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Researchers have struggled to understand the mechanism underlying the formation of ce-
lestial magnetic fields. Currently, the generation of axisymmetric and poloidal magnetic
fields can be solved by complex convection arguments. There are also simple convec-
tion claims, but they all assert that magnetic field generation is by simple convection
by treating it as an approximation or nonlinear process. This paper addresses a truly
simple axisymmetric poloidal convection and magnetic field. To calculate the electri-
cal components, this paper introduces a theory that separates the vector potential into
inductance and current in a relational formula. The reason is to consider the mutual
influence between distant circuits in terms of mutual inductance. Then, the change in
current is calculated from the change in inductance. It is solved as an eigenvalue prob-
lem. By this method, it is proven that a simple axisymmetric poloidal magnetic field can
be generated from axisymmetric poloidal convection. Another reason is the nature of
mutual inductance and Lenz’s law, which reflects the effect of current changes on other
electric circuits. This is intended to eliminate the concern that magnetic field growth
will be impaired by magnetic field freezing. These are novel concepts, and we believe
that these findings will contribute to further elucidating the formation mechanism of
celestial magnetic fields and plasma reactor research. However, regarding the stability
of the magnetic field, the behavior of convection itself must be considered, but since this
topic is not included in this paper, only the concept is described.
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1. Introduction
Magnetic Field Study of Celestial Bodies
Researchers have long struggled to understand the mechanism underlying the

formation of celestial magnetic fields. Research in this field could progress through
the discovery of a new underlying mechanism. Currently, the generation of ax-
isymmetric and poloidal magnetic fields can be solved by complex convection ar-
guments.

For example, the famous foundations for elucidating the mechanism of the for-
mation of celestial magnetic fields are the ω effect[1], the α effect[2], and Cowling’s
theorem[3].

Taking the Sun as an example, the magnetic field in the plane perpendicular
to the axis of rotation of the Sun is called the toroidal magnetic field, and the
magnetic field in the plane parallel to the axis of rotation is called the poloidal
magnetic field. The same is true for convection. According to Cowling’s theorem,
axisymmetric convection does not generate a stable axisymmetric magnetic field,
either poloidal or toroidal.

The ω effect generates a toroidal magnetic field from a poloidal magnetic field
where there is a gradient in angular velocity. Since the rotation of the surface of
the Sun is faster at the equator than at the poles, there is an angular velocity



gradient. If there is a poloidal magnetic field as the initial magnetic field, the
magnetic field is stretched so that it is wound up by the angular velocity gradient,
and the poloidal magnetic field becomes a toroidal magnetic field. If the toroidal
magnetic field is changed to a poloidal magnetic field, the magnetic field may be
amplified. However, no such effect was found. In the end, the result was in favor
of Cowling’s theorem.

The α effect assumes a velocity field that twists a magnetic field. The concept
is to twist the toroidal magnetic field in some places and direct it in the poloidal
direction. Therefore, if an α effect is added to the ω effect, mutual exchange of
magnetic fields is possible, and the magnetic field may be amplified. However, this
approach is not as easy to use as described above. Researchers have combined these
effects with complex convection to further elucidate the mechanism of magnetic
field generation[4][5]. To our knowledge, few papers[6][7][8] have argued for the
generation of magnetic fields by simple convection. However, these are not purely
simple axisymmetric poloidal arguments (see 5. Conclusion).

The notion that a magnetic field is generated by complex convection or that
an axisymmetric magnetic field does not occur constrains the study. Of course, a
discussion of the generation of magnetic fields by complex convection is meaningful
and necessary. However, in the observations, the difference between the axis of
rotation and the magnetic axis is not large for the main celestial bodies in the solar
system, especially for Saturn[9]. If there is a theory that convection and magnetic
fields are simply axisymmetric, a discussion could be facilitated.

If it is clarified that a magnetic field can be generated by simpler convection,
research in this field will further advance. This paper explores the possibility of
generating a magnetic field by convection, which is simpler.

In this paper, we prove the generation of a purely simple axisymmetric mag-
netic field by the following method.

Methods for this Research
First, a formula is needed. We derive the basic electromagnetic induction

equation to determine whether power generation starts and lasts. The relevant
electromagnetic induction equations are expressed by the vector potential[10]. Fur-
thermore, this vector potential is converted into an expression of inductance[10].
The purpose of this is to separate the vector potential into inductance, which is
the component that represents the structure of the fluid, and current, which is
the electrical component. The reason is to consider the mutual influence between
distant circuits in terms of mutual inductance. Then, the change in current is
calculated from the change in inductance. Another reason is to consider mutual
inductance in combination with Lenz’s[10] law. This is because this combination
eliminates the concern that magnetic field growth is impaired by magnetic field
freezing[11]. For this idea, see 4. Discussion for details. This electromagnetic
induction equation is set and combined in a plurality of circuits. This problem is
solved by numerical calculation as an eigenvalue problem. As a solution, the eigen-
values and eigenvectors are obtained. These results imply a change in the current
and current distribution in the circuits. The results are shown in tables and fig-
ures, showing the possibility of generating magnetic fields and the distribution of
axisymmetric magnetic fields. As a result, it is possible to show the generation of
an axisymmetric magnetic field from axisymmetric convection without particularly
complex convection.

