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Abstract

We provide a brief introduction to quiver W-algebra, which is a gauge

theory construction of W-algebra. We show that the gauge theory partition

function is generated by the screening charge, and the generating current

of the W-algebra is given by the qq-character, a double quantization of the

character for the fundamental representations associated with the quiver.

1. Introduction and summary

The Virasoro algebra, and the W-algebra in general, is a symmetry algebra describing

the infinite dimensional conformal symmetry appearing in several fields of physics, e.g.,

string theory, critical phenomena in statistical mechanics, mathematical physics. The

q-deformation of Virasoro/W-algebra was introduced in the middle of 1990s [FR96,

SKAO96], but its physical realization, namely a physical system for which the q-

Virasoro/W-algebra plays a role as the symmetry algebra, has not been found for

a long time. In the late 2000s, a new physical realization of conformal algebra was

proposed, called the AGT relation [AGT10], which shows a connection between 4d su-

persymmetric gauge theory and 2d conformal field theory. In this case, the conformal

algebra is naturally q-deformed by considering 5d gauge theory compactified on a circle

R4 × S1 [AY10].

Another realization of the q-conformal algebra is quiver W-algebra [KP18c, KP18b,

KP18a], which relates Γ-quiver gauge theory in 5d to the q-deformed algebra Wq1,q2(Γ),

while the AGT relation states a connection between G-gauge symmetric theory and

W-algebra Wq1,q2(G). Indeed a duality exchanges Γ and G, and explains a relation of

these two connections with the conformal algebra. The formalism of quiver W-algebra

gives rise to several new features as follows:

Affine and hyperbolic W-algebras [KP18c]

For finite type simply-laced quiver, Γ = ADE, the algebra Wq1,q2(Γ) reproduces

the construction by Frenkel–Reshetikhin [FR98]. If we start with non-finite type

quiver, namely affine or hyperbolic quiver, we obtain a new family of W-algebras,

associated with affine/hyperbolic Lie algebra.
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Elliptic deformation of W-algebras [KP18b]

The q-deformed algebra arises from 5d gauge theory on R4 × S1. Applying our

formalism to 6d gauge theory compactified on a torus R4 × T 2, we obtain the

elliptic deformation of W-algebras.

Fractional quiver gauge theory [KP18a]

Considering a quiver consisting of vertices and edges, inevitably it turns out to

be simply-laced. Utilizing a connection between gauge theory and W-algebras, we

define the fractional quiver gauge theory, reproducing the W-algebras associated to

non-simply-laced Lie algebras, which also implies fractionalization of quiver variety.

In this article, we explain basic aspects of quiver W-algebra, including the operator-

valued gauge theory partition function (Z-state), and the construction of the generating

current for the algebra, which is given by the double quantization of characters asso-

ciated with quiver (qq-character.) Please refer to the original papers [KP18c, KP18b,

KP18a] for details. See also a review article [Kim18] and the shortened version in

Japanese [Kim17].
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2. Quiver gauge theory

Gauge theory is a quantum field theory, which owes its dynamics to a gauge field A ∈ g,

a Lie algebra valued one-form field defined on a spacetime. It has a symmetry under

the gauge transformation A → gAg−1 + gdg−1 with g ∈ G (adjoint representation),

where G is the gauge group, the Lie group associated with the algebra g.

Quiver gauge theory, in general, has several gauge fields transforming under the

corresponding multiple gauge groups, characterized by a quiver graph Γ.1 Let Γ be

a quiver with a set of nodes (vertices) Γ0 and arrows (directed edges) Γ1. An edge

from the node i to j is denoted by e : i → j. We assign a gauge group U(ni) to

each node i ∈ Γ0 under which a gauge field Ai transforms in adjoint representation,

Ai → giAig
−1
i + gidg

−1
i with gi ∈ U(ni). For each edge e : i → j we assign a field

transforms in bifundamental representation of U(ni) and U(nj), namely (n̄i,nj).

