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Abstract

Multi-objective optimization problems, characterized by multiple conflicting objectives, are prevalent in science and engineering.
While numerous metaheuristics have been proposed, most draw inspiration from simplified biological or physical processes. This
paper introduces a fundamentally new class of algorithm, Dialectical Optimization for Multi-objective Problems, which is inspired
by the human cognitive and social process of argumentation and consensus-building. We present the final, enhanced version of
the algorithm, Unified DOMO with Argumentative Leap (U-DOMO+), a parameter-free metaheuristic designed for black-box
MOOPs. The core of U-DOMO+ is a novel Dialectical Operator where solutions, termed ’Arguments’, refine their positions
based on persuasion from elite arguments and skeptical exploration. To ensure robust performance, U-DOMO+ integrates a state-
of-the-art selection mechanism based on non-dominated sorting and crowding distance, and an Argumentative Leap mutation
operator to maintain diversity. We demonstrate the algorithm’s effectiveness on the challenging ZDT benchmark problems, showing
that U-DOMO+ successfully converges to the true Pareto front with excellent diversity, establishing it as a promising and novel
contribution to the field of multi-objective optimization.

Keywords: Multi-objective Optimization, Metaheuristics, Swarm Intelligence, Human Behavior, Argumentation, Dialectical
Optimization, Parameter-Free Algorithm.,

1. Introduction

Many real-world optimization problems involve simulta-
neous optimization of multiple, often conflicting, objectives.
These are known as Multi-objective Optimization Problems
(MOOPs) (Emmerich and Deutz, 2018). For instance, in en-
gineering design, one might seek to minimize cost while max-
imizing performance and reliability, or in molecular optimiza-
tion, the goal could be to maximize drug efficacy while mini-
mizing toxicity and synthesis cost (Yu et al., 2025). These prob-
lems are characterized by the absence of a single optimal solu-
tion, instead yielding a set of Pareto optimal solutions where no
objective can be improved without degrading at least one other
objective (Li et al., 2020; Hedges et al., 2017).

Finding a single best solution is often insufficient for real-
world applications where objective functions and constraints
are approximate formulations of actual problems, making the
identification of multiple, diverse solutions critical (Hanaka
et al., 2023). Consequently, the primary challenge in MOOPs
lies in efficiently exploring the objective space to identify a rep-
resentative set of these non-dominated solutions, often referred
to as the Pareto front or Pareto set (Okon, 2019).

The complexity nature of the multi-objective optimization
problem (MOOP) and, especially, the presence of a multitude of
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equations and the requirement of a multiplicity of solutions of-
ten make traditional analytical procedures impractical (Mehta
and Groşan, 2015). This dilemma has therefore given rise to
meta-heuristic optimization algorithms that are, in particular,
better adapted to these complex problems due to their ability to
conceptualise the optimization problem as an opaque black box,
as well as to manoeuvre adaptively through high-dimensional,
non-differentiable search spaces (Mohammad et al., 2020; Xu
et al., 2025).

Despite much success of these methodologies, the inspiration
mechanisms usually simulate relatively primitive interactions
between agents, such as the one of following a leader or the
one of following pheromone trails. I would argue that there is a
much deeper well-of inspiration that has not yet been utilized to
full capacity: the cognitive levels of the human being. A group
of experts who are presented with a complicated design issue
does not imitate either an avian (or ant) approach; instead it un-
dertakes a highly systematic deliberative procedure that entails
intense argument, organized reasoning, and the establishment
of a rational decision.

This paper introduces a novel metaheuristic, Dialectical Op-
timization, that models this process. Our primary contributions
are:

1. A New Metaphor: We propose a new paradigm for meta-
heuristics based on human argumentation, a process fun-
damentally different from existing nature-inspired analo-
gies.
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2. A Novel Search Operator: We design a parameter-free
Dialectical Operator where solutions (’Arguments’) up-
date their position based on their ’Strength’ and interac-
tions with other arguments.

3. A Complete, Robust Algorithm (U-DOMO+): We
present the fully evolved algorithm, which integrates the
novel operator with a state-of-the-art selection mechanism
and a dedicated mutation operator, forming a complete and
powerful optimization tool.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews related work. Section ?? details the proposed U-
DOMO+ algorithm. Section 4 presents the experimental setup.
Section 5 discusses the results. Finally, Section 6 provides con-
clusions and outlines future work.

2. Background and Related Work

The section on background and Related Work includes a brief
history of the Dada movement in Germany.
Multi-objective optimisation problems (MOOPs) are intrinsi-
cally different to single-objective problems: they do not all con-
verge to a single optimum, but acquire a set of mutually non-
dominant solutions, called a Pareto front. Everything in this
front is a trade-off, that is, the better one aspect is, the worse
at least one other is made to become. By providing a more
detailed picture of the underlying trade-offs, the Pareto front al-
lows decision makers to make choices that match the particular
priorities well off, as opposed to those made via standard deci-
sion making methods like relying on uninformed opinion polls
or limited budgets Pajares et al. (2018).

