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Abstract

Researchers have struggled to understand the mechanism underlying the forma-
tion of celestial magnetic fields. Currently, the generation of axisymmetric and
poloidal magnetic fields can be solved by complex convection arguments. There
are also claims of simple convection, but these claims are not purely simple
axisymmetric convection claims. This paper addresses a truly simple axisymmet-
ric poloidal convection and magnetic field. To calculate the electrical components,
this paper introduces a theory that separates the vector potential into induc-
tance and current in a relational formula. The reason is to consider the mutual
influence between distant circuits in terms of mutual inductance. The change in
current is subsequently calculated from the change in inductance. It is solved
as an eigenvalue problem via numerical calculation. Using this method, a sim-
ple axisymmetric poloidal magnetic field can be generated from axisymmetric
poloidal convection. Another reason is the nature of the mutual inductance and
Lenz’s law, which reflects the effect of current changes on other electric circuits.
This approach is intended to eliminate the concern that magnetic field growth
will be impaired by convection that carries currents away. These concepts are
novel, and we believe that these findings will contribute to further elucidating
the formation mechanism of celestial magnetic fields and plasma reactor research.
However, some issues in this paper remain unresolved.

Keywords: poloidal flow, dynamo theory, inductance, numerically calculated
eigenvalues, magnetohydrodynamics
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1 Introduction

1.1 Magnetic Field Study of Celestial Bodies

Researchers have long struggled to understand the mechanism underlying the for-
mation of celestial magnetic fields. Research in this field could progress through the
discovery of a new underlying mechanism. Currently, the generation of axisymmetric
and poloidal magnetic fields can be solved by complex convection arguments.

For example, the famous foundations for elucidating the mechanism of the for-
mation of celestial magnetic fields are the ω effect[1], the α effect[2], and Cowling’s
theorem[3].

Taking the Sun as an example, the magnetic field in the plane perpendicular to the
axis of rotation of the Sun is called the toroidal magnetic field, and the magnetic field
in the plane parallel to the axis of rotation is called the poloidal magnetic field. The
same is true for convection. According to Cowling’s theorem, axisymmetric convection
does not generate a stable axisymmetric magnetic field, either poloidal or toroidal.

The ω effect generates a toroidal magnetic field from a poloidal magnetic field
where a gradient in angular velocity exists. Since the rotation of the surface of the Sun
is faster at the equator than at the poles, an angular velocity gradient exists. If the
initial magnetic field is poloidal, the magnetic field is stretched such that the angular
velocity gradient winds it up, and the poloidal magnetic field becomes toroidal. If the
toroidal magnetic field is changed to a poloidal magnetic field, the magnetic field may
be amplified. However, no such effect was found. In the end, the result was in favour
of Cowling’s theorem.

The α effect assumes a velocity field that twists a magnetic field. The concept is to
twist the toroidal magnetic field in some places and direct it in the poloidal direction.
Therefore, if an α effect is added to the ω effect, mutual exchange of magnetic fields
is possible, and the magnetic field may be amplified. However, this approach is not
as easy to use as described above. Researchers have combined these effects with com-
plex convection to further elucidate the mechanism of magnetic field generation[4][5].
To our knowledge, few papers[6][7][8] have argued for the generation of magnetic
fields by simple convection. However, these claims are not purely simple axisymmetric
convection claims.

The notion that a magnetic field is generated by complex convection or that an
axisymmetric magnetic field does not occur constrains the study. A discussion of
the generation of magnetic fields by complex convection is meaningful and necessary.
However, in the observations, the difference between the axis of rotation and the mag-
netic axis is not large for the main celestial bodies in the solar system1, especially
for Saturn[9]. A theory that convection and magnetic fields are simply axisymmetric
could facilitate a discussion.

Clarifying that simpler convection can generate a magnetic field will further
advance research in this field. This paper2 explores the possibility of generating a
magnetic field by convection, which is simpler.

1Note that this statement was made as a motivation for this study, and it is not known whether the
results of this study are reflected in the nature of these celestial magnetic fields

2An earlier version of our original manuscript is available on a preprint server[10].
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In this paper, we suggest the generation of a purely simple axisymmetric magnetic
field via the following method.

1.2 Methods for this Research

The plurality of circuits (coils) and inductances described in this paper are briefly
shown in the figure below. The inductance is important for understanding this phe-
nomenon. Here, an overview of how inductance is handled is provided. Poloidal
convection is considered axisymmetric (Fig. 1). This figure shows convection, in which
a torus-shaped (doughnut-shaped) fluid moves in the direction indicated by U. Since it
is a convection of a conductive fluid, it is thought that multiple coaxially toroidal cir-
cular electrical circuits (hereinafter referred to as coils) move as bundles in a poloidal
manner. The abovementioned inductance is the inductance of these coils. This term
refers to the self-inductance and the mutual inductance between the coils. There are
an infinite number of these coils, but in the numerical calculations described below, 16
circuits are set to move in the direction indicated by U on the torus surface, as shown
in the cross-sectional view of the circuit (Fig. 2). The convection and coil settings are
described in detail in Section 2.1, Description of the Problem.

First, a formula is needed. We derive the basic electromagnetic induction equation
to determine whether power generation starts and lasts. The relevant electromagnetic
induction equations are expressed by the vector potential[11]. Furthermore, this vector
potential is converted into an expression of inductance[11]. This conversion separates
the vector potential into an inductance component representing the structure of the
fluid and an electrical component representing the current.