1We basically follow the notation of [KP18c, KP18b, KP18a].



2.1. Equivariant localization

We consider four-dimensional Euclidean spacetime R4 = C2 for gauge theory. We

define the field strength (curvature; two-form) from the gauge field Fi = dAi + A2
i for

the node i ∈ Γ0. We are in particular interested in the instanton (anti-self-dual; ASD)

configuration, ∗Fi = −Fi, which can be a solution to the classical e.o.m (Yang–Mills

equation). Such a configuration is characterized by instanton (2nd Chern) numbers:

− 1

8π2

∫
R4

TrF 2
i = ki . (1)

We define a set of gauge group ranks n = (ni)i∈Γ0 and instanton numbers k = (ki)i∈Γ0 .

We denote the instanton moduli space by Mn,k described using the ADHM construc-

tion. Then we define the gauge theory partition function

Z =
∑
k

qk
∫
Mn,k

1 (2)

where qk =
∏

i∈Γ0
qkii with qi = exp

(
2π

√
−1τi

)
, and (τi)i∈Γ0 is the complexified gauge

coupling constant. We remark that this simplified partition function can be derived

using the path integral formalism with extended supersymmetry.

Evaluation of the integral over the instanton moduli space can be performed by ap-

plying the equivariant K-theoretic localization (See, for example, [NY03]): The integral

is localized on discrete fixed points under the torus action, given by (νi,α)α=1,...,ni
:=

(eai,α)α=1,...,ni
∈ U(1)ni ⊂ U(ni) for gauge symmetry, and (q1, q2) := (eϵ1 , eϵ2) ∈ U(1)2 ⊂

SO(4) for spacetime rotation symmetry. We define q = q1q2 = eϵ1+ϵ2 . The fixed point

is labeled by the multiple partition (λi,α)i∈Γ0,α=1,...,ni
, satisfying the non-increasing con-

dition λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = · · · = 0. We have two vector bundles, whose Chern

characters are given by

Ni =

ni∑
α=1

νi,α , Ki =

ni∑
α=1

∑
(s1,s2)∈λi,α

qs1−1
1 qs2−1

2 νi,α . (3)

Then we define (the character of) the universal sheaves from these two bundles evalu-

ated at the fixed point (λi,α)

Yi = Ni − (1− q1)(1− q2)Ki =


(1− q1)

∑
x∈Xi

x

(1− q2)
∑
x∈XT

i

x
, (4)

where we define

Xi =
{
xi,α,k = qk−1

1 q
λi,α,k

2 νi,α

}
α=1,...,ni, k=1,...,∞

, X =
⊔
i∈Γ0

Xi (5a)

XT
i =

{
xT
i,α,k = q

λT
i,α,k

1 qk−1
2 νi,α

}
α=1,...,ni, k=1,...,∞

, XT =
⊔
i∈Γ0

XT
i (5b)



with the transposed partition denoted by (λT
i,α)i∈Γ0,α=1,...,ni

. The map (λi,α,k) → (xi,α,k)

corresponds to that from the Young diagram to the Maya diagram. We remark that

the first expression is manifestly symmetric under exchange q1 ↔ q2, but it becomes

not manifest in the second one.

We define the degree-m character of the universal sheaf, obtained through the

Adams operation,

Y
[m]
i = (1− qm1 )

∑
x∈Xi

xm , (6)

which is given by a degree-m power sum symmetric polynomial of infinitely many

variables. This is called the gauge invariant; single trace; chiral ring; observable in

the context of supersymmetric gauge theory. Then we define the t-extended partition

function [NY03, MN07]

Z(t) =
∑
k

qk
∫
Mn,k

exp

(∑
i∈Γ0

∞∑
m=1

ti,mY
[m]
i

)
, (7)

which plays a role as the generating function: The derivative with the conjugate t-

variable gives rise to the expectation value of the observable〈
Y

[m]
i

〉
=

∂

∂ti,m
logZ(t)

∣∣∣
t→0

. (8)

This operator average is taken with respect to the plain partition function (2) given

by Z(t = 0) = Z.

