1	Microbial Systematics (Short Communication)
2	
3	The Generic Circumscription of <i>Eremothecium</i> emend. Kurtzman
4	
5	Yuzo Yamada ^{1,2,3}
6	
7	¹ BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and
8	Biotechnology (BIOTEC), National Science and Technology Development Agency
9	(NSTDA), 113 Thailand Science Park, Phaholyothin Road, Klong 1, Klong Luang,
10	Pathumthani 12120, Thailand
11	² JICA Senior Overseas Volunteer, Japan International Cooperation Agency, Shibuya-ku,
12	Tokyo 151-8559, Japan
13	³ Laboratory of Applied Microbiology (Professor Emeritus), Department of Agricultural
14	Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
15	422-8529, Japan
16	
17	E-mail: ymdy333@kdt.biglobe.ne.jp
18	ORCID, 0000-0002-2799-7045
19	
20	Keywords: Crebrothecium ashbyi; Nematospora coryli; Eremothecium cymbalariae;
21	Ashbya gossypii; Holleya sinecauda.
22	

23 Abstract

- 24 In the family Eremotheciaceae, the only genus *Eremothecium* emend. Kurtzman included
- 25 five species. However, the calculated pair-wise sequence similarities were very low (93.8-
- 26 96.8%) among the five species, indicating that the emended genus was not taxonomic
- 27 homogeneous-natured. Therefore, it is adequate to accommodate the five species to their
- 28 own separate five genera.

29 Supplementary Abstract

The subfamily Eremothecioideae					
Genus I Eremothecium sensu stricto	Eremothecium cymbalariae Borzi (1888)				
Genus II Nematospora	Nematospora coryli Peglion (1897)				
Genus III Ashbya	Ashbya gossypii (Ashby et Nowell) Guillielmond (1928)				
Genus IV Crebrothecium	Crebrothecium ashbyi Routien (1949)				
Genus V Holleya	Holleya sinecauda (Holley) Yamada (1986)				
The family Eremotheciaceae					
Genus Eremothecium emend.	Eremothecium cymbalariae Borzi (1888)				
	Eremothecium coryli (Peglion) Kurtzman (1995)				
	Eremothecium gossypii (Ashby et Nowell) Kurtzman (1995)				
	Eremothecium ashbyi (Guillielmond) Kurtzman (1995)				
	Eremothecium sinecaudum (Holley) Kurtzman (1995)				

30

31 The genus Holleva was introduced based on the exceptional distribution of 32 ubiquinone-9 (Q-9) as a respiratory quinone in the species, Holleva sinecaauda (= 33 Nematospora sinecauda Holley) (Yamada 1986). 34 35 On the phylogenetic analysis based on the partial base sequencing (Yamada and Nagahama 1991), Holleva sinecauda represented considerable base differences (seven 36 37 bases) from Nematospora coryli (Q-5 or Q-6; Yamada et al. 1977, 1981) in positions 1451 38 -1618 (168 bases) of the 18S rRNA, demonstrating that the genus Holleva was 39 phylogenetically separable from the genus Nematospora. Incidentally, the base differences 40 were only four between Nematospora coryli and Saccharomyces cerevisiae and eight 41 between Holleva sinecauda and Saccharomyces cerevisiae. 42 43 On the other hand, Kurtzman (1995) compared the genera Ashbya, Eremothecium, 44 Holleya and Nematospora by use of the 580 base-sequences near the 5'end of 26S rDNA. 45 The experimental results showed that the four genera were closely related and the taxa was 46 little divergence. As a conclusion, all the species concerned were placed in the single 47 genus Eremothecium emend. Kurtzman. 48 49 This paper deals with the sequence data proposed by Kurtzman (1995) and gives the 50 different conclusion that the four genera (or five genera) are not closely related but 51 phylogenetically independent from one another and constitute their taxonomic 52 homogeneous-natured taxa. 53 54 The first of all, the pair-wise sequence similarities were calculated among the five 55 species. The calculated similarities were 93.8-96.8%, which did not exceed 98% or more (Table 1). For example, the phylogenetic relationship was 98.1% between Octosporomyces 56 57 octosporus (= Schizosaccharomyces octosporus, Schizosaccharomycetaceae) and 58 Octopsoromyces osmophilus (= Scghizosaccharomyces osmophilus) in the 26S rRNA gene 59 D1/D2 domain sequences (Huong et al. 2022a), was 98.0% between Kockiozyma 60 suomiensis and Myxozyma geophila (Lipomycetaceae) (Yamada et al. 2022) in the same 61 sequence region, and were 98.7-99.5% between Kockiozyma suomiensis and the related 62 Myxozyma species in the 18S rRNA gene sequences (Huong et al. 2022b). The 98% or 63 more is assumed to be one of the most important markers to designate the taxonomic 64 homogeneous-natured genus. 65 66 For example, the calculated sequence similarity between Holleya sinecauda and Eremothecium cymbalariae was 94.8%, which was much lower than that (95.7%) between 67 68 Dipodascopsis uninucleata and Lipomyces starkeyi (Yamada et al. 2022). In addition, the 69 similarity (95.2%) between Holleya sinecauda and Nematospora coryli was almost the 70 same as that (95.2%) between Waltomyce lipofer and Lipomyces starkeyi. 71