Here, we explain the meaning of multiple circuits and inductances. The in-
ductance is important for understanding this stady. Here, an overview of how
inductance is handled is provided. Poloidal convection is considered axisymmet-
ric convection (Fig. 1). This figure shows convection in which a torus-shaped
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(doughnut-shaped) fluid moves in the direction indicated by U . Since it is a con-
vection of a conductive fluid, it is thought that multiple coaxially toroidal circular
electrical circuits (hereinafter referred to as coils) move as bundles in a poloidal
manner. The inductance referred to above is the inductance of these coils. This
term refers to both the self-inductance and mutual inductance between the coils.
There are an infinite number of these coils, but in the numerical calculations de-
scribed below, 16 circuits are set to move in the direction indicated by U on the
torus surface, as shown in the cross-sectional view of the circuit (Fig. 2). The
convection and coil settings are described in detail in section 2.1.

The Role of the Formulas
When a coil moves in a poloidal manner with convection, the coil moves in the

radial direction and the cylindrical axial direction of the cylindrical coordinates.
In this way, the coil moves in the existing magnetic field, and power generation
occurs. The derived equation shows the relationship between this convection and
power generation. However, a magnetic field is not always present. A magnetic
field in the appropriate direction must also be generated by power generation.
This process is called self-excitation power generation. We would like to prove
that it is possible to generate electricity by integrating the entire torus. For this
purpose, the equation is applied to a plurality of coils with different positions and
solved as an eigenvalue problem. If power generation is recognized as a result of
the calculation, the possibility of self-excited power generation as a whole of the
torus can be explained.

Thus, as a result of the numerical calculations, the eigenvalues and eigen-
vectors are obtained. Since the eigenvalue of the positive polarity indicates the
growth of the eigenvector (the current distribution of the coil), this proves the
growth of the magnetic field. Furthermore, the magnetic field distribution calcu-
lated by calculating the obtained eigenvector components as the current flowing
through each coil is also shown in the figure. Based on these results, the possibility
of self-excited power generation that creates an axisymmetric poloidal magnetic
field is explained.

Stable Magnetic Field
Here, the possibility of growth of the magnetic field is shown, but the stability

of the magnetic field is not indicated. We believe that a stable magnetic field is
possible in relation to convection. However, since convection behavior is not the
subject of this paper, we will only discuss the possibility of maintaining the stability
of the magnetic field. Even if this is insufficient, we believe that these results and
ideas will be useful for future related research. We also believe that this argument
can be applied to more than celestial bodies. This is shown in 5. Conclusion.

The Configurations
Here, the following descriptive structure is briefly shown.

2. Mechanism
2.1 Description of the problem

Description of the geometric structure of the object of consideration and its
figures

2.2 Calculation of the magnetic properties
Derivation of mathematical formulas for numerical calculations
Explanation of the inductance calculation method
Other elements of the relevant formulas

3. Calculation Conditions and Results
3.1 Calculation conditions
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Setting conditions for the numerical calculations
Scale similarity

3.2 Results
Description of the tables and figures showing the calculation results

4. Discussion
Interpreting symmetric magnetic field generation from calculation results
Sub-self-excitation power generation
Possibility of stabilization of the magnetic field
The problem of magnetic field freezing

5. Conclusion
Relationship between this thesis and the anti-dynamo theorems
Differences between this thesis and similar claims
Limitations and expectations of this thesis

2. Mechanism

2.1. Description of the problem In this paper, we solve and discuss ax-
isymmetric convection and magnetic fields by numerical calculations. Here, the
geometric structure of convection and the knowledge necessary to calculate coil
inductances are explained using figures.

To determine whether a magnetic field can fluctuate in the poloidal stream of
a conductive fluid, a certain poloidal flow is set, and the induction equation (as a
simultaneous equation expressed by inductances) is expressed in terms of toroidal
vector potentials to calculate the current as an eigenvalue problem. The poloidal
flow of a fluid occurs in a torus shape (Fig. 1). The upper figure is the whole, and
the bottom figure is the cross section, where U is the poloidal velocity, R0 is the
radius of the poloidal flow, and r is the radius of an example position on the torus
from the Z axis. There are an infinite number of coils in the coil bundle. Here,
only a part of the coils shown below will be considered.

