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Abstract

This article proposes a unified region-based paradigm that reconnects historically indepen-
dent developments in nonlinear control, optimal control, and safety-critical systems. We began
with Lyapunov’s original insight that stability is fundamentally a property of regions and their
deformation under flow, we trace a conceptual lineage through Zubov’s characterization (1950s),
the variable-gradient method (1962), extended quadratic Lyapunov functions (1997-1998), con-
traction theory (2014-), and recent advances in safe reinforcement learning and Hamilton-Jacobi-
Bellman methods (2020-). We argue that contemporary challenges in learning-based and safety-
critical control stem from treating stability as a pointwise property rather than a geometric
one. A unified region-based view clarifies the complementary roles of Lyapunov functions (inner
contraction), barrier functions (outer invariance), and value functions (performance landscapes
within feasible domains). It also highlights constructive methods that jointly design gradients
and level sets. By reconstructing these connections, we provide a coherent framework that sit-
uates modern tools within Lyapunov’s original geometric philosophy—not as a new theory, but
as a synthesis for interpreting and integrating existing methods.

Keywords: Lyapunov function, barrier function, contraction theory, region-based stability, non-
linear control, Hamilton-Jacobi-Bellman (HJB), reinforcement learning

1 Introduction — Stability as a Geometry of Regions

Since Lyapunov’s foundational work, stability theory has been shaped by two parallel traditions:
one that emphasizes scalar functions whose sublevel sets contract toward an attractor, and the
other that emphasizes gradient and vector fields that guide the flow of trajectories. Decades of
advances in nonlinear control, optimal control, and safety-critical systems have tended to adopt
one of these perspectives and ignore the other. As a result, the fundamental geometric insight
present in Lyapunov’s original interpretation, namely that stability is a property of a domain and
its deformation under flow, has been partially obscured.

This paper revisits the geometric foundations of Lyapunov stability theory and traces its his-
torical progression from classical domain-based interpretations, Lyapunov’s monograph [1] and
Zubov’s construction [2], to variable gradient methods (1962) [3], extended quadratic Lyapunov
functions (1997 — 1998) [4, 5], contraction theory (since 2014) [6, 7], and recent developments in
reinforcement learning and safety-critical control (since 2020) [8, 9, 10, 11, 12, 13, 14]. We propose
a unified domain-based framework that integrates attraction, safety, and optimality through the
collaborative design of level sets and gradients.

Zubov’s partial differential equation-based methods, developed in the mid-20th century, provide
a rigorous characterization of domains of attraction [2], but do so through an ontological and
descriptive lens. Unlike constructive approaches such as variable gradient methods [3] and extended
quadratic frameworks [4, 5], Zubov’s theory does not offer a design-oriented mechanism for forming
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level sets or gradients. Therefore, this paper treats Zubov’s theory as part of its own lineage and
does not extend it. Between the rigor of control theory and the expansiveness of robotics, the
geometry of stability has been fragmented, forgotten, and rediscovered. This paper seeks to trace
the contours of this tension as a foundation for structural synthesis, rather than to resolve it.

The central argument of this paper is that modern control theory requires a unified domain-
based paradigm that integrates contraction [6, 7], attraction [2, 3|, safety [15, 16, 17], and opti-
mality [18, 19] into a coherent geometric framework. In particular, we argue that Lyapunov design
must be understood as a dual problem: forming an inner contraction domain and an outer invariant
boundary, and ensuring that they are compatible with optimality and learning. This perspective
not only clarifies connections between seemingly contradictory literature but also highlights the
constructive potential of methods for designing both gradient and level set structures, such as the
extended quadratic Lyapunov framework [4, 5].

By reconstructing the connections between historical developments and current trends, we aim
to provide a more unified and physically meaningful conceptual foundation for nonlinear stability
theory. This theory will guide the next generation of stability analysis, controller design, and
learning-based methods.