72	As described above, the five species assigned to the genus <i>Eremothecium</i> emend.
73	Kurtzman were adequate to be classified into five genera respectively, as once done by
74	classical yeast taxonomists. The five species were uniquely equipped with chemotaxo-
75	nomically complicated isoprenoid quinone homologues (Q-5, Q-6, Q-7 and Q-9, Yamada
76	et al. 1977, 1981, 1987) and with morphologically very complicated needle-shaped
77	ascospores, in contrast to other members (Q-6) of the family Saccharomycetaceae. To
78	distinguish the taxonomic small and unique group, the subfamily Eremothecioideae rather
79	than the family Eremotheciaceae was appropriately given (Kurtzman 1995, 2011).
80	
81	The subfamily Eremothecioideae subfam. nov., the family Saccharomycetaceae
82	
83	Genus I Eremothecium Borzi MB1883
84	Eremothecium cymbalariae Borzi (1888) MB235811
85	Q-7(Q-6)-equipped.
86	
87	Genus II Nematospora Peglion MB3441
88	Nematospora coryli Peglion (1897) MB222583
89	Synonym: Eremothecium coryli (Peglion) Kurtzman (1995)
90	Q-6-equipped (Q-5 only in the type strain).
91	
92	Genus III Ashbya Guillielmond MB389
93	Ashbya gossypii (Ashby et Nowell) Guillielmond (1928) MB266255
94	Synonym: Eremothecium gossypii (Ashby et Nowell) Kurtzman (1995)
95	Q-6-equipped.
96	
97	Genus IV Crebrothecium Routien MB1283
98	Crebrothecium ashbyi Routien (1949) MB266255
99	Synonym: Eremothecium ashbyi (Guillielmond) Kurtzman (1995)
100	Q-6(Q-7)-equipped.
101	
102	Genus V Holleya Yamada MB25105
103	Holleya sinecauda (Holley) Yamada (1986) MB131133
104	Synonym: Eremothecium sinecaudum (Holley) Kurtzman (1995)
105	Q-9(Q-8)-equipped.
106	
107	As described above, the five species classified in the subfamily Eremothecioideae
108	were quite different from other members (Q-6) of the family Saccharomycetaceae. The
109	complex distribution of isoprenoid quinone homologues and needle-shaped ascospore
110	ornamentation in the genus Eremothecium emend. was reasonable, since the emended
111	genus was not so taxonomic homogeneous-natured.
112	