The reason is to consider the mutual influence between distant circuits in terms of
mutual inductance. The change in current is subsequently calculated from the change
in inductance. We believe that the difference in the movement of convection between
the position where power generation is highest and the position of the surrounding
position causes power generation. Here, the position refers to the position on the
plane parallel to the axis of rotation (the Z-Y or Z-Ra plane described later). There-
fore, power generation is not generated by convection at a single position but by the
behaviour of the surrounding convection. This problem must be solved not only at
one place where power generation is at the top but also by integrating the self- and
mutual inductance of multiple coils.

Another reason is to consider mutual inductance in combination with Lenz’s
law[12]. This combination eliminates the concern that magnetic field growth is
impaired by convection, which carries away coils with currents. This idea is discussed
in detail in Section 4.4, The Problem of Coils with Currents being Carried Away by
Convection.

This electromagnetic induction equation is set and combined in a plurality of cir-
cuits. This problem is solved via numerical calculation as an eigenvalue problem. As a
solution, the eigenvalues and eigenvectors are obtained. These results imply a change
in the current and current distribution in the circuits. The results are shown in the
tables and figures, showing the possibility of generating magnetic fields and the dis-
tribution of axisymmetric magnetic fields. Thus, it is shown that an axisymmetric
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magnetic field can be generated from axisymmetric convection without particularly
complex convection.

1.3 The Role of the Formulas

A coil moving in a poloidal manner with convection moves in the radial direction and
the cylindrical axial direction of the cylindrical coordinates. In this way, the coil moves
in the existing magnetic field, and power generation occurs. The derived equation
shows the relationship between this convection and power generation. However, a mag-
netic field is not always present. A magnetic field in the appropriate direction must
also be generated by power generation. This process is called self-excitation power
generation. We would like to suggest that electricity can be generated by integrating
the entire torus. For this purpose, the equation is applied to a plurality of coils at dif-
ferent positions and solved as an eigenvalue problem. If power generation is recognised
as a result of the calculation, the possibility of overall self-excited power generation of
the torus can be explained.

Thus, the eigenvalues and eigenvectors are obtained from the numerical calcula-
tions. The eigenvalue of the positive polarity indicates the growth of the eigenvector
(the current distribution of the coil), which suggests the growth of the magnetic field.
Furthermore, the magnetic field distribution obtained from the eigenvector compo-
nents calculated as the current flows through each coil is also shown in the figure. On
the basis of these results, the possibility of self-excited power generation that creates
an axisymmetric poloidal magnetic field is explained.

1.4 Stable Magnetic Field

Here, the possibility of growth of the magnetic field is shown, but the stability of the
magnetic field is not indicated. We believe that a stable magnetic field is possible in
relation to convection. This possibility is shown in Section 4.2, Possibility of Magnetic
Field Stabilisation. However, since convection behaviour is not the subject of this
paper, we discuss only the possibility of maintaining the stability of the magnetic field.
Even if this stability is insufficient, we believe that these results and ideas will be
useful for future research. We also believe that this argument can be applied to more
than celestial bodies. This possibility is shown in Section 5, Conclusion.

1.5 Unresolved Issues

Some issues in this paper remain unresolved, such as a stable magnetic field and
magnetic diffusivity. These issues are discussed in Section 4, Discussion.

2 Mechanism

2.1 Description of the Problem

In this paper, we solve and discuss axisymmetric convection and magnetic fields via
numerical calculations. Here, the geometric structure of convection and the knowledge
necessary to calculate coil inductances are explained via figures.

4



Fig. 1 Schematic of the toroidal geometry. This schematic is an approximate geometric outline of
convection set by numerical calculations. A torus-like conductive fluid flows in a poloidal direction
U. The upper figure is the whole, and the bottom figure is the cross section.

To determine whether a magnetic field can fluctuate in the poloidal stream of
a conductive fluid, a certain poloidal flow is set, and the induction equation (as a
simultaneous equation expressed by inductances) is expressed in terms of toroidal
vector potentials to calculate the current as an eigenvalue problem. The poloidal flow
of a fluid occurs in a torus shape (Fig. 1). The upper figure is the whole, and the
bottom figure is the cross section, where U is the poloidal velocity, R0 is the radius
of the poloidal flow, and r is the radius of an example position on the torus from the
Z axis. The number of coils in the coil bundle is infinite. Here, only a part of the coils
shown below are considered.

A representative cross section (Z-Y plane) of the torus is shown (Fig. 2(a)). The
stream is divided into toroidal segments for calculation as coils (Fig. 2(b)). That is,
Fig. 2(a) and (b) show the right half of the cross section of Fig. 1. Z is the centre
axis, and Ra is the radial axis of the cylindrical coordinates (equivalent to the Y
axis in Fig. 1), where the circle indicates the cross section of the torus. Pc is the
centre of the flow, where r0 and z0 are the elements of position Pc in the Ra and Z
directions, respectively. Notably, P0 is at the coordinates (0,0), and Pc is at (r0,0). P
is a representative position at which the flow velocity vector U is calculated; ur and uz

are the elements of U in the Ra and Z directions, respectively; θ is the angle between
the Ra axis and position P; and r is the element of position P in the Ra direction (Fig.
2(a)). Note that θ is not the zenith angle of the polar coordinates but the angle from
the Ra axis. The coils used to define the flow torus are defined in Fig. 2(b). Sixteen
coils are considered, where n refers to the number of coils. The dotted lines indicate
the coaxial coils (i.e., the region occupied by the fluid), which are separated by the
thickness T . Multiple coils wind only once around the Z axis, and the coils move in the
direction of U with radius R0. Therefore, the circumference of each coil expands and
contracts. The electric current runs separately in each coil in the ϕ direction, which
orbits the Z axis. Although the coils can move, the later calculation of the eigenvalues
assumes that they are motionless in a brief moment ∆t.
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Fig. 2 Schematics of the (a) velocity of the fluid flow and (b) defined coils in the cross section of
the convection (Z-Y or Z-Ra plane). This figure is a cross section of Fig. 1 and shows settings such
as the arrangement of the virtual coils used in the numerical calculations.

