1 2	Microbial Systematics
3	The Revision of Lipomycetaceae*
4	
5	Yuzo Yamada, ^{1,4,**} Huong Thi Lan Vu, ² Pattaraporn Yukphan, ¹ Somboon Tanasupawat, ³
6	
7	¹ BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and
8	Biotechnology (BIOTEC), National Science and Technology Development Agency
9	(NSTDA), 113 Thailand Science Park, Phaholyothin Road, Klong 1, Klong Luang,
10	Pathumthani 12120, Thailand
11	² Department of Microbiology, Faculty of Biology and Biotechnology, University of
12	Science, Vietnam National University-HCM City, 227 Nguyen Van Cu Street, Ward 4,
13	District 5, Hochiminh City, Vietnam
14	³ Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences,
15	Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330,
16	Thailand
17	⁴ Laboratory of Applied Microbiology (Professor Emeritus), Department of Agricultural
18	Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
19	422-8529, Japan
20	
21	*This article is dedicated to Professor Dr. J. P. van der Walt, South Africa for his excellent
22	taxonomic study on the Lipomycetaceous yeasts, especially in the findings of Zygozyma
23	oligophaga and its related species.
24	*This work was presented at the 27th annual meeting of Japan Society for Microbial
25	Resources and Systematics (JSMRS) on June 23-30, 2021 (Vu et al. 2021).
26	
27	**Corresponding author:
28	Yuzo Yamada
29	E-mail: ymdy333@kdt.biglobe.ne.jp
30	ORCID, 0000-0002-2799-7045
31	Telephone: +81-54-635-2316
32	
33	Keywords: Waltomyces; Zygozyma; Babjevia; Smithiozyma; Kockiozyma
34 25	
35 36	ABSTRACT
30 37	
37 38	In the family Lipomycetaceae, the seven genera <i>Waltomyces</i> , <i>Zygozyma</i> , <i>Babjevia</i> , <i>Smithiozyma</i> , <i>Kawasakia</i> , <i>Limtongia</i> , and <i>Kockiozyma</i> were introduced. However, all of
38 39	them were neither accepted nor recognized. This paper described the historical surveys in
40	the systematics of the Lipomycetaceous yeasts and confirmed the total of ten genera
40 41	within the family, i.e., the genus <i>Lipomyces</i> sensu stricto (the type genus), the above-
71	whilm the fulling, i.e., the genus <i>Lipolityces</i> sense sureto (the type genus), the above-

- 42 mentioned seven genera, the monotypic genus *Dipodascopsis*, and the new genus
- *Neeoaidaea* from the phylogenetic and the phenotypic points of view.

46 GRAPHICAL ABSTRACT

The family Lipomycetaceae Novak et Zolt	
Genus 1. <i>Lipomyces</i> Lodder et Kreger-van Rij (1952) sensu stricto	Species L. starkeyi (the type species), L. kononenkoae, L. tetrasporus, L. mesenbrius, L. spencermartinsiae, L. dorenjongii, L. kockii, L. yama- dae, L. yarrowii, L. orientalis, L. chichibuensis, L. kalimanthanensis, L. tropicalis, L. okinawaensis
2. Dipodascopsis Batra et Millner (1978)	D. uninucleata
3. Waltomyces Yamada et Nakase (1985)	W. lipofer
4. Zygozyma van der Walt et von Arx (1987)	Z. oligophaga
5. <i>Babjevia</i> van der Walt et Smith (1995)	<i>B. anomala</i> (the type species), <i>B. hyphoforaminiformans</i> , <i>B. hyphas-ca</i>
6. Smithiozyma Kock, van der Walt et Yamada (1995)	S. japonica
7. Kawasakia Yamada et Nogawa (1995)	K. arxii
8. Limtongia Jindamorakot, Am-in, Yukphan et Yamada (2011)	L. smithiae
9. Kockiozyma Jindamorakot, Yukphan et Yamada (2012)	K. suomiensis
10. Neoaidaea Vu, Yukphan, Tanasupawat et Yamada (2022)	N. tothii

