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Abstract. Let χ4 be the non-principal Dirichlet character mod 4 and L(s, χ4) be the
Dirichlet L-function associated with χ4, and put R(s) := s4sL(s+1, χ4)+πL(s−1, χ4).
In the present paper, we show that the function R(s) has the Riemann’s functional
equation and its zeros only at the negative even integers and complex numbers with real
part 1/2. We also give other L-functions that have the same property.

1. Introduction and Main results

1.1. Zeta functions with Riemann’s functional equation. Let χ(n) be a Dirichlet
character (mod q). Then, for ℜ(s) := σ > 1, the Riemann zeta function ζ(s) and the
Dirichlet L-function L(s, χ) are defined by the ordinary Dirichlet series

ζ(s) :=
∞∑
n=1

1

ns
, L(s, χ) :=

∞∑
n=1

χ(n)

ns
.

The Riemann zeta function ζ(s) is continued meromorphically and has a simple pole at
s = 1 with residue 1. The Dirichlet L-function L(s, χ) can be analytically continued to the
whole complex plane to a holomorphic function if B0(χ) :=

∑q−1
r=0 χ(r)/q = 0, otherwise to

a meromorphic function with a simple pole, at s = 1, with residue B0(χ). It is well-known
that ζ(s) satisfies Riemann’s functional equation

ζ(1− s) = Γcos(s)ζ(s), Γcos(s) := 2
Γ(s)

(2π)s
cos

(πs
2

)
(1.1)

(e.g., [13, (2.1.8)]). The first converse theorem on ζ(s) is proved by Hamburger [3, Satz
1] (see also [13, Chapter 2.13]) who characterized ζ(s) by Riemann’s functional equation.
Knopp [5] showed that there are infinitely many linearly independent solutions if we relax
Hamburger’s or Hecke’s condition on poles. It should be emphasised that Knopp gives no
explicit representation for the solutions satisfying Riemann’s functional equation.

For 0 < a ≤ 1, we define the Hurwitz zeta function ζ(s, a) and the periodic zeta function
F (s, a) by

ζ(s, a) :=
∞∑
n=0

1

(n+ a)s
, F (s, a) :=

∞∑
n=1

e2πina

ns
, σ > 1,

respectively. The both infinite series of ζ(s, a) and F (s, a) converge absolutely in the
half-plane σ > 1 and uniformly in each compact subset of this region. The Hurwitz zeta
function ζ(s, a) can be continued for all s ∈ C except s = 1, where there is a simple pole
with residue 1 (e.g., [1, Section 12]). When 0 < a < 1, the Dirichlet series of F (s, a)
converges uniformly in each compact subset of the half-plane σ > 0 (e.g., [7, p. 20]) and
F (s, a) is analytically continuable to the whole complex plane (e.g., [7, Section 2.2]).
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For 0 < a ≤ 1/2, we define the quadrilateral zeta function Q(s, a) by

2Q(s, a) := ζ(s, a) + ζ(s, 1− a) + F (s, a) + F (s, 1− a).

The function Q(s, a) can be continued analytically to the whole complex plane except
s = 1. In [9, Theorem 1.1], the author prove the functional equation

Q(1− s, a) = Γcos(s)Q(s, a). (1.2)

Note that the gamma factor in (1.2) completely coincides with that of the functional
equation for ζ(s) appearing in (1.1). Moreover, we remark that the functions ωp(s) in
[2, (4.9)] and f(s, χ) in [10, Section 2.1] also fulfill Riemann’s functional equation (see
[2, Section 4.2] and [10, Theorem 2.1]). It should be noted that Riemann’s functional
equation for Q(s, a), ωp(s) and f(s, χ) do not contradict to Hamburger’s theorem since
they can not be expressed as any ordinary Dirichlet series.

1.2. Riemann hypothesis. From the Euler product of ζ(s), the Riemann zeta function
does not vanish when σ > 1. In addition, ζ(s) ̸= 0 for ℜ(s) < 0 except for s = −2n, where
n ∈ N by the fact above and the functional equation (1.1). The Riemann hypothesis (RH,
in short) is concerned with the locations of nontrivial (non-real) zeros, and states that:

RH The real part of every nontrivial zero of ζ(s) is 1/2.

