

∂ri

)]
= −uiz

∂MijIjϕ
∂zi

− uir

(
1

ri
MijIjϕ +

∂MijIjϕ
∂ri

)
= −uir

∂MijIjϕ
∂ri

− uiz
∂MijIjϕ

∂zi
− uir

1

ri
MijIjϕ (10)

(10) indicates the electromotive force. The electromotive force is unaffected by the
cross-sectional area of the electric circuit. These terms are replaced by the second term
on the left-hand side of (8) to obtain (11) as follows:

∂

∂t
(MijIjϕ)−

(
−uir

∂MijIjϕ
∂ri

− uiz
∂MijIjϕ

∂zi
− uir

1

ri
MijIjϕ

)
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= −2πri
σ

Jiϕ. (11)

The left-side of (11) is expressed by the current Ijϕ, which is unaffected by the
cross-sectional area, S, of the electric circuit. The attenuation term in (11), including
the current density Jiϕ is affected by the cross-sectional area of the circuit. The current

density Jiϕ of the attenuation term is
Iiϕ
S . It is arranged as follows:

∂

∂t
(MijIjϕ) + uir

∂MijIjϕ
∂ri

+ uiz
∂MijIjϕ

∂zi
+ uir

1

ri
MijIiϕ

= −2πri
σS

Iiϕ (12)

Since the first three terms on the left-hand side of (12) are equivalent to a total
differential, they can be replaced as follows:

d

dt
(MijIjϕ) + uir

1

ri
MijIjϕ = −2πri

σS
Iiϕ

This equation can be transformed and rearranged as follows:

dMij

dt
Ijϕ +Mij

dIjϕ
dt

+ uir
1

ri
MijIjϕ = −2πri

σS
Iiϕ

dIjϕ
dt

= M−1
ij

(
−dMij

dt
Ijϕ − uir

1

ri
MijIjϕ − 2πri

σS
Iiϕ

)
As such, Ijϕ cannot be obtained because the equation is a mixture of Ijϕ and Iiϕ.

The resistance matrix Rij is adopted to unify to Ijϕ. The details are shown below.

ΛIjϕ = −M−1
ij

dMij

dt
Ijϕ −M−1

ij uir
1

ri
MijIjϕ −M−1

ij RijIjϕ (13)

(13) is obtained. Here, Λ indicates the eigenvalues. In this paper, we use this
simultaneous equation to find the Λ value.

2πri
σS is the resistance sequence Ri. Ri is a function of the coil circumference and

cross-sectional area S, where S is calculated from the thickness T and the section of
the flow course as S = (2πR0T ) /16. Then, Ri = 2πri/ (σS) = (16ri) / (σR0T ). The
resistance matrix Rij is constructed from Ri such that RiIiϕ = RijIjϕ. Specifically,
Rij is a diagonal matrix in which Ri is arranged diagonally.

The matrix summarizing the right-hand side of (13) is a real symmetric matrix3,
and the eigenvalues are real numbers. Since it does not contain imaginary numbers, it
would not imply precession or oscillation.

2.2.2 Method for Calculating the Inductance

The inductance used in the example calculation (see Figs. 3(a) and (b)) is as follows. In
the coil description (Fig. 2), the coil’s cross-sectional area and shape are disregarded to
calculate the inductance because these geometrical factors introduce a large degree of
complexity. Therefore, the coil is treated in the calculation, and Fig. 3 is approximated
as a thin line. Aj is calculated[12] as follows:

3not exactly. See Section 4.5, Alternating Matrix Components.
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Aj =
µ

4π

∮
Cj

Jj

l
dV =

µ

4π

∮
Cj

JjS

l
dsj =

µ

4π

∮
Cj

Ij
l
cosϕdsj

=
µ

4π
Ij

∮
Cj

cosϕ

l
dsj , (14)

where l is the distance between dsi and dsj , µ is the magnetic permeability, dV is
the infinitesimal volume, and S is the cross-sectional area of the current (i.e., the coil).
When only ϕ directional components are handled, Ijϕ = JjϕS is the current, and the
directional element for dsi of Ijϕ is Ijϕcosϕ. By substituting (7) for Ajϕ in (14), (15)
is obtained as follows:

