1 2	Microbial Systematics (Short Communication)
3	The Generic Circumscription of <i>Mrakia</i> and Related Taxa (Psychrophilic Yeasts)
4	
5	Yuzo Yamada, ^{1,4,5,*} Huong Thi Lan Vu, ² Pattaraporn Yukphan, ¹ Somboon Tanasupawat ³
6	
7	¹ BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and
8	Biotechnology (BIOTEC), National Science and Technology Development Agency
9	(NSTDA), 113 Thailand Science Park, Phaholyothin Road, Klong 1, Klong Luang,
10	Pathumthani 12120, Thailand
11	² Department of Microbiology, Faculty of Biology and Biotechnology, University of
12	Science, Vietnam National University-HCM City, 227 Nguyen Van Cu Street, Ward 4,
13	District 5, Hochiminh City, Vietnam
14	³ Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences,
15	Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330,
16	Thailand
17	⁴ JICA Senior Overseas Volunteer, Japan International Cooperation Agency, Shibuya-ku,
18	Tokyo 151-8559. Japan
19	⁵ Laboratory of Applied Microbiology (Professor Emeritus), Department of Agricultural
20	Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
21	422-8529, Japan
22	
23	*Corresponding author: Yuzo Yamada
24	E-mail: ymdy333@kdt.biglobe.ne.jp
25	ORCID, 0000-0002-2799-7045
26	
27	Keywords: Mrakia; Mrakia frigida; Mrakiella; Mrakiella cryoconiti; Krasilnikovozyma
28	curviuscula
29	
30	Abstract
31	In the family Mrakiaceae, the type genus Mrakia senseu stricto included five teleomorphic
32	species with the type species, Mrakia frigida. In contrast, the anamorphic genus Mrakiella
33	sensu stricto did 11 species with the type species, Mrakiella cryoconiti. Between the two
34	genera, the completely separated clusters were shown in the phylogenetic tree (LSU

- D1/D2) derived from the maximum parsimony method. The pair-wise sequence similarity
- 36 between *Mrakia frigida* and *Mrakiella cryoconiti* and *Mrakiella aquatica* were 98.2% and
- 37 96.8% respectively. The calculated pair-wise sequence similarities were 100-99.3% among
- 38 the five Mrakia species and were 97.1% between Mrakiella cryoconiti and Mrakiella
- 39 aquatica. The teleomorphic genus Krasilnikovozyma emend. contained three species with
- 40 the type species, *Krasilnikovozyma curviuscula*. Thus, the two teleomorphic genera were
- 41 taxonomic homogeneous-natured, and the three were characteristic of Q-8.

Supplementary Abstract

The family Mrakiaceae Liu et al.					
Genus	Species				
Mrakia Yamada et Komagata sensu stricto	<i>Mrakia frigida</i> ^T (Fell et al.) Yamada et Komagata (1987)				
	Mrakia gelida (Fell et al.) Yamada et Komagata (1987)				
	Mrakia psychrophila Xin et Zhou (2007)				
	Mrakia robertii Thomas-Hall et Turchetti (2010)				
	Mrakia blollopis Thomas-Hall et Turchetti (2010)				
Mrakiella Margesin et Fell sensu stricto	Mrakiella cryoconiti ^T Margesin et Fell (2008)				
	Mrakiella aquatica (Jones et Slooff) Margesin et Fell (2008)				
	Mrakiella niccombsii Thomas-Hall (2010)				
	Mrakiella arctica (Tsuji) comb. nov.				
	Mrakiella hoshinonis (Tsuji et al.) comb. nov.				
	Mrakiella fibulata (Yuekov et Turchetti) comb. nov.				
	Mrakiella panshiensis (Jia et Hui) comb. nov.				
	Mrakiella terrae (Park et al.) comb. nov.				
	Mrakiella soli (Park et al.) comb. nov.				
Thomasiohallia gen. nov.	Thomasiohallia stelviica (Turchetti et Buzzini) comb. nov.				
	Thomasiohallia montana (Turchetti et Buzzini) comb. nov.				
Krasilnikovozyma Liu et al. emend.	Krasilnikovozyma curviuscula ^T (Bav'eva et al.) Yurkov et al. (2019)				
	Krasilnikovozyma huempii f.a. (Ramirez et Gonzalez) Liu et al. (2015)				
	Krasilnikovozyma tahquamenonensis f.a. (Wang et al.) Liu et al. (2015)				
	Krasilnikovozyma fibulata f.a. Gushkova et Kachalkin (2019)				

