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Abstract

This work develops the mathematical core of the Hierarchical Information Propagation
Model (HIPM), independent of physical interpretation. Information states are defined on
discrete hierarchical spaces over a finite field, and inter-level propagation is formalized by
mixed linear—nonlinear operators. A nonlinear gauge symmetry associated with redundant
internal representations is introduced. Folding operations and their fixed points are defined
algebraically. We further derive the hierarchical Jacobian associated with inter-level maps
and introduce an abstract effective metric structure induced by local deformation of these
Jacobians. Time and gravitational modulation are formulated as meta-hierarchical deforma-
tions without assigning any physical interpretation. The formalism presented here provides
the minimal structural backbone required for subsequent applications in higher parts of the
framework.
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1 Overview of the Hierarchical Information Propagation Model
(HIPM)

The Hierarchical Information Propagation Model (HIPM) formalizes information flow across
nested computational layers. Each layer represents a distinct mode of effective physical descrip-
tion: the classical layer, the quantum layer, and the folded (collapsed) layer. HIPM provides a
unified framework to describe how information is generated, propagated, folded, and thermody-
namically constrained.

The model consists of three primary components:

* Classical Layer (#): emergent deterministic variables and coarse-grained states.
* Quantum Layer (#,): superposition, entanglement, and reversible unitary evolution.

* Folded Layer (7{;): information-reduced states resulting from layer - to —layer projection
and non-linear folding dynamics.

HIPM asserts that information propagation between layers is not merely a projection but
a thermodynamically constrained transformation. Transitions such as quantum-to-classical re-
duction and classical-to-quantum lifting are implemented by folding operators C} and unfolding
operators Dy.

These operators are defined over the effective map

Hy <— Ha — Hy,

and may be inherently non-linear due to information compression and the loss of distinguisha-
bility under coarse-graining.

The goal of Part II is to define these operators precisely, illustrate their geometric structure,
and introduce the concept of a local folding map, which encodes how information collapses in
finite, bounded regions.

2 Three-Layer Structure and Folding Dynamics

2.1 Three-Layer Hilbert Structure

We formalize the three effective state spaces as follows:

H, : Quantum layer (unitary, reversible), (D)
H., : Classical-information layer, (2)
‘H : Folded layer (information-compressed). 3)

A system state is represented as

V) € H,, X € Hy, FeHy.



2.1.1 Layer-to-Layer Operators

Information transitions are modeled with two families of operators:

* Folding operators C): quantum/classical states — folded states (irreversible, entropy-
increasing).

* Unfolding operators D;: folded states — classical/quantum states (partial reversible re-
construction).

Each operator is defined locally:
Cp : HgUHa — Hy,

Dk : Hf — HdUHq.

By construction,
Dka: 7£ 1[7

which represents the fundamental information-loss condition consistent with Landauer-type ther-
modynamic constraints.

2.2 Local Folding Map
For a finite region €2, HIPM defines a local folding map
Fo : Hy(Q2) — H (),

which acts as a bounded, generally non-linear transformation encoding local collapse of infor-
mation.
The total folding evolution along a timeline is given by the ordered composition

‘F<t>:tho"'OCkzoCk1y

illustrating the discrete nature of folding events.
This formalism naturally induces a hierarchical structure of layers:

H, D Ha DMy

with each inclusion describing a loss of distinguishability and an increase in effective entropy.

3 Nonlinear Structure of Folding Operators

In HIPM, the essential distinction between layers arises from the nonlinearity introduced by
folding transformations. While quantum dynamics in #, is linear and unitary, and classical
dynamics in H can be modeled as stochastic yet linear in probability space, the transition into
the folded layer H s necessarily introduces nonlinear information compression.

This section formalizes the mathematical structure responsible for such nonlinearity.



3.1 Motivation: Why Folding Must Be Nonlinear

A folding operator
Cr : HegUHag — Hy

must satisfy two physical constraints:
1. Information-reduction condition
dim(H ) < dim(H,), dim(H ) < dim(H).
This reflects coarse-graining and entropy increase.