The top and side views of a set of any two coaxial coils are shown (Figs. 3(a) and
(b)). These figures explain the relationship between the electric current I and vector
potential[11] A for the calculation of inductances[11]. X, Y, and Z are the axes of the
rectangular Cartesian coordinate system (Fig. 3). Cj is Coil j, in which the current Ij
flows, and Ci is Coil i, which obtains the vector potential[11]Aj induced by the current
Ij running in Coil Cj . ϕ is the angle of rotation around the Z axis, starting from the
Y axis. Here, ri and rj are the radii of Ci and Cj , respectively. Furthermore, dsi and
dsj are infinitesimal lengths of Ci and Cj , respectively, on each coil for integration,
where dsi is placed on Ci (ϕ = 0) and where dsj is placed on Pjϕ at ϕ with a distance
l between them. Idsj is the contribution to the current over dsj , where Adsj is the
vector potential induced on dsi by Idsj . Aj is the element of Adsj in the X direction.
Φi is the total flux linked in Ci. The side view is also a schematic version of Fig. 2. The
symbols are the same as those in Fig. 2. The dashed circle approximately indicates the
convection of the fluid. Pj and Pi are the positions of the two coils in the Z-Ra plane.

In addition, a 3D image of the coils is shown to clarify their relationships with each
other (Fig. 4). Each coil is arrayed coaxially with the Z axis, and the coils are parallel
to each other.

2.2 Calculation of the magnetic properties

In the numerical calculations in this paper, the electromagnetic induction equations are
applied to multiple coils, and the current is calculated by combining these equations to
solve them as an eigenvalue problem. Here, the underlying electromagnetic induction
equation is derived. In addition, a method for calculating the inductance to be included
in the numerical calculation is described.

2.2.1 Derivation of Basic Formulas

As a source equation for determining the relationship between the electric current and
magnetic field, Ohm’s law[11] is used with an electric field to calculate the current as
follows:
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Fig. 3 Relationship between the electric current I and vector potential A for the set of coils shown
in Fig. 2: (a) top view and (b) side view of the coils on the torus. Two virtual coils are used to explain
how to calculate self- and mutual inductance.

J = σ (E+ u×B) (1)

Here, J is the current density; σ is the electrical conductivity; u is the velocity of
the conductive fluid; B is the magnetic field, which can be found via (2); u×B is the
motion of the electric field; and E is the electric field potential, which can be found
via (3)[11] as follows:

B = ∇×A (2)

E = −∂A

∂t
+∇φ (3)

Here, φ is a scalar potential, A is a vector potential[11], and t represents the time.
To derive an induction equation expressed in vector potentials from Ohm’s law

(1), these equations are combined as follows:

∂A

∂t
− u× (∇×A) = ∇φ− J

σ
(4)

To apply this induction equation for coils, the factor 2πri (ri=coil Ci radius) is
multiplied as an integral around the coil on both sides of the equation because A and
the current density are the same around Ci.
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Fig. 4 3D view of the coaxial coils. A bird’s-eye view is used to facilitate imagining the arrangement
of the virtual coil.

∂

∂t
(2πriA)− u× (∇× 2πriA) = −2πri

σ
J (5)

Here, φ is ignored because it is assumed that going around along Ci at that gradient
will result in a value of zero. Furthermore, (6) shows the relationship between A and
the inductance[11] (L). Here, the total magnetic flux linking the coil, Φ, is used in
place of L, where Φ = LI. The subscripts i and j refer to the coil numbers defined in
Fig. 2, enabling the development of simultaneous equations.

Φi =

∮
Ci

Ajdsi (6)

Here, Φi is the flux of coil Ci, and dsi is an infinitesimal part of coil Ci. In this
arrangement of coils, all the coils are arrayed coaxially with the Z axis and parallel
to each other. Thus, Aj is the same around Ci. Therefore, Φi = 2πriAj . When Φi =
LijIj , the relationship between Lij and Aj is as follows. Lij is a matrix representing
inductance, but only the diagonal element is self-inductance, and the other elements
are mutual inductances, so it is hereafter referred to as Mij .

Aj =
Ij
2πri

Mij ,Ajϕ =
Ijϕ
2πri

Mij (7)

Aj and Ij have only a toroidal component (indicated by the subscript ϕ) along
the coil. Using (7), the vector potential is separated into an inductance component
that expresses the structure of the fluid (electric circuits) and an electrical component
that expresses the current. The reason is to consider the mutual influence between
distant circuits in terms of mutual inductance. The change in current is subsequently
calculated from the change in inductance. By substituting (7) into (5), the following
equation is obtained:

∂

∂t
(MijIjϕ)− [u× (∇× 2πriAj)]ϕ = −2πri

σ
Ji = −2πri

σ
Jiϕ (8)
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Here, σ is the conductance of the fluid, and ri is the radius from the Z axis. The
current density J i of the attenuation term of (8) is also described as Jiϕ since it has
only a ϕ direction component. However, the second term on the left-hand side of (8)
is complicated. Thus, it must be addressed separately. This term is considered by
decomposing it as follows:

u× (∇×Aj) =

 uir

0
uiz

×


1
ri

(
−ri

∂Ajϕ

∂zi

)
0

1
ri

(
∂riAjϕ

∂ri

)


=

 uir

0
uiz

×

 −∂Ajϕ

∂zi
0

1
ri
Ajϕ +

∂Ajϕ

∂ri


=

 0

−uiz
∂Ajϕ

∂zi
− uir

(
1
ri
Ajϕ +

∂Ajϕ

∂ri

)
0

 (9)