The family Lipomycetaceae Novak et Zolt	
 Genus Lipomyces Lodder et Kreger-van Rij (1952) sensu Kurtzman, Albertyn et Basehoar-Powers (2007) 2. Dipodascopsis Batra et Millner (1978) emend. Kurtzman, Albertyn et Basehoar-Powers (2007) 	Species L. starkeyi (the type species), L. kononenkoae, L. tetrasporus, L. mesenbrius, L. spencermartinsiae, L. dorenjongii, L. kockii, L. yama- dae, L. yarrowii, L. orientalis, L. chichibuensis, L. kalimanthanensis, L. tropicalis, L. okinawaensis (= the genus Lipomyces sensu stricto); L. lipofer, L. oligophagus, L. japonicus, L. arxii, L. smithiae, L. suomiensis D. uninucleata (the type species), D. tothii, D. anomala
	D. tomin, D. unomulu

53 In the family Lipomycetaceae Novak et Zsolt, the seven genera Waltomyces, Zygozyma, 54 Babjevia, Smithiozyma, Kawasakia, Limtongia, and Kockiozyma were once introduced 55 (Yamada and Nakase 1985; van der Walt et al. 1987; Smith et al. 1995; Kock et al. 1995; 56 Yamada and Nogawa 1995b; Jindamorakot et al. 2011, 2012). All of them were 57 respectively taxonomic-homogeneous natured, i.e., morphologically, physiologically, 58 chemotaxonomically, genetically, and phylogenetically. However, Kurtzman et al. (2007) 59 divided the family into two, i.e., the monophyletic genus Lipomyces sensu and the 60 paraphyletic genus Dipodascopsis emend. instead (Smith and de Hoog 2011; Smith and 61 Kurtzman 2011). 62 This paper describes the historical surveys in the systematics of the Lipomycetaceous 63 yeasts and covers the seven genera mentioned above as taxonomic criteria, in addition to 64 the genus Lipomyces sensu stricto, the monotypic genus Dipodascopsis (Jindamorakot et 65 al. 2011, 2012), and the new genus Neoaidaea (Vu et al. 2021) from the phylogenetic and 66 the phenotypic points of view. Accordingly, the family is comprised of ten genera in total 67 as follows. 68 69 The family Lipomycetaceae Novak et Zsolt 70 The type genus is *Lipomyces* Lodder et Kreger van-Rij. 71 Ten genera are included. 72 73 Genus I. Lipomyces Lodder et Kreger-van Rij sensu stricto 74 The type species is Lipomyces starkeyi Lodder et Kreger-van Rij. 75 Fourteen species are included. 76 1. Lipomyces starkeyi Lodder et Kreger-van Rij (1952) 77 2. Lipomyces kononenkoae Nieuwdorp, Bos et Slooff (1974) 78 3. Lipomyces tetrasporus Nieuwdorp, Bos et Slooff (1974) 79 4. Lipomyces mesembrius Botha, van der Walt et Smith (1997) 80 5. Lipomyces spencermartinsiae (van der Walt et Smith) van der Walt et Smith (1997) 81 Basionym: Lipomyces kononenkoae Nieuwdorp, Bos et Slooff subsp. spencermartinsiae 82 van der Walt et Smith (1995) 83 6. *Lipomyces doorenjongii* van der Walt et Smith (1999) 84 7. Lipomyces kockii Smith et van der Walt (1999) 85 8. *Lipomyces yamadae* van der Walt et Smith (1999) 86 9. *Lipomyces varrowii* Smith et van der Walt (1999) 87 10. Lipomyces orientalis Thanh (2006) 88 11. Lipomyces chichibuensis Yamazaki et Kawasaki (2014) 89 12. Lipomyces kalimantanensis Kanti, Yamazaki et Kawasaki (2017) 90 13. Lipomyces tropicalis Kanti, Yamazaki et Kawasaki (2017) 91 14. Lipomyces okinawensis Yamazaki, Yanagiba et Naganuma (2017) 92 93 The species classified in the genus Lipomyces sensu stricto were tightly coupled with