2. Non-reversibility of collapse No operator D), can satisfy
DC, =1
on the entire domain.

These constraints imply that C, cannot preserve convex combinations, and therefore cannot
be linear. Formally, for generic states

Cr(aA+ BB) # aCi(A) + BCk(B),

indicating that folding is intrinsically nonlinear.

3.2 Decomposition of the Folding Map

We decompose the folding operator C';, into two components:
Cr =1l o Ay,
where

* Aj: layer-to-layer preconditioning (linear map that extracts classical observables from
quantum inputs),

e [I;: nonlinear projection implementing coarse-graining.

3.2.1 Quantum Preconditioning

For quantum inputs,
Ak : Hq — Hcl,

we define
Ak<|‘1’>) = (01(‘1’)7 02(‘1’)7 R Om(‘I’))7

where {O;} are effective classical observables associated with a finite resolution scale. This
preconditioning is linear due to the linearity of expectation values.



3.2.2 Nonlinear Projection

The projection

is nonlinear and satisfies:

* many-to-one mapping (information compression),

* Jocality (acts on finite domains),

* entropy increase,

* metric contraction on distinguishability.

A central property is that for any two states X and Y,
A(TI(X), TT(Y)) < d(X,Y),

with strict inequality unless X and Y fall into distinct basins of the folding map.

3.3 Fixed Points and Stability
Folding maps generally possess stable fixed points:
F* €Mty suchthat Cy(F*)=F".
These points correspond to:
* locally maximally compressed descriptions,
e attractors under repeated folding,
* classical “collapsed” or “decided” states.

Under timeline evolution, a sequence

tho"'OCkQOCkl

generically converges toward a stable folded configuration.

This expresses mathematically how repeated information interactions drive the system to-
ward irreversible collapse.

3.4 Partial Unfolding and Information Recovery
Unfolding operators

Dy :Hp — Ha UH,
are not true inverses but reconstruction mappings satisfying:

D;Cy. =1 onrestricted domains.

The reconstruction is approximate because:

* only coarse-grained observables survive the folding,
* fine quantum phases are unrecoverable,

* non-invertibility of II; prohibits exact reversal.

Thus, unfolding restores the shape of information flow but not its original microscopic detail.
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3.5 Summary

This section clarified that:

folding must be nonlinear due to information-loss requirements,

the operator decomposes into linear preconditioning and nonlinear projection,

repeated folding yields stable fixed points,

unfolding operators provide only partial reconstruction.

The next section introduces the *geometric structure* of folding and visualizes information
contraction within a multi-layer hierarchy.

4 Geometric Structure of Local Folding

The Hierarchical Information Propagation Model (HIPM) treats folding as a local geometric
transformation acting on neighborhoods in the global state space. This section formalizes the ge-
ometric concepts underlying the folding map Fj, and clarifies how layered structures (H,, H s, H,)
emerge from repeated local contractions.

4.1 Local Neighborhoods in the Global State Space

Let H denote the global information state space. For each position (or index) x; we define its

local neighborhood:
Nie =N (@; p),

where p is the locality radius, which may represent:
* spatial locality,
* causal adjacency,
* or information-theoretic coupling.
Each N}, is embedded in the global space by an inclusion map
e Ny = H.

A central assumption of HIPM is:

Folding acts locally, but propagates its effects globally.

Thus the folding operator F}, is defined on N, and extended to the whole system via the
induced propagation structure.



4.2 Definition of the Local Folding Map

The local folding map
Fk : Nk — Hf

acts in three conceptual steps:
1. extraction of the neighborhood block,
2. nonlinear folding within the block,

3. reinsertion into the global structure.

Formally:
Fy =1 ol o py,

where

e pr : H — N (local projection onto the neighborhood),
e I, : N, — H; (nonlinear local fold),

* 1, : Hy — H (re-embedding into the global hierarchy).