Rather than reproducing the technical details of each method, this paper focuses on the concep-
tual evolution of Lyapunov-based reasoning across disciplines. Our aim is to reveal how geometric,
optimization-based, and data-driven perspectives have reshaped the understanding of stability. The
arguments are grounded in cited literature and structured to support a unified geometric paradigm.
This is not a conventional control theory paper, but a design-oriented synthesis of ideas that have
emerged across theory, robotics, and learning.

Accordingly, this paper is structured as a conceptual synthesis rather than a conventional tech-
nical exposition. Our goal is not to present new theorems or algorithms, but to reveal the under-
lying geometric unity that connects diverse methodological developments. We focus on conceptual
evolution and structural relationships, with technical details delegated to cited literature. This
design-oriented perspective aims to provide a roadmap for integrating stability analysis, safety
constraints, and learning-based methods within a coherent geometric framework.

2 Lyapunov’ s Original Perspective: Stability as a Property of
Regions

The contemporary view of Lyapunov theory often begins with the requirement that a candidate
function V(z) be positive definite and strictly decreasing along trajectories. Yet this familiar
formulation tends to obscure the central insight contained in Lyapunov’ s original monograph—
The General Problem of the Stability of Motion (1892) [1, 20]. Lyapunov consistently emphasized
that stability is not a property of a point, but rather of a region of the state space containing the
equilibrium. In his formulation, the level sets

Qe={z:V(z)<c}

serve as the structural basis for Lyapunov’ s reasoning: they define closed domains within which
the motion remains confined, and they contract under the system dynamics.

From this viewpoint, the Lyapunov function serves not merely as an algebraic certificate, but as
a geometric descriptor of an invariant domain. The decrease condition V(x(t)) < 0 is meaningful
precisely because it implies the nesting of these domains: trajectories flow from larger to smaller
level sets. Thus, the function V (z) is a coordinate representation of a more fundamental geometric
object—the family of invariant regions surrounding the equilibrium [2].
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This region-based interpretation is explicit throughout Lyapunov’ s text: the analysis proceeds
by constructing neighborhoods whose boundaries are level sets of V(x), and by ensuring that
trajectories do not exit these neighborhoods. The commonly taught “pointwise” reading of
Lyapunov theory—focusing only on positivity and dissipation—therefore overlooks the original
geometric foundation of the method. It is this neglected foundation that later developments,
from variable-gradient constructions [3] to modern contraction [6, 7] and barrier methods [15, 17],
ultimately rely upon.

3 The 1962 Variable-Gradient Method: Constructing VV With-
out Constructing V

The work of Schultz and Gibson (1962) [3] represents one of the earliest systematic attempts to
operationalize Lyapunov’ s region-based viewpoint. Rather than searching directly for a function
V(x) whose level sets define invariant domains, they proposed to construct its gradient field g(z) =
VV (z) as the primary object. This shift of emphasis—from V' (x) to its differential structure—was
motivated by the observation that the geometric requirement V(z(t)) = g(z)" f(z) < 0 depends
only on the gradient, and not on the integral form of V' (x) itself.

The variable-gradient method makes this idea explicit. One selects a parametric family of vector
fields g(z) and imposes two conditions:

1. . Dissipation: '
V(z(t)) = g(a)" f(x) <0 (z #0)

ensuring contraction of level sets.

2. . Integrability: The generalized curl of g(z) must vanish,

dgi(x)  0Og;(x)
8.%']' N 8J$Z ’ (1)

so that a scalar potential V(x) exists.

In principle, satisfying these conditions yields both the Lyapunov function and its domain-level
geometry. But the practical limitation is apparent: ensuring integrability across nonlinear systems
amounts to solving a coupled set of partial differential constraints, often as difficult as constructing
V(z) directly. Moreover, because the method centers on the gradient rather than the level sets, the
resulting V (z) may satisfy V(z(t)) < 0 without possessing meaningful geometric properties—such
as convexity, radial unboundedness, or domain shape—that govern the invariant regions around
the equilibrium [21].