95 sequences of 18S rRNA, 26S rRNA, mitochondrial small subunit rRNA, and EF1- α 96 derived from the neighbour-joining, the maximum parsimony, and the maximum 97 likelihood methods (Jindamorakot et al. 2012). On the other hand, the phylogenetic 98 positions of the Lipomyces species newly designated by Kurtzman et al. (2007) were quite 99 changeable in the monophyletic genus *Lipomyces* sensu (Jindamorakot et al. 2012). In 100 fact, the resulting genus has an extremely wide range of DNA G+C contents (14.2 mol%, 101 from 41.5 - 55.7 mol% G+C; Jindamorakot et al., 2012) and three kinds of ubiquinone 102 isoprenologues (Q-8, Q-9, and Q-10: Yamada 1986; Yamada et al. 1986). According to 103 Nakase and Komagata (1970) and Yamada et al. (1973), such a genus was a taxonomically 104 heterogeneous-natured taxon, just as found in the genus Pichia Hansen once designated. 105 106 Genus II. Dipodascopsis Batra et Millner 107 Dipodascopsis uninucleata (Biggs) Batra et Millner (1978) 108 Basionym: Dipodascus uninucleatus Biggs (1937). 109 Two varieties are described. 110 1. Dipodascopsis uninucleata var. uninucleata 111 2. Dipodascopsis uninucleata var. wickerhamii Kreger-van Rij (1974) 112 113 When the phylogenetic tree based on the 26S rRNA gene D1/D2 domain sequences was constructed by the neighbour-joining method, the paraphyletic genus Dipodascopsis 114 emend. Kurtzman et al. was split into two and produced a monotypic genus (Fig. 1), as 115 116 reported previously (Jindamorakot et al. 2011, 2012), indicating that D. uninucleata, D. 117 tothii and D. anomala were not tightly coupled within the genus Dipodascopsis emend. 118 Such a phylogenetic data was also given by Kurtzman (2011), i.e., the phylogenetic tree 119 based on the concatenated three-gene sequences of 26S rRNA, 18S rRNA, and EF1- α 120 derived from the neighbour-joining method represented that D. uninucleata was connected 121 first to L. starkeyi but not to D. anomala (= B. anomala) and then the resulting cluster was 122 done to D. anomala. In fact, the calculated sequence similarity (95.7%) between D. 123 uninucleta and L. starkeyi was much higher than that (90.4%) between D. uninucleara and 124 B. anomala (Table 1). 125 126 Genus III. Waltomyces Yamada et Nakase (MB 25779) Waltomyces lipofer (Lodder et Kreger-van Rij ex Slooff) Yamada et Nakase (1985) (MB 127 128 103899) 129 Basionym: Lipomyces lipofer Lodder et Kreger-van Rij (1952) ex Slooff (1970). 130 131 The three partial base sequencings in positions 468-622, 155 bases (designated as 132 region a) and in positions 1611-1835, 225 bases (designated as region b) of 26S rRNA and in positions 1451-1618, 168 bases (designated as region c) of 18S rRNA showed that the 133 134 Q10-equipped species, W. lipofer had 88% maximum homology in region a, along with B.

one another in all the three phylogenetic trees based on the concatenated four-gene