Let N(T, ζ) denote the numbers of zeros of ζ(s) in the region 0 ≤ ℜ(s) ≤ 1 and 0 <
ℑ(s) < T . Then the following Riemann-von Mangoldt formula is well-known (e.g., [13,
Theorem 9.4]). As T → ∞,

N(T, ζ) =
T

2π
log T − 1 + log 2π

2π
T +O(log T ).

It is natural to consider generalizations and analogues of the RH. The generalized
Riemann hypothesis extends the RH to all Dirichlet L-functions. More precisely, the
generalized Riemann hypothesis asserts that, for every Dirichlet character χ and every
complex number s ̸∈ R<0 with L(s, χ) = 0, then the real part of s ∈ C is 1/2.
Both the RH and GRH are unsolved. However, many other examples of L- or zeta

functions with analogues of the Riemann hypothesis, some of which have been proved. For
instance, Taylor [12] showed that ζ∗(s+1/2)−ζ∗(s−1/2), where ζ∗(s) := π−s/2Γ(s/2)ζ(s),
has all its zeros on the critical line σ = 1/2 (this can be proved by Proposition 2.2).
Furthermore, the Riemann hypothesis for some Selberg zeta functions and congruent zeta
functions are proved by Selberg and Deligne, respectively (e.g. [14, Section 4]).

Recall that the functions Q(s, a), ωp(s) and f(s, χ) have the Riemann’s functional

equation. However, the functions Q(s, a) with a ∈ R \ Q or a ∈ Q \ {1/2, 1/3, 1/4, 1/6}
and f(s, χ) with non-real Dirichlet characters have infinitely many zeros in the both
half-plane ℜ(s) > 1 and vertical strip 1/2 < ℜ(s) < 1 (see [11, Proposition 1.4] and
[10, Theorem 2.1 (iv)], respectively). In addition, there are no information on non-real
zeros of ωp(s) in [2]. On the other hand, zeta functions in the last paragraph satisfy the
Riemann hypothesis, but they do not have Riemann’s functional equation. Therefore,
no one has succeeded to construct L- or zeta functions which satisfy both Riemann’s
functional equation and the Riemann hypothesis until now.

1.3. Main results. Define the functions R1(s), R2(s) and R3(s) by

R1(s) := s3s+1L(s+ 1, χ3) + 2π
√
3L(s− 1, χ3),

R2(s) := s4s+1L(s+ 1, χ4) + 4πL(s− 1, χ4),

R3(s) := s(3s+1 + 6s+1)L(s+ 1, χ3) + 2π
√
3(1 + 22−s)L(s− 1, χ3),
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where χ3 and χ4 are the non-principal Dirichlet characters mod 3 and 4, respectively.
Let N(T,Rj) denote the numbers of zeros of Rj(s) in the region 0 ≤ ℜ(s) ≤ 1 and
0 < ℑ(s) < T . Then we have the following main result which implies that Rj(s) satisfy
both Riemann’s functional equation and the Riemann hypothesis for all j = 1, 2, 3.

Theorem 1.1. The function Rj(s) satisfies Riemann’s functional equation

Rj(1− s, a) = Γcos(s)Rj(s), (1.3)

has its zeros only at the negative even integers and complex numbers with real part 1/2
for each j = 1, 2, 3. In addition, one has

N(T,Rj) =
T

2π
log T +

log(r2j/2π)− 1

2π
T +O(log T ), (1.4)

where r1 = 2, r2 = 3 and r3 = 6.

The contents of the paper are as follows. In Section 2, we give a proof of Theorem 1.1.
In Section 3, we give some numerical calculations for Hardy’s Z-functions of Rj(s).