113	Kurtzman and Robnett (1998) described that the ascus morphology, ascospore
114	ornamentation and composition of coenzyme Q were unreliable predictors of kinship in
115	the paraphyletic genus Dipodascopsis. Of the three, the coenzyme Q homologues or the
116	ubiquinone homologues play an important role as taxonomic markers. Of the remaining
117	two, the ascus morphology and the ascospore ornamentation gave valuable taxonomic
118	information in the five species.
119	
120	The type strain of Nematospora coryli showed Q-5 (Yamada et al. 1981). The other
121	strains examined did Q-6. According to the present author's experiences, such an
122	exceptional distribution of ubiquinone homologues has been restricted to only one species
123	and one strain. Therefore, the isoprenoid quinone homologues have been widely utilized
124	as important microbial taxonomic criteria for Gram-negative and Gram-positive bacteria
125	and also yeasts and fungi.
126	
127	Acknowledgements
128	The present author expresses his sincere thanks for citing the experimental data of the
129	author.
130	
131	Funding information
132	The present author received no grant from any funding agency.
133	
134	References
135	Kurtzman, C.P. (1995) Relationships among the genera Ashbya, Eremothecium, Holleya
136	and Nematospora determined from rDNA sequence divergence. J. Industr. Microbiol.
137	14 : 523-530.
138	Kurtzman, C.P. (2011) Discussion of teleomorphic and anamorphic ascomycetous yeasts
139	and yeast-like taxa. In: Kurtzman, C.P., Fell, J.W. and Boekhout, T. (ed). The Yeasts: A
140	Taxonomic Study, 5th edition, vol. 2. London: Elsevier, p. 293-307.
141	Kurtzman, C.P. and Robnett, C.J. (1998) Identification and phylogeny of ascomycetous
142	yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences.
143	Antonie van Leeuwenhoek 73: 331-371.
144	Vu, H.T.L., Yukphan, P., Tanasupawat, S., Mikata, K. and Yamada, Y. (2022a) The
145	revision of Schizosacchromycetaceae. Jxiv (DOI: https://doi.org/10.51094/jxiv.188).
146	Vu, H.T.L., Yukphan, P., Tanasupawat, S. and Yamada, Y. (2022b) The generic
147	circumscription of Kockiozyma (Lipomycetaceae). Jxiv (DOI:
148	https://doi.org/10.51094/jxiv.221).
149	Yamada, Y. (1986) Holleya gen. nov., an ascosporogenous yeast genus for the Q9-
150	equipped organism whose ascospores are needle-shaped with smooth faces in their
151	anterior half and concentric ridges in their posterior half and without appendages. J.
152	Gen. Appl. Microbiol. 32 : 447-449.

153	Yamada, Y. and Nagahama, T. (1991) The molecular phylogeny of the ascomycetous yeast
154	genus Holleya Yamada based on the partial sequences of 18S and 26S ribosomal
155	ribonucleic acids. J. Gen. Appl. Microbiol. 37: 199-206.
156	Yamada, Y., Arimoto, M. and Kondo, K. (1977) Coenzyme Q system in the classification
157	of some ascosporogenous genera in the families Saccharomycetaceae and
158	Spermophthoraceae. Antonie van Leeuwebhoek 43: 65-71.
159	Yamada, Y., Sasaki, J., Hou, C.F., Tahara, Y., Miranda, M. and Phaff, H.J. (1981) A new
160	natural quinone, ubiquinone-5 isolated from an ascosporogenous yeast species,
161	Nematospora coryli. Agric. Biol. Chem. 45: 2671-2673.
162	Yamada, Y., Banno, I., von Arx, J.A. and van der Walt, J.P. (1987) Taxonomic significance
163	of the coenzyme Q system in yeasts and yeast-like fungi. In: de Hoog, G.S., Smith,
164	M.Th. and Weijman, A.C.M. (ed). The Expanding Realm of Yeast-like Fungi.
165	Amsterdam: Elsevier, p. 299-308.
166	Yamada, Y., Vu, H.T.L, Yukphan, P. and Tanasupawat, S. (2022) The revision of
167	Lipomycetaceae. Jxiv (DOI: https://doi.org/10.51094//jxiv.189).
168	
169	
170	
171	
172	
173	
174	
175	
	Table 1. The pair-wise sequence similarity in <i>Eremothecium</i> and related species.

Species	1	2	3	4	5
1. Ashbya gossypii					
2. Crebrothecium ashbyi	94.8				
3. Eremothecium cymbalariae	96.2	96.6			
4. Nematospora coryli	95.7	94.7	96.2		
5. Holleya sinecauda	93.8	94.3	94.8	95.2	
6. Saccharomyces cerevisiae	88.8	88.6	88.4	86.9	86.7

All were the type strains or the authentic strains in the respective species (Kurtzman 1995). The calculated sequence similarity (%) was based on the 26S rDNA (positions 63-642, 580 bases).

176 The original data of base substitution rates were cited from Kurtzman (1995).