Mij =
2πri
Ijϕ

µ

4π
Ijϕ

∮
Cj

cosϕ

l
dsj = 2πri

µ

4π

∮
Cj

cosϕ

l
dsj (15)

When µ is set to 4π × 10−7H/m (vacuum conditions), (16) is obtained as follows:

Mij = 2πri

∮
Cj

cosϕ

l
dsj × 10−7 (16)

Mij is calculated by summing (17), where Cj is divided into k = 100 equal parts,

∆sj =
2πrj
100 , as follows:

Mij ≈ 2πri

100∑
k=1

cosϕk∆sj
lk

× 10−7 (17)

lk =

√
(rj cosϕk − ri)

2
+ (rj sinϕk)

2
+ (zj − zi)

2
(18)

The angle of a specific coil n is given by θn = 2πn/16, where rn = r0+R0 cos θn and
zn = R0 sin θn (Fig. 2). Previously, i and j were used in mutual inductance calculations
to distinguish between the coils that received electromotive force and the coils that
had a current flow. Each number n is replaced by i or j for any two of the coils.

2.2.3 Elements of other Expressions

dMij

dt is calculated as the difference in Mij induced by the flow velocity over an
infinitesimal divided by ∆t(ex.1.0× 10−6s).

The velocity U depends on the θn of each coil and is calculated as follows (Fig. 2):

|U| = r0
ri
ωR0, ur = − |U| sin θn, uz = |U| cos θn. (19)

where ω is the angular velocity of the flow. 1
ri

is multiplied because a fluid of the
same volume is concentrated and dispersed towards the Z axis in a poloidal flow such
that the flow path expands and contracts, and the velocity changes accordingly. r0

ri
is

a coefficient that adjusts on the basis of the position of r0 so that the flow rate satisfies
the continuity equation.

Furthermore, M−1
ij is the inverse matrix of Mij .
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Table 1 Eigenvalues Λ. The eigenvalue is
calculated numerically. Assuming the boundary
of the start of magnetic field generation, the
calculation condition was set to generate one
eigenvalue that was barely positive. Therefore,
only λ16 is positive.

Λ Eigenvalue Λ Eigenvalue
λ1 −5.290× 10−1 λ9 −8.964× 10−2

λ2 −3.221× 10−1 λ10 −6.714× 10−2

λ3 −2.288× 10−1 λ11 −6.575× 10−2

λ4 −1.762× 10−1 λ12 −5.037× 10−2

λ5 −1.431× 10−1 λ13 −4.163× 10−2

λ6 −1.208× 10−1 λ14 −2.918× 10−2

λ7 −1.084× 10−1 λ15 −1.633× 10−2

λ8 −9.134× 10−2 λ16 7.729× 10−3

Table 2 Eigenvector of the maximum eigenvalue in Table 1. This
eigenvector corresponds to the current distribution flowing through
each coil. The combined current is adjusted to 1. The current is
maximised at Coil 6.

Coil number Eigenvector Coil number Eigenvector
0 2.262× 10−2 8 1.193× 10−1

1 4.870× 10−2 9 −5.597× 10−2

2 9.259× 10−2 10 −6.638× 10−2

3 1.691× 10−1 11 −4.792× 10−2

4 2.979× 10−1 12 −3.188× 10−2

5 4.806× 10−1 13 −1.899× 10−2

6 6.198× 10−1 14 −7.231× 10−3

7 4.801× 10−1 15 5.626× 10−3

3 Calculation Conditions and Results

3.1 Calculation conditions

The conditions for the numerical calculations are as follows.
The general conditions are R0 = 1000 m, r0 = 2000 m, and T = 0.1R0. The elec-

trical conductivity σ is 103 s/m (solar convection zone)[9]. The velocity of convection
is given by (19), where |U| = r0

ri
ωR0. As a condition, the angular velocity ω is set to

2π2.1× 10−3, where only the maximum eigenvalue is barely positive. In other words,
we set the conditions that seem to be the boundary at which power generation begins
to occur.