The family Mrakiaceae Liu et al.					
Genus	Species				
Mrakia Yamada et Komagata emend. Liu	Mrakia frigida ^T (Fell et al.) Yamada et Komagata (1987)				
et al.	Mrakia gelida (Fell et al.) Yamada et Komagata (1987)				
	Mrakia psychrophila Xin et Zhou (2007)				
	Mrakia robertii Thomas-Hall et Turchetti (2010)				
	Mrakia blollopis Thomas-Hall et Turchetti (2010)				
	Mrakia cryoconiti (Margesin et Fell) Liu et al. (2015)				
	Mrakia aquatica (Jones et Slooff) Liu et al. (2015)				
	Mrakia niccombsii (Thomas-Hall) Liu et al. (2015)				
	Mrakia arctica Tsuji (2018)				
	Mrakia hoshinonis Tsuji et al. (2019)				
	Mrakia fibulata Yurkov et Turchetti (2020)				
	Mrakia panshiensis Jia et Hui (2020)				
	Mrakia stelviica Turchetti et Buzzini (2020)				
	Mrakia montana Turchetti et Buzzini (2020)				
	Mrakia terrae Park et al. (2021)				
	Mrakia soli Park et al. (2021)				
Krasilnikovozyma Liu et al.	Krasilnikovozyma huempii ^T (Ramirez et Gonzalez) Liu et al. (2015)				
	Krasilnikovozyma tahquamenonensis (Wang et al.) Liu et al. (2015)				

45	The genus Mrakia Yamada et Komagata was separated from the genus Leucospori-
46	dium Fell et al. and introduced with Mrakia frigida as the type species based on the
47	characteristic isoprenoid quinone-8 (Q-8) (Yamada and Komagata 1987). Up to now, five
48	species have been reported: Mrakia frigida, Mrakia gelida, Mrakia psychrophila, Mrakia
49	robertii and Mrakia blollopis. In contrast, the anamorphic genus Mrakiella Margesin et
50	Fell was proposed with the type species, Mrakiella cryoconiti (Margesin and Fell 2008),
51	and the 11 species have been reported.
52	Later, the genus Mrakiella was transferred taxonomically to the teleomorphic genus
53	Mrakia with emendation (Liu et al. 2015). The genus Mrakia Yamada et Komgata emend.
54	Liu et al. formed the monophyletic group along with Krasilnikovozyma, Phaffia,
55	Udeniomyces, Itersonilia and Tausonia (Liu et al. 2915).
56	This paper is concerned with the revival of the genus Mrakiella on the basis of the
57	phylogenetic separation within the genus Mrakia emend. i.e., the teleomorphic and the
58	anamorphic groups, the former of which was especially taxonomic homogeneous-natured
59	again.
60	
61	The family Mrakiaceae Liu, Bai, Groenew et Boekhout, the order Cystofilobasidiales
62	Fell, Roeijman et Boekhout:
63	
64	Genus I. Mrakia Yamada et Komagata sensu stricto (MB25264)
65	
66	One to three-celled metabasidium with basidiospores is shown (Fell 2011), extremely
67	short phylogenetic branches are produced within the genus in a phylogenetic tree (LSU
68	D1/D2) and ubiquinone-8
69	The type species is <i>Mrakia frigida</i> .
70	
71	1. <i>Mrakia frigida</i> (Fell, Statzell, Hunter et Phaff) Yamada et Komagata (1987)
72	(MB135389)
73	Basionym: Leucosporidium frigidum Fell, Statzell, Hunter et Phaff (1969)
74 75	2. Mrakia gelida (Fell, Statzell, Hunter et Phaff) Yamada et Komagata (1987)
76	(MB135390)
77	Basionym: <i>Leucosporidium gelidum</i> Fell, Statzell, Hunter et Phaff (1969)
78	Dasionym. Leucosportatum gettaum Fen, Statzen, Hunter et Fhan (1909)
79	3. Mrakia psychrophila Xin et Zhou (2007) (MB508500)
80	
81	4. Mrakia robertii Thomas-Hall et Turchetti (2010) (MB514690)
82	
83	5. Mrakia blollopis Thomas-Hall et Turchetti (2010) (MB514691)
84	

