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Abstract 
This work is the construction of an analytical theory of lateral spread within a nonsmall angle limit of an ionic or atomic 
beam in a target medium. The exact angular distribution theory was developed by Goudsmit and Saunderson; however, 
exact lateral spread model has not been constructed. Recently, ion beam cancer therapy is widely studied. Thus, the 
author is motivated to make a lateral spread theory involving small to large scattering angles and including the energy 
loss effect. The present study is successfully performed using the Bessel function, and exact analytical and numerical 
results are given in this text. The present research is expected to be useful for particle beam cancer treatment. 
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1. INTRODUCTION 

The present study treats a nonrelativistic energy ion 
beam that penetrates into an amorphous target matter. 
Each particle undergoes successions of elastic- and 
inelastic-scattering collisions. After these collisions, 
each particle in the beam changes its direction, resulting 
in beam spreading. For example, as one of expected 
applications of the present study, in a proton or heavy-
ion beam therapy, the estimation of angular distribution 
and of lateral spread is needed because both are altered 
by collisions with the penetration depth. The energy in 
particle beam therapy is relativistic; however, as a basic 
study of interaction between particle and matter, 
relativistic effects are not considered in the present study. 
Transport equation is exactly solved in the present 
treatment. 

A pioneering work of an angular distribution theory 
within a nonsmall angle limit was proposed by Goudsmit 
and Saunderson in the 1940s [ (1), (2)]. Furthermore, 
within a small angle limit, Sigmund, Winterbon, and 
Marwick created theories for angular and lateral 
distributions in the 1970s [ (3), (4)]. However, any lateral 
spread theory within nonsmall angle limit has not yet 
been developed. Recently, several experimental studies 
on carbon ion beam radiotherapy have been performed 
[ (5) (6) (7)]. These studies have stimulated some 
investigators in this field to develop a more exactly 
treated theory on the lateral spread of a particle beam 
within a nonsmall angle limit. In the previous study of 
Ikegami [ (8)], Goudsmit and Saunderson’s (GS) theory 
has been extended from a non-energy-loss effect model 
to energy loss effect model. The next step is the exact 

construction of a lateral spread theory within a nonsmall 
angle limit.  

Thus, the present study has aimed at the development 
of a new lateral spread model, and has been very well 
performed using the Bessel functions. An exact solution 
of a transport equation for the lateral spread will be 
shown hereafter. In the framework of a small angle limit, 
Marwick and Sigmund (MS) developed a lateral spread 
theory in 1975 [ (4)]. The previous study of Ikegami [ (8) 
(9)] introduced very well both of elastic and inelastic 
energy loss effects into MS’s theory. The improved MS 
theory thus obtained is proper treatment for the energy 
loss effect within a small angle limit.  Extent of the 
improved MS theory is 0.001 ≤ 𝜏! ≤ 2000 , and the 
limit of MS theory must be 𝜌 ≪ 𝑥. The symbols 𝜏! ,	𝜌 
and 𝑥 are the reduced target thickness, lateral spread and 
target thickness, respectively (see Eqs. (17) and (18)). 
Furthermore, Liang has constructed in the 1998 a 
formulation of lateral range straggling by taking both 
elastic and inelastic energy loss effects into account 
[ (10)]. The present theory involves the inelastic energy 
loss effect. 

2. THEORETICAL BACKGROUND 

It would be helpful for readers to survey simply the 
development of theoretical studies of particle-beam 
scattering in solid matters. Following categories may be 
helpful to get hold of theoretical studies reported so far: 
 (a) calculation within small angle limit, or within non-
small angle limit 
 (b) calculation of angular distribution, or of lateral 
spread, or of both 
 (c) calculation taking account of energy-loss effect, or 
not, and if taking, inelastic, or elastic, or both 
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 (d) calculation using basic variables with dimension (like 
length, mass, charge, etc.) or using reduced variables with 
non-dimension 
 

The reduced variables are non-dimensional variables 
that is defined in Eqs. (5, 17a, 17b, 18). The present 
theoretical study can be categorized as the non-small 
angle limit, the lateral spread and the reduced variables. 
Then previous papers coming under this category may be 
summarized simply as following way. Within small 
angle limit, Sigmund and Winterbon (SW) constructed 
the multiple scattering theory in 1974 [ (3)]. In 1975, MS 
[ (4)] developed a lateral spread theory within a small 
angle framework based on SW’s treatment. Furthermore, 
with the use of reduced variables, comparisons among 
different projectile–target combinations for SW’s and 
MS’s theories have became possible. Valdes and Arista 
(VA) improved SW’s theory in 1994 [ (11)] by 
introducing the inelastic energy loss effect into SW’s 
model. Ikegami developed in 2013 the modified VA 
theory by taking the elastic energy loss effect into 
account [ (9)]. 