Here, rotAj is decomposed into cylindrical coordinates, and the subscripts r, ϕ,
and z indicate the component directions in cylindrical coordinates, namely, the radius
from the Z axis, the angle around the Z axis, and the Z direction, respectively. Since the
current only runs through the toroidal coil, only the toroidal Ajϕ component remains
with the vector potential. Furthermore, since it is uniform in the toroidal direction,
the ∂

∂ϕ component is zero, and the description is excluded. Therefore, Aj only has a

component in the ϕ direction. Thus, the other components of Aj are omitted. (10)
is obtained by multiplying (9) by 2πri, substituting (7) and including only the ϕ
component as follows:

2πri

[
−uiz

∂Ajϕ

∂zi
− uir

(
1

ri
Ajϕ +

∂Ajϕ

∂ri

)]
= −uiz

∂MijIjϕ
∂zi

− uir

(
1

ri
MijIjϕ +

∂MijIjϕ
∂ri

)
= −uir

∂MijIjϕ
∂ri

− uiz
∂MijIjϕ

∂zi
− uir

1

ri
MijIjϕ (10)

These terms are replaced by the second term on the left-hand side of (8) to obtain
(11) as follows:

∂

∂t
(MijIjϕ)−

(
−uir

∂MijIjϕ
∂ri

− uiz
∂MijIjϕ

∂zi
− uir

1

ri
MijIjϕ

)
= −2πri

σ
Jiϕ = −2πri

σS
Iiϕ. (11)

The term in (10) containing the vector potential Ajϕ indicates the electromotive
force when returning to Ohm’s law (1). The electromotive force is unaffected by the
cross-sectional area of the electric circuit. Furthermore, the attenuation term, including
the current density Jiϕ, indicates a voltage drop. This voltage drop is affected by
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the cross-sectional area of the circuit. (11) compares the electromotive force and the
voltage drop. The Ajϕ of the electromotive force term is derived from (7) and is
expressed by the current Ijϕ, which is unaffected by the cross-sectional area of the

electric circuit. The current density Jiϕ of the attenuation term is
Iiϕ
S . It is arranged

as follows:

∂

∂t
(MijIjϕ) + uir

∂MijIjϕ
∂ri

+ uiz
∂MijIjϕ

∂zi
+ uir

1

ri
MijIiϕ

= −2πri
σS

Iiϕ (12)

Since the first three terms on the left-hand side of (12) are equivalent to a total
differential, they can be replaced as follows:

d

dt
(MijIjϕ) + uir

1

ri
MijIjϕ = −2πri

σS
Iiϕ

This equation can be transformed and rearranged as follows:

dMij

dt
Ijϕ +Mij

dIjϕ
dt

+ uir
1

ri
MijIjϕ = −2πri

σS
Iiϕ

dIjϕ
dt

= M−1
ij

(
−dMij

dt
Ijϕ − uir

1

ri
MijIjϕ − 2πri

σS
Iiϕ

)
As such, Ijϕ cannot be obtained because the equation is a mixture of Ijϕ and Iiϕ.

However, the resistance matrix of the attenuation term shown below is diagonal and
has only the elements of i = j, so it can be unified to Ijϕ.

ΛIjϕ = −M−1
ij

dMij

dt
Ijϕ −M−1

ij uir
1

ri
MijIjϕ −M−1

ij RijIjϕ (13)

Here, Λ indicates the eigenvalues. (13) is obtained. These simultaneous equations
are used here to obtain the Λ values. Rij is a matrix of the resistance and a function
of the coil circumference and cross-sectional area S, where S is calculated from the
thickness T and the section of the flow course as S = (2πR0T ) /16. Then, Rij =
2πri/ (σS) = (16ri) / (σR0T ). Rij is a diagonal matrix because the voltage drop exists
only for i = j.

2.2.2 Method for Calculating the Inductance

The inductance used in the example calculation (see Figs. 3(a) and (b)) is as follows. In
the coil description (Fig. 2), the coil’s cross-sectional area and shape are disregarded to
calculate the inductance because these geometrical factors introduce a large degree of
complexity. Therefore, the coil is treated in the calculation, and Fig. 3 is approximated
as a thin line. Aj [12] is calculated as follows:

Aj =
µ

4π

∮
Cj

Jj

l
dV =

µ

4π

∮
Cj

JjS

l
dsj =

µ

4π

∮
Cj

Ij
l
cosϕdsj

=
µ

4π
Ij

∮
Cj

cosϕ

l
dsj , (14)
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where l is the distance between dsi and dsj , µ is the magnetic permeability, dV is
the infinitesimal volume, and S is the cross-sectional area of the current (i.e., the coil).
When only ϕ directional components are handled, Ijϕ = JjϕS is the current, and the
directional element for dsi of Ijϕ is Ijϕcosϕ. By substituting (7) for Ajϕ in (14), (15)
is obtained as follows:

Mij =
2πri
Ijϕ

µ

4π
Ijϕ

∮
Cj

cosϕ

l
dsj = 2πri

µ

4π

∮
Cj

cosϕ

l
dsj (15)

When µ is set to 4π × 10−7H/m (vacuum conditions), (16) is obtained as follows:

Mij = 2πri

∮
Cj

cosϕ

l
dsj × 10−7 (16)

Mij is calculated by summing (17), where Cj is divided into k = 100 equal parts,

∆sj =
2πrj
100 , as follows:

Mij ≈ 2πri

100∑
k=1

cosϕk∆sj
lk

× 10−7 (17)

lk =

√
(rj cosϕk − ri)

2
+ (rj sinϕk)

2
+ (zj − zi)

2
(18)

The angle of a specific coil n is given by θn = 2πn/16, where rn = r0+R0 cos θn and
zn = R0 sin θn (Fig. 2). Previously, i and j were used in mutual inductance calculations
to distinguish between the coils that received electromotive force and the coils that
had a current flow. Each number n is replaced by i or j for any two of the coils.