2. Proof

2.1. Preliminaries. For 0 < a ≤ 1/2, let

Z(s, a) := ζ(s, a) + ζ(s, 1− a), P (s, a) := F (s, a) + F (s, 1− a)

Y (s, a) := ζ(s, a)− ζ(s, 1− a), O(s, a) := −i
(
F (s, a)− F (s, 1− a)

)
.

Note that P (s, a), Y (s, a) and O(s, a) are entire functions when 0 < a < 1/2. However, the
function Z(s, a) has a simple pole at s = 1. Clearly, we have 2Q(s, a) = Z(s, a)+P (s, a).
In [8, Section 3.1], it is proved that

Y (s, 1/3) = 3sL(s, χ3), O(s, 1/3) =
√
3L(s, χ3), (2.1)

Y (s, 1/4) = 4sL(s, χ4), O(s, 1/4) = 2L(s, χ4), (2.2)

Y (s, 1/6) = (6s + 3s)L(s, χ3), O(s, 1/6) =
√
3(1 + 21−s)L(s, χ3). (2.3)

Let χ be a real odd primitive character modulo q, where q > 1, and G(χ) be the Gauss
sum, and put ε(χ) := iq−1/2G(χ). Then, it is widely known (e.g., [1, Exercise 12.8]) that

ξ(s, χ) = ε(χ)ξ(1− s, χ), ξ(s, χ) =

(
q

π

)(s−1)/2

Γ

(
s− 1

2

)
L(s, χ). (2.4)

We can easily see that |L(s, χ)| ≤ ζ(σ) when σ ≥ 3/2. In addition, we have the following.

Proposition 2.1 ([1, Theorem 12.24]). Let χ be any Dirichlet character modulo q and
assume 0 < δ < 1. Then there exists a positive constant A(δ), depending on δ but not on
s or q, such that for s = σ + it with |t| ≥ 1 we have∣∣L(s, χ)∣∣ ≤ A(δ)|qt|n+1+δ, −n− δ ≤ ℜ(s) ≤ −n+ δ, n ∈ Z≥−1.

Taylor’s theorem mentioned in Section 1.2 can be proved by the following shown by
Lagarias and Suzuki [6]. It should be noted that their theorem is a key for the proof of
the Riemann hypothesis for Rj(s).

Proposition 2.2 ([6, Theorem 4]). Let F (s) be an entire function of genus zero or one,
be real on the real axis, and satisfy F (s) = ±F (1− s) for some choice of sign, and there
exists α > 0 such that all zeros of F (s) lie in the vertical strip |ℜ(s)− 1/2| < α.
Then for any real γ ≥ α,∣∣∣∣F (s+ γ)

F (s− γ)

∣∣∣∣ > 1 if ℜ(s) > 1

2
,

∣∣∣∣F (s+ γ)

F (s− γ)

∣∣∣∣ < 1 if ℜ(s) < 1

2
.
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The next proposition is easily proved by the lemma in [13, Section 9.4].

Proposition 2.3. Let 0 ≤ α ≤ β < 3. Let f(s) be an analytic function, real for real s,
regular for σ ≥ α; let |ℜ(f(3 + it))| ≥ m > 0 and∣∣f(σ′ + it′)

∣∣ < Mσ,t, σ′ ≥ σ, 1 ≤ t′ ≤ t.

Then if T is not the ordinate of a zero of f(s),∣∣arg f(σ + iT )
∣∣ < π

log((3− α)/(3− β))

(
logMα,T+2 − logm

)
+

3π

2
, σ ≥ β.

2.2. Proofs of Theorem 1.1. In order to prove Theorem 1.1, we show the following two
lemmas. Note that the statement for real zeros on Rj(s) is easily proved by them.

Lemma 2.4. For each j = 1, 2, 3, the function Rj(s) satisfies (1.3).

Lemma 2.5. For all j = 1, 2, 3, the function Rj(s) do not vanish when ℜ(s) > 1/2.

Proof of Lemma 2.4. Clearly, the gamma factor in (1.2) does not depend on 0 < a < 1.
Hence, differentiating the both sides of (1.2) with respect to a, we obtain

R(1− s, a) = Γcos(s)R(s, a), R(s, a) := 2
∂

∂a
Q(s, a).