As for the theory within non-small angle limit, the first 
theoretical study date back to 1940 when Gaudsmit and 
Saunderson derived so-called GS model [ (1) (2)]. Their 
model is useful for recent ion radiotherapy because wide-
angle scattering is important for large-energy losses in 
the target matter. Moreover, Ikegami improved GS’s 
theory in 2017 [ (8)]. The GS–Ikegami theory involves 
elastic and inelastic energy loss effects. 

3. THEORY 

The assumptions in the present study are as follows: 
(1) Target atoms are randomly and homogeneously 

distributed. 
(2) Inelastic energy loss effect in each collision is 

considered. 
(3) Each collision is only a binary collision with a target 

atom. 
(4) Elastic and inelastic collisions are considered. 
(5) Scaling property is held because of using the 

reduced variables. 
 

The above assumptions are the same as those for the 
standard GS model [ (1) (2)] and almost the same as 
those for SW’s and MS’s models [ (3) (4)], except for the 
small angle limit in the latter two. Scaling property is 
derived by using the reduced variables that can provide 
a universal curve for numerical results. The present 
theory does not limit target thickness whether target is 
thick or thin, and the present treatment is involving not 
only small scattering angle but also large angle. 

In the present investigation, the final goal is 
constructing Eq. (26).  The ion beam initially goes along 
the x-axis in Fig. 1.  The beam changes its direction by 
elastic collisions with the target atoms in the matter. The 
effect of inelastic collision is introduced in Eq. (20) by 

using VA treatment. The present lateral spread theory 
begins with a standard transport equation as follows: 

 
𝐹(𝑥- + 𝛿𝑥-, 𝜌-") = 𝑁4𝛿𝑥- ∫ 𝑑𝜎-(𝛼-# → 𝛼-") 𝐹(𝑥-, 𝜌-#) +

:1 − 𝑁4𝛿𝑥- ∫ 𝑑𝜎-(𝛼-" → 𝛼-#)<𝐹(𝑥-, 𝜌-"),        (1a) 
 
− $
$%&
𝐹(𝑥-, 𝜌-") = 𝑁4 ∫𝑑𝜎-{𝐹(𝑥-, 𝜌-") − 𝐹(𝑥-, 𝜌-#)}, (1b) 

 
where	𝐹(𝑥-, 𝜌-') (i = 1,2) is the distribution function, and 
symbol	 ( 4 ) means non-dimensional parameters. The 
quantity 𝑥- is the penetration depth in a target film, and 
hence 𝛿𝑥- is the small penetration length in a target. In 
the right-hand side of Eq. (1a), the first term is the 
distribution with collision involving change in the lateral 
spread at the first angle 𝛼-" (	𝜌-"), and the second term is 
the distribution at the second angle 𝛼-# (	𝜌-#) without any 
collisions (just passing through a matter). Then, after 
making 𝛿𝑥- → 0 in Eq. (1a), we obtain Eq. (1b). Here, 
	𝜌-( is the lateral spread caused by single scattering. 
 
Then parameters in Eqs (1a) and (1b) are described 
hereafter. 
 

	𝜌-# = 	𝜌-" + 	𝜌-(.  (2) 
 

𝑥- ≡ %
%!"#

@)$
)%
A
*+
,  (3) 

 
𝜌-' ≡

,&
-#!"#

'%
.
= /&

-#!"#
'%

.
sin(𝛼') , (𝑖 = 1, 2), (4) 

 
𝛽0 =

1(2)
#3$3*!*

, (𝑗 = 0, 1),  (5) 
 

𝑎4 =
+.667*2+

-3$
*/-83*

*/-.
$/*,  (6) 

 

𝑁4 ≡ 𝑁𝑎9#𝑥:2% @
)%
)$
A
*+
, (7) 

 
and 
 

𝑑𝜎- ≡ ;<
2+
* .  (8) 