85	In the phylogenetic tree based on the 28S rRNA gene D1/D2 domain sequences, the
86	clusters of the teleomorphic and the anamorphic species were completely separated from
87	each other (Thomas-Hall et al. 2010). In addition, the phylogenetic branches of the five
88	Mrakia species were abnormally short, when compared with those of the anamorphic
89	representative species, Mrakiella cryoconiti and Mrakiella aquatica, suggesting that the
90	appearance of Mrakia species on the earth was relatively new from the view-point of
91	evolutionary aspect.
92	The pair-wise sequence similarities between the type species, Mrakia frigida and the
93	remaining four Mrakia species were extremely high (100 - 99.5%) (Table 1). In contrast,
94	the sequence similarities between Mrakia frigida and Mrakiella cryoconiti and Mrakiella
95	aquatica were low (98.2 and 96.8%), indicating that the two genera were completely
96	separated from each other phylogenetically. Among the five Mrakia species, the calculated
97	pair-wise sequence similarities were 100 - 99.3% (data not shown).
98	In the ITS region, the calculated sequence similarities were 98.7 - 97.0% among the
99	five Mrakia species. Between Mrakia frigida and Mrakiella cryoconiti and Mrakiella
100	aquatica, they were 94.9 and 92.3% (Tsuji et al. 2019).
101	To introduce the taxonomic homogeneous-natured genus, the calculated pair-wise
102	sequence similarities were 98% or more between Kockiozyma suominensis and Myxozyma
103	geophila (= Kockiozyma geophila f.a.; Lipomycetaceae) (Yamada et al. 2022) and between
104	Octosporomyces octosporus (= Schizosaccharomyces octosporus) and Octosporomyces
105	osmophilus (= Schizosaccharomyces osmophilus; Schizosaccharomycetaceae) (Vu et al.
106	2022a) in the 26S rRNA gene D1/D2 domain sequences. In the 18S rRNA gene sequences,
107	98% or more sequence similarities were also calculated to accomodate seven Myxozyma
108	species to the teleomorphic genus Kockiozyma (Lipomycetaceae) (Vu et al. 2022b).
109	From the data obtained above, the teleomorphic genus Mrakia sensu stricto should be
110	accepted, since the sequence similarities were extremely high (99.5% or more) in the
111	family Mrakiaceae.
112	
113	Genus II. Mrakiella Margesin et Fell sensu stricto (MB536881)
114	
115	No metabasidium is shown (Fell and Margesin 2011), long phylogenetic branches are
116	produced within the genus in a phylogenetic tree (LSU D1/D2) and ubiquinone-8
117	The type species is Mrakiella cryoconiti
118	
119	1. Mrakiella cryoconiti Margesin et Fell (2008) (MB537002)
120	
121	2. Mrakiella aquatica (Jones et Slooff) Margesin et Fell (2008) (MB514705)
122	Basionym: Candida aquatica Jones et Slooff (1966)
123	
124	3. Mrakiella niccombsii Thomas-Hall (2010) (MB514692)
125	