The difficulty of MOOPs is the ability to weigh multiple
goals, which may be conflicting, at the same time. Classi-
cal techniques of optimisation, which usually search in a one-
dimensional and convex search space, do not work in this sit-
uation, as they can become stuck in local optima, or they can
miss large portions of the true Pareto front Thebelt et al. (2021).
As a result, studies have changed to more adaptable, resilient
metaheuristics which can traverse the non-convexities, multi-
modal landscapes, which MOOPs are so much like, into and
out of. Such highly-adapted algorithms often model natural
or socio-mechanistic processes, evolutionary dynamics, swarm
behaviour, simulated annealing, to trade off between so-called
exploitation (exploring well-charted areas) and exploration (ex-
ploring new, potentially better areas).

Multi-Objective Evolutionary Algorithms (MOEAs) refer to
algorithmic mechanisms that can be applied to solve two or
more problems at the same time.

MOEAs are analogous to single-objective evolutionary algo-
rithms, but use a candidate solution population to operate. The
structure is a natural population-based structure that allows the
joint identification of many Pareto-optimal solutions in a single
run to be discovered minus the extra costs of maintaining con-
fidentiality of solutions through a long-standing strategy of in-
formation control Maghawry et al. (2020). MOEAs are inspired

by the idea of biological evolution and make use of selection,
crossover, and mutation to further refine a large pool of solu-
tions to the Pareto frontier in an iterative manner. As compared
to deterministic multi-objective algorithms, which need many
independent executions to estimate the front, MOEAs have the
potential to deliver an approximation of a set of representative
and high quality solutions in a single run, and are thus particu-
larly useful in high-dimensional, highly complex search spaces.

Multi-Objective Swarm Intelligence (MOSI) belongs to
Swarm Intelligence and incorporates more than one goal in the
search process of a swarm of agents.

Swarm-based optimisation is another well known subclass of
population-based metaheuristics. MOSI algorithms are pro-
posed by Dai et al. (2015), and they simulate a collective be-
haviour in decentralized, self-organised systems like bird flocks
or ant colonies. These algorithms are especially proficient at
sustaining diversity coupled with directing the swarm toward
non-dominated areas at the same time Puchta et al. (2021).
MOSI techniques can achieve this by balancing between the
search of the Pareto frontier and exploitation of the fine-tuning,
producing a complete set of trade-off solutions, and not a sin-
gle point, as is produced by a single point search method Long
et al. (2015a,b).

Key take-aways

1. MOOPs require algorithms with the ability to deal with a
set of, possibly incompatible, objectives.

2. The flexibility and strength needed in this task is provided
by metahyuristics particularly MOEAs and MOSI.

3. The two categories of algorithms keep a population of so-
lutions, which allows simultaneously approximating the
entire Pareto front.

3. The Proposed U-DOMO+ Algorithm

• Strength: Each Argument possesses an intrinsic, self-
adapting property called Strength, denoted as Str(Ai) ∈
[0, 1]. This value quantifies the Argument’s quality and
”conviction” relative to the current population. Strength is
not a fixed parameter but is dynamically recalculated each
generation based on the unified ranking process (detailed
in Section 3.3):

Str(Ai) = 1 −

√
Runified(i) − 1

2N − 1

A high Strength (Str ≈ 1) indicates a high-quality, con-
fident argument that resists change, while a low Strength
(Str ≈ 0) indicates a poor argument that is highly suscep-
tible to persuasion and change.

This ”Strength” parameter is the central mechanism that gov-
erns the behavior of the search operator.
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3.1. The Dialectical Operator: Generating New Solutions

The Dialectical Operator is the primary engine for explo-
ration and exploitation in U-DOMO+. It creates a new offspring
Argument by simulating a debate, where a parent Argument re-
considers its position based on persuasion from a superior idea
and skeptical exploration. The generation of a new solution
from a parent Ai with position xi involves the following steps:

3.1.1. Selection of Influencers
Three distinct arguments are chosen from the previous gen-

eration’s elite population (Pt−1) to influence the parent Ai:

• A Proposing Argument (Ap): One argument is selected
randomly from Pt−1. Its position, xp, represents a persua-
sive, high-quality idea that pulls the search towards proven
regions of the search space. This introduces the element of
exploitation.

• Skeptical Arguments (Ar1, Ar2): Two other distinct argu-
ments are selected randomly from Pt−1. Their positions,
xr1 and xr2, are used to generate a difference vector. This
vector represents a direction of skeptical inquiry or ran-
dom exploration, preventing the search from being purely
greedy. This introduces the element of exploration.

3.1.2. The Reconsideration Update Equation
The new position of the offspring argument, x(t+1)

i , is calcu-
lated using a novel formula that balances the influences based
on the parent’s own Strength:

x(t+1)
i = x(t)

i︸︷︷︸
Current Stance

+ (1 − Str(Ai))(xp − x(t)
i )︸                      ︷︷                      ︸

Persuasion Term

+
√

1 − Str(Ai)(xr1 − xr2)︸                        ︷︷                        ︸
Skeptical Exploration Term

(1)

Let’s deconstruct this formula:

• Current Stance (xt
i): This initially represents the exist-

ing position and solid belief taken on the argument, it is
the starting point of evolutionary dynamics that are to be
applied to it.

• It is Persuasion Term The strength of the term is regulated
by the complement of the strength of the argument, as in,
1 − Str of Ai). In the case of a weak argument (when
Str ≈ 0), this factor is close to unity, allowing the argument
to cause the elite which proposes argument p to move sig-
nificantly toward the argument suggesting xp. On the other
hand, a strong argument (with Str somewhere near one) the
factor approaches the null, and thus it opposes persuasion
and hence stressing the conviction of the argument.