A representative cross section (Y–Z plane) of the torus is shown (Fig. 2(a)).
The stream is divided into toroidal segments for calculation as coils (Fig. 2(b)).
That is, Fig. 2(a) and (b) show the right half of the cross section of Fig. 1. Z is
the center axis, and Ra is the radial axis of the cylindrical coordinates (equivalent
to the Y axis in Fig. 1), where the circle indicates the cross section of the torus.
Pc is the center of the flow, where r0 and z0 are the elements of position Pc in
the Ra and Z directions, respectively. Notably, P0 is at the coordinates (0,0), and
Pc is at (r0,0). P is a representative position at which the flow velocity vector
U is calculated; ur and uz are the elements of U in the Ra and Z directions,
respectively; θ is the angle between the Ra axis and position P; and r is the
element of position P in the Ra direction (Fig. 2(a)). Note that θ is not the zenith
angle of polar coordinates but the angle from the Ra axis. The coils used to define
the flow torus are defined in Fig. 2(b). Sixteen coils are considered, where n refers
to the coil number. The dotted lines indicate the coaxial coils (i.e., the region
occupied by the fluid), which are separated by the thickness T . There are multiple
coils that wind only once around the Z axis, and the coils move in the direction
of U with radius R0. The electric current runs separately in each coil in the ϕ
direction that orbits the Z axis. Although the coils can move, the later calculation
of the eigenvalues assumes the state of the coils in a brief moment, ∆t.
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Figure 1: Schematic of the toroidal geometry. It is an approximate geometric
outline of convection set by numerical calculations. A torus-like conductive fluid
flows in the U direction. The upper figure is the whole, and the bottom figure is
the cross section.
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Figure 2: Schematics of the (a) velocity of the fluid flow and (b) defined coils
in the cross section of the convection (Y–Z plane). It is a cross section of Fig.
1 and shows settings such as the arrangement of virtual coils used in numerical
calculations.
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Figure 3: Relationship between the electric current I and vector potential A for
a set of any two coils shown in Fig. 2: (a) top view and (b) side view of the
torus. Two virtual coils are taken up to explain how to calculate self and mutual
inductance.
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Figure 4: 3D view of the coaxial coils. It is expressed in a bird’s eye view to make
it easier to imagine the arrangement of the virtual coil.

The top and side views of a set of any two coaxial coils are shown (Figs.
3(a) and (b)). They explain the relationship between the electric current (I) and
vector potential[10] A for the calculation of inductances[10]. X, Y, and Z are the
axes of the rectangular Cartesian coordinate system (Fig. 3). Cj is Coil j, in
which the current Ij flows, and Ci is Coil i, which obtains the vector potential[10]
Aj induced by the current Ij running in Coil Cj. ϕ is the angle of rotation
around the Z axis, starting from the Y axis. Here, ri and rj are the radii of Ci
and Cj, respectively. Furthermore, dsi and dsj are minute lengths of Ci and Cj
for integration, respectively, where dsi is placed on the X-axis (ϕ = 0) and dsj is
placed at ϕ with a distance l between them. Idsj is the contribution to the current
over dsj, where Adsj is the vector potential induced by Idsj. dAj is the element
of Adsj in the X direction, and it is integrated with respect to ϕ to obtain Aj.
Φi is the total flux linking Ci. In addition, a 3D image of the coils is shown to
clarify their relationships with each other (Fig. 4). Each coil is arrayed coaxially
with the Z axis, and the coils are parallel to each other.

2.2. Calculation of the magnetic properties In the numerical calculations
in this paper, the electromagnetic induction equations are applied to multiple
coils, and the current is calculated by solving them as an eigenvalue problem
by combining them. Here, the underlying electromagnetic induction equation is
derived. In addition, a method for calculating the inductance to be included in
the numerical calculation is described.

Derivation of Basic Formulas
As a source equation for determining the relationship between the electric

current and magnetic field, the current is calculated using Ohm’s law[10] with an
electric field as follows:

J = σ (E + u×B) (1)

Here, J is the current density; σ is the electrical conductivity; u is the velocity
of the conductive fluid; B is the magnetic field, which can be found using Eq. (2);
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u×B is the motion of the electric field; and E is the electric field potential, which
can be found using Eq. (3)[10] as follows:

B = ∇×A (2)

E = −∂A

∂t
+∇φ (3)

Here, φ is a scalar potential, A is a vector potential[10], and t represents the
time.

To derive an induction equation expressed in vector potentials from Ohm’s
law, Eq. (1), these equations are combined as follows:

∂A

∂t
− u× (∇×A) = ∇φ− J

σ
(4)

To apply this induction equation for coils, the factor 2πri(ri=coil Ci radius)
is multiplied as an integral around the coil on both sides of the equation because
the A and current are the same around Ci and Cj. Assuming that J = I/S,
where I is the toroidal current and S is the cross-sectional area of the coil, Eq.
(4) can be rewritten as follows:

∂

∂t
(2πriA)− u× (∇× 2πriA) = −2πri

σ

I

S
(5)

Here, φ is ignored because it is assumed that going around along Ci at that
gradient will result in a value of zero. Furthermore, Eq. (6) shows the relationship
between A and the inductance[10] (L). Here, the total magnetic flux linking the
coil, Φ, is used in place of L, where Φ = LI. The subscripts i and j refer to the coil
numbers defined in Fig. 2, enabling the development of simultaneous equations.