2.2.3 Power Generation Trends

The nature of this power generation is described in terms of the equation obtained
above.

(13) and (15) are used to explain the tendency of the inductance to change because
of convection. The variable ri is included in (15), and zi is contained in lk (18). Thus,
power generation is related to the velocity of convection in the Ra and Z directions.
That is,

dMij

dt is driven by poloidal convection. In this drive, not only the change in
self-inductance but also the change in mutual inductance is important because the
mutual coupling tends to fluctuate because of the difference in convection when the
coils are far apart.

When r0, R0 and T in Fig. 2 change in a similar form, ri, rj , zi and zj in (17)
and (18) change in a similar form so that the components of Mij are similar to each
other, and the value changes proportionally. In other words, the results of this numer-
ical calculation can be predicted to change similarly when the scale of the system is
changed.

Predicting from
dMij

dt on the first right-hand side of (13), when Mij decreases,
this term becomes positive, and power generation may occur against the attenuation
term of the third term. Therefore, if power generation occurs, the place is the second
quadrant (top left of Pc in Fig. 2). In brief, the inductance generally increases with the
radius of the coil, and conversely, the smaller the radius is, the smaller the inductance.
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In the second quadrant, the inductance decreases because the radius of the coil is
decreasing due to convection, so the change is of negative polarity. This phenomenon
is explained in Appendix A by the nature of numerical calculation formulas using (17)
and (18).

2.2.4 Elements of other Expressions

dMij

dt is calculated as the difference in Mij induced by the flow velocity over an
infinitesimal divided by ∆t(ex.1.0× 10−6s).

The velocity U depends on the θn of each coil and is calculated as follows (Fig. 2):

|U| = r0
ri
ωR0, ur = − |U| sin θn, uz = |U| cos θn. (19)

where ω is the angular velocity of the flow. The properties of cylindrical coordi-
nates appear in (13) as electromagnetism and in (19) as convection. In other words,
convection is set in cylindrical coordinates where a torus-like fluid flows in the poloidal
direction. 1

ri
is multiplied because a fluid of the same volume is concentrated and

dispersed towards the Z axis in a poloidal flow such that the flow path expands and
contracts, and the velocity changes accordingly. r0

ri
is a coefficient that adjusts on the

basis of the position of r0 so that the flow rate satisfies the continuity equation.
Furthermore, M−1

ij is the inverse matrix of Mij .

3 Calculation Conditions and Results

3.1 Calculation conditions

The conditions for the numerical calculations are as follows.
The general conditions are R0 = 1000 m, r0 = 2000 m, and T = 0.1R0. The elec-

trical conductivity σ is 103 s/m (solar convection zone)[9]. The velocity of convection
is given by (19), where |U| = r0

ri
ωR0. As a condition, the angular velocity ω is set to

2π2.1× 10−3, where only the maximum eigenvalue is barely positive. In other words,
we set the conditions that seem to be the boundary at which power generation begins
to occur.

3.2 Results

The result calculated on the basis of (13) is shown under the conditions above. The
eigenvalues Λ(λ1 − λ16) are listed in Table 1. A positive value is highlighted in bold
in the table. Only the maximum eigenvalue, λ16, has positive polarity. Although it
has positive polarity, the absolute value is small. This result is obtained because the
calculation conditions were set in a specific way. Thus, under these conditions, power
generation begins. In addition, if the convection speed is high, the power generation
will be strong. The eigenvector of the maximum eigenvalue is shown in Table 2. The
length of each component of this eigenvector is adjusted so that the norm is 1. This
condition indicates that the absolute value of the current is maximised in Coil 6, which
is highlighted in bold. These components indicate the current values of each coil.
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Table 1 Eigenvalues Λ.
The eigenvalue is
calculated numerically.
Assuming the boundary
of the start of magnetic
field generation, the
calculation condition
was set to generate one
eigenvalue that was
barely positive.
Therefore, only λ16 is
positive.

Λ Eigenvalue
λ1 −5.290× 10−1

λ2 −3.221× 10−1

λ3 −2.288× 10−1

λ4 −1.762× 10−1

λ5 −1.431× 10−1

λ6 −1.208× 10−1

λ7 −1.084× 10−1

λ8 −9.134× 10−2

λ9 −8.964× 10−2

λ10 −6.714× 10−2

λ11 −6.575× 10−2

λ12 −5.037× 10−2

λ13 −4.163× 10−2

λ14 −2.918× 10−2

λ15 −1.633× 10−2

λ16 7.729× 10−3

This table is used to create the following figure. The lattice-like distribution of the
magnetic field generated from the current state (based on the eigenvector) is shown in
Fig. 5. It is vectorially displayed on the Z-Ra plane. These lengths are compressed by
square roots. The square root was set so that the length of the line of the magnetic field
display was not extremely different. The circle centred on Pc indicates the convection
path. Each small round mark on the convection circle indicates the location of the
coil (Fig. 2(b)). The range of the figure is ±2R0 in the Z direction and +4R0 in the
Ra direction. The lattice spacing is R0

5 for Z and Ra. Since the magnetic field is not a
specific value that has increased, its unit is not displayed. Note that some vectors near
small round marks on convection are unnatural in size and direction. This result was
obtained because the lattice points for calculating the magnetic field distribution and
the position of the coil were too close together, so the extreme values were calculated.