3.2 Results

The result calculated on the basis of (13) is shown under the conditions above. The
eigenvalues Λ(λ1 − λ16) are listed in Table 1. A positive value is highlighted in bold
in the table. Only the maximum eigenvalue, λ16, has positive polarity. Although it
has positive polarity, the absolute value is small. This result is obtained because the
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Z

P 0 P c
R a

Fig. 5 Magnetic force contour lines generated from the current state on the basis of the results of the
numerical calculations. This figure shows the magnetic force contour lines drawn on the Z-Ra plane
on the basis of eigenvectors (Table 2). The range of the figure is ±2R0 in the Z direction and +4R0

in the Ra direction. Since the magnetic field is not a specific value that has increased, its unit is not
displayed. Ten contour lines are displayed. A strong magnetic field is displayed in a warm colour.

calculation conditions were set in a specific way. Thus, under these conditions, power
generation begins. In addition, if the convection speed is high, the power generation
will be strong. The eigenvector of the maximum eigenvalue is shown in Table 2. The
length of each component of this eigenvector is adjusted so that the norm is 1. These
components indicate the current values of each coil. This condition indicates that the
absolute value of the current is maximised in Coil 6, which is highlighted in bold. This
table is used to create the following figure.

The calculation method of the magnetic field is as follows. The calculation of the
inductance is obtained through the calculation of the vector potential, as shown in
(14). Therefore, the vector potential was calculated using the inductance calculation
method. That is, via (7), the vector potential was obtained through the current of the
coil and the temporary inductance at each location. Furthermore, the value related
to the rotation of the vector potential at each location was obtained and converted to
a magnetic field via (2). In Fig. 5, the intensity of the magnetic force is represented
by contour lines. On a poloidal surface, it is a line, but in three-dimensional space,
it is a curved surface whose line is rotated on the axis of symmetry. Since it is a
cylindrical coordinate, the magnetic force, that is, the magnetic flux density, even if
the same number of magnetic fluxes passes, the cross-sectional area of the passage
changes according to the distance r from the axis of rotational symmetry Z, so the
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Table 3 Maximum eigenvalue and maximum eigenvalue
without the second term on the right-hand side of (13) at the
angular velocity of convection at which power generation
starts.

R0 km ω rad/s λmax λmaxN
1 2π2.1× 10−03 7.729× 10−03 3.578× 10−04

magnetic flux density changes. Therefore, in the contour line, the magnetic force is
corrected by multiplying the circumference by 2πr.

In Fig. 5, the yellow pointillism line is the highest magnetic field level (warmer
colours have a higher level). The circle in the figure is the hypothetical convection
position shown in Fig. 2. Since there are yellow areas around the second quadrant (top
left of Pc) of this circle, it is thought that power generation mainly occurs there. In this
study, convection is examined only at the position of 16 coils on the convective circle
shown in Fig. 2, so it is difficult to understand because the contour lines of the same
level are divided into multiple parts and are intricate near the convection. In reality,
the coils should be innumerably distributed so that the contour lines are continuous
and smooth.

Fig. 5 shows that the coils are rotationally symmetric around the Z-axis, and
numerical calculations show that an axisymmetric magnetic field arises from axisym-
metric poloidal convection on the same axis.

3.3 Potential Power Generation Capacity

Furthermore, the second term on the right-hand side of (13) plays an important role.
According to the estimation, the eigenvalue λmax when this term is included, as shown
in Table 3, is more than one order of magnitude larger than λmaxN when it is omit-
ted. This result is obtained because once power generation starts, the term works
more strongly because of the generated current, and power generation becomes more
powerful.

4 Discussion

As described above, the underlying electromagnetic induction equation was derived,
and the result was obtained via numerical calculation. The results revealed the start
of power generation by generating an axisymmetric magnetic field from poloidal con-
vection. Here, the evaluation and problems of this numerical calculation are discussed
in detail below.