Φi =

∮
Ci

Ajdsi (6)

Here, Φi is the flux of coil Ci, and dsi is a minute part of coil Ci. In this
arrangement of coils, all the coils are arrayed coaxially with the Z axis and parallel
to each other. Thus, Aj is the same around Ci. Therefore, Φi = 2πriAj . When
Φi = LijIj , the relationship between Lij and Aj is as follows. Lij is a matrix
meaning inductance, but only the diagonal element is self-inductance, and the
other elements are mutual inductance, so it is hereafter referred to as Mij .

Aj =
Ij

2πri
Mij (7)

As will be discussed later, both Aj and Ij have only a toroidal component
along the coil. Using Eq. (7), the vector potential is separated into inductance,
which is a component that expresses the structure of the fluid (electric circuits),
and current, which is an electrical component. The reason is to consider the
mutual influence between distant circuits in terms of mutual inductance. Then,
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the change in current is calculated from the change in inductance. By substituting
Eq. (7) into Eq. (5), the following equation is obtained:

∂

∂t
(MijIj)− u× (∇× 2πriAj) = −2πri

σS
Ij (8)

Here, σ is the conductance of the fluid, and ri is the radius from the Z axis.
However, the second term on the left-hand side of Eq. (8) is complicated. Thus, it
must be addressed separately. It is considered by decomposing the term as follows:

u× (∇×Aj) =

 uir

0
uiz

×


1
ri

(
−ri

∂Ajϕ

∂zi

)
0

1
ri

(
∂riAjϕ

∂ri

)


=

 uir

0
uiz

×

 −∂Ajϕ

∂zi
0

1
ri
Ajϕ +

∂Ajϕ

∂ri

 =

 0

−uiz
∂Ajϕ

∂zi
− uir

(
1
ri
Ajϕ +

∂Ajϕ

∂ri

)
0

 (9)

Here, rotAj is decomposed into cylindrical coordinates, and subscripts r,
ϕ, and z indicate the component directions in cylindrical coordinates, namely,
the radius from the Z axis, the angle around the Z axis, and the Z direction,
respectively. Since the current only runs through the toroidal coil, only the toroidal
Ajϕ component remains with the vector potential. Furthermore, since it is uniform
in the toroidal direction, the ∂

∂ϕ component is zero, and the description is excluded.
Therefore, Aj has a component that is only in the ϕ direction. Thus, the other
components of Aj are omitted. Eq. (10) is obtained by multiplying Eq. (9) by
2πri, substituting Eq. (7) and including only the ϕ component as follows:

2πri

[
−uiz

∂Ajϕ

∂zi
− uir

(
1

ri
Ajϕ +

∂Ajϕ

∂ri

)]

= −uiz
∂MijIjϕ

∂zi
− uir

(
1

ri
MijIjϕ +

∂MijIjϕ
∂ri

)
= −uir

∂MijIjϕ
∂ri

− uiz
∂MijIjϕ

∂zi
− uir

1

ri
MijIjϕ (10)

These terms are replaced by the second term on the left-hand side of Eq. (8)
to obtain Eqs. (11) and (12) as follows:

∂

∂t
(MijIjϕ)−

(
−uir

∂MijIjϕ
∂ri

− uiz
∂MijIjϕ

∂zi
− uir

1

ri
MijIjϕ

)

= −2πri
σS

Ijϕ (11)

∂

∂t
(MijIjϕ) + uir

∂MijIjϕ
∂ri

+ uiz
∂MijIjϕ

∂zi
+ uir

1

ri
MijIjϕ = −2πri

σS
Ijϕ (12)

The first thing we want to confirm with the derived equation is the start
of power generation. There, the current is almost zero. Since the value of the
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fourth term on the left side of Eq. (12) is set to a very small initial stage, it
is ignored. However, this term will be described later (4. Discussion: Sub-self-
excitation power generation) since it plays an important role to some extent if the
current increases. Since the first three terms on the left-hand side of Eq. (12) are
equivalent to a total differential, they can be replaced as follows:

d

dt
(MijIjϕ) = −2πri

σS
Ijϕ

When the equation is transformed and rearranged, Eq. (13) is obtained.

dMij

dt
Ijϕ +Mij

dIjϕ
dt

= −2πri
σS

Ijϕ

dIjϕ
dt

= M−1
ij

(
−dMij

dt
Ijϕ − 2πri

σS
Ijϕ

)

ΛIjϕ = −M−1
ij

dMij

dt
Ijϕ −M−1

ij RijIjϕ (13)

Here, Λ indicates the eigenvalues. These simultaneous equations are used
here to obtain the Λ values. Rij is a matrix of the resistance and a function
of the coil circumference and cross-sectional area S, where S is calculated from
the thickness T and the section of the flow course as S = (2πR0T ) /16. Then,
Rij = 2πri/ (σS) = (16ri) / (σR0T ). Rij is a diagonal matrix because the voltage
drop exists only for i = j.