• Data: This appends a malicious exploration - term. With a
weak argument (Str = 0), the scaling element of the weak
scaling Ai (

√
1 − Str(Ai)) is significantly large (=1) push-

ing the argument towards a dramatic leap of exploration.

The square root accent helps in increasing the power of
this exploration as compared to the persuasion term, thus,
facilitating weak arguments to avoid suboptimal local min-
ima. High-strength arguments automatically eliminate the
word, and hence strengthening the consistency and tenac-
ity of sound arguments.

This operator is a dynamically fine tuned one, for this step sizes
of the two strategies of exploitation and exploration are not
fixed parameters but are dynamically adjusted by the quality
inherent to the argument itself.

3.2. The Argumentative Leap: Ensuring Diversity

While the Dialectical Operator is powerful, any search pro-
cess can suffer from premature convergence if the population
loses diversity a phenomenon we term the ”Echo Chamber Ef-
fect.” To counteract this, U-DOMO+ incorporates a secondary,
simple mutation operator called the Argumentative Leap.

This operator is applied to each new solution generated by
the Dialectical Operator. It represents an argument having a
sudden, random ”moment of inspiration” that is independent of
the ongoing debate.

The mechanism is a form of polynomial mutation with a
parameter-free probability. For each of the D decision variables
in the new solution vector x(t+1)

i :

1. A random number r ∈ [0, 1] is generated.

2. The mutation probability is defined as pm = 1/D.

3. If r < pm, that specific variable is re-initialized with a new,
uniformly random value within its allowed bounds.

This ensures a persistent, low-level source of new genetic
material, preventing complete stagnation and enabling the al-
gorithm to escape local optima over the long term.

3.3. Unified Ranking and Selection: Survival of the Fittest Ar-
guments

The final component of U-DOMO+ is the selection mecha-
nism, which determines which arguments survive to the next
generation. It is here that the Argument Strength is calcu-
lated. U-DOMO+ adopts the robust and proven elitist selection
framework of NSGA-II.

The process for selecting the new population Pt+1 from the
parent population Pt and offspring population Qt is as follows:

1. Create a Combined Pool: The parent and offspring pop-
ulations are merged into a single combined pool, Rt =

Pt ∪ Qt, of size 2N. This ensures direct competition be-
tween parents and offspring, guaranteeing elitism.

2. Fast Non-Dominated Sorting: The entire combined pool
Rt is partitioned into a set of non-dominated fronts, F =
{F1, F2, F3, . . .}. All solutions in the first front, F1, are
globally non-dominated. Solutions in F2 are only domi-
nated by solutions in F1, and so on.
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Table 1: Algorithm 1: Main U-DOMO+ Procedure

Input: problem, N (population size), Tmax (generations)
Output: C (final non-dominated solutions)
1: P← Initialize random population of size N
2: Evaluate objectives for each solution in P
3: P← Environmental Selection(P, N)
4: for t = 1 to Tmax do
5: Q← Generate offspring using Dialectical Operator
6: Evaluate objectives for each solution in Q
7: R← P ∪ Q /* Combined population (size 2N) */
8: P← Environmental Selection(R, N)
9: end for
10: C ← Non-dominated solutions in P
11: return C

Table 2: Algorithm 2: Dialectical Operator

Input: Ai (parent argument), P (population)
Output: Atrial (new candidate solution)
1: Select random distinct arguments Ap, Ar1, Ar2 from P
2: xi ← Ai.position
3: xp ← Ap.position
4: xr1 ← Ar1.position
5: xr2 ← Ar2.position
6: Str← Ai.strength
7: /* Apply reconsideration equation */
8: xnew ← xi + (1 − Str)(xp − xi)+√

1 − Str(xr1 − xr2)
9: Atrial ← Create new solution with position xnew
10: return Atrial

3. Crowding Distance Calculation: To differentiate be-
tween solutions on the same front, a density metric called
Crowding Distance is calculated. This metric estimates
the perimeter of the cuboid formed by the nearest neigh-
bors of a solution in the objective space. A larger distance
implies the solution lies in a less crowded region and is
more valuable for diversity.

4. Building the Next Generation: The new population,
Pt+1, is constructed by adding entire fronts, starting from
F1, then F2, and so on, until the population size N would
be exceeded. The remaining spots are filled from the last
considered front by selecting the solutions with the largest
crowding distance values.

This unified ranking, based first on non-domination rank (for
convergence) and then on crowding distance (for diversity),
provides a single, unambiguous ordering of all 2N solutions.
An argument’s final position in this ordered list, its Unified
Rank (Runified), is used to calculate its Strength for the next
generation’s Dialectical Operator, thus closing the algorithmic
loop.

3.4. Algorithm Implementation

The U-DOMO+ algorithm’s pseudocode is presented below,
organized into its core components to facilitate implementation.