3. Z-state

Since, as mentioned above, the universal sheaf character is given by the power sum

polynomial with infinite variables, we can consider the operator formalism using the

free field realization. (See, for example, [Shi03] and also [Nak99].) Namely, identifying

the derivative with the t-variable with the observable, ti,−m := ∂/∂ti,m ↔ Y
[m]
i , we

obtain the Heisenberg algebra, [ti,−m, tj,m′ ] = δi,jδm,m′ . In this sense, the t-variable

is promoted to the operator generating the Fock space F = C[[ti,1, ti,2, · · · ]]|0⟩ with

the vacuum state annihilated by any negative modes ti,−m|0⟩ = 0 for m > 0. Thus,

the t-extended partition function, depending on the t-variables, is also promoted to an

operator. From this point of view, we define the Z-state through the operator/state

correspondence,

|Z⟩ = Z(t)|0⟩ . (9)

It has been shown that the Z-state for Γ-quiver gauge theory compactified on a cir-

cle R4 × S1 is generated by the screening charge associated with quiver W-algebra

Wq1,q2(Γ):



Z-state [KP18c]

Let i : X → Γ0, such that i(x) = i for x ∈ Xi. Then the Z-state is generated by

screening charges of the algebra Wq1,q2(Γ),

|Z⟩ =
≻∏

x∈X̊

Si(x),x|0⟩ . (10)

The configuration X̊ is defined with the empty configuration (λi,α) = ∅,

X̊i = {x̊i,α,k = qk−1
1 νi,α}α=1,...,ni,k=1,...,∞ , X̊ =

⊔
i∈Γ0

X̊i . (11)

The screening charge is defined as a discrete sum (could be formulated using Jackson

integral) of the screening current

Si,x =
∑
k∈Z

Si,qk2x
(12)

with the free field realization

Si,x = : exp

(
si,0 log s+ s̃i,0 +

∑
m ̸=0

si,m x−m

)
: (13)

and the commutation relations[
si,m, sj,m′

]
= − 1

m

1− qm1
1− q−m

2

c
[m]
ji δm+m′,0 ,

[
s̃i,0, sj,m

]
= −βδ0,mc

[0]
jk , β = −ϵ1

ϵ2
. (14)

The matrix (c
[m]
ij ) is the mass-deformed q-Cartan matrix, which is reduced to the ordi-

nary quiver Cartan matrix in the limit m → 0,

c
[m]
ij = (1 + q−m)δij −

∑
e:i→j

µ−m
e −

∑
e:j→i

µeq
−m

m→0−→ 2δij −#(e : i → j)−#(e : j → i) (15)

where (µe)e∈Γ1 is the multiplicative bifundamental mass parameter. The mass defor-

mation plays an essential role to define the algebra, in particular, associated to the

affine quiver. See Sec. 5. We remark the transposition c
[m]
ji = q−mc

[−m]
ij .

The Z-state (10) is responsible for the vector and bifundamental hypermultiplets.

To obtain the (anti)fundamental hypermultiplet contribution, we insert additional ver-

tex operators

|Z⟩ =

(∏
x∈Xf

Vi(x),x

) ≻∏
x∈X̊

Si(x),x

( ∏
x∈Xaf

Vi(x),x

)
|0⟩ (16)

where Xf = {µi,f}i∈Γ0,f=1,...,nf
i
and Xaf = {µ̃i,f}i∈Γ0,f=1,...,naf

i
are sets of the multiplicative

fundamental and antifundamental mass parameters, obeying the OPE

Vi,xSi,x′ =

(
x′

x
; q2

)−1

∞
: Vi,xSi,x′ : , Si,x′Vi,x =

(
q2

x

x′ ; q2

)
∞

: Vi,xSi,x′ : . (17)



The q-Pochhammer symbol is defined as (z; q)n =
n−1∏
m=0

(1− zqm).