4.1 Generation of Axisymmetric Magnetic Fields

The following discussion can be drawn from Fig. 5.
A strong magnetic field originates around the second quadrant of convection and

passes through the convection circle. In other words, a strong magnetic field intersects
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with convection and seems to contribute to power generation. In addition, outside the
strong magnetic field, a weak magnetic field passes near the Z-axis and circulates on
the outside away from convection. Since this surface is rotationally symmetric around
the Z axis, it shows a rotationally symmetrical magnetic force in the poloidal flow.

4.2 Possibility of Magnetic Field Stabilisation

When the current increases to a certain extent, the Lorentz force acts. This force acts
in the opposite direction of convection, thus reducing the flow velocity. This behaviour
will suppress power generation, so a possibility exists that a balance between power
generation and a decrease in flow velocity will occur at some level. It is necessary to
examine how convection behaves with respect to the Lorentz force, which is beyond
the scope of this paper.

4.3 Magnetic Diffusivity

In this work, magnetic diffusivity is ignored. The magnetic field should be attenuated
depending on the magnetic diffusivity. However, the attenuation term of (13) contains
a component corresponding to a magnetic diffusivity of 1

µσ (M−1
ij contains 1

µ ). There-
fore, the magnetic diffusivity is already considered in the numerical calculation results.
However, the calculation results do not indicate what happens to the magnetic field
generated outside the coil. The resistance loss of the fluid outside the convection can
be considered as follows.

The loss occurs because of electromagnetic induction due to an increase in current,
and the eigenvalue is suppressed. However, this does not mean that the current does
not increase. It is a loss caused by an increase in current. That is, the maximum
positive eigenvalue is less than that in Table 1 instead of being negative.

4.4 Change in Cross-sectional Area

When a certain amount of fluid moves to the poloidal on convection, the cross-sectional
area or flow velocity changes. There is a concern that (13) does not work in these
changes. In this paper, the cross-sectional area is set constant, so the flow velocity
changes. Then, there is a question whether the derivative of the inductance in the
first term on the right side of (13) changes with time with movement, so it cannot
be established as an equation. However, since the time derivative is calculated in
infinitesimal ∆t at the position of the coil set in Fig. 2, it does not change much, so
there is no problem with an equation.

4.5 Alternating Matrix Components

The matrix summarizing the right-hand side of (13) contains some alternating matrix
components. When calculated, the eigenvalues are real numbers, but they are not the
solution of the exact real symmetric matrix. The orthogonality of eigenvectors may be
lacking, but at least the calculated eigenvalues are real numbers.
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4.6 Relationship with Cowling’s Theorem

This argument is contrary to Cowling’s theorem. Rather, the argument for Cowling’s
theorem is incorrect. The fluid is deformed by the poloidal movement of the fluid, and
each position of the fluid changes electrically. In addition, electrical mutual influences
from each of the other positions are added. Each fluid part is electrically influenced by
all other fluid parts. In this work, each of the 16 coils considers the mutual inductance
from the other coils. Therefore, it is necessary to solve the electromagnetic induction
equations that take into account mutual effects as a simultaneous equation.

Cowling’s theorem does not consider this mutual influence. Without considering
this mutual influence, the original text of Cowling’s theorem argues that the vertex of
power generation cannot be maintained. Therefore, a simultaneous equation was not
used. This approach is equivalent to ignoring mutual inductance and discussing only
self-inductance. A change in self-inductance alone cannot overcome the attenuation
even if an electromotive force occurs.

Furthermore, the original text of Cowling’s theorem omits important terms for
power generation. Since it is a theory of axisymmetry, it is essential to study it strictly
in cylindrical coordinates. In cylindrical coordinates, there should be at least one term
corresponding to the second term on the right-hand side of (13), but this term is not
indicated in the original text of Cowling’s theorem.

5 Conclusion

This paper suggests that an axisymmetric magnetic field can be grown from axisym-
metric poloidal convection without complex convection. This work also disproves
Cowling’s theorem.
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