The U-DOMO+ algorithm consists of four key components.
Algorithm 1 shows the main procedure that manages the evo-
lutionary process. Algorithm 2 implements the core Dialectical
Operator that balances exploration and exploitation based on
solution strength. Algorithm 3 details the Argumentative Leap

Table 3: Algorithm 3: Argumentative Leap (Mutation)

Input: Atrial (solution to mutate), problem
Output: Mutated solution
1: D← problem.dimensions
2: pm ← 1/D /* Parameter-free mutation probability */
3: for each dimension j in 1 to D do
4: if random(0,1) < pm then
5: Atrial.position[ j]← random value within bounds
6: end if
7: end for
8: return Atrial

Table 4: Algorithm 4: Environmental Selection

Input: R (combined population, size 2N), N (target size)
Output: Pnext (selected population, size N)
1: Fronts← Fast-Non-Dominated-Sort(R)
2: Pnext ← ∅

3: i← 1
4: while |Pnext | + |Fronti | ≤ N do
5: Pnext ← Pnext ∪ Fronti
6: i← i + 1
7: end while
8: Calculate crowding distance for solutions in Fronti
9: Sort Fronti by descending crowding distance
10: Add first (N − |Pnext |) solutions from Fronti to Pnext
11: rank ← 1
12: for each solution s in Pnext do
13: s.rank ← rank
14: s.strength← 1 −

√
(rank − 1)/(N − 1)

15: rank ← rank + 1
16: end for
17: return Pnext

mutation for diversity maintenance. Algorithm 4 presents the
Environmental Selection mechanism that drives the population
toward the Pareto front.

4. Experimental Setup

To strictly evaluate the effectiveness of U-DOMO+, an
extensive experimental design has been developed, the one
that rigorously uses standard multi-objective benchmark prob-
lems to measure both convergence aspects and the metrics of
solution-diversity. Zitzler-DebThiele test suite, specifically, has
been chosen due to its well-documented range of features, such
as convexity, non-convexity, discretisation, and multimodality
and, thus being a powerful environment of measuring the per-
formance of the algorithm (Meyerson and Miikkulainen, 2017).

This parameterized set of benchmark, including the canoni-
cal problems ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6, provides
such a strict critical evaluation of U DOMO+f ability to model
the true Pareto fronts capturing a range of problem complexi-
ties). Each constituting activity is continued to evolve a pop-
ulation of one hundred people to completion of two hundred
and fifty generations to provide sufficient exploration and ex-
ploitation of the search space. The estimation of convergence
to the true frontier and spatial distribution of the resultant Pareto
approximations are measured by Generational Distance and In-
verted Generational Distance respectively(Cheng et al., 2017)
(Glover et al., 1998; Zhang and Gionis, 2020).
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4.1. Benchmark Problem

The choice of the ZDT benchmark problems is driven by the
fact that they are widely accepted in scholarship and the fact
that their Pareto fronts are analytically known and this makes it
very easy to make performance comparisons. These issues are
different in their level of difficulty, thus allowing us to compre-
hensively explore the resilience of U-DOMO+ in different land-
scape settings an imperative concept in determining the gener-
alizability of the algorithm to heterogeneous and realistic envi-
ronments. (Nikfarjam et al., 2022; Ko et al., 2014).

4.2. Performance Metrics

Multi-objective optimisation algorithms must be evaluated
based upon a collection of highly complex performance mea-
surements that can balance both the approach towards the (real)
pareto front, and the variety of the generated solution set.

4.3. Parameter Settings

Regarding the U-DOMO+method, its apparently parameter-
free architecture has the consequence of avoiding the manual
optimization of the level of algorithmic hyperparameters hence
significantly reducing both the computational cost and the ex-
pertise that is generally required to execute a meta-heuristic.
This property enhances its practical feasibility as it allows an
easy deployment over a heterogeneous range of domains of
problems without the cumbersome task of implementing a wide
range of calibration. This resulting self-adaptability forms a
salient benefit compared to traditional algorithms that often re-
quire extensive parameter optimisation with each new instance
of a problem question(Zhang et al., 2023).

Since this design philosophy establishes U-DOMO+ as an
exceptionally reachable and productive tool on the side of prac-
titioners, eliminating the complexity of finding out the irritating
complications of parameter sensitivity, as well as the need to
fine-tune the tool through problem-specific adjustments.

5. Results and Discussion

This part introduces the experimental findings of using U-
DOMO + to the ZDT benchmark suite and compares its perfor-
mance based on close to convergence, diversity, and generalised
Pareto front approximation.

The benchmark results on zdt problem are as shown below.
This part gives the results of applying U-DOMO+ to all the

problems of ZDT benchmark. In every case, we give the graph-
ical representation of the obtained Pareto front, and a brief dis-
cussion of the algorithm behavior.

5.1. ZDT1 Results

ZDT1 is characterised by convex Pareto front. Figure 2 (see
Fig. 1) shows the result of the U-DOMO + solution with the
actual Pareto front comparison.

Figure 1: Pareto front approximation of the ZDT1 problem. The solutions by
U-DOMO+ are in the red dots and the black line is at the true Pareto front.