For σ > 2, it holds that

∂

∂a
Z(s, a) =

∞∑
n=0

∂

∂a

(
1

(n+ a)s
+

1

(n+ 1− a)s

)
= −sY (s+ 1, a),

∂

∂a
P (s, a) =

∞∑
n=0

∂

∂a

cos(2πna)

ns
= −2π

∞∑
n=0

sin(2πna)

ns−1
= −2πO(s− 1, a).

Recall that Y (s, a) and O(s, a) are entire functions when 0 < a < 1/2. Thus, we have

∂

∂a
Z(s, a) +

∂

∂a
P (s, a) = R(s, a) = −sY (s+ 1, a)− 2πO(s− 1, a)

for all s ∈ C. From (2.1), (2.2) and (2.3), we have

R1(s) = −R(s, 1/3), R2(s) = −R(s, 1/4), R3(s) = −R(s, 1/6).

Therefore, we obtain Riemann’s functional equation for Rj(s). □
Proof of Lemma 2.4. First consider the case j = 1. Then one has ε(χ3) = −1 from
G(χ3) = i

√
3. In this case, we have

ξ(s, χ3) = −ξ(1− s, χ3), ξ(s, χ3) =

(
3

π

)(s−1)/2

Γ

(
s− 1

2

)
L(s, χ3)

from (2.4). Clearly, by the definition of ξ(s, χ3), one has

ξ(s+ 1, χ3) =

(
3

π

)s/2

Γ

(
s

2

)
L(s+ 1, χ3) =

(
3

π

)s/2

Γ

(
s

2
− 1

)
s

2
L(s+ 1, χ3),

ξ(s− 1, χ3) =

(
3

π

)s/2−1

Γ

(
s

2
− 1

)
L(s− 1, χ3) =

(
3

π

)s/2

Γ

(
s

2
− 1

)
π

3
L(s− 1, χ3).

We can see that ξ(s, χ3) is an entire function of genus one and does not vanish when
ℜ(s) > 1 by the Hadamard product factorization of ξ(s, χ3) and the Euler product of
L(s, χ3), respectively. Hence, from the equations above and Proposition 2.2, we have∣∣31+1/2sL(s+ 1, χ3)

∣∣ > ∣∣2π√3L(s− 1, χ3)
∣∣, ℜ(s) > 1/2.
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Obviously, |31+s| > |31+1/2| when ℜ(s) > 1/2. Hence, we obtain∣∣s3s+1L(s+ 1, χ3)
∣∣ > ∣∣2π√3L(s− 1, χ3)

∣∣, ℜ(s) > 1/2. (2.5)

This inequality implies that R1(s) does not vanish if ℜ(s) > 1/2.
Similarly, we can prove the case j = 2. We have

ξ(s, χ4) = −ξ(1− s, χ4), ξ(s, χ4) =

(
4

π

)(s−1)/2

Γ

(
s− 1

2

)
L(s, χ4)

from G(χ4) = 2i. By the definition of ξ(s, χ4), we have

ξ(s+ 1, χ4) =

(
4

π

)s/2

Γ

(
s

2

)
L(s+ 1, χ4) =

(
4

π

)s/2

Γ

(
s

2
− 1

)
s

2
L(s+ 1, χ4),

ξ(s− 1, χ4) =

(
4

π

)s/2−1

Γ

(
s

2
− 1

)
L(s− 1, χ4) =

(
4

π

)s/2

Γ

(
s

2
− 1

)
π

4
L(s− 1, χ4).

By Proposition 2.2 again, we have∣∣8sL(s+ 1, χ4)
∣∣ > ∣∣4πL(s− 1, χ4)

∣∣, ℜ(s) > 1/2.