The calculation method of the magnetic field is as follows. The calculation of the
inductance is obtained through the calculation of the vector potential, as shown in
(14). Therefore, the vector potential was calculated using the inductance calculation
method. That is, via (7), the vector potential was obtained through the current of the
coil and the temporary inductance at each location. Furthermore, the value related to
the rotation of the vector potential at each location was obtained and converted to a
magnetic field via (2).
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Table 2 Eigenvector of the
maximum eigenvalue in Table 1.
This eigenvector corresponds to
the current distribution flowing
through each coil. The combined
current is adjusted to 1. The
current is maximised at Coil 6.

Coil number Eigenvector
0 2.262× 10−2

1 4.870× 10−2

2 9.259× 10−2

3 1.691× 10−1

4 2.979× 10−1

5 4.806× 10−1

6 6.198× 10−1

7 4.801× 10−1

8 1.193× 10−1

9 −5.597× 10−2

10 −6.638× 10−2

11 −4.792× 10−2

12 −3.188× 10−2

13 −1.899× 10−2

14 −7.231× 10−3

15 5.626× 10−3

In Fig. 6, the intensity of the magnetic force is represented by contour lines to
elucidate the magnetic force distribution of Fig. 5. On a poloidal surface, it is a line,
but in three-dimensional space, it is a curved surface whose line is rotated on the
axis of symmetry. Since it is a cylindrical coordinate, the magnetic force, that is, the
magnetic flux density, even if the same number of magnetic fluxes passes, the cross-
sectional area of the passage changes according to the distance r from the axis of
rotational symmetry Z, so the magnetic flux density changes. Therefore, in the contour
line, the magnetic force is corrected by multiplying the circumference by 2πr.

In Fig. 6 , the yellow pointillism line is the highest magnetic field level (warmer
colours have a higher level). The circle in the figure is the hypothetical convection
position shown in Fig. 2. Since there are yellow areas around the second quadrant (top
left of Pc) of this circle, it is thought that power generation mainly occurs there. In
this study, convection is examined only at the position of 16 coils on the convective
circle shown in Fig. 2, so it is difficult to understand because the contour lines of
the same level are divided into multiple parts and are intricate near the convection.
In reality, the coils should be innumerably distributed so that the contour lines are
continuous and smooth. If we increase the number of coils and place them inside the
torus convection system, we will probably be able to draw smoother and more accurate
contour lines near the convection system.

Figs. 5 and 6 are rotationally symmetric around the Z-axis, and numerical calcu-
lations show that an axisymmetric magnetic field arises from axisymmetric poloidal
convection on the same axis.
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Fig. 5 Magnetic field distribution generated from the current state on the basis of the results of
numerical calculations. This magnetic field distribution is vectorially drawn on the Z-Ra plane on
the basis of eigenvectors (Table 2). These lengths are compressed by square roots. The range of the

figure is ±2R0 in the Z direction and +4R0 in the Ra direction. The lattice spacing is R0
5

for Z and
Ra. Since the magnetic field is not a specific value that has increased, its unit is not displayed.

3.3 Similarity of Scale

Table 3 shows the trend of power generation on the convection scale. The trend men-
tioned in Section 2.2.3 Power Generation Trends also appeared in the calculations.
From left to right in this table, the scale R0 of the convection system, the angular
velocity ω of the convection system, the positive maximum eigenvalue λmax, and the
positive maximum eigenvalue λmaxN when the second term on the right-hand side
of (13) is nonfunctioned. This table shows that increasing the scale of convection by
3 orders of magnitude decreases the convection velocity by 6 orders of magnitude,
resulting in a similar positive eigenvalue that is 6 orders of magnitude smaller. In
other words, it becomes easier to generate electricity by squaring the convective scale.
λmaxN is described in Section 4.3, Resistance Losses in Stationary Fluids Around Set
Convection.

As estimated under other conditions, as long as the numerical values of R0, r0,
and T change in a similar form, the eigenvalues also change in a similar form if the
flow velocity is appropriate. In other words, since the interval ratio or polarity of the
eigenvalues does not change, the nature of magnetic field generation is the same even
if the scale of convection changes.
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Z

P 0 P c
R a

Fig. 6 Magnetic force contour lines generated from the current state on the basis of the results of the
numerical calculations. This figure shows the magnetic force contour lines drawn on the Z-Ra plane
on the basis of eigenvectors (Table 2). The range of the figure is ±2R0 in the Z direction and +4R0

in the Ra direction. Since the magnetic field is not a specific value that has increased, its unit is not
displayed. Ten contour lines are displayed. A strong magnetic field is displayed in a warm colour.

Table 3 Maximum eigenvalues according to the size of the
convective system and maximum eigenvalues without the
second term on the right-hand side of (13) at the angular
velocity of convection at which power generation starts.

R0 km ω rad/s λmax λmaxN
1 2π2.1× 10−03 7.729× 10−03 3.578× 10−04

1000 2π2.1× 10−09 7.729× 10−09 3.578× 10−10

4 Discussion

As described above, the underlying electromagnetic induction equation was derived,
and the result was obtained via numerical calculation as a system eigenvalue problem.
The results revealed the start of power generation by generating an axisymmetric mag-
netic field from poloidal convection. Here, the results and problems of this numerical
calculation are discussed in detail below.

4.1 Generation of Axisymmetric Magnetic Fields

A positive eigenvalue means that the eigenvector increases exponentially as a function
of the eigenvalue. The eigenvector of the maximum eigenvalue of positive polarity is
shown in Table 2. Each component indicates the current in each coil. However, this
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eigenvalue or eigenvector only means that power generation starts, and the state starts
at the beginning. Therefore, the magnetic field in the figure is initially considered
weak. However, the electric current increases over time. The larger the eigenvector is,
the faster the magnetic field grows. When self-excited power generation occurs and
the magnetic field increases, the magnetic field becomes more pronounced, as shown
in Figs. 5 and 6. The following discussion can be drawn from this figure.