Regarding the construction of domains, Zubov’s PDE-based method was established in the
1950s and 1960s [2], but this is a theory that focuses on the descriptive characterization of the
domain of attraction rather than designability, and belongs to a different lineage from variable
gradient.

Thus, the 1962 method stands as a conceptual bridge. It recognizes, as Lyapunov did, that
stability is ultimately about the shape and contraction of certain regions in the state space. Yet its
reliance on integrable gradient fields left the construction problem unresolved. The missing piece
—a way to shape both the gradient and the level sets simultaneously—would only surface decades
later [4, 5, 22, 6].
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4 1997: Simultaneous Construction of Gradients and Level Sets

(EQLF)

The extended quadratic Lyapunov function (EQLF) framework introduced in 1997 represented a
conceptual departure from earlier approaches to Lyapunov construction [4]. Unlike the variable-
gradient method of 1962—which sought to synthesize VV (z) while leaving the shape of the level
sets to the integrability constraints [3]—the 1997 formulation treated both the gradient and the level
sets as primary design objects. It provided a parametrized structure for V (z) whose geometry could
be directly shaped, while ensuring that dissipation and integrability were satisfied by construction.

The essential insight of the method is that the Lyapunov function can be expressed in the form

V(z) =z P(z),

where P(z) is defined through a set of carefully coordinated nonlinear relations. These relations
link three structural components:

1. the derivatives of P(x), determining the gradient VV (z),
2. the algebraic form of P(x), determining the geometry of the level sets, and

3. the system dynamics, ensuring V (z(t)) < 0.
The key is to ensure consistency between V (z) and V (z(t)) through the relation

V(e(t)) =@  X(P(x),x) 2 + 2" X(P(x), ),
where X (P(z),z) connects the algebraic form of V(x) with its time derivative. This leads to the
structural constraint

X(P)o) = Pla)+ 3 | 2@ 2@ ],

which encodes the radial deformation of the level sets via the structure of P(z).

This structural constraint stands in sharp contrast to the 1962 variable-gradient method [3],
where the gradient field g(z) = VV(x) is chosen first, and integrability is verified post hoc by
checking the symmetry of its Jacobian, as expressed in equation (1). In that approach, the level
sets of V' (x) emerge only if this condition is satisfied, making the geometry of the resulting function
an incidental outcome rather than a design target. In contrast, the EQLF framework embeds
this consistency structurally, allowing the designer to shape both the gradient and the level sets
simultaneously.

Unlike the 1962 method, which separates gradient synthesis from integrability verification, the
1997 framework enforces structural consistency by construction. This transforms Lyapunov con-
struction from a two-step verification process into a unified design problem. The level sets defined
by V(z) are not incidental byproducts, but deliberately shaped regions whose boundaries encode
contraction surfaces in the state space. This restores Lyapunov’ s original emphasis on invariant
regions [1, 2]: the function is not merely decreasing along trajectories but is designed so that its
sublevel sets form closed domains that contract under the dynamics.

The method can thus be seen as the first broadly applicable framework to place Lyapunov design
—rather than Lyapunov analysis— at its core. In 1998, the method also solved robust output control
problems under nonlinear dynamics [5, 23]. It bridges the gap between classical stability theory and
geometric intuition by enabling a coherent co-design of the function, its gradient field, and its level-
set geometry. In doing so, it anticipates later developments—such as contraction metrics [22, 6, 7]
and control barrier functions [17, 15]—which similarly emphasize the geometric structure of the
state space, though often without explicit recognition of this earlier unifying perspective.
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5 2000- 2010: The Point-Stability Bias and the Loss of Geometric
Insight

The first decade of the 2000s witnessed extraordinary advances in convex optimization, LMIs,
and linear-system theory [19], all of which were linked in the 1990s [24, 25]. These tools greatly
strengthened the analytical tractability and computational feasibility of nonlinear control problems.
However, the focus on pointwise algebraic conditions sometimes obscured the geometric meaning
of invariant regions that motivated Lyapunov’s original framework. Stability became increasingly
identified with pointwise conditions on the derivative of a Lyapunov function, evaluated through
algebraic inequalities. The geometric meaning of Lyapunov’ s original theory—its emphasis on
invariant regions and the contraction of level sets—faded from view [1, 2].