 
 
𝑎4 is the screening length of Lindhard et al. [ (12)], and 
𝑑𝜎 is the differential scattering cross-section derived by 
Lindhard and co-workers [ (12)]. The non-dimensional 
cross section 𝑑𝜎-  in Eq. (8), the non-dimensional 
penetration depth 𝑥-  in Eq. (3), non-dimensional lateral 
spread 𝜌-' (i = 1, 2) in Eq. (4), and the non-dimensional 
target atom density 𝑁4  in Eq. (7) are introduced, 
respectively. The parameter  𝑥:2%  is the target foil 
thickness, 𝑎9  is the Bohr radius, 𝜌'  (1, 2) is the lateral 
spread, 𝑟'  (1, 2) is the path length, 𝛼'  (1, 2) is the 
deflection angle, 𝛽+ and 𝛽"are the reduced initial and the 
reduced final energies, 𝐸+  and 𝐸"are the initial kinetic 
energy of projectile and the final kinetic energy of 
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projectile, respectively. 𝑍"  is the atomic number of the 
projectile, 𝑍# is the atomic number of the target, 𝑒 is the 
elementary charge, 𝑁 is the number density of the target 
atoms per unit volume. 
The distribution function 𝐹(𝑥-, 𝜌-') (i = 1,2) is expressed 
by the Bessel function as follows: 
 
𝐹(𝑥-, 𝜌-') ≡ ∫ 𝑑𝑥-%&!"#

+ 𝑓(𝑥-)𝐽:(𝑥-	𝜌-'), (𝑖 = 1, 2), (9a) 
 
𝑓(𝑥-) = 𝑥- ∫ 𝜌-'𝑑𝜌-'

=
+ 𝐹(𝑥-, 𝜌-')𝐽:(𝑥-	𝜌-'), (𝑖 = 1, 2), (9b) 

 
 
𝐽:  is the m-order Bessel function of the first kind.  
Moreover, we use the following relations: 
 

∫ 𝜌-"𝑑𝜌-"
=
+ 𝐽:(𝑥	O𝜌-")𝐽:(𝑥->	𝜌-") =

"
%&
𝛿(𝑥- − 𝑥->), (10) 

 
𝐽?(𝑥-	𝜌-#) = ∑ 𝐽:(𝑥-	𝜌-")𝐽?@::𝑥-	𝜌-(<=

:A@= , (11) 
 
where 
 
 
𝐽! is the l–order Bessel function of first kind. 

Using Eqs. (10) and (11) for Eqs. (2) and (3), we 
have the following equations: 
 

𝜎(𝑥-) = −𝑥-𝑁4 ∫𝑑𝜎- +
𝑁4∫𝑑𝜎- ∫ 𝑑𝑥- ∫ 𝑑𝜒#B

+
%&!"#
+ ∫ 𝜌-(𝑑𝜌-(

=
+ 𝐽?@::𝑥	O𝜌-(<, (13) 

 
and, 
 

𝐹(𝑥-, 𝜌-) = C∫ 𝑑𝑥-%&!"#
+ 𝑒<(%&)𝐽:(𝑥	O𝜌-). (14) 

 
Here, C in the relation (14) is the initial constant for 
normalization. The lateral spread function 𝐹(𝑥%, 𝜌%) must 
be max at lateral spread 𝜌% = 0; thus, l must be 0. And then, 
l = 0 decides that m is 0. No summation on l and m is 
caused by analytical calculation process. We, 
consequently, regard 𝑙 and 𝑚 as 0. 

The interatomic potential in this study is the Thomas–
Fermi–Moliere potential. In accordance with Meyer’s 
treatment [ (13)], the maximum impact parameter 𝑝:2% 
is defined by half the distance of neighboring atoms as: 
 

𝑝:2% ≡
"
#
𝑁@"/*.  (15) 

 
Moreover, in accordance with SW’s and MS’s treatment 
[ (3) (4)], new variables are introduced as in the 
following way because of mainly numerical reason as 
follows: 
 

𝑥-𝜌- = B2)
*F%

B2)
*F%!"#

@)$
)%
A
*+ )%B2)

*F,
B2)

*F%!"#
= G.,/0	

G.	!"#*
𝜇*+, 

                              (16) 
 
where 
 

𝜏! = 𝜋𝑎4#𝑁𝑥 ,  (17a) 
 
 

𝜏!	:2% = 𝜋𝑎4#𝑁𝑥:2%,  (17b) 
 

 
𝜌IJ = 𝛽+𝜋𝑎4#𝑁𝜌,  (18) 

 
and 
 

𝜇 = )$
)%

.        (19) 
 
The quantity 𝜏!  is the reduced penetration depth, and 
𝜏!	:2% is the reduced target thickness. The quantity 𝜌IJ 
is the reduced lateral spread, same as MS’s treatment. The 
quantity 𝜇 is the ratio of incident and out-going energy of 
projectiles.  