A strong magnetic field originates around the second quadrant of convection and
passes through the convection circle. In other words, a strong magnetic field intersects
with convection and seems to contribute to power generation. In addition, outside the
strong magnetic field, a weak magnetic field passes near the Z-axis and circulates on
the outside away from convection. Since this surface is rotationally symmetric around
the Z axis, it shows a rotationally symmetrical magnetic force in the poloidal flow.

Notably, the magnetic field in these figures is asymmetric at ±Z of the line-
symmetry line (the line in the Ra direction on P0-Pc). This asymmetry arises mainly
because the position where power generation is likely to occur is at +Z.

4.2 Possibility of Magnetic Field Stabilisation

The self-excited power generation discussed above becomes more powerful because
the magnetic field increases when power generation starts. Once the magnetic field
strengthens, even if convection weakens from the start, power generation continues.
This process continues even if the power generation consumes the energy of convection,
and the convection speed decreases. If the convection velocity decreases further, the
intensity of power generation will naturally weaken. Eventually, a balance will emerge
somewhere, depending on the ability to supply convective energy from the external
environment. In other words, it might be stabilised at the strength of a certain mag-
netic field. The behaviour of convection and the energy supply capacity of convection
must be examined to determine whether it is actually stable, but this undertaking is
not the subject of this paper.

Another assumption is that the magnetic field may be stabilised. When the current
increases to a certain extent, the Lorentz force acts. This force acts in the opposite
direction of convection, thus reducing the flow velocity. This behaviour will suppress
power generation, so a possibility exists that a balance between power generation and
a decrease in flow velocity will occur at some level. In other words, the magnetic field
may be stabilised. Again, it is necessary to examine how convection behaves with
respect to the Lorentz force, which is beyond the scope of this paper.

4.3 Resistance Losses in Stationary Fluids around Set
Convections

Since this calculation ignores the resistance loss in the surrounding fluid that is not
convection, the generation of electricity is considered easier. Electromagnetic induction
also generates an electric current in the surrounding fluid, which causes resistance
loss. However, this electromagnetic induction occurs when the current changes. This
resistance loss occurs because the current changes. It is a loss caused by an increase in
current. Loss occurs because of electromagnetic induction due to an increase in current,
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and the eigenvalue is suppressed. However, this does not mean that the current does
not increase. That is, the maximum positive eigenvalue is less than that in Table 1
instead of being negative.

Furthermore, the second term on the right-hand side of (13) plays an important
role. According to the estimation, the eigenvalue λmax when this term is included, as
shown in Table 3, is more than one order of magnitude larger than λmaxN when it is
omitted. This result is obtained because once power generation starts, the term works
more strongly because of the generated current, and power generation becomes more
powerful. Since this potent power generation is thought to strongly overcome the loss
of nonconvection fluids, the positive eigenvalue is not considered so small even if the
loss due to the surrounding stationary fluid is included. If the current is subsequently
stabilised by Section 4.2, electromagnetic induction does not occur in the surrounding
fluid; thus, the loss of stationary fluid does not occur.

4.4 The Problem of Coils with Currents being Carried Away
by Convection

Thus far, we have used numerical calculations to investigate the possibility of mag-
netic field growth, but there is a question here. Coils are moving with convection.
Then, because the magnetic field freezes [13], convection and the magnetic field move
together. In other words, the electric current results from power generation, and its
associated magnetic field moves with convection. Since the current is carried with the
movement of the coil, continuous growth of the magnetic field at a given location can-
not be expected. Even if a coil reaches the highest point of power generation, it will
pass by immediately. In this case, the little time for the magnetic field to grow con-
tinuously is a concern. To continuously generate power at the apex, even if the fluid,
that is, the coil, moves with convection, the current and the associated magnetic field
should not move.

However, in this work, we assume that the magnetic field grows in a specific loca-
tion. The basis is the inductance considered in this paper. (13) is used for the numerical
calculations and includes the mutual inductance. If we consider the change in time
here, that is, the change in the current and the resulting change in magnetic flux, then
Lenz’s law[12] can be considered.

Here, we explain the meaning of the phrase ”combination of mutual inductance
and Lenz’s law”, which we use as the key point of this paper. The inductance is related
to the relationship between the magnetic field and current (Φ1 = L1I1 + M12I2 +
M13I3+. . .). Lenz’s law refers to the effect of generating an electromotive force E in the
direction of suppressing the change in the magnetic field in a circuit (E = −dΦ

dt ). When
combined, these results indicate that an electromotive force that suppresses the change
in current is generated, including other circuits (E1 = −L1

dI1
dt −M12

dI2
dt −M13

dI3
dt . . .).

This process is called ”mutual induction”. This electromotive force causes a current in
the circuit in the direction of suppressing the change in the current of these circuits.
In this paper, the action of the mutual inductance part is used as the basis for the
discussion.

For example, if the current increases in the coil at one position, a current in the
opposite direction is generated in the coil at the other position. Conversely, if the
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current decreases in the coil at one position, a current in the same direction is generated
in the coil at the other position. At the position where the current is at its peak,
the coil exiting and the coil entering that position are adjacent to each other, so the
current of the incoming coil increases as the current of the outgoing coil decreases.
That is, at that position, the current is inherited by the next coil. This new concept
has not been introduced in other theories. Hereinafter, this effect is abbreviated as the
inheritance effect.