Method for Calculating the Inductance
The inductance used in the example calculation is as follows. In the coil

description (Fig. 2), the coil’s cross-sectional area and shape are disregarded in
the calculation of the inductance because these geometrical factors introduce a
large degree of complexity. Therefore, the coil is treated as a thin line as an
approximation (Figs. 3(a) and (b)). Aj is calculated as follows:

Aj =
µ

4π

∮
Cj

J

l
dV =

µ

4π

∮
Cj

JS

l
dsj =

µ

4π

∮
Cj

Ij

l
cosϕdsj

=
µ

4π
Ij

∮
Cj

cosϕ

l
dsj , (14)

where l is the distance between dsi and dsj, µ is the magnetic permeability,
dV is the minute volume, S is the cross-sectional area of the current (i.e., the coil),
Ij = JS is the current, and the directional element for dsi of Ij is Ijcosϕ. By
substituting Eq. (7) for Aj in Eq. (14), Eq. (15) is obtained as follows:

Mij =
2πri
Ij

µ

4π
Ij

∮
Cj

cosϕ

l
dsj = 2πri

µ

4π

∮
Cj

cosϕ

l
dsj (15)

When µ is set to 4π × 10−7H/m (vacuum conditions), Eq. (16) is obtained
as:
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Mij = 2πri

∮
Cj

cosϕ

l
dsj × 10−7 (16)

Mij is calculated by summing Eq. (17), where Cj is divided into k = 100
equal parts, ∆sj, as follows:

Mij ≈ 2πri

100∑
k=1

cosϕk∆sj
lk

× 10−7 (17)

lk =

√
(ri cosϕk − rj)

2
+ (ri sinϕk)

2
+ (zi − zj)

2 (18)

The angle of a specific coil n is given by θn = 2πn/16, where rn = r0+R0 cos θn
and zn = R0 sin θn (Fig. 2). Previously, i and j were used in mutual inductance
calculations to distinguish between the coils that received electromotive force and
the coils that had a current flow. Each number n is replaced by i or j for any two
of the coils.

Here, Eqs. (13) and (15) are used to explain the tendency of the inductance
to change due to convection. The variable ri is included in Eq. (15), and zi
is contained in lk (Eq. (18)). Thus, power generation is related to the velocity
of convection in the Ra and Z directions. That is, dMij

dt is driven by poloidal
convection. In this drive, not only the change in self-inductance but also the
change in mutual inductance is important because the mutual coupling tends to
fluctuate due to the difference in convection when the coils are far apart.

Elements of Other Expressions
dMij

dt is calculated as the difference in Mij induced by the flow velocity over
a period of a minute divided by ∆t(ex.1.0 × 10−6s). The velocity U depends on
the θn of each coil and is calculated as follows (Fig. 2):

|U | = r0
ri
ωR0, ur = − |U | sin θn, uz = |U | cos θn. (19)

where ω is the angular velocity of the flow. r0
ri

is a coefficient that adjusts
based on the position of r0 so that the flow rate satisfies the continuity equation.
Furthermore, M−1

ij is the inverse matrix of Mij .

3. Calculation Conditions and Results

3.1. Calculation conditions The conditions for the numerical calculations
were as follows.

Calculation Conditions
The general conditions were R0 = 1000 m, r0 = 2000 m, and T = 0.1R0. The

electrical conductivity σ was 103 s/m (Solar convection zone), which was obtained
from a textbook[9]. The velocity of convection is given by Eq. (19),|U | = r0

ri
ωR0.

As a condition, the angular velocity ω was set to ωm, where only the maximum
eigenvalue was barely positive. In other words, we set the conditions that seem to
be the boundary at which power generation begins to occur.

Similarity of Scale
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Table 1: Eigenvalues Λ. The eigenvalue is calculated by numerical calculation.
Assuming the boundary at the start of magnetic field generation, we set the cal-
culation condition to generate one barely positive eigenvalue. Therefore, only λ16
is positive.

Λ Eigenvalues
λ1 −5.291× 10−1

λ2 −3.224× 10−1

λ3 −2.293× 10−1

λ4 −1.767× 10−1

λ5 −1.433× 10−1

λ6 −1.205× 10−1

λ7 −1.073× 10−1

λ8 −9.003× 10−2

λ9 −8.899× 10−2

λ10 −6.486× 10−2

λ11 −6.463× 10−2

λ12 −4.583× 10−2

λ13 −4.142× 10−2

λ14 −2.967× 10−2

λ15 −1.854× 10−2

λ16 3.578× 10−4

As estimated under other conditions, as long as the numerical values of R0,
r0, and T change in a similar form, the eigenvalues also change in a similar form.
In other words, since there is no change in the interval ratio or polarity of the
eigenvalues, the nature of magnetic field generation is considered the same even if
the scale of convection changes. Therefore, we did not present the calculations for
other dimensions in this paper.