Since the dual vacuum obeys ⟨0|ti,m = 0 for m > 0, the plain partition function

given by imposing t = 0 is correspondingly given as a correlator

Z(t = 0) = ⟨0|Z(t)|0⟩ . (18)

Such a correlator realization of the partition function (18) resembles the AGT rela-

tion [AGT10], which states that the gauge theory partition function with gauge group

G is given by a conformal block of W (G) algebra, while quiver W-algebra is sensi-

tive to quiver structure, but not to G. The relation between these two descriptions is

understood as a base/fibre (geometry); spectral (integrable system); S-duality (string

theory). We also remark that the expression (18) immediately leads to the discretized

version of the Dotsenko–Fateev integral

Z(t = 0) =
∑
X

ZX (t = 0) =
∑
X

⟨0|

(∏
x∈Xf

Vi(x),x

)(
≻∏

x∈X

Si(x),x

)( ∏
x∈Xaf

Vi(x),x

)
|0⟩ .

(19)

Namely, each contribution from the fixed point configuration X is given by a correlator

of the screening currents with the vertex operators. In other words, the screening

current generates the contribution associated with a specific configuration

|ZX ⟩ =

(∏
x∈Xf

Vi(x),x

)(
≻∏

x∈X

Si(x),x

)( ∏
x∈Xaf

Vi(x),x

)
|0⟩ . (20)

Although this correlator involves infinitely many operators, one can truncate the num-

ber of screening charges by considering the codimension-2 defect. See, for exam-

ple, [AH15].

4. Quiver W-algebra

We define another vertex operator, called the Y-operator:

Yi,x = qρ̃i1 : exp

(
yi,0 +

∑
m ̸=0

yi,m x−m

)
: (21)

where (ρ̃)i∈Γ0 is the Weyl vector in the simple root basis (as long as det(c
[0]
ij ) ̸= 0), and

the commutation relations are defined[
yi,m, sj,m′

]
= − 1

m
(1− qm1 )δi,jδm+m′,0 ,

[
s̃i,0, yj,0

]
= −δij log q1 . (22)

The OPE of Y-operator and the screening current is then given by

Yi,xSj,x′ =
1− x′/x

1− q1x′/x
: Yi,xSj,x′ : , Sj,x′Yi,x = q−1

1

1− x/x′

1− q−1
1 x/x′ : Yi,xSj,x′ : (i = j)

(23)



while this OPE becomes trivial if i ̸= j. It gives rise to the commutation relation[
Yi,x, Sj,x′

]
=
(
1− q−1

1

)
δ

(
q1
x′

x

)
: Yi,xSj,x′ : (24)

where the multiplicative δ-function is defined δ(x) =
∑

n∈Z x
n. The Y-operator average

is computed using the OPE factor as follows:

⟨0|Yi,x|ZX ⟩ = qρ̃i1
∏
x∈Xi

1− x′/x

1− q1x′/x
⟨0|ZX ⟩ (25)

Since we have ∏
x∈Xi

1− x′/x

1− q1x′/x
= exp

(
∞∑

m=1

−x−m

m
Y

[m]
i

)
, (26)

the Y-operator average plays a role of the generating function of the observable (8).

One can construct the generators of W-algebras using this Y-operator (the q-

Sugawara construction): It has been shown in [KP18c] that the generating currents

of quiver W-algebra Wq1,q2(Γ) is given by the operator-valued qq-character associated

with quiver Γ, which turns out to be a commutant of the screening charge. We define

the iWeyl reflection incorporated by the A-operator

Yi,x −→ Yi,x A
−1
i,q−1 (27)

with the definition

Ai,x = q1 : exp

(
ai,0 +

∑
m̸=0

ai,m x−m

)
: (28)

where

ai,m =
∑
j∈Γ0

yj,m c
[m]
ji . (29)