Therefore, current growth (magnetic field growth) at a specific position is con-
sidered possible. The matrix on the right side of (13) for calculating the eigenvalues
in this paper includes the mutual inductance (other than Mii.) This matrix is sub-
sequently solved as an eigenvalue problem to obtain the change (eigenvalues) in the
current (eigenvectors). Therefore, this eigenvalue can be expected to have the prop-
erty of not moving at a specific position. In other words, the magnetic field continues
to grow at a specific position according to the calculated eigenvalue. Furthermore, in
real convection, since countless coils are close to each other, the coupling of mutual
inductance is considered strong. Therefore, the inheritance effect is considered to work
efficiently. In summary, even if the magnetic field is frozen, the calculated eigenval-
ues and eigenvectors do not move with the movement of each coil but represent the
behaviour of the current remaining at the coil set position (Fig. 2).

4.5 Magnetic Diffusivity

In this work, magnetic diffusivity is ignored. The magnetic field should be attenuated
depending on the magnetic diffusivity. However, the attenuation term of (13) con-
tains a component corresponding to a magnetic diffusivity of 1

µσ (M−1
ij contains 1

µ ).
Therefore, the magnetic diffusivity is already considered in the numerical calculation
results. However, in this case, the current of the coil is considered in the calculation.
The calculation results do not indicate what happens to the magnetic field generated
outside the coil. We have not yet determined how much magnetic diffusivity works.

4.6 Relationship with Cowling’s Theorem

The results of the calculations in this paper contradict Cowling’s theorem. In this
work, we assume that this calculation is correct, but it is a future task to elucidate
the cause of this discrepancy.

4.7 The End of Discussion

Therefore, it has been shown that an axisymmetric poloidal magnetic field grows
because of axisymmetric convection. In addition, the magnetic field stability can be
maintained depending on the conditions.

Here, we present an imaginary diagram of our assumption about how this magnetic
field occurs in celestial bodies. Suppose that a downdraft occurs in a conductive fluid
at the poles of a celestial body. Assuming that a poloidal flow is generated in a torus-
shaped fluid in this way, Fig. 7 depicts a virtual magnetic field with reference to Figs.
5 and 6. If a magnetic field is generated at the opposite pole in the same way, the
connected magnetic field spreads over a wide area outside the celestial body.
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Fig. 7 An example of poloidal axisymmetric convection and a magnetic field in a celestial body. The
solid arrows indicate fluid flow, whereas the dashed lines indicate the induced magnetic field. This
figure is schematically drawn on the basis of Fig. 6.

5 Conclusion

This paper argues that an axisymmetric magnetic field grows with purely simple con-
vection. Unlike previous theories, our work suggests that an axisymmetric magnetic
field can be grown from axisymmetric poloidal convection without complex convection.
We believe that this proposal is novel, but some issues are unresolved. However, if this
proposal is correct, then there is something to look forward to, as described below.

For example, as mentioned in Section 3.3 Similarity of Scale, if the size of the
system changes, the eigenvalues will change in the same way if the flow velocity is
appropriate. We believe that arbitrary convection can be created to some extent in an
artificial plasma experimental facility (ex., magnetic mirror type) rather than in the
natural world, so the results of this research may be useful when aiming to strengthen
a magnetic field. However, since higher speed and turbulence-free convection are indis-
pensable, a certain amount of technological innovation is required to achieve this goal.
We believe that this goal will eventually be achieved. Thus, this paper is in the field
of so-called magnetohydrodynamics, and we expect that it will be useful not only for
astronomical bodies but also for research in plasma furnaces and sodium experimental
facilities.
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Appendix A Tendency of Inductance Changes due
to Convection

(17), (18) and (19)are redescribed here:

Mij ≈ 2πri

100∑
k=1

cosϕk∆sj
lk

× 10−7, ∆sj =
2πrj
100

(A1)

lk =

√
(rj cosϕk − ri)

2
+ (rj sinϕk)

2
+ (zj − zi)

2
(A2)

|U| = r0
ri
ωR0, ur = − |U| sin θn, uz = |U| cos θn. (A3)

If the coil numbers i and j are set arbitrarily, the examination will be complicated,
so the following procedure is performed. The large

dMij

dt of (13) greatly affects power

generation.
dMij

dt is greatest when the convection velocity is high and the two coils
are adjacent to each other. Therefore, the case where the two coils are in the same
quadrant with a high flow velocity is considered. That is, consider the cases that are
in the second and third quadrants. First, to make it easier to examine, the variable
elements of Mji are concentrated in a part of lk in (A2). (A2) is transformed to
lk = rirj l

′
k. This riri offsets the rirj of (A1). In this way, the elements of change can

be concentrated on the remaining l′k as follows:

l′k =

√(
1

ri
cosϕk − 1

rj

)2

+

(
1

ri
sinϕk

)2

+

(
zj − zi
rirj

)2

(A4)

Since the flow velocity is multiplied by 1
ri
, as shown in (A3), in the second quadrant,

as shown in Fig. 2, as the angle θ increases, ri decreases, so the flow velocity increases.
Then, the difference between zi and zj increases because uz increases. Moreover, since
the velocity uz of (A3) also increases with θ, a further difference between zi and
zj emerges. Therefore, zj − zi of (A4) becomes larger. Simultaneously, the mutual
inductance of (A1) decreases, so the time change has a negative polarity.

Note that (A4) has variable elements 1
ri
, 1
rj

and 1
rirj

. In the second quadrant, sinθ

decreases as the angle θ increases, so ri, rj and rirj decrease. Since each term in the
square root of (A4) increases, l′k increases. Since the inductance of (A1) decreases, the
time change in inductance is negative in the second quadrant.

In the third quadrant, the opposite is true, and the change in mutual inductance
tends towards positive polarity.

In summary, the change in inductance tends to be negative in the second quadrant
and positive in the third quadrant.
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