3.2. Results The result calculated based on Eq. (13) is shown under the
conditions shown above. The eigenvalues Λ(λ1 − λ16) are listed in Table 1. A
positive value is highlighted in bold in the table. Only the maximum eigenvalue,
λ16, has positive polarity. Although it has positive polarity, the absolute value is
small. This is because the calculation conditions were set in a specific way. This
means that under these conditions, power generation begins. In addition, if the
convection speed is higher, the power generation will be stronger. The eigenvector
of the maximum eigenvalue is shown in Table 2. The length of each component of
this eigenvector is adjusted so that the norm is 1. This condition indicates that
the absolute value of the current is maximized in Coil 6, which is highlighted in
bold. These components indicate the current values of each coil. This table is
used to create the following figure. The lattice-like distribution of the magnetic
field generated from the current state (based on the eigenvector) is shown in Fig.
5. It is vectorially displayed on the Z-Ra plane, which is the same surface (Fig.
2). These lengths are compressed by square roots. The circle centered on the
Pc indicates the convection path. Each small round mark on the convection circle
indicates the location of the coil (Fig. 5). It was calculated as if an electric current
was passing through this position. Since this surface is rotationally symmetric on
the Z axis, it shows a rotationally symmetrical magnetic field distribution in the
poloidal pattern.
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Table 2: Eigenvector of the maximum eigenvalue in Table 1. This corresponds
to the current distribution flowing through each coil. The combined current is
adjusted to 1. The current is maximized at coil 6.

Coil numbers Eigenvector
0 7.963× 10−2

1 1.164× 10−1

2 1.675× 10−1

3 2.405× 10−1

4 3.417× 10−1

5 4.627× 10−1

6 5.447× 10−1

7 4.645× 10−1

8 2.080× 10−1

9 5.420× 10−3

10 −4.865× 10−2

11 −3.871× 10−2

12 −1.662× 10−2

13 5.754× 10−3

14 2.779× 10−2

15 5.144× 10−2

Z

R0

P0 Pc
Ra

Figure 5: Magnetic field distribution generated from current state based on eigen-
vectors (Table 2). This is the magnetic field distribution drawn on the Z-Ra plane
based on the results of numerical calculations. Since this surface is rotationally
symmetric on the Z axis, it shows a rotationally symmetrical magnetic field dis-
tribution in the poloidal flow. 13



4. Discussion As described above, the underlying electromagnetic induc-
tion equation was derived, and the result was obtained by numerical calculation
as a system eigenvalue problem. As a result, power generation starts, and power
generation that generates an axisymmetric magnetic field in poloidal is possible.
Here, we will consider the effects that can be expected from this result. In addi-
tion, sub-self-excitation power generation and problems are described. Moreover,
we describe our thoughts on the possibility of magnetic field stability.

Generation of Axisymmetric Magnetic Fields
A positive eigenvalue means that the eigenvector increases exponentially as an

exponential value of the eigenvalue. The eigenvector of the maximum eigenvalue of
positive polarity is shown in Table 2. Each component indicates the current in each
coil. However, this eigenvalue or eigenvector only means that power generation
starts, and the state starts at the beginning. The electric current increases over
time. The larger the eigenvector is, the faster the magnetic field grows. If self-
excitation power generation occurs and the magnetic field grows, the magnetic
field distribution is expected, as shown in Fig. 5. The following discussion can be
drawn from the figure.

Strong magnetic fields parallel to the Z axis are generated near the axis. The
weak magnetic fields circle this convection far from it. They also pass into the
circle of convection. In places where the magnetic field is strong, the convection
and magnetic fields approximately intersect. Note that some vectors near small
round marks on convection are unnatural in size and direction. This is because
the lattice points for calculating the magnetic field distribution and the position
of the coil were too close together, so the extreme values were calculated. The
Z-Ra plane circles around the axis of symmetry in the same pattern (Fig. 5.). In
other words, it is an axisymmetric magnetic field. Therefore, it was shown that
an axisymmetric poloidal magnetic field grows due to axisymmetric convection.

Sub-self-excitation power generation
When power generation starts and the current increases, the term deferred

explanation is also somewhat important for the generation of the magnetic field.
With respect to time, the fourth term on the left side of Eq. (12), +uir

1
ri
MijIjϕ,

plays an important role to some extent. In this term, the velocity, uir, and the
current, Ijϕ, are multiplied. When power generation begins, the current increases,
and this term can dominate. Since power generation becomes increasingly pow-
erful due to the current generated by power generation, this term can be seen as
self-excited power generation. This term arose from the fact that it is a cylin-
drical coordinate if it is traced back to the original. In other words, it is a term
for self-excited power generation arising from axisymmetry. However, since 1

ri
is

multiplied in the term, the effect is considered weak at a position far from the axis
of symmetry. It is not known how effective this term is in natural convection.