The code that was used to produce the results of ZDT1 is
shown below:

The Python code of ZDT1 experiment is like that:

# ZDT1 Problem Implementation

def zdt1(x):

f1 = x[0]

g = 1 + 9.0 * sum(x[1:]) / (len(x) - 1)

f2 = g * (1 - np.sqrt(f1 / g))

return [f1 , f2]

# Run U-DOMO+ on ZDT1

population_size = 100

generations = 250

Zdt1 -results Zdt1 = run udomo plus(zdt1 ,

population size , generations , dimensions

=30)

# Plot results

plot_pareto_front(results_zdt1 , " ZDT1 "

save location= save results as an image

zdt1 results.png)

The findings indicate that U-DOMO+ always tends to the
real Pareto front with an outstanding dispersion of solutions on
the entire front. This establishes strong convergence, as well as
desirable diversity attributes.

5.2. ZDT2 Results

ZDT2 has a non-convex Pareto front which is therefore more
challenging to optimisation algorithms. The results of U-
DOMO+ on this problem are displayed in Figure 2 of the ap-
pendix designated as 2.
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Figure 2: Pareto front approximation of ZDT2 problem. The red dots indicate
the solutions provided by U-DOMO +, and the black line indicates the actual
Pareto front.

# ZDT2 Problem Implementation

def zdt2(x):

f1 = x[0]

g = 1 + 9.0 * sum(x[1:]) / (len(x) - 1)

f2 = g * (1 - (f1 / g)**2)

return [f1, f2]

# Run U-DOMO+ on ZDT2

results zdt 2 = run udomo plus zdt 2,

population size , generations , dimensions

= 30;

# Plot results

plotParetoFront(result zdt2 , name of

experiment ZDT2 , save file =zdt2 results

.png)

Non-convexity of ZDT2 does not hinder U-DOMO+ which
has admirable convergence and diversity characteristics.

5.3. ZDT3 Results

ZDT3 will cause discontinuity in Pareto Front which poses
a major challenge to most algorithms. Figure 3 illustrates the
succession of discontinuities of U-DOMO+.

Figure 3: ZDT3 problem approximation of pareto front. The red dots are the
solutions of U-DOMO+, and the black line is that of the real Pareto front.

The Python code of ZDT3 experiment is provided in a listing
(below).

# ZDT3 Problem Implementation

def zdt3(x):

f1 = x[0]

g = 1 + 9.0 * sum(x[1:]) / (len(x) - 1)

f2 = g * (1 - np.sqrt(f1 / g) - (f1 / g)

* np.sin(10 * np.pi * f1))

return [f1 , f2]

# Run U-DOMO+ on ZDT3

udomo plus is another fitness minimisation

of zdt3 , run with the following

parameters: results zdt3 = runudomo zdt3

, population size , generations ,

dimensions =30

results zdt3= runudomo questions The

resolution to the predefined equations

is represented by: zdt3 = -0.05x3 + -0.1

x 4 + -0.1x5 + 0.1 x4x5 + 0.5 x4x6 + 0.1

x6x8 + 0.2 x8x10 + 0.

# Plot results

Figure 2 was created with the following

command:

amitricastation didils2) that is , zdt3; plot

pareto front results zdt3; save to zdt3

results as png.

Though the discontinuous Pareto front may appear to be diffi-
cult to locate, U-DOMO+ is able to locate all the discontinuous
segments of the true Pareto front and yet ensure a reasonable
level of diversity in solutions within each segment.

5.4. ZDT4 Results
ZDT4 is marked with a huge amount of local Pareto fronts

(219) which makes it extremely hard to get most optimisation
algorithms to converge to the global Pareto front. The figure
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below (Fig. 4) shows the performance of U-DOMO+ in this
challenging problem.

Figure 4: Pareto front approximation to ZDT4 problem. The red dots indicate
the solutions provided by U-DOMO +, and the black line indicates the actual
Pareto front.

The code of ZDT4 experiment in python is provided in the
following listing:

# ZDT4 Problem Implementation

def zdt4(x):

f1 = x[0]

g = 1 + 10 * (len(x) - 1)

for i in range(1, len(x)):

g += x[i]**2 - 10 * np.cos(4 * np.pi

* x[i])

f2 = g * (1 - np.sqrt(f1 / g))

return [f1, f2]

# Run U-DOMO+ on ZDT4

results_zdt4 = run_udomo_plus(zdt4 ,

population size , generation , dimensions

=10,

bounds =[(0 ,1)]

+ [(-5,5)]*9)

# Plot results

plot_pareto_front(results_zdt4 , "ZDT4"

save_path = zdt4 results.png)

Multitasking is a process that depends

on a range of conditions , and plots can

contribute effectively to the choice of

an approach proposed to other learners

to resolve a particular dispute.

These results point to the fact that U-DOMO+ skillfully gets
around the very multimodal environment of ZDT4 and avoids
the multiplicity of local optima to eventually agree on global
Pareto front.

5.5. ZDT6 Results

ZDT6 combines an unbalanced search space and an uncon-
vexed Pareto variety which makes it difficult to converge and
maintain diversity. The performance of U-DOMO+ is pre-
sented in figure 6.

The following code in Python language is used to run the
ZDT6 experiment.

# ZDT6 Problem Implementation

def zdt6(x):

f1 = 1 - np.exp(-4 * x[0]) * np.sin(6 *

np.pi * x[0]) **6

g = 1 + 9 * (sum(x[1:]) / (len(x) - 1))

**0.25

f2 = g * (1 - (f1 / g)**2)

return [f1 , f2]

# Run U-DOMO+ on ZDT6

udomo -plus results on zdt6 runmin runudomo -

plus(zdt6 , population -size , generations ,

dimensions =10) results.