This structure is consistent with the diagram depicted in

4.3 Geometric Contraction and Layer Mapping

Folding acts as a geometrically contracting map:
d(Fk(X),Fk(Y)) < d(X,Y), 0<vy <Ll
Repeated contraction generates an emergent hierarchy:
H — Hp — Hpp — - — Hy

This process corresponds to the multi-layer diagram shown in Layers are defined
recursively:

Hier) = Fr,(Hiw)-

Thus, H1o = H (global layer), H . is the first structured intermediate layer, and H 5 reflects
compressed local neighborhoods.



Global Layer L0

H (global info)

Intermediate Layer L1

Structured Info

( H Global )
\
( Structured Info ) Local Layers 1.2 A 4

¥ ~ N (patch) Ny -
( Local Info )
\
( Folded Info )
E Folded Local Layers L3 4

Heold, k Heold, 11

Figure 1: Recursive multi-layer structure showing global, intermediate, and local layers. This
diagram corresponds to the hierarchical construction discussed in the text, where folding maps
act across adjacent layers.



4.4 Relation to Quantum — Classical — Material Layers

In the HIPM physical interpretation, geometric hierarchy corresponds to three physically mean-
ingful layers:

1. Quantum Layer H, (high-dimensional, phase-sensitive structure),
2. Folding Layer # ; (nonlinear, entropy-increasing processing),
3. Material Layer 7, (stabilized, decohered classical outcomes).

These layers are related by the compositional map:
M, S 1, 25 2,

where C}, is the collapse (folding) operator and Dy, is the divergence (unfolding/progression)
mapping.

The timeline version of this structure corresponds to
4.5 Propagation Structure and Coarse Information Flow

Local folding at site k£ induces a propagation of reduced information toward adjacent neighbor-
hoods. Let Pj_,; denote the propagation operator from site & to j.
Folding changes the global state by:

X = re(Fi(pr(X))).
Neighboring regions are affected by:
Xj = Proj (Fi(pe(X))) -
In particular, HIPM predicts:

local entropy increase spreads outward along causal adjacency.

This propagation structure is one of the signatures distinguishing HIPM from linear quantum
evolution.

4.6 Layer Stabilization and Emergence of Material Configurations

As folding propagates across multiple layers, the system approaches stable, low-dimensional
configurations:

D
Hy — Hy,

where H,,, corresponds to classical measurement results or material outcomes.
A stabilized material state satisfies:

M* = Dy (Fp(Ny)),

and becomes invariant under subsequent local contractions:
Fp(M*) = M"*.
Thus material outcomes appear as fixed points of the geometric hierarchy.
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4.7 Summary

This section established the geometric foundations of folding:

Folding acts on local neighborhoods N;,.

The map decomposes into projection, nonlinear contraction, and reinsertion.

Repeated local folding generates a multi-layer hierarchy.

Quantum, folded, and material layers arise from this contraction process.

Material outcomes correspond to stable fixed points in H,,.

The next section analyzes the temporal evolution of these folding processes and formulates
the dynamical equations governing information flow along the timeline.

5 Folding Dynamics and Timeline Evolution

This section formulates the temporal evolution of hierarchical folding in HIPM. Whereas Sec-
tion ?? established the geometric structure of local folding, the present section introduces ex-
plicit dynamical equations describing how states in the quantum layer H,, folding layer H ¢, and
material layer H,, evolve across discrete time steps tg — t; — to - - -.

We also show how the dynamics correspond directly to the folding timeline diagram pre-
sented in Fig.[3]

5.1 Temporal Indexing and Layered State Vectors

Let the full hierarchical state at time ¢,, be written as

X(tn) = (Hq(tn)> Hf(tn)v Hm<tn))

Each component represents the (coarse-, intermediate-, and reduced-) information contained
in the corresponding layer. The dynamics across time steps are generated by local folding maps
F}. and divergence maps Dy, extended globally:

X(tn—H) = (Hq(tn+1)> Hf(tn+1)v Hm(tn-i-l))'

5.2 Quantum-Layer Evolution: Pre-Folding Dynamics
Before collapsing into the folding layer, the quantum layer evolves under a reversible operator
Ulty,):