Even if there is no sub-self-excitation power generation and if the absolute
value of the maximum eigenvalue of the positive polarity is large, the magnetic field
increases exponentially because the exponent is large. The main self-excitation
power generation is performed. In this case, the magnetic field can be shown (Fig.
6). It is generated by the convection of conductive fluid in the celestial body. Note
that this figure is schematically drawn.
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Surface of Conductive FluidMagnetic Field

DownflowConductive Fluid of Celestrial

Figure 6: Examples of poloidal axisymmetric convection and magnetic field in a
celestial body. The solid arrows indicate the fluid flow, while the dashed lines
indicate the induced magnetic field. Based on Fig. 5, this figure is schematically
drawn.

Possibility of Magnetic Field Stabilization
The self-excited power generation discussed above becomes more powerful be-

cause the current increases when power generation starts. Then, even if convection
weakens from the start, power generation will continue. Then, it continues even if
the power generation consumes the energy of convection and the convection speed
decreases. On the other hand, if the speed decreases, the power generation de-
creases. Eventually, there will be a balance somewhere depending on the ability to
supply convective energy from the external environment. In other words, there is
a possibility that it will be stabilized at the strength of a certain magnetic field. It
is necessary to examine the behavior of convection and the energy supply capacity
of convection to determine whether it is actually stable, but this is not the subject
of this paper.

The Problem of the Magnetic Field being carried away by Magnetic
Field Freezing

Thus far, we have investigated the possibility of magnetic field growth via
numerical calculations, but there is a question here. This is a problem of magnetic
field freezing[11]. This is a phenomenon in which the magnetic field cannot move
or becomes difficult to move in a high electrical conductor. Since the diffusion
rate of the magnetic field is slow, the magnetic field is carried away with the
movement of the coil, so it seems that continuous growth of the magnetic field
at a particular location cannot be expected. In the setting of this paper, it is
considered that the magnetic field entangled with the current of each coil moves
with convection. Even if the coil reaches the highest point of power generation, it
will pass by immediately. In this case, there is a concern that there is little time
for the magnetic field to grow continuously.

This phenomenon may be easier to understand from the point of view of the
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formula. The equations were set for each coil and were in a system. Since the
calculated eigenvalue represents the current of the coil, it is a value that moves
with the coil. However, this is because the fluid was divided into individual coils
in this paper, and the phenomenon of magnetic field freezing did not appear in
the equation. Even so, this is easy to understand if a similar phenomenon is
considered.

However, in this paper, we assume that the magnetic field grows in a specific
location. The basis is the inductance considered in this paper. Eq. (13) is used for
the numerical calculations and includes the mutual inductance. If we consider the
change in time here, that is, the change in the current and the resulting change in
magnetic flux, then Lenz’s law[10] can be considered.

Here, we explain the meaning of the term ”combination of mutual inductance
and Lenz’s law”, which we use as the key point of this paper. The inductance is
the relationship between the magnetic field and current (Φ1 = L1I1 + M12I2 +
M13I3 + . . .). Lenz’s law refers to the effect of generating an electromotive force
E in the direction of suppressing the change in the magnetic field in the circuit
(E = −dΦ

dt ). When combined, these results indicate that an electromotive force
that suppresses the change in current is generated, including other circuits (E1 =
−L1

dI1
dt −M12

dI2
dt −M13

dI3
dt . . .). This process is called ”reciprocal induction”. This

electromotive force causes a current in the circuit in the direction of suppressing
the change in the current of these circuits. In this paper, the action of the mutual
inductance part is used as the basis for the discussion.

For example, if the current increases in the coil at one position, a current in
the opposite direction is generated in the coil at the other position. Conversely, if
the current decreases in the coil at one position, a current in the same direction
is generated in the coil at the other position. Therefore, when the current in the
coil increases once it departs from the peak position of the current, a current in
the same direction is generated in the coil at the other position to suppress the
decrease in the current. At the position where the current is at its peak, the coil
exiting that position and the coil entering the coil are adjacent to each other,
so the current of the incoming coil increases as the current of the outgoing coil
decreases. That is, at that position, the current is inherited by the next coil. This
is a new concept that has not been introduced in other theories. Hereinafter, this
effect is abbreviated as the inheritance effect.

Therefore, current growth (magnetic field growth) at a specific position is
considered possible. The matrix on the right side of Eq. (13) for calculating the
eigenvalues in this paper includes the mutual inductance (other than Mii.) Then,
this matrix is solved as an eigenvalue problem to obtain the change (eigenvalues)
in the current (eigenvectors). Therefore, it can be expected that this eigenvalue
has the property of not moving at a specific position. In other words, the mag-
netic field continues to grow at a specific position according to the calculated
eigenvalue. Furthermore, in real convection, since countless coils are close to each
other, the coupling of mutual inductance is considered to be strong. Therefore,
the inheritance effect is considered to work efficiently.