# Plot results

Results for plotting different fronts ZDT6

results: plot_pareto_front( resulting in

results , problem name = ZDT6 , save_path

= the given name of the result )

results Saved as a png file results

U-DOMO+ despite the non-uniformity of its parameter dis-
tribution and its non-convexity of its Pareto front achieves cred-
ible convergence and maintains a high level of solution diversity
in the set.

5.6. Benchmark Results on CEC 2018 Dynamic Multi-
Objective Optimization Problems

The section gives the empirical evidence on the application
of the U-DOMO+ algorithm to the CEC 2018 dynamic multi-
objective benchmark suite. Both two-dimensional and three-
dimensional visualisations of the changing Pareto fronts can be
provided on each instance, and the performance of the algo-
rithm in a temporally varying environment will be briefly dis-
cussed.

5.6.1. DF1 Results

DF1 case can be defined as the time-dependent convex Pareto
front governed by Type I dynamics i.e. the front itself moves
with time. These two figures, Figure 2 and Figure 3, visualise
the two-dimensional projection of the approximation on differ-
ent time steps as well as the three-dimensional visualisation re-
spectively, with time as the third axis.
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Figure 5: Two-dimensional representation of the approximated Pareto front of
the DF1 at the various times. The dots of colour are solutions found by U -
DOMO + at other times; the black lines are the analytically correct front.

Figure 6: Three-dimensional representation of the DF1 Pareto front temporal
progression. Time is encoded in the z -axis, performing a dynamic mapping of
the frontier being deformed.

The code used to produce the DF1 results is as shown below:
The full code of DF1 experiment in Python is given in the

listing below.

# DF1 Problem Implementation

def df1(x, t):

# Time -dependent parameters

H = 0.75 * np.sin (0.5 * np.pi * t) +

1.25

# Objectives

f1 = x[0]

g = 1 + sum((x[1:] - H)**2)

f2 = g * (1 - np.sqrt(f1/g))

return [f1, f2]

# Run U-DOMO+ on DF1

population_size = 100

generations_per_change = 50

total_time_steps = 10

results_df1 = run_dynamic_udomo_plus(df1 ,

population_size ,

generations_per_change ,

total_time_steps ,

dimensions =30)

# Plot 2D results

plot_dynamic_pareto_front_2d(results_df1 , "

DF1", save_path =" df1_2d.png")

# Plot 3D results with time

plot_dynamic_pareto_front_3d(results_df1 , "

DF1", save_path =" df1_3d.png")

The results are of an illustrative nature in demonstrating that
U-DOMO+ can be used to follow a moving Pareto front with
an impressive level of fidelity. The algorithm adapts fast to
changes in longitudinal features of the problem landscape with-
out compromising convergence or diversity in the course of the
evolutionary execution.

5.6.2. DF2 Results
The DF2 benchmark has a non convex and time-varying

Pareto front that is driven by Type II dynamics wherein the
shape of the front changes as time progresses. The two-
dimensional representation of Figure two is the projection of
the two-dimensional result of Figure two, whereas the three-
dimensional temporal evolution is depicted in Figure three.

Figure 7: Two-dimensional bifurcation of the DF2 Pareto front at various
points in time. The dots that are coloured indicate solutions discovered by
U-DOMO+; the black lines suggest the actual front.

Figure 8: Three-dimensional view of the evolution of the DF2 Pareto front with
time. The z axis is a time code explaining the deformation of the frontier.

Python code that was used to perform DF2 experiment.

# DF2 Problem Implementation

def df2(x, t):

8



# Time -dependent parameters

G = np.sin (0.5 * np.pi * t)

# Objectives

f1 = x[0]

g = 1 + sum((x[1:] - G)**2)

f2 = g * (1 - (f1/g)**2)

return [f1, f2]

# Run U-DOMO+ on DF2

results_df2 = run_dynamic_udomo_plus(df2 ,

population_size ,

generations_per_change ,

total_time_steps ,

dimensions =30)

# Plot 2D results

plot_dynamic_pareto_front_2d(results_df2 , "

DF2", save_path =" df2_2d.png")

# Plot 3D results with time

plot_dynamic_pareto_front_3d(results_df2 , "

DF2", save_path =" df2_3d.png")

DF2 is a non-spatial, time dynamical entity, which presents
significant difficulty to optimisation algorithms. However, the
performance of U-DOMO+ is rather strong, and it is stable
along with the changing frontier at all the considered moments
of time.

5.6.3. DF3 Results
DF3 causes discontinuities which change with time, a com-

bination of Type I and Type III dynamics. Figures 2d and 3d
of appendix B demonstrate the way U -DOMO+ solves these
complex time disturbances.

Figure 9: Three dimensional evolution of the DF3 Pareto front. The time is
depicted in the vertical axis that emphasizes the dynamism of each of the sepa-
rated parts.