Within this LMI-centric paradigm, nonlinear stability analysis was frequently reduced to a
search for a scalar function satisfying

with additional convex constraints imposed to enable computation. Because these inequalities
are local and algebraic, the resulting V' (z) often certifies stability without conveying meaningful
information about the domain of attraction, boundary geometry, or invariant regions. In many
cases, the very object that motivated Lyapunov’ s original framework—the region in which the
motion is confined—was treated as an incidental byproduct, if it appeared at all.

This point-stability bias was reinforced by the rise of polynomial Lyapunov functions and Sum-
of-squares (SOS) programming [26, 27]. SOS methods enabled the automated verification of posi-
tivity and dissipation conditions, but they also encouraged an interpretation of Lyapunov theory in
which the function is optimized pointwise, and its level-set geometry is neither shaped nor analyzed.
In parallel, approaches grounded in Riccati-type inequalities or dissipativity theory preserved the
algebraic aspects of Lyapunov analysis while largely overlooking its geometric core.

While the period from 2000 to 2010 produced powerful computational tools for stability verifica-
tion, the emphasis shifted from constructing geometrically meaningful domains to solving algebraic
feasibility problems. The conceptual threads connecting modern practice to Lyapunov’ s origi-
nal region-based philosophy—and to earlier constructive methods such as variable-gradient [3] and
extended-quadratic formulations [4, 5] —became increasingly attenuated. This gap would eventu-
ally motivate renewed interest in trajectory-based and geometric viewpoints that emerged in the
following decade.

The publication of Boyd and Vandenberghe s Convex Optimization (2004) [19] marked a
conceptual shift: stability and control were no longer confined to geometric intuition, but rephrased
as tractable inequality-constrained optimization problems. Younger researchers who absorbed this
optimization-centric worldview in the early 2000s would, a decade later, reshape Lyapunov theory
into a language of constraints, solvers, and certificates. While the mathematical foundations of
optimization have long been established, the past decade has witnessed a structural reconfiguration
of control theory through the lens of computation—making classical ideas newly actionable. To
earlier generations of control theorists, the computational turn may appear as a reinterpretation
rather than a reinvention. Yet for the researchers, it has opened new pathways for implementation,
safety, and scalability. Having witnessed both the geometric intuition of Lyapunov theory and the
rise of optimization-based control, this survey attempts to bridge perspectives across generations.

Jxiv



This manuscript is a preprint on Jxiv.

6 2014- : Contraction and the Revival of Lyapunov’ s Motion-
Based View

The emergence of contraction analysis and its geometric generalizations in the 2010s marked a
turning point in stability theory. In contrast to the point-based interpretations that dominated
the preceding decades, contraction theory studies the behavior of pairs of trajectories. The central
question is no longer whether a particular equilibrium is attractive, but whether all trajectories
converge toward one another, or toward a lower-dimensional flow such as a periodic orbit [22]. This
shift returns stability analysis to Lyapunov’ s original concern: the stability of motion, not merely
of points [1].

Forni and Sepulchre (2014) [6] provided a rigorous differential-geometric formulation of this idea.
It showed that contraction can be characterized through a Riemannian metric M (x), satisfying a
differential Lyapunov inequality

V(x(t),dz(t)) = 6z <M(az(t)) + M(z)A + ATM(:L«)) sz <0,

where A is the Jacobian of the dynamics and dx represents virtual displacements between neigh-
boring trajectories. In this framework, stability is expressed not by a scalar function but by the
geometry of infinitesimal distances shrinking along the flow. The metric M (x) induces tubes of con-
tracting level sets, providing a geometric interpretation strikingly consistent with the region-based
viewpoint of Lyapunov’ s monograph [1, 2].