135	anomala (= D. anomala), to L. starkeyi, L. tetrasporus and L. kononenkoae in the genus
136	Lipomyces sensu stricto (Yamada and Nogawa 1995a). In contrast, the above-mentioned
137	three Lipomyces species constituted a cluster with 97% or more maximum homologies
138	within the genus, indicating that the species is accommodated to a different genus from the
139	genus Lipomyces sensu stricto (Table 1). Such similar experimental data were shown,
140	since the species was used as outgroup in the phylogenetic trees concerned (Kurtzman et
141	al. 2007; Yamazaki and Kawasaki 2014).
142	
143	Genus IV. Zygozyma van der Walt et von Arx (MB 25149)
144	Zygozyma oligophaga van der Walt et von Arx (1987) (MB 131108)
145	Synonym: Lipomyces oligophagus (van der Walt et von Arx) Kurtzman, Albertyn et
146	Basehoar-Powers (2007).
147	
148	Four Zygozyma species were reported (van der Walt et al. 1987, 1989b, 1990; Smith et
149	al. 1989). However, the four species were not tightly coupled with one another in the
150	phylogenetic trees based on the concatenated four-gene sequences derived from the three
151	methods, i.e., the neighbour-joining, the maximum parsimony, and the maximum
152	likelihood methods (Jindamorakot et al. 2012) and chemotaxonomically grouped into two
153	based on the ubiquinone isoprenologues, i.e., Q-8 and Q-9 (Fig. 1) (Yamada and Nogawa
154	1995a; Jindamorakot et al. 2011, 2012). Especially, the Q8-equipped species, Z.
155	oligophaga had extremely long branches (Fig. 1) (Jindamorakot et al. 2012) and quite low
156	sequence similarities (81.6-86.6%) (Table 1).
157	
158	Genus V. Babjevia van der Walt et Smith (MB 27435)
159	The type species is Babjevia anomala (Babjeva et Gorin) van der Walt et Smith.
160	Three species are included.
161	1. Babjevia anomala (Babjeva et Gorin) van der Walt et Smith (1995) (MB 363215)
162	Basionym: Lipomyces anomalus Babjeva et Gorin (1975).
163	Synonym: Dipodascopsis anomala (Babjeva et Gorin) Kurtzman, Albertyn et Basehoar-
164	Powers (2007).
165	2. Babjevia hyphoforaminiformans Yamazaki, Lorliam et Kawasaki (2020) (MB
166	829051)
167	3. Babjevia hyphasca Yamazaki, Lorliam et Kawasaki (2020) (MB 829053)
168	
169	Kurtzman et al. (2007) accommodated B. anomala to the paraphyletic genus Dipod-
170	ascopsis emend. as D. anomala. However, Jinamorakot et al. (2012) insisted that the
171	species, D. anomala should be transferred again to the genus Babjevia as B. anomala,
172	since the species was not tightly coupled with the type species, D. uninucleata (Fig. 1). In
173	fact, Yamazaki et al. (2020) classified two new species to the genus Babjevia but not to the
174	genus Dipodascopsis, as already suggested by Jindamorakot et al. (2012).
175	In the phylognetic tree based on the concatenated four-gene sequences derived from the

176	maximum likelihood method (Yamazaki et al. 2020), it is reasonable that the names of
177	species, L. lipofer, L. smithiae, Zygozyma arxii (= L. arxii), L. japonicus, L. oligophaga
178	[sic], and Zygozyma suomiensis (= L. suomiensis) are changed to Waltomyces lipofer,
179	Limtongia smithiae, Kawasakia arxii, Smithiozyma japonica, Zigozyma oligophaga, and
180	Kockiozyma suomiensis respectively since the generic name of Babjevia was revived.
181	
182	Genus VI. Smithiozyma Kock, van der Walt et Yamada (MB 27638)
183	Smithiozyma japonica (van der Walt, Smith, Yamada et Nakase) Kock, van der Walt et
184	Yamada (1995) (MB 414161)
185	Basionym: Lipomyces japonicus van der Walt, Smith, Yamada et Nakase (1989).
186	
187	In the three partial base sequencings mentioned above, the Q9-equipped species, S.
188	<i>japonica</i> (= <i>L. japonicus</i> ; van der Walt <i>et al.</i> 1989a) represented 89% maximum homology
189	in region a , two base differences in region b and five base differences in region c to L .
190	starkeyi, L. tetrasporus and L. kononenkoae in the genus Lipomyces sensu stricto. In
191	contrast, the above-mentioned three Lipomyces species constituted clusters with 97% or
192	more maximum homologies (region a) and no base differences (regions b and c) within
193	the genus (Yamada and Nogawa 1995a), indicating that the species is accommodated
194	taxonomically to a different genus from the genus Lipomyces sensu stricto (Table 1). In the
195	phylogenetic trees based on the concatenated four-gene sequences, S. japonica was not
196	tightly coupled, i.e., the species was connected to the cluster comprised of the Q9-
197	equipped species including L. starkeyi, D. uninucleata and so on, when constructed by the
198	neighbour-joining method, but to the cluster of Q8-equipped species including Z.
199	oligophaga and Kockiozyma suomiensis, when constructed by the maximum parsimony
200	method (Jindamorakot et al. 2012).
201	
202	Genus VII. Kawasakia Yamada et Nogawa (MB 27831)
203	Kawasakia arxii (van der Walt, Smith et Yamada) Yamada et Nogawa (1995) (MB
204	442988)
205	Basionym: Zygozyma arxii van der Walt, Smith et Yamada (1989).
206	Synonym: Lipomyces arxii (van der Walt, Smith et Yamada) Kurtzman, Albertyn et
207	Basehoar-Powers (2007).
208	
209	The Q9-equipped species, Kawasakia arxii was very unique in representing
210	considerably large base differences (six) to the above-mentioned three Lipomyces species
211	in the partial base sequencing of 18S rRNA (region c), in contrast to W. lipofer, which had
212	only one base difference in the same region (Yamada and Nogawa 1995a, b). In the
213	remaining regions a and b, the maximum homology and the base differences of the species
214	were 93% and only one. The calculated 26S rRNA gene D1/D2 domain sequence
215	similarities of Kawasakia arxii were 85.7 - 97.5% (Table 1). In the phylogenetic trees
016	