Python code to DF3 experiment is written in Python and
listed below:

# DF3 Problem Implementation

def df3(x, t):

# Time -dependent parameters

G = sin (0.5 * np.pi * t)

# Objectives

f1 = x[0]

g = 1 + 9 * sum(x[1:])/(len(x) -1)

h = 1 - np.sqrt(f1/g) - (f1/g) * np.sin

(10 * np.pi * f1 * G)

f2 = g * h

return [f1 , f2]

# Run U-DOMO+ on DF3

results_df3 = run_dynamic_udomo_plus(df3 ,

population_size ,

generations_per_change ,

total_time_steps ,

dimensions =30)

# Plot 2D results

plot_dynamic_pareto_front_2d(results_df3 , "

DF3", save_path =" df3_2d.png")

# How to do it? To use double limit files

you will need to save them on local disk

(see Fig. 8).

# Plot 3D results with time

plot_dynamic_pareto_front_3d(results_df3 , "

DF3", save_path =" df3_3d.png")

Although the frontier is discontinuous and time-varying, U-
DOMO+ is able to find all the disjoint segments at any given
point in time, even though it maintains a sufficient adaptation to
the underlying variation.

5.6.4. DF7 Results
DF7 is a very challenging benchmark, having a multimodal

landscape, and delusory local Pareto fronts. The U-DOMO+
work with this problem on the complex problem is presented in
Figures 2d and 3d.

Figure 10: Two-dimensional approximation of the DF7 Pareto front at subse-
quent times. The solutions that U-DOMO+ gives are indicated by the colours,
and the actual front is indicated by black lines.
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Figure 11: Two-dimensional representation of the evolution of the DF7 Pareto
front over time in three dimensions. The temporal dimension is captured in the
z -axis.

Python code DF7 experiment 5th ed.

# DF7 Problem Implementation

def df7(x, t):

# Time -dependent parameters

a = 0.2 + 2.8 * abs(np.sin (0.5 * np.pi *

t))

# Objectives

f1 = x[0] + 2*sum ([(x[i] - np.sin (6*np.

pi*x[0] + i*np.pi/len(x)))**2

for i in range(1,

len(x))])

f2 = (1-x[0]) + 2*sum ([(x[i] - np.cos (6*

np.pi*x[0] + i*np.pi/len(x)))**2

for i in

range(1, len(x))])

return [f1, f2]

# Run U-DOMO+ on DF7

results_df7 = run_dynamic_udomo_plus(df7 ,

population_size ,

generations_per_change ,

total_time_steps ,

dimensions =10)

# Plot 2D results

plot_dynamic_pareto_front_2d(results_df7 , "

DF7", save_path =" df7_2d.png")

# Plot 3D results with time

plot_dynamic_pareto_front_3d(results_df7 , "

DF7", save_path =" df7_3d.png")

DF7 is multimodal and deceptive, which requires advanced
exploration and exploitation techniques. The strength of U-
DOMO + can be demonstrated through the ability to move
freely in the landscape, avoid local optima and stay on the cor-
rect path to follow the true Pareto front along the full timetrial
horizon.

5.6.5. DF13 Results
DF13 is a time-dependent problem having three objectives

and time-dependent parameters that modulate the shape as well
as the location of the Pareto front. The case involves Type I, II
and III dynamism, which makes it quite difficult. Figs. 13.2d
and 13.3d present the projection of evolution in 2D and com-
plete evolution in 3D, respectively.

Figure 12: Figure 1 below illustrates a two-dimensional projection of the DF13
Pareto frontier at various times. Colours depict the solutions determined by U-
DOMO +.

Figure 13: Fig. 3 Three dimensional visualisation of the DF13 Pareto front at
different times. As the colours are associated with the different moments of
time, we have the time development of the front.

The Python code of the DF13 experiment will be shown be-
low:

# DF13 Problem Implementation

def df13(x, t):

# Time -dependent parameters

G = sin (0.5 * np.pi * t)

a = 2.25 + 2 * cos (0.5 * np.pi * t)

b = 100 * G**2

# Objectives

f1 = x[0] * x[1]

f2 = x[0] * (1-x[1])

g = 1 + sum((x[i] - G)**2 for i in range

(2, len(x)))

h = 1 / (1 + exp(a * (f1 + f2 - 1) / g))

f3 = g * h

return [f1 , f2, f3]
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# Run U-DOMO+ on DF13

results_df13 = run_dynamic_udomo_plus(df13 ,

population_size ,

generations_per_change ,

total_time_steps ,

dimensions =10,

objectives =3)

# Plot 2D projection

plot_dynamic_pareto_front_2d(results_df13 , "

DF13", save_path =" df13_2d.png",

projection ="

f1_f2")

# Plot 3D visualisation

plot_dynamic_pareto_front_3d(results_df13 , "

DF13", save_path =" df13_3d.png")

DF13 benchmark is a good example of a complex temporal
landscape the Pareto front is changing significantly in terms of
geometry and position. The existence of U-DOMO+ coupled
with its capacity to track such changes profitably attests to its
ability to maintain a rich collection of solutions on the shifting
front.

5.6.6. DF14 Results
DF14 explores a 3-objective dynamic landscape whose sur-

face consists of a complex Pareto surface which changes in both
shape and location throughout time. Figure 2d and 3d (Figures
14.2 and 14.3) are a 2d projection and a complete 3d visualisa-
tion.

Figure 14: Three-dimensional visualisation of the DF14 Pareto front at various
time intervals. The colours represent a temporal instance.

The Python programs can be compiled by placing the- com-
piled command in the computer.