Although contraction theory introduces new mathematical language— Riemannian metrics rather
than scalar potentials—it may be better understood as a modern reconstruction of Lyapunov’ s
motion-based stability framework, now expressed through differential-geometric tools. Instead of
a scalar V' (z) whose level sets describe invariant regions, contraction employs a smoothly varying
metric whose geodesic balls shrink under the dynamics. Both approaches share the same geometric
essence: stability arises when the flow maps regions into strictly smaller regions. The difference
lies in the mathematical language—scalar potentials versus Riemannian metrics—rather than in
the underlying philosophy.

Contraction theory thus repaired a conceptual gap that had persisted for decades. By focusing
on the deformation of regions in the state space, it restored the link to Lyapunov’ s founda-
tional insight while offering new tools for systems with no equilibrium, time-varying dynamics,
or incremental performance requirements [7]. Yet, despite this revival, contraction has often re-
mained conceptually separate earlier constructive methods such as extended-quadratic Lyapunov
functions [4, 5], which achieve a similar geometric coherence within an algebraic framework. Re-
connecting these threads remains essential for a unified view of modern nonlinear stability.

7 2017- : Barrier Functions as the One-Sided Face of Lyapunov
Theory

The recent rise of barrier functions—and in particular of control barrier functions (CBF's) in robotics
and safety-critical systems—represents a pragmatic and influential strand of modern control re-
search [15, 16, 17]. Optimization-based barrier methods appear to offer a fundamentally different
approach [19] from Lyapunov theory: while Lyapunov seeks functions whose sublevel sets contract
toward an attractor, barrier functions impose invariance of a prescribed safe set by ensuring tra-
jectories do not cross a forbidden boundary. Yet a closer inspection reveals that barrier functions
are not a replacement for Lyapunov theory but rather its one-sided dual.
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A (control) barrier function B(x) is typically used to enforce forward invariance of a set S =
{z : B(x) > 0} by imposing a differential inequality of the form

B(x(t)) > —a(B())

for an extended class-KC function a. In control applications, such conditions are often enforced
pointwise via real-time quadratic programs (the CLF - CBF - QP architecture), which select
control inputs that simultaneously seek performance (through a control Lyapunov function) and
safety (through a barrier constraint) [15, 17]. The practical attractiveness of this approach is clear:
it permits a modular, online enforcement of safety constraints and fits naturally into existing control
stacks.

Geometrically, barrier functions govern the exterior of safe regions (keeping trajectories outside
the forbidden set), while Lyapunov functions govern the interior (pulling trajectories inward toward
the attractor). Considered this way, barrier functions solve a dual design problem: instead of asking
”Which interior region will shrink?”, we ask ”Which exterior boundary must never be crossed?”
Both problems concern the geometry of level sets, differing only in sign and whether we prescribe
a center of attraction (Lyapunov function) or a forbidden exterior (barrier function).

This duality helps explain the recent sociological shift in control design practice. Barrier meth-
ods offer a tractable alternative, precisely because they allow the designer to specify the set. Con-
structing Lyapunov functions that yield large, useful regions of attraction—and thus the formation
of those regions—remains challenging [21]. Barrier methods circumvent this difficulty by allowing
the user to declare safe sets and enforcing invariance. This engineering convenience is a major
reason for CBF’s popularity.

This practical convenience comes with certain trade-offs that are important to recognize. First,
systems using only barrier constraints may not converge while maintaining safety. Second, com-
bining barrier constraints with performance goals (such as CLF) can be infeasible and complicate
guarantees. Furthermore, unlike Lyapunov design, which forms regions of attraction through anal-
ysis, barrier design shifts the burden of specification to the designer. Finally, barriers provide no
information about the internal dynamics or the size/shape of the basins of attraction.