The next step is introducing the energy loss effects in 
accordance with VA [ (11)] and Ikegami [ (9)]. The basic 
relations for this purpose contain inelastic energy loss. 
Hereafter, subscripts e, indicate quantities related to the 
inelastic energy-loss (stopping) region. At first, the 
inelastic energy loss part is given by (please see Ref. 
[ (8)]): 
 
𝜎(𝑥-) → 𝜎!(𝜏!) ≡ 𝜏!

"
#
𝑧!
"/# K2. 3⁄ (G.)@K2.(G.)

"@L.
$
*

,  

                (20) 
 
where 
 

𝐺M.(𝜏!) ≡ ∫ 𝑑𝑧>!
NOM5.G.P

M5.
-
*

M.	!"#
M.	!&6

.  (21) 

 
 

Eqs. (20) and (21) are the same of VA model [ (11)]. 
Then, the nondimensional integration variable 𝑧! , the 
reduced energy 𝛽"# , and the scattering intensity 
parameter 𝑘 are given by: 
 

𝑧! =
Q
)%.
,  (22) 

 
𝛽+! =

1%.2)
#3$3*!*

,	 (23) 
 

and 
 

𝑘:'R ≤ 𝑘 ≤ 𝑘:2%, (24) 
 
Here, k is the scattering angle parameter affected by a 
single collision, and 𝛽+!  is the same as those in the 
definition of Eq. (5). 𝐸+! is the projectile initial energy. 
As Final result, the transport cross section Δ and the 
lateral spread function 𝐹! (final equation) redefined are 
given as following relations: 
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Δ(𝑧!𝜏!) = −\𝑑𝑡
"
#
𝑓 ^𝑡

"
#_

𝑡 	

+\𝑑𝑡
"
#
𝑓 ^𝑡

"
#_

𝑡 \ 𝑑𝜒
#B

+

\ 𝜌IJ	(𝑑𝜌IJ	(

=

+

𝐽+ `𝑧!
𝛽+!𝜏!𝜌IJ	(
𝜏!	:2%#

	𝜇!*+a,	 

(25) 
 
and 
 
𝐹(𝑥-, 𝜌-) → 𝐹!(𝜏! , 𝜌IJ) =
C∫ 𝑑𝜏!

G.	!"#
+ 𝑒<.(G.)𝐽+ @

G.,/0	
G.	!"#*

	𝜇!*+A.           (26) 
 

In Eqs. (25), and (26),  𝜇!	defined by Eq. (27) is the 
ratios of incident and out-going energies (after passing 
through the target foil) for the inelastic energy loss. The 
quantity 𝜌𝑀𝑆	𝜙 is the lateral spread at single collision. The 
parameter C is the normalized constant. The basic 
equations are obtained. This equation Eq. (26) is 
remarkable since it relates non-small angle lateral 
spreads in matter. Hereafter, additional explanations are 
mentioned for 𝜇! , scattering cross-section, and MS’ 
formula.  

The quantity 𝜇! , is described very briefly as (please 
see the detailed description in Ref. [ (9)]: 
 

	𝜇 → 𝜇! ≡
𝛽!(𝜏)
𝛽+!

=
𝐸!(𝜏)
𝐸+!