126	4. Mrakiella arctica (Tsuji) comb. nov.
127	Basionym: Mrakia arctica Tsuji, Mycoscience, 59: 57 (2018) (MB821502)
128	The type strain is JCM 32070 ^T
129	
130	5. Mrakiella hoshinonis (Tsuji, Tanabe, Vincent et Uchida) comb. nov.
131	Basionym: Mrakia hoshinonis Tsuji, Tanabe, Vincent et Uchida, Int. J. Syst. Evol.
132	Microbiol., DOI 10.1099/ijsem.0.003216: 4 (2019) (MB825484)
133	The type strain is JCM 32575 ^T .
134	
135	6. Mrakiella fibulata (Yurkov et Turchetti) comb. nov.
136	Basionym: Mrakia fibulata Yurkov et Turchetti, Antonie van Leeuwenhoek, 113: 506
137	(2020) (MB 830398)
138	The type strain is DSM 103931 ^T .
139	
140	7. Mrakiella panshiensis (Jia et Hui) comb. nov.
141	Basionym: Mrakia panshiensis Jia et Hui, Mycokeys, 74: 82 (2020) (MB834813)
142	The type strain is NYNU 18562 ^T .
143	
144	8. Mrakiella stelviica (Turchetti et Buzzini) comb. nov.
145	Basionym: Mrakia stelviica Turchetti et Buzzini, Int. J. Syst. Evol. Microbiol. 70:
146	4707 (2020) (MB835624)
147	The type strain is DBVPG 10734 ^T
148	
149	9. Mrakiella montana (Turchetti et Buzzini) comb. nov.
150	Basionym: Mrakia montana Turchetti et Buzzini, Int. J. Syst. Evol. Microbiol. 70:
151	4709 (2020) (MB835626)
152	The type strain is CBS 16462 ^T .
153	
154	10. Mrakiella terrae (Park, Maeng et Sathiyaraj) comb. nov.
155	Basionym: Mrakia terrae Park, Maeng et Sathiyaraj, Mycobiology, 49: 470 (2021)
156	(MB836844)
157	The type strain is $YP 416^{T}$.
158	
159	11. Mrakiella soli (Park, Maeng et Sathiyaraj) comb. nov.
160	Basionym: Mrakia soli Park, Maeng et Sathiyaraj, Mycobiology, 49: 472 (2021)
161	(MB836847)
162	The type strain is $YP 421^{T}$.
163	
164	In contrast to the teleomorphic species of the genus Mrakia, the anamorphic
165	Mrakiella species represented relatively long phylognetic branches, indicating that the
166	evolutionary stages may be distinct from one another. Within the genus Mrakiella, there is