From a philosophical perspective, the trend toward barrier methods is understandable. The
difficulty of designing Lyapunov level sets that are both computationally tractable and domain-
proof makes practical alternatives attractive. However, from the conceptual perspective developed
in the previous section, treating barrier methods as a replacement for, rather than complement to,
Lyapunov-based attraction analysis overlooks their fundamentally dual nature. That is, it conflates
structurally dual tools with functionally interchangeable ones

Thus, in a design philosophy that respects Lyapunov domain-based insights, barrier methods
should be treated as a complementary means of enforcing constraints, powerful and essential in
many applications, and not as a replacement for the fundamentally difficult task of forming regions
of attraction. The future of robust, safety-aware control lies in principled ways of constructing
both interior contraction regions (Lyapunov or contraction-based) and exterior invariant bound-
aries (barrier-based), and controlling their interaction with strict guarantees rather than ad-hoc
workarounds.

8 2020- : The Region-Based Paradigm in RL, Safety, and HJB
— A Necessary Reinterpretation

Over the past decade, concepts in reinforcement learning (RL), safety-critical robotics, and optimal
control have converged on a common conceptual bottleneck: the need for domain-based guarantees.
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As systems become more autonomous and operate under more complex uncertainties, concepts of
pointwise or local stability are no longer sufficient.

What is needed, as Lyapunov demonstrated over a century ago, are guarantees about the
domain, its evolution in flow, and the interaction between the domain and constraints. This shift has
prompted the re-emergence of domain-based reasoning, sometimes unwittingly, even in communities
far removed from classical control theory [9].

In reinforcement learning, the value function V™ (z) under a policy 7 can be viewed as a large-
scale potential that shapes an agent’s behavior [13]. Recent research on stability-aware reinforce-
ment learning (e.g., Lyapunov reinforcement learning, safe policy iteration) explicitly enforces con-
ditions such as

VT(f(z,u)) = VT(z) <0,

where f(z,u) denotes the next state under the system dynamics in a discrete-time setting. This
formulation can be interpreted as a hidden version of the classical Lyapunov decay condition [10,
11, 12], where a candidate function is expected to decrease along system trajectories. However,
unlike classical Lyapunov design, which constructs control laws from such candidates, reinforcement
learning attempts to learn both the policy and the potential function simultaneously.

This amplifies the challenge of maintaining stability under exploration. Without domain-based
constraints, exploration can easily lead the system outside the domain where the learned dynamics
and value approximations are valid. Concepts such as the learning domain, safe set, and reachable
region have reemerged in the 2020s [28, 29]. These are reformulations of Lyapunov’ s original ideas
—now expressed through the geometry of regions and the structure of domains.

Barrier functions have attracted attention because they provide a way to explicitly enforce
safety [15, 16]. However, barriers only cover the ”outer bounds.” On the other hand, practical
safety control requires consistency between the inner convergence region (covered by the Lyapunov
contraction) and the outer safety boundary (covered by the barrier) [6, 7].

The problem here is the inherent existence of ”domain mismatch.” Specifically, the CLF domain
often lies outside the barrier-defined safe set, and the two may not intersect—or if they do, the
overlap is narrow. Furthermore, online QP is often infeasible [15, 17]. In other words, the challenge
facing CBF research in the 2020s is a recurrence of the classic Lyapunov problem known as domain
mismatch. The HJB, the fundamental equation for optimal control, is essentially a partial differ-
ential equation reflecting a global domain structure. However, numerical solutions are local and
only weakly guaranteed outside the discretization [18]. As a result, how to guarantee the validity
of approximate solutions becomes a practical challenge, which is directly related to the problem of
domain identification.

As of 2020, many studies have developed numerical HJB solutions and learning-based approxi-
mate solutions into a three-layer structure [10, 11, 8]. The first layer estimates the validity region,
the second layer ensures invariance/degeneracy within that region, and the third layer uses barriers
to ensure external safety. This should be understood as a complementary relationship between
the Lyapunov model (interior), the barrier model (exterior), and HJB (topography of optimality),
revealing a complex problem structure that cannot be solved by a single theory.