Thus the A-operator is written in terms of the Y-operators. Let us write down the

commutation relations for the free fields:[
yi,m, yj,m′

]
= − 1

m
(1− qm1 )(1− qm2 ) c̃

[−m]
ij δm+m′,0 , (30)[

ai,m, aj,m′

]
= − 1

m
(1− qm1 )(1− qm2 ) c

[m]
ji δm+m′,0 . (31)

where (c̃
[m]
ij ) is the inverse of the q-Cartan matrix (15). We remark that, in the limit

q1(q2) → 1, these commutation relations become trivial due to the factor (1−qn1 )(1−qn2 ),

which implies the quantum algebra becomes the classical commutative algebra: It still

holds the Poisson structure even in this limit.

The Y and A operators play roles of the weight and root vectors: The Weyl reflection

is generated by the root vector. Then the qq-character is given by

Ti,x = Yi,x + Yi,x A
−1
i,q−1 + · · · . (32)



Monomials generated by the reflection may include the Y-operators both in numerator

and denominator. We apply the iWeyl reflection as long as the Y-operator appears in

the numerator, which terminates within finite processes for finite type quiver Γ = ADE,

while it becomes an infinite series for affine/hyperbolic quiver. We remark that the

qq-character has the integral formula from the quiver variety associated with the quiver

Γ. See [Nek16] for details.

Although the Y-operator does not commute with the screening charge as shown in

(24), the qq-character Ti,x commutes with the screening charge[
Ti,x, Sj,x′

]
= 0 , (33)

which implies the following:

The operator-valued qq-character provides the free field realization of the generating

current of the algebra Wq1,q2(Γ), which is a commutant of the associated screening

charge.

Let us demonstrate this statement with an example.

4.1. A1 quiver

Let us consider the simplest example: A1 quiver, consisting of a single node without

any edges. In this case, the fundamental qq-character is given by

T1,x = Y1,x + Y−1
i,q−1x (34)

which turns out to be the generating current of the q-deformed Virasoro algebra [SKAO96].

Then, in the classical limit, it is reduced to the fundamental representation character

of SU(2).

We can also consider higher representations of SU(2). The spin- ℓ
2
((2ℓ+1)-dimensional)

representation character is given by χℓ = yℓ + yℓ−1 + · · · + y−ℓ. Then the correspond-

ing qq-character is generated by the product of the Y-operators with ℓ arguments

w = (wf )f=1,...,ℓ,

T1,w = : Y1,w1 · · ·Y1,wℓ
: + · · ·

=
∑

I∪J={1,...,ℓ}

∏
i∈I,j∈J

S

(
wi

wj

)
:
∏
i∈I

Y1,wi
Y−1
1,q−1wj

: . (35)

where

S(z) =
(1− q1x)(1− q2x)

(1− x)(1− qx)
. (36)

We remark that this qq-character contains 2ℓ terms, so that one cannot see decomposi-

tion into the irreducible representations of SU(2). Nevertheless, the q-character [FR99]

of the corresponding representation is obtained from the qq-character in the limit



(wf ) → (qf−1
1 w), and then taking q2 → 1, since S(q−1

1 ) = 0 and S(qn1 )
q2→1→ 1 for

n ∈ Z\{−1, 0}.

In particular, the case with ℓ = 2 plays an important role to characterize the algebra

Wq1,q2(A1). Namely, one can obtain the OPE of the generating current T1,x [SKAO96]

f

(
x′

x

)
T1,xT1,x′ − f

( x
x′

)
T1,x′T1,x = −(1− q1)(1− q2)

1− q

(
δ

(
q
x′

x

)
− δ

(
q
x

x′

))
(37)

with the delta function δ(x) =
∑
n∈Z

xn, and the scalar factor arising from the OPE of

Y-operators f(z) = exp

(
∞∑
n=1

(1− qn1 )(1− qn2 )

n(1 + qn)
zn

)
. See the commutation relation of

the y-oscillators (30).