167	none of teleomorphic species, being different from the relationship between Myxozyma
168	and Kockiozyma species (Lipomycetaceae) (Yamada et al. 2022).
169	The calculated pair-wise sequence similarities within the genus Mrakiella were quite
170	diverse (97.1 - 98.8%) (Table 1), as observed in the genera Myxozyma, Candida and
171	Cryptococcus.
172	Accoding to Turchetii et al. (2020), Mrakia stelviica and Mrakia montana produced
173	basidiospores from germinating teliospores and to Zhang et al. (2020), Mrakia pan-
174	schiensis represented the teleomorphic stage, i.e., teliospores were produced and might
175	germinate by a bud-like projection.
176	
177	Genus III. Krasilnikovozyma Liu et al. emend. (MB812178)
178	
179	Non-septate tubular metabasidium with sporidia is shown (Fell 2011), relatively short
180	phylogenetic branches are produced within the genus in a phylogenetic tree (LSU D1/D2)
181	and ubiquinone-8
182	The type species is Krasilnikovozyma curviuscula.
183	
184	1. Krasilnikovozyma curviuscula (Bav'eva, Lisichkina, Reshetova et Danilevitch)
185	Yurkov, Kachalkin et Sampaio (2019) (MB829125)
186	Basionym: Mrakia curviuscula Bav'eva, Lisichkina, Reshetova et Danilevitch
187	(2002) (MB529873)
188	The type strain is CBS 9136 ^T .
189	
190	2. Krasilnikovozyma huempii f.a. (Ramirez et Gonzalez) Liu et al. (2015) (MB812179)
191	
192	3. Krasilnikovozyma tahquamenonensis f.a. (Wang et al.) Liu et al. (2015)
193	(MB813656)
194	
195	According to Fell (2011), Mrakia curviuscula (= Krasilnikovozyma curviuscula)
196	produced a non-septate tubular metabasidium with one to two sporidia, which appeared to
197	differ morphologically from those of Mrakia frigida and Mrakia gelida.
198	Liu et al. (2015) introduced the genus Krasilnikovozyma as an anamorphic taxon, since
199	the type species was designated to be Krasilnikovozyma huempii (= Cryptococcus
200	huempii). From the view-point of the traditional yeast systematics, it appeared to be
201	problematic. Namely, the basic characteristics of living things on the earth are based on
202	their reproduction, especially their sexual reproduction. Therefore, it is general that the
203	teleomorphic genus has precedence over the anamorphic genus in the yeast systematics,
204	and the name of the teleomorphic genus Krasilnikovozyma is able to be given to the
205	anamorphic species (Lachance 2012).
206	

207	In the phylogenetic tree based on the concatenated ITS and LSU D1/D2 sequences
208	derived from the maximum likelihood method (Zhang et al. 2020), the cluster of the genus
209	Mrakiella was divided into two, i.e., one included Mrakia stelviica and Mrakia montana
210	and the other did Mrakia panshiensis.
211	For the two teleomorphic species, Mrakia stelviica and Mrakia montana (Turchetii et al.
212	2020), a new genus will be introduced, and for the one species, Mrakia panshiensis
213	(Zhang et al. 2020), another new genus will be done.
214	
215	Acknowledgements
216	The present authors express their sincere thanks to Dr. Masaharu Tsuji for his detailed
217	suggestions and discussions. Thanks are also due to many authors for citing a number of
218	data from their articles.
219	
220	Funding information
221	The authors received no specific grant from any funding agency.
222	
223	Conflicts of interest
224	The authors declare that there are no conflicts of interest.
225	
226	Author contributions
227	Y.Y., H.T.L.V., P.Y. and S.T. designed the study. H.T.L.V. performed the main experiments.
228	P.Y. instructed how to make the experiments. Y.Y. prepared the manuscript. The detailed
229	discussions were made among Y.Y., H.T.L.V., P.Y., and S.T.
230	
231	References
232	Fell, J.W. (2011) Mrakia Y. Yamada & Komagata (1987). In The Yeasts: A Taxonomic
233	Study, 5th edition. vol. 3. Kurtzman, C.P., Fell, J.W., Boekhout, T. (eds), London:
234	Elsevier, pp. 1503-1519.
235	Fell, J.W. and Margesin, R. (2011) Mrakiella Margesin & Fell (2008). In The Yeasts: A
236	Taxonomic Study, 5th edition. vol. 3. Kurtzman, C.P., Fell, J.W., Boekhout, T. (eds),
237	London: Elsevier, pp. 1847-1852.
238	Lachance, M.A. (2012) In defense of sexual life cycles: The forma asexualis - an informal
239	proposal. Yeast Newsletter 61: 24-25.
240	Liu, XZ., Wang, QM., Goker, M. Goenewald, M., Kachalkin, A.V., Lumbsch, H.T.,
241	Millianes, A.M., Wedin, M., Yurkov, A.M., Boekhout, T. and Bai, FY. (2015)
242	Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in
243	<i>Mycology</i> 81 :85-147.
244	Margesin, R. and Fell, J.W. (2008) Mrakiella cryoconiti gen, nov., sp. nov., a psychro-
245	philic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst
246	<i>Evol Microbiol</i> 58 : 2977-2982.