The inequality above and |41+s| > 8 with ℜ(s) > 1/2 imply the RH for R2(s).
The case j = 3 is proved by (2.5). Taking into account the triangle with vertices 0,

1 + 22−s and 1+ 21+s, where s is the complex conjugate of s, we can see that |1+ 2s+1| >
|1 + 22−s| which implies |1 + 2s+1| > |1 + 22−s| when ℜ(s) > 1/2 (see also the proof of [8,
Proposition 1.8]). Hence, by (2.5),∣∣s(3s+1 + 6s+1)L(s+ 1, χ3)

∣∣ = ∣∣(1 + 2s+1)s3s+1L(s+ 1, χ3)
∣∣

>
∣∣(1 + 2s+1)2π

√
3L(s− 1, χ3)

∣∣ > ∣∣2π√3(1 + 22−s)L(s− 1, χ3)
∣∣

which implies that R3(s) does not vanish when ℜ(s) > 1/2. □

Proof of Theorem 1.1. We only have to show the Riemann-von Mangoldt formula (1.4).
Let j = 1 and R1(s) = s3s+1R∗

1(s). From the argument in the proof of [13, Theorem 9.3],
functional equations (1.1) and (1.3), we have

πN(T,R1) = ∆arg s(s− 1) + ∆arg π−s/2 +∆arg Γ(s/2) + ∆arg s3s+1 +∆argR∗
1(s),

where ∆ denotes the variation from 3 to 3+ iT , and then to 1/2+ iT , along straight lines.
By the estimations in the proof of [13, Theorem 9.3], we obtain

∆arg s(s− 1) + ∆arg π−s/2 +∆arg Γ(s/2) + ∆arg s3s+1

=
T

2
log

T

2
− T

2
− T

2
log π + T log 3 + O(1).

Now we consider ∆ argR∗
1(s). Clearly, one has∣∣ℜ(R∗

1(3 + it)
)∣∣ > 1−

(
ζ(4)− 1

)
−2π31/2−4

∣∣L(2, χ3)
∣∣ > 2− ζ(4)− 2π3−7/2ζ(2) > 0.69.

Applying Proposition 2.3 with f(s) = R∗
1(s), α = 1/4 and β = 1/2, we obtain

∆argR∗
1(s) = O(log T )

by Proposition 2.1. Therefore, we have (1.4) for R1(s). Similarly, we can show the cases
j = 2 and j = 3. □
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3. Numerical calculations

3.1. Hardy’s Z -function. From [4, (1.6) and (1.7)], Riemann’s functional equation for
ζ(s) can be rewritten as

ζ(s) = η(s)ζ(1− s), η(s) :=
1

Γcos(s)
=

Γ(1/2− s/2)

Γ(s/2)
πs−1/2.

Using η(s) above, we define Hardy’s Z-function Z(t) by

Z(t) :=
(
η(1/2 + it)

)−1/2
ζ(1/2 + it) = eiθ(t)ζ(1/2 + it),

where θ(t) := ℑ(log Γ(1/4+ it/2))− (t/2) log π. It is widely-known (e.g. [4, Chapter 1.3])
that for t ∈ R,

Z(t) ∈ R, |Z(t)| = |ζ(1/2 + it)|, Z(t) = Z(−t).

Since Rj(s), where j = 1, 2, 3, satisfy Riemann’s functional equation, we can define

Hj(t) := eiθ(t)Rj(1/2 + it), j = 1, 2, 3

as an analogue of Z(t). By modifying the argument in [4, Chapter 1.3], we have

Hj(t) ∈ R, |Hj(t)| = |Rj(1/2 + it)|, Hj(t) = Hj(−t).

3.2. Figures. All figures are given by Mathematica 13.0. Note that they are plotted by
not (t + 1)−1Hj(1/2 + it) but ℜ((t + 1)−1Hj(1/2 + it)) since Mathematica 13.0 can not
regard Hj(1/2 + it) as real functions.
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Figure 1. {(t+ 1)−1H1(1/2 + it) : 0 ≤ t ≤ 100}
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Figure 2. {(t+ 1)−1H2(1/2 + it) : 0 ≤ t ≤ 100}
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Figure 3. {(t+ 1)−1H3(1/2 + it) : 0 ≤ t ≤ 100}
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