 

= −𝐼"𝜅Q!𝜏! +
"
#
𝐼#𝜅Q!# 𝜏!# + 1,  (27) 

 
where 
 

𝐼" =
S&

1%.B2)
*F

,   (28) 
 

𝐼# =
"

:1%	.(B2)
*F)*

,   (29) 
 

𝜅Q! = 16𝜋𝑁(𝑘T𝑎9) ^
1
𝑣9
_ 𝑍"

#/*𝑁U/!!𝐴V(𝑚!𝑣9#𝑎9#) 

× {1 − 4𝜒# + 𝜒V[6 ln @1 + BS7
S+
A − 2𝜋𝑣T/(𝜋𝑣T +

𝑣9)]},     (30) 
 

𝜒# = S+
BS7
,  (31) 

 
and 
 

𝐴 = 0.56/(1 − 0.511𝑍"
@#/*𝑟W@"). (32) 

 
 

Here, 𝑣' is the initial velocity of an incident atom, 𝑣9 
is the Bohr velocity, and 𝑟W  is defined by the formula 
𝑟W = (3/4𝜋𝑛!)"/* 𝑎9⁄ . The quantity 𝑚!  is the mass of 
an electron. The quantity ne is the electron density in the 
target matter, 𝑁U/!! is the number of free electrons per 

atom, kF is the Fermi wave number, 𝑣T  is the Fermi 
velocity, and 𝜅Q! is a constant [(14)].  

It should be mentioned that Lindhard’s scattering 
cross-section [ (12)]: 
 

𝑑𝜎 = B2)
*

#
;X
X-/*

𝑓:𝑡"/#<,  (33) 
 
is valid with regard to large scattering angles,  
 

𝑡"/# = 𝜀 sin @"
#
𝜃Y.I.JA,  (34) 

 

𝜀 =
- !*8
!$9!*

.

Z:$:*.
*

")
[
.   (35) 

 
Here, 𝑓:𝑡"/#<  is the scattering function derived by 
Lindhard et al., 𝑚" is the mass of the projectile, and	𝑚# 
is the mass of the target atom. The quantity 𝜃Y.I.J. is the 
angle in the center of the mass system (C.M.S.). 

Moreover, if the projectile and the target atoms are the 
same, relation of angles between the laboratory system 
(L.S.) and C.M.S. is given by 
 

𝜙4.J. =
"
#
𝜃Y.I.J.,   (36) 

 
and then, 
 

𝑡"/# = 𝜀 sin(𝜙4.J.).  (37) 
 

Thus, we can calculate the scattering cross section 𝑑𝜎 
as: 
 
𝑑𝜎 = 𝜋𝑎4#

;(\ ]^_(().0.))
\* ]^_*(().0.)

𝑓(𝜀 sin(𝜙4.J.)).       (38) 
 
Here, 𝜙4.J. is the angle in L.S. 
    For comparison the lateral spread equation 𝐹IJ of MS 
model is written by [ (4)]: 
 

𝐹IJ(𝜏! , 𝜌IJ) = \ 𝑑𝑧!

=

+

𝑧!𝑒@G./M. ∫ ;M.5∆
2.
% (M.5)𝐽+ ^

𝑧!𝜌IJ
𝜏!

_, 

(39) 
 
where 
 

∆(𝑧!) = ∫𝑑𝑡
$
*
UbX

$
*c

X
w1 − 𝐽+:𝑧!𝜙x<y,       (40) 

 
and 
 

𝜙x = 1%2)
#3$3*!*

𝜙 = 𝑡
$
*.        

(41) 
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4. RESULTS AND DISCUSSION 

In the present study, Fortran numerical code is written 
by the author, and a commercial subroutine code is used. 
In Figs. 2–3, show examples of calculations of the lateral 
spread function 𝐹!(𝜏! , 𝜌IJ)  obtained in Eq. (26). 
Through all of the present figures, the collisional system 
calculated is for C–C; however, as a matter of fact, 
projectile and target are not limited to only C–C because 
scaling property is held by using the reduced variables. 
In principle, we can compare other combinations of 
projectile and target atoms, not only with that of C and C 
but also each other. In other words, the present numerical 
results cover any pair of collisional systems including the 
C–C system.  Moreover, we can make comparison at any 
projectile energies of any collisional systems [ (3) (4) (8) 
(9) (11)]. This is the reason why the present results are 
shown by using the reduced variables. Moreover, elastic 
energy losses effect is neglected in the present study 
because of a numerical problem. The numerical problem 
is oscillation of Bessel function, thus intensity of particle 
distribution of lateral spread 𝜌 is not down in larger  𝜌. 