Hq( 7:—1—1) = U<tn) Hq(tn)a

where 7, ; denotes the moment just before collapse/folding.
The operator U may be linear or nonlinear depending on whether HIPM is interpreted as a
generalization of quantum mechanics or as a broader information-dynamical framework.
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Higher Layer Hq
(coarse global structures)

Fy..y (folding)
v
Fi. =C ® Dy
C : conserved structure (invariants) Middle Layer Hf
D : dissipative part (entropy increase) (intermediate algebraic form)
Hq: global constraints, invariants
Fy. (folding)
v | preserved under folding

Hf : nenlinear gauge structure
Base Layer Hm

(finite-field GF(p-) data) | partial reduction

Hm : discrete information, measurement layer

Figure 2: Overall relationship between quantum, folding, and material layers. Folding and di-
vergence maps generate transitions between layers.

5.3 Folding Step: Collapse Operator C},

At each site k, the collapse/folding operator C}, acts on the evolved pre-folded quantum state:

Hf(tn+1) = Ck(Hq( ;+1))'

This operator is the same as the local fold used in Section ?? and illustrated in Fig.
The essential physical property is contraction:

1C(X) = G < mll X =Y, 0<y <1

Local Block at Layer £

Cr (Collapse Operator)

C;-:Hf "HJr

Dy:Hy — Hy Folded State

D;. (Divergence Operator)

Propagated Structure

Figure 3: Collapse operator Cj and divergence operator D, acting on the local block at layer f.
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5.4 Local Map Propagation and Neighborhood Interaction
The local folding map £}, described in Section ?? induces changes in neighboring regions through

the propagation operator P, ;:

HY (tnr1) = Prss (Fi(NR)).-
This structure matches the diagram shown in Fig.
Propagation is typically dissipative:

S(HY (tns1)) = S(HY (1)),

where S(-) is the entropy-like measure introduced in Section 2?.

Global State Space Hq

(1) Local Neighborhood Nk

Region around xk

(2) Local Folding Map Fk

(3) Local Folded State

Figure 4: Local neighborhood extraction, local folding map Fj, and the resulting folded state.

5.5 Progression Toward Material Layer: Divergence Operator D;

After the folding step, the system evolves further under the divergence map:

Hm<tn+1) = Dy, (Hf(tn+1))7
where D), expands or stabilizes folded information into classical or material configurations.
Dy, typically satisfies:

Dy(Dr(X)) = Di(X),

meaning material outcomes are fixed points of continued divergence.
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5.6 Hierarchy Stabilization Over Time

Repeated folding — divergence steps generate a temporal sequence:

Hy(to) — Hy(t1) — Hp(ts) — Hp(ts) — -

Over long timescales, the system approaches a stabilized material structure ' :

H = Dyp(Fr(N)), Fy(H;,) = H),

m*

5.7 Timeline Diagram and Layer Evolution

The above dynamics correspond directly to the layer-by-layer timeline shown in Fig.[5] Each
horizontal arrow represents evolution within a layer, while each vertical arrow represents a Cj,
or D;, operation.

t0 t1 t2

Quantum Layer

Hq Hq' N Hq "
Pyp s
Folding Layer
Hf > Hf® > HE ™
¢ f—m @f m
Material Layer
Hm Hm ° Hm

Figure 5: Timeline evolution of quantum, folding, and material layers. Vertical arrows indicate
folding (C') and divergence (Dy,).

5.8 Summary of Dynamical Structure

This section presented a complete dynamical formulation for HIPM folding:
 The quantum layer undergoes unitary or reversible evolution U (t).
* At discrete times, local collapse/folding operators Cj, map H, into H.
» Folding propagates via neighborhood interactions and increases entropy.

* Divergence operators Dy, stabilize folded states into material configurations.
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* Timeline evolution matches the multi-layer diagram of Part II.

This completes the core theoretical structure of Part II. Next, Part III can examine specific
applications, simulation results, or finite-field realizations of the HIPM folding dynamics.
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