# DF14 Problem Implementation

def df14(x, t):

# Time -dependent parameters

G = np.sin (0.5 * np.pi * t)

H = 0.5 + abs(G)

# Objectives

f1 = x[0]

f2 = x[1]

g = 1 + sum([(x[i] - 0.5*G)**2 for i in

range(2, len(x))])

f3 = g * (3 - sum ([(f1/(g*H)) * (1 + np.

sin(3 * np.pi * f1)),

(f2/(g*H)) * (1 + np.

sin(3 * np.pi * f2))]))

return [f1 , f2, f3]

# Run U-DOMO+ on DF14

results_df14 = run_dynamic_udomo_plus(df14 ,

population_size ,

generations_per_change ,

total_time_steps ,

dimensions =10,

objectives =3)

# Plot 2D projection

plot_dynamic_pareto_front_2d(results_df14 , "

DF14", save_path =" df14_2d.png",

projection ="

f1_f2")

# Plot 3D visualisation

plot_dynamic_pareto_front_3d(results_df14 , "

DF14", save_path =" df14_3d.png")

The increased, multi-dimensionality and dynamism of DF14
presents a major challenge to any optimisation method. U-
DOMO+ can be used in its versatile form of keeping a close
approximation of the varying three-objective Pareto front over
the time spectrum.

5.7. Performance Analysis

The quantitative performance measures of U-DOMO+ are
summarised in Table 1, on a collection of ZDT benchmark
problems, using the Generational Distance (GD) and the In-
verted Generational Distance (IGD) as performance metrics.

Table 5: Performance of U-DOMO+ on ZDT benchmark problems.

Problem Generational Distance (GD) Inverted Generational Distance (IGD)

ZDT1 0.0012 0.0034
ZDT2 0.0014 0.0037
ZDT3 0.0017 0.0041
ZDT4 0.0023 0.0052
ZDT6 0.0019 0.0045

The low GD and IGD values in all problems are an indicator
of an improvement in convergence to the actual Pareto front and
evenly distributed distribution of solutions. Amazingly, the U-
DOMO+ can perform commendably, even in the case of ZDT4,
which is famous owing to its multimodal nature.
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5.8. Qualitative Results
The qualitative information provided in terms of visual anal-

ysis of resultant Pareto fronts helps to gain insight into the char-
acteristics of the algorithm in converging and maintaining a
mixture of solutions on the known ZDT test problem Pareto
fronts. These observations are essential in the entire process
of understanding the distribution and dispersion patterns of the
generated solutions of objective space, in addition to the quan-
titative measures.

5.9. Quantitative Results
The quantitative measure of the convergence accuracy and

the quality and diversification are objectively measured using
the following industry-standard measures: GD and IGD, as well
as hypervolume measure. This all inclusive technique provides
a detailed estimate of the total faithfulness of the estimated
Pareto front.

5.10. Discussion
In this discussion, the subtexts of the empirical findings are

investigated and compared between U-DOMO+ and the exist-
ing multi-objective optimisation techniques. Among its salient
features the fact that it is parameter-free means that the optimi-
sation steps become far less complicated because they do not in-
volve intensive precalibration, and is also a common bottleneck
in applying swarm-guided metaheuristics. It is this strength
and generality that renders U -DOMO + particularly useful in
general and multi-objective problems that are complicated and
time-dependent, when the capabilities to optimize the parame-
ter are restricted or when the landscape of the problem is evolv-
ing in an unpredictable and swift fashion. Its high success in
an extended spectrum of ZDT and CEC guidelines underscores
its convenience when it comes to practical application into the
other realms characterized by volatility and uncertainty.

6. Conclusion and Future Work

This paper has examined the effect of the 1993 World Trade
Center building on the community and those who resided in
it during its construction. The current study confirms that the
paradigm of multi-objective optimisation commonly used is
more likely to be succeeded by U-DOMO+ especially in black-
box scenario where there is no access to derivative information.
U-DOMO+, through incorporating a meta-heuristic inspired by
argumentation, illustrates that cognitive behaviour of human
beings can be mapped on to practical optimisation models. Not
only does the algorithm provide high fidelity approximations of
the Pareto front, but it also provides multimodal near-optimal
solutions of high value in the decision-making process (Pajares
et al., 2018).

Future research will be taking up some of the following fruit-
ful lines:

1. It is considered a dynamic problem(s) Adapt U-DOMO
+ to solve moving Pareto fronts in real-time optimi-
sation problems, and leverage its inherent exploration-
exploitation trade off(s) (Jiang et al., 2019).

2. REIN This enhances the adoption of machine-learned
dealerships to hasten turnaround and manage extremely
prominent objective domains, coupled with the algorithm
to accelerate convergence and adaptation to the setting
(Xia et al., 2019).

3. Hybrid local search This method entails incorporating de-
terministic or stochastic local refinement algorithms into
candidate solution polishing to enhance the avoidance of
early convergence.

4. Scalability experiments Study U-DOMO+ on dozens of
goal-problems, in terms of computational overhead and
memory usage (Wang et al., 2025).

Through careful search refinement and swarm intelligence
syntheses together with the modern data-driven methods, we
believe that U-DOMO+ will become a flexible solution to solv-
ing multifaceted decision-making processes.
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