- Thomas-Hall, S.R., Turchatti, B., Buzzini, P., Branda, E., Boekhout, T., Theelen, B. and
 Watson, K. (2010) Cold adapted yeasts from Antarctica and Italian Alps description
 of three novel species: *Mrakia robertii* sp. nov., *Mrakia blollopis* sp. nov. and *Mrakiella nicombsii* sp. nov. *Extremophiles* 14: 47-59.
- Tsuji, M., Tanabe, Y., Vincent, W.F. and Uchida M. (2019) *Mrakia hoshinonis* sp. nov., a
 novel psychrophilic yeast isolated from a retreating glacier on Ellsmere Island in the
 Canadian High Arctic. *Int J Syst Evol Microbiol* Doi 10.1099/ijsem.0.003216.
- Turchetti, B., Sannino, C., Mezzasoma, A., Zucconi, L., Onofri, S and Bazzini, P. (2020)
 Mrakia stelviica sp. nov. and *Mrakia montana* sp. nov., two novel basidiomycetous
 yeast species isolated from cold environments. *Int J Syst Evol Microbiol* **70**: 4704 4713.
- Vu, H.T.L., Yukphan, P., Tanasupawat, S. and Yamada, Y. (2022a) The Revision of
 Schizosacchromycetaceae. *Jxiv* (DOI: https://doi.org/10.51094/jxiv.188).
- Vu, H.T.L., Yukphan, P., Tanasupawat, S. and Yamada, Y. (2022b) The Generic
 Circumscription of *Kockiozyma* (Lipomycetaceae). *Jxiv* (DOI:
- 262 https://doi.org/10.51094/jxiv.221).
- Yamada, Y. and Komagata, K. (1987) *Mrakia* gen. nov., a heterobasidiomycetous yeast
 genus for the Q₈-equipped, self-sporulating organisms, which produce a unicellular
 metabasidium, formerly classified in the genus *Leucosporidium*. J Gen Appl *Microbiol* 33: 455-457.
- Yamada, Y., Vu, H.T.L, Yukphan, P. and Tanasupawat, S. (2022) The Revision of
 Lipomycetaceae. *Jxiv* (DOI: https://doi.org/10.51094//jxiv.189).
- Zhang, K.-H. Shi, C.-F., Chai, C.-Y. and Hui, F.-L. (2020) *Mrakia panshiensis* sp. nov., a
 new member of the Cystofilobasidiales from soil in China and description of the
 teleomorphic-stage of *M. arctica. Mycokeys* 74: 75-90.
- 272
- 273
- 274
- 275
- 276
- 277

Species	1	2	3	4	5	6	7
Sequence similarity (%)	100	100	99.8	99.5	99.5	98.2	96.8
Species	6	7	8	9	10		
Sequence similarity (%)	100	97.1	97.5	97.5	98.8		
Species	7	8	9	10			
Sequence similarity (%)	100	98.2	98.8	97.1			

Table 1. The pair-wise sequence similarity of D1/D2 in Mrakia and Mrakiella species*

*The original data (the number of base substitution) was cited from Tsuji et al. (2019). In this case, the precise length of D1/D2 was not known. It was designated as 560 bases in sequence calculation. 1. *Mrakia frigida* CBS 5270^T, 2. *Mrakia gelida* CBS 5272^T, 3. *Mrakia robertii* 8912^T, 4. *Mrakia blollopis* CBS 8921^T, 5. *Mrakia psychrophila* CBS 10829^T, 6. *Mrakiella cryoconiti* CBS 10834^T, 7. *Mrakiella aquatica* CBS 5443^T, 8. *Mrakiella niccombsii* CBS 8917^T, 9. *Mrakiella hoshinonis* JCM 32575^T, 10. *Mrakiella arctica* JCM 32070^T.

278 279

280