Figure 2 shows variation of the lateral spread for two 
values of the inelastic energy–loss ratio 𝜇!. The values 
of 𝜇!  cited are 0.9 (10% energy loss), and 0.8 (20% 
energy loss). The incident energy is 30 keV, the reduced 
thickness 𝜏!  is 0.1 (0.85 nm), and the scattering 
parameter k is 1. A larger 𝜇! provides broader curves. A 
large 𝜇! means a big energy loss. Although the present 
results obtained are natural, we find that the influence of 
𝜇! on the lateral spread is markedly large.  

Figure 3 shows the comparison of 𝐹#(𝜏# , 𝜌()) curves 
for three values of reduced target thickness: 𝜏! = 0.1 
(0.85 nm), 0.15 (1.2 nm), and 0.2 (1.7 nm). The 
parameters adopted are k = 1, incident energy is 30 keV, 
and 𝜇! = 0.5. The present study gives calculation results 
that a larger 𝜏!  provides broader lateral spreads. The 
number of collisions increases when the target thickness 
is larger. Thus, the results obtained are considered to be 
proper. 

In the calculations shown in Figs. 2 and 3, the same 
value of the scattering parameter k was used. Appreciable 
effect k was not obtained. From a physical mathematics 
point of view, the k dependence (i.e., z dependence of Eq. 
(22)) is seen only in the transport cross section (Eq. (25)). 
Thus, k effect is very limited in the present model. This is 
the reason why k dependence was not considered in the 
present numerical calculations.  

Figure 4 (a) shows the comparison of the present and 
the MS theoretical results with the experimental data 
[ (15)]. Collisional system is O on Xe. Incident energies 
are 50, 60, 100, and 120 keV, and the reduced target 
thickness is 0.162 ( 1.59 × 10V	nm ). The results of 
experiments and theories are normalized to the half width 
of 𝜌. The scattering parameter k is 1.5. The present results 
seem to be appropriate in absolute values within the range 
below 𝐸𝜌 ≈ 2.6 . However, we cannot show the 
numerical results for	𝐸𝜌 > 2.6	because	of	a	numerical	
problem. The numerical problem is occurrence of 

oscillation that is caused from Bessel function properties. 
The present theory involves large scattering angles in 
comparison with the MS’s treatment within the small 
angle limit. In spite of this, the calculated result of the 
lateral spread reproduces very well the experimental 
results in the range below 𝐸𝜌 ≈ 2.6. In the range upper  
𝐸𝜌 ≈ 2.6, we cut off numerical calculation because of 
numerical problem.  Figure 4 (b) (c) show theoretical 
results with basic variable of 𝜌 in atomic unit. In Fig. 4 
(b), the curve of 60 keV is slightly broader than 50 keV, 
and in Fig. 4 (c), the curve of 120 keV also is broader than 
100 keV.  

Figure 5 (a), (b), (c) and (d) show the theoretical curves 
for 𝜏!  = 0.1 (1.96 × 10*	nm ), 𝑘  = 1, and collisional 
system is C on O (gaseous oxygen at density 1.4291 
kg/m3). Parameters of Fig. 5 (a) are 1 MeV, and 𝜇! = 0.7, 
parameters of Fig. 5 (b) are 1 MeV, and 𝜇!  = 0.3, 
parameters of Fig. 5 (c) are 10 MeV, and 𝜇! = 0.7, and 
parameters of Fig. 5 (d) are 10 MeV, and 𝜇! = 0.7. Figure 
6 (a) and (b) show the theoretical curves for 𝜏!  = 0.1 
(1.16 × 10*	nm), 𝑘 = 1, and collisional system C on H 
(gaseous hydrogen at density 0.0899 kg/m3). Parameters 
of Fig. 6 (a) are 10 MeV, and 𝜇! = 0.7, parameters of Fig. 
6 (b) are 10 MeV, and 𝜇! = 0.3 The tails of each curve in 
Figs 5 (a, b, c, d) and 6 (a ,b) are lower, but not enough 
because of a numerical problem. The problem is 
oscillation of Bessel function.   

Advantages of the present results are to involve large 
scattering angle and to include large energy loss, even 
though the present study has numerical problem. Small 
angle approximation means that scattering angle is less 
than 20°, but the present treatment has no limit of angle. 
The present results drastically changed by the definitions 
of Eqs. (3, 4, 7, 8), and the future problem is to find more 
suitable definitions of variables. 
 