216 based on the concatenated four-gene sequences, the phylogenetic positions of Kawasakia

217	arxii were considerably changeable, indicating that the species was not tightly coupled to
218	any of other species (Jindamorakot et al. 2012).
219	
220	Genus VIII. Limtongia Jindamorakot, Am-in, Yukphan et Yamada (MB 582716)
221	Limtongia smithiae (van der Walt, Wingfield et Yamada) Jindamorakot, Am-in,
222	Yukphan et Yamada (2011) (MB 582717)
223	Basionym: Zygozyma smithiae van der Walt, Wingfield et Yamada (1990).
224	Synonym: Lipomyces smithiae (van der Walt, Wingfield et Yamada) Kurtzman,
225	Albertyn et Basehoar-Powers (2007).
226	
227	In the three partial base sequencings mentioned above, the Q9-equipped species,
228	Limtongia smithiae represented 89% maximum homology, four base differences and three
229	base differences respectively to L. starkeyi, L. tetrasporus and L. kononenkoae in the
230	genus Lipomyces sensu stricto (Yamada and Nogawa 1995a). The calculated 26S rRNA
231	gene D1/D2 domain sequence similarities of the species were 82.9 - 92.4%, indicating that
232	the species is accommodated to an independent genus (Table 1).
233	
234	Genus IX. Kockiozyma Jindamorakot, Yukphan et Yamada (MB 587737)
235	1. Kockiozyma suomiensis (Smith, van der Walt et Yamada) Jindamorakot, Yukphan et
236	Yamada (2012) (MB 587754)
237	Basionym: Zygozyma suomiensis Smith, van der Walt et Yamada (1990).
238	Synonym: Lipomyces suomiensis (Smith, van der Walt et Yamada) Kurtzman,
239	Albertyn et Basehoar-Powers (2007).
240	2. Kockiozyma geophila f.a. (van der Walt, Yamada et Nakase) comb. nov.
241	Basionym: Myxozyma geophila van der Walt, Yamada et Nakase, Syst. Appl.
242	Microbiol. 9: 122, 1987.
243	The type strain is CBS $7219 = NRRL Y-17252$.
244	3. Kockiozyma sirexii f.a. (Spaaij et Weber) comb. nov.
245	Basionym: Myxozyma sirexii Spaaij et Weber, Syst. Appl. Microbiol. 15: 429, 1992.
246	The type strain is UOFS Y-2054 = NRRL Y-27626
247	4. Kockiozyma yamanashiensis f.a. (Yamazaki, Yanagiba et Naganuma) comb. nov.
248	Basionym: Lipomyces yamanashiensis f.a. Yamazaki, Yanagiba et Naganuma, Int. J.
249	Syst. Evol. Microbiol. 67: 2945, 2017.
250	The type strain is NBRC $110621 = CBS 14748$.
251	
252	In the three partial base sequencings mentioned above, the Q8-equipped species,
253	Kockiozyma suomiensis represented 83% maximum homology in region a, 12 base
254	differences in region b, and four base differences in region c respectively to L. starkeyi, L.
255	tetrasporus, and L. kononenkoae in the genus Lipomyces sensu stricto (Yamada and
256	Nogawa, 1995a). The calculated 26S rRNA gene D1/D2 domain sequence similarities of
257	the species were 85.9 - 90.6%, indicating that the species is accommodated to an