If we do not consider the inheritance effect, we need to discuss the growth of
the magnetic field through another effect. For example, complex convection, such
as the combination of the effects of α and ω, must be considered. In summary,
even if there is a magnetic field freeze, the calculated eigenvalues and eigenvectors
do not move with the movement of each coil but represent the behavior of the
current remaining at the coil set position (Fig. 2).

Therefore, it has been shown that an axisymmetric poloidal magnetic field
grows due to axisymmetric convection. In addition, the magnetic field stability
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can be maintained depending on the conditions.

5. Conclusion This paper argues that the growth of an axisymmetric
magnetic field occurs with purely simple convection. Unlike previous theories,
we have proven that it is possible to grow an axisymmetric magnetic field from
axisymmetric poloidal convection without including turbulence. We believe that
this is a novel proposal, but there are seemingly contradictory and similar points
to other theories. There are also limitations in terms of application. On the other
hand, there are things to look forward to. These will be described below.

Relationship with the Anti-dynamo Theorem
This is the relationship with the anti-dynamo theorem. Below are our thoughts

on these theorems.
Theorem 1. In Cartesian coordinates (x, y, z), no field independent of z

that vanishes at infinity can be maintained by dynamo action. Therefore, it is
impossible to generate a 2D dynamo field.

In this paper, cylindrical coordinates are used for discussion, but this theorem
is an argument in Cartesian coordinates. Even if the setting of this thesis is
changed to Cartesian coordinates, it is not subject to this theorem because it does
not find a 2D plane with a z-direction that applies to this theorem.

Theorem 2. No dynamo can be maintained by a planar flow (ux(x, y, z, t),
uy(x, y, z, t),0)[12]. No restriction is placed on whether the field is 2D or not in
this theorem.

In this paper, convection and the magnetic field act on the 2D plane of the
Z-Ra plane (Fig. 5). Moreover, there are countless surfaces around the axis of
symmetry Z. This paper seems to contradict this theorem. However, as shown
in Fig. 5, the convection, magnetic field, and current paths intersect without
difficulty, and this arrangement seems to be logical. This theorem is discussed
in terms of a single electromagnetic induction equation. Therefore, there is no
viewpoint of mutual influence between distant electric circuits such as mutual
inductance. On the other hand, in this paper, mutual inductance and Lenz’s law
are considered and discussed in a system of electromagnetic induction equations.
Since the methods of discussion are different, we do not believe it is appropriate
to apply this theorem to this paper.

Theorem 3. According to Cowling’s theorem[3], it is impossible for an axially
symmetric field to be self-maintained.

This paper contradicts this theorem. However, Cowling’s theorem discusses
whether poles arise in terms of a single time-independent electromagnetic induction
equation. Additionally, the concept of magnetic field stability is different. Since
the arguments are different, we believe it is not appropriate to apply this theorem
to this paper for the same reasons described in the above theorem.

Theorem 4. A purely toroidal flow, that is, one with u = ∇ × Tr, cannot
maintain a dynamo[13]. Note that this means that there is no radial motion,
ur = 0.

In this paper, toroidal convection is not discussed, so this theorem is not
covered.

Similar yet Different Arguments
We discuss the relationship between this argument and similar claims. The

following lists three examples.
1 Berechnung der mittleren Lorentz-Feldstärke b×B für ein elektrisch leit-

endes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung[6].
2 Dynamos driven by poloidal flow exist[7].
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3 Dynamo action in simple convective flows[8].
However, these papers discuss axisymmetric magnetic fields due to approxi-

mate convection averaging helicity or nonlinear convection. This differs from the
argument of this paper in that it deals with truly simple poloidal convection.

In addition, this paper is characterized by the fact that it includes inductance,
especially mutual inductance, and solves it as an eigenvalue problem. There are
other discussions that address mutual inductance.

As an example, according to a book[14] published in a collection of several
papers, the calculation of the α effect in the geomagnetic field is explained in
relation to inductance using the electrical and mechanical mechanisms of disk
generators as equivalent mechanisms. To our knowledge, inductance is used in all
the different arguments from this paper.

Limitations and Expectations of this Thesis
In this paper, we do not perform numerical calculations on the behavior of

convection. In particular, the stability of the magnetic field is an important issue,
but since it is thought to depend on the behavior of convection, this paper lacks
evidence in this regard. However, we believe that there are situations where it
is useful because we were able to show the possibility of growing axisymmetric
magnetic fields with novel concepts.

For instance, we mentioned earlier that we do not know whether the fourth
term on the left side of Eq. (12) is powerful in convection in nature. In the case of
convection, the power of this term is considered weak. We believe that it is possible
to create arbitrary convection to some extent in an artificial plasma experimental
facility rather than in the natural world, so the results of this research may be
useful when aiming to strengthen the magnetic field. In this way, this paper is
in the field of so-called magnetohydrodynamics, and we expect that it will be
useful not only for astronomical bodies but also for research in plasma furnaces
and sodium experimental facilities.
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