5. CONCLUSIONS AND REMARKS 

In the present study, the theoretical development 
has been done of an exact analytical solution of lateral 
spread taking the inelastic energy loss effect into account 
in the present model. Moreover, the effects of 𝜇!, and 𝜏! 
in Figs. 1, and 2, are given, respectively. The present 
research is expected to be useful for the ion beam 
radiotherapy. 
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Figure captions 
 
Fig. 1: Geometrical explanation of lateral spread. The 
initial projectile direction is along the x axis. After 
collision, angular deviation is 𝛼 and lateral spread is 𝜌. 
 
Fig. 2: Comparison of the numerical results of 
𝐹!(𝜏! , 𝜌IJ) obtained for three values of 𝜇!. The 
parameters adopted are 𝜏! = 0.1 (0.85 nm); incident 
energy = 30 keV; and 𝑘 = 1. Solid, and dotted lines 
correspond to 𝜇! = 0.9 and 0.8, respectively. Vertical 
and horizontal axes are the normalized intensity and the 
lateral spread 𝜌, respectively. 
 
Fig. 3: Comparison of the numerical results of 
𝐹!(𝜏! , 𝜌IJ) for three values of 	𝜏!. The parameters 
adopted are 𝜇! = 0.5; incident energy = 30 keV; and 𝑘 = 
1. Solid, broken, and dotted lines correspond to 𝜏! = 0.1 
(0.85 nm), 0.15 (1.2 nm), and 0.2 (1.7 nm), respectively. 
Vertical and horizontal axes are the normalized intensity 
and the lateral spread 𝜌, respectively. 
 
Fig. 4: (a) Comparison between experiment and theories 
for the reduced target thickness is 0.162 (1.59 ×
10V	nm), incident energies are 50, 60, 100, and 120 
keV, collisional system is O on Xe. Vertical and 
horizontal axes are the normalized intensity and the 
lateral spread. Solid circles are experimental data, solid 
line is the present theory, and dotted line is MS 
treatment. The results of experiments and theories are 
normalized to the half width of 𝜌.  
(b) Solid line is 50 keV and dotted line is 60 keV. Both 
of lines are theoretical results. The parameters adopted 
are 𝜇! = 0.7; and 𝑘 = 0.05. Vertical and horizontal axes 
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are the normalized intensity and the lateral spread 𝜌, 
respectively.  
(c) Solid line is 100 keV and dotted line is 120 keV. 
Both of lines are theoretical results. The parameters 
adopted are 𝜇! = 0.3; and 𝑘 = 0.05. Vertical and 
horizontal axes are the normalized intensity and the 
lateral spread 𝜌, respectively. 
 
Fig. 5 Collisional system is C on O, 𝜏! = 0.1 (1.96 ×
10*	nm) and 𝑘 = 1. Solid line is theoretical carve in (a, 
b, c, d). Vertical and horizontal axes are the normalized 
intensity and the lateral spread 𝜌, respectively. 
(a)  Projectile energy is 1 MeV, and 𝜇! = 0.7.  
(b)  Projectile energy is 1 MeV, and 𝜇! = 0.3.  
(c)  Projectile energy is 10 MeV, and 𝜇! = 0.7. 
(d)  Projectile energy is 10 MeV, and 𝜇! = 0.3. 
 
 
Fig. 6 Collisional system is C on H, 𝜏! = 0.1 (1.16 ×
10*	nm) and 𝑘 = 1. Solid line is theoretical curve in (a, 
b). Vertical and horizontal axes are the normalized 
intensity and the lateral spread 𝜌, respectively. 
(a)  Projectile energy is 10 MeV, and 𝜇! = 0.7. 
(b)  Projectile energy is 10 MeV, and 𝜇! = 0.3. 
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Fig.2 
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Fig.3 
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Fig.4 (a) 
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Fig.4 (b) 
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Fig. 4 (c) 
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Fig. 5 (a) 
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Fig. 5 (b) 
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Fig. 5 (c) 
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Fig. 5 (d) 

 

 
 
  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00E+00 2.00E+22 4.00E+22 6.00E+22 8.00E+22

No
rm

al
ize

d 
In

te
ns

ity

Lateral spread 

Carbon on Oxygen
10 MeV, τe=0.1 (1.96×103 nm),  μe=0.3

!	[#$]



 

 

18 

Fig. 6 (a) 
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Fig. 6 (b) 
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