- independent genus (Table 1). On the other hand, *Myxozyma geophila*, the Q8-equipped
- anamorphic species showed 92% maximum homology, and one and one base difference to
- 260 Kockiozyma suomiensis in the three partial base sequencings (Yamada and Nogawa,
- 261 1995a). In addition, the sequence similarity between *Kockiozyma suomiensis* and
- 262 Myxozyma geophila was 98.0%s, the value of which was almost identical with that
- 263 (98.1%) between Octosporomyces octosporus and Octosporomyces osmophilus (Yamada
- *et al.*, 2022). From the results obtained above, the generic name of *Kockiozyma* was able
- to be given to the anamorphic species as *Kockiozyma geophila* f.a. (Lachance, 2012).
- 266

267 *Dipodascopsis tothii* and *B. anomala* (= *D. anomala*) were tightly coupled in the three 268 phylogenetic trees (Jindamorakot *et al.* 2012), so that the two species appeared to be

- 269 classified in a single genus (Fig. 1). Due to the priority of *B. anomala*, the single genus
- 270 was to be named *Babjevia*. However, the distance between the two species, *D. tothii* and
- 271 B. anomala was not so short, when compared with Kluyveromyces polysporus (=
- 272 Vanderwaltozyma polyspora) and Saccharomyces cerevisiae (Jindamorakot et al. 2012). In
- fact, the calculated pair-wise sequence similarity (95.6%) between the two species was
- interestingly almost the same as that (95.7%) between *D. uninucleata* and *L. starkeyi* and

that (95.2%) between *W. lipofer* and *L. starkeyi*, and not so high to accommodate the two

- 276 species to the single genus *Babjevia* (Table 1), indicating that an additional genus can be
- 277 phylogenetically introduced for *D. tothii*. Phenotypically, the species was quite different
- from *B. anomala*, e.g., in the morphology of asci and ascospores and the mode of asexual
- 279 reproduction (Smith and de Hoog 2011).
- Yamazaki *et al.* (2017a, b) constructed the phylogenetic trees based on the translation elongation factor 1-alpha (*EF1-* α) gene sequences derived from the neighbour-joining method. In the phylogenetic trees, it is of interest that *D. tothii* was found inside and distantly separated from *B. anomala* as well as *D. uninucleata*. In contrast, the cluster including *L. starkeyi* and its relatives and the cluster including *Kockiozyma suomiensis* and
- its related *Myxozyma* species were tightly coupled without any exception. In this respect,
- 286 D. tothii was quite different phylogenetically from the remaining two species of the
- 287 paraphyletic genus *Dipodascopsis* emend., and thus the introduction of a separate new
- 288 genus was confirmed (Vu et al. 2021).
- 289

290 Genus X. *Neoaidaea* Vu, Yukphan, Tanasupawat et Yamada gen. nov.

291 *Neoaidaea* (Ne.o.a.i'da.e.a. N. L. fem. n. *Neoaidaea*, new Aida, in honour of Dr. Ko

292 Aida, Professor Emeritus, The Institute of Applied Microbiology, The University of

- Tokyo, Tokyo, Japan, who introduced the isoprenoid quinone analyses into the microbial systematics.
- The colonies are cream-coloured, moist and creamy after 10 d (Smith and de Hoog
- 296 2011). Budding cells are absent. Hyphae are firm with inflated cells and intensely
- amyloid. Arthroconidia are absent. Gametangia are formed laterally on hyphae as curved
- branches. Asci arise after fusion of a terminal cell with its penultimate cell. Asci are

acicular, 50 - 100 μm long and contain 30 - 100 ascospores. Asci open by rupturing at the

- 300 apex. Ascospores are subhyaline to hyaline, broadly ellipsoidal, occasionally bean-shaped,
- $1 \times 1.5 2 \ \mu m$ and without slime. Fermentation is absent. Grows on glucose, inulin,
- 302 sucrose, raffinose, galactose, lactose, trehalose, maltose, methyl-α-glucoside, starch,
- 303 cellobiose, salicin, L-sorbose, xylose, arabinose, L-arabinose, ethanol, glycerol, ribitol,
- 304 mannitol, glucitol, *myo*-inositol, succinate (w), and gluconate (v), but not on melibiose, L-
- 305 rhamnose, ribose, methanol, erythritol, galactitol, and DL-lactate. No growth on vitamin-
- 306 free medium (Smith and de Hoog 2011). Ubiquinone-9 (Q-9) is present (Cottrell and Kock
- 307 1989).
- 308 Mycobank number is 846280.
- 309 *Neoaidaea tothii* (Zolt) Vu, Yukphan, Tanasupawat et Yamada comb. nov.
- Basionym: *Dipodascus tothii* Zolt, Acta Bot. Hung. 9: 226, 1963.
- 311 Synonym: *Dipodascopsis tothii* (Zolt) Batra et Millner (1978).
- 312 The characteristics of the species are the same as those described in the genus (Smith
- 313 and de Hoog 2011).
- 314 The holotype is CBS $759.85^{T} = NBRC 10813^{T}$.
- 315 MycoBank number is 846281.
- 316