In this way, the challenges faced by the fields of reinforcement learning, safety, and HJB indi-
vidually actually converge into a single structure. Specifically, the Lyapunov model designs and
forms an internal ”region of attraction,” the barrier sets an external ”safety boundary” to avoid
discontinuities, and HJB /reinforcement learning explores the internal ”topography of optimality.”
These three are not mutually exclusive; rather, they are naturally linked within a unified, domain-
based perspective. The concept of ”internal domain construction,” proposed by EQLF in 1997 -
1998 [4, 5], is an important component of this unified structure.
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Many recent studies have simply rediscovered from different angles the principle proposed by
Lyapunov in the first edition: ”The stability of motion is the geometry of the domain” [1, 20, 2].
In that sense, the trends of the 2020s can be said to be a return to the era of domains.

9 Toward a Unified Region-Based Theory of Stability

Through more than a century of research, from Lyapunov’s geometric insights to modern develop-
ments in contraction, safety, and learning, one consistent theme emerges: stability is fundamentally
a property of domains.

Trajectories evolve within, across, and between domains, where geometry encodes attraction,
safety, performance, and invariance. Contemporary challenges in nonlinear control, safety-critical
robotics, and learning-based systems reflect the fragmentation that has resulted from this domain-
based structure being forgotten or only partially adopted.

What is needed today is not a new theory, but a reunification of existing ideas under a consis-
tent geometric and constructive framework. Such a framework allows attraction to arise from the
construction of a contracting interior domain (Lyapunov, contraction metric) and safety to arise
from maintaining an external invariant boundary (barrier function, feasibility theory). Optimality
is encoded by the value landscape within a feasible domain (HJB, RL). Therefore, achieving con-
structivity requires a combination of gradients and level sets (variable gradients in 1962, [3], EQLF
in 1997, [4]) rather than using either alone.

These are not competing paradigms, but complementary aspects of a single geometric con-
struct. Historically, the research community has tended to favor either ”gradients” or ”level sets.”
Schultz and Gibson’s (1962, [3]) variable gradients enhanced the former, while SOS [27] and LMI
methods[24, 25] paved the way for the algebraic treatment of the latter. However, methods that
simultaneously construct both ”gradients and contours” are extremely rare, and EQLF (1997, [4])
is one of the few successful examples. Meanwhile, contraction (2014, [6]) reformulated Lyapunov’s
7stability of motion” in the language of modern differential geometry. The ”domain problem”
facing reinforcement learning and safety research in the 2020s naturally complements this trend.

Taking these findings together, one conclusion emerges. Lyapunov’s ideas are unified, not in-
complete. A unified theory requires, at a minimum, a two-domain geometry that simultaneously
considers both the inner domain, dealing with convergence, optimization, and trajectory formation,
and the outer domain, dealing with safety, constraints, and non-aggression domains. The consis-
tency of this two-layer structure is essential for stability guarantees. That is, as in the 1997 paper,
a framework for consistently designing level sets (domains) and their gradients (directions) is nec-
essary. And, as reduction shows, even in complex nonlinear dynamics, capturing local deformations
can reveal global structure.

Furthermore, to provide computationally meaningful guarantees, integrating learning-based and
approximation-based methods requires estimation of validity domains, theoretical guarantees both
within and outside the validity domains, and addressing errors in data-driven estimation. Lyapunov
analysis and controller synthesis should not be treated separately, but as two sides of a domain-
based design. This is the very spirit of the EQLF framework [4, 5]. This integration is neither
novel nor flashy. Rather, it’s a natural progression if we understand the genealogy of Lyapunov’s
original papers in 1962 [3], 1997 [4], and 2014 [6]. It’s a structure implicit in recent developments
across disciplines, now ready for explicit articulation.