5. Affine quiver W-algebra

The formalism discussed in Sec. 4 is applicable to any quiver, including affine and

hyperbolic quivers. Here let us consider the simplest affine quiver Â0, consisting of a

single node with a loop edge. In this case, the mass deformation plays an essential role

for the q-Cartan matrix:

c[m] = 1 + q−m − µ−m − µmq−m m→0−→ 0 (38)

The parameter µ ∈ C× is called the multiplicative adjoint mass of 5d N = 1∗ theory.

In the massless limit, µ = 1, the q-Cartan matrix becomes trivial.

The qq-character is generated by the local reflection

Y1,x −→ S(µ−1) : Y−1
1,q−1Y1,µ−1xY1,µq−1x : . (39)

A remarkable feature of the affine quiver is that the qq-character does not terminate

within finite terms since the affine character is in general given by an infinite series.

In addition, the coefficients appearing in the qq-character are given by the Nekrasov

function with dual variables. See [KP18c, Kim18] for details. In general, the qq-

character of Γ̂-quiver theory on the ALE space C̃2/Γ′ is dual to that of Γ̂′-quiver

theory on C̃2/Γ. This duality is interpreted as a generalization of [Nak94], which is

naturally understood using the 8-dimensional setup, called the gauge origami [Nek16].

6. Quiver elliptic W-algebra

The quiver W-algebra discussed so far arises from the 5d quiver gauge theory defined

on R4 × S1. Starting with the 6d gauge theory on R4 × T 2, one can define the elliptic

deformation of W-algebras. Let p be the elliptic nome p = exp(2π
√
−1τ) ∈ C× with

the modulus of the torus T 2 denoted by τ . In this case the partition function is given

by applying the elliptic class to the Chern characters,

Ip

[∑
k

xk

]
=
∏
k

θ(x−1
k ; p) (40)



with θ(z; p) = (z; p)∞(pz−1; p)∞, which is reduced to the Dolbeault index in the limit

p → 0. To obtain the free field realization, we apply the Clavelli–Shapiro’s doubling

trick [CS73]. For example, the Y-operator is given by

Yi,x = qρ̃i1 : exp

(
yi,0 +

∑
m̸=0

(
y
(+)
i,m x−m + y

(−)
i,m x+m

))
: (41)

with [
y
(±)
i,m , y

(±)
j,m′

]
= ∓ 1

m
(1− q±m

1 )(1− q±m
2 ) c̃

[∓m]
ij δm+m′,0 . (42)

See [KP18b] for details.

7. Fractional quiver W-algebra

We define a fractional quiver (Γ, d), which is a quiver Γ decorated with a set of pa-

rameters (di)i∈Γ0 . We assume di ∈ Z>0 so that it plays a role of the root length of the

corresponding algebra. We define a gauge theory partition function depending on (di)

by replacing the equivariant parameter as (q1, q2) → (qdi1 , q2). The universal sheaf for

the node i ∈ Γ0 is given by

Yi = (1− qdi1 )
∑
x∈Xi

x =:

(
di−1∑
r=0

qr1

)
yi (43)

where (yi)i∈Γ0 is the fractionalization of the universal sheaf

yi = (1− q1)
∑
x∈Xi

x . (44)

The fractionalized sheaf plays a fundamental role to construct the fractional quiver

W-algebra, which reproduces the q-deformed W-algebra of [FR98] for Γ ̸= ADE. The

symmetrization of the q-Cartan matrix (15) is then given by

bij =
1− qdi1
1− q1

(1 + q−di
1 q−1

2 )δij −
∑
e:i→j

µ−1
e

(1− qdi1 )(1− q
−dj
1 )

(1− q1)(1− q
−dij
1 )

−
∑
e:j→i

µeq
−dij
1 q−1

2

(1− qdi1 )(1− q
−dj
1 )

(1− q1)(1− q
−dij
1 )

(45)

where we omit the degree of the character and dij = gcd(di, dj). See [KP18a] for details.
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