The purpose of this paper is to present a domain-based stability paradigm that clearly bridges
past insights and integrates contemporary research themes (reinforcement learning, safety, and op-
timal control). In that sense, this framework is not a critique but a starting point for strengthening,
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interconnecting, and extending existing theory. Lyapunov’ s journey—from 1962 [3] and 1997 [4] to
the learning and safety paradigms of the 2020s— has reached a mature stage of integration, awaiting
articulation. Concretely, a unified region-based framework should address:

1. Constructive geometry: Techniques that simultaneously shape both level sets and gradient
fields, extending ideas from the 1997 extended quadratic framework to modern settings.

2. Inner-outer consistency: Methods for ensuring that the domain of attraction (Lyapunov) and
the safe set (barrier) are compatible, avoiding the infeasibility issues common in CLF-CBF-
QP formulations.

3. Contraction and invariance: Integration of differential contraction metrics with set-based
invariance constraints, unifying trajectory-level and region-level reasoning.

4. Learning within domains: Principled approaches for estimating the validity region of learned
dynamics and value functions, with guarantees both inside and outside this region.

10 Conclusion — Toward a Unified Geometry of Stability

Across more than a century of developments, stability theory has oscillated between local, pointwise
criteria and global, geometric descriptions. The resulting landscape is rich but fragmented: con-
traction theory emphasizes incremental behavior [22, 6, 7], barrier methods address safety [15, 17],
Lyapunov functions describe attraction [1, 2], and HJB-based approaches encode optimality [18, 10].
Yet each of these perspectives captures only one facet of a broader geometric reality.

This article has argued that the time is ripe to unify these threads under a region-based stability
paradigm. In this view, stability is fundamentally about how regions are deformed under the system
dynamics:

e inner regions contract (Lyapunov, contraction) [1, 6],
e outer regions remain invariant (barriers, viability) [15, 16],
e internal landscapes encode performance (HJB, RL) [13, 10],

e and constructive methods shape the geometry itself (1962 gradient design, 1997 extended-
quadratic formulations) [3, 4, 5].

The emergence of learning-based control and safety-critical autonomy has amplified the need
for such a unification [9, 8]. These domains routinely face the issue that classical guarantees fail
outside limited operating regions, and thus require explicit reasoning about the geometry of feasible
and safe sets. Reinforcing Lyapunov’ s original insight, modern challenges reaffirm that regions—
not points—are the natural unit of stability analysis [1, 20].

Reconstructing stability theory in this geometric manner does not invalidate existing methods;
it clarifies their role within a larger conceptual structure. It also highlights directions that deserve
renewed attention, such as the constructive co-design of level sets and gradients [4], and the integra-
tion of inner contraction with outer invariance [6, 17]. These ideas, already implicit in foundational
works from Lyapunov to 1997 s extended-quadratic approach, offer a generative basis for a unified
and scalable theory of stability.

Ultimately, a perspective that integrates diverse, intertwining methods into a single geometry,
rather than pitting them against each other, is the most appropriate framework for meeting modern

10
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requirements that span the fields of control, learning, and safety. The ideas left behind by Lyapunov
are not a complete system, but rather profound insights that remain expandable. Thoughtfully
reweaving these fragmented threads may well form the foundation.
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A Note on Methodology and Transparency

This article proposes a synthesis across historically fragmented research traditions in stability the-
ory. Consistent with that integrative approach, the manuscript was refined through iterative dia-
logue with multiple AT language models (Microsoft Copilot, OpenAI ChatGPT, Anthropic Claude,
Google Gemini), which assisted with linguistic clarity and structural coherence.

All conceptual arguments, historical interpretations, and structural decisions originated from
the author, grounded in over three decades of research in nonlinear control theory. The Al tools
served as reflective interlocutors for refining expression and structure—a role documented here in
recognition of evolving practices in scholarly communication. The author takes full responsibility
for all content.
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