For the detailed characteristics of the taxa mentioned above and the type strains concerned, refer to the related monographs and/or articles.

319

Kurtzman (2003) introduced 'clade' or 'phylogenetic circumscribed genus' as generic
 concept. However, it was not yet perfect to get the taxonomic homogeneous-natured taxon
 for the genus. Namely, the branch lengths should be additionally considered in the
 phylogenetic trees.

324

In the seven ranks used for the systematics of plants and animals, the homogeneousnatured taxa can be available only when the lower-ranked two taxa, i.e., species and genus are dealt with taxonomically. Therefore, the present authors naturally selected the homogeneous-natured taxon in the generic designation, since the longer the phylogenetic distances are the more taxonomic heterogeneities will be increased.

330

Thus, the monophyletic genus *Lipomyces* Lodder et Kreger-van Rij sensu Kurtzman et al. (2007) contained the phylogenetic-distant and the phenotypic-different species such as

333 Waltomyces lipofer, Zygozyma oligophaga, Smithiozyma japonica, Kawasakia arxii,

- 334 Limtongia smithiae, and Kockiozyma suomiensis, all of which were re-classified as junior
- 335 subjective synonyms of L. lipofer, L. oligophagus, L. japonicus, L. arxii, L. smithiae, and
- *L. suomiensis* respectively, in addition to *L. starkeyi*, the type species and its closely
- 337 related *Lipomyces* species, which constituted the genus *Lipomyces* sensu stricto, and so
- 338 corresponded exactly to the so-called family Lipomycetaceae (Jindamorakot et al. 2011,
- 339 2012). On the other hand, the paraphyletic genus *Dipodascopsis* Batra et Millner emend.

340	Kurtzman et al. (2007) was a monotypic genus, which included only <i>D. uninucleata</i>
341	(Jindamorakot et al. 2012). For the remaining two species, one was transferred again to
342	the genus Babjevia as B. anomala (Jindamorakot et al. 2012; Yamazaki et al. 2020) and
343	the other was classified in the new genus Neoaidaea as Neoaidaea tothii gen. nov., comb.
344	nov. (Vu <i>et al</i> . 2021).
345	
346	Acknowledgements
347	The present authors express their sincere thanks for citing a number of articles for detailed
348	discussions. Thanks are also due to Dr. M. Smith, The Netherlands for her valuable
349	suggestions.
350	
351	Funding information
352	The authors received no specific grant from any funding agency.
353	
354	Conflicts of interest
355	The authors declare that there are no conflicts of interest.
356	
357	Author contributions
358	Y.Y., H.T.L.V., P.Y., and S.T. designed the study. H.T.L.V. performed the main
359	experiments. P.Y. instructed how to make the experiments. Y.Y. prepared the manuscript.
360	The detailed discussion was made among Y.Y., H.T.L.V., P.Y., and S.T.
361	
362	REFERENCES
363	Cottrell M, Kock JLF. The yeast family Liopmycetaceae Novak et Zolt emend. van der
364	Walt et al. and the genus Myxozyma van der Walt et al. 1. A historical account of its
365	delimitation and 2. The taxonomic relevance of cellular long chain fatty acid
366	composition and other phenotypic characters. Syst Appl Microbiol 1989; 12: 291-305.
367	Jindamorakot S, Am-in S, Yukphan P, Yamada Y. Limtongia gen. nov. for Zygozyma
368	smithiae (Lipomycetaceae). Ann Microbiol 2011; 61: 689-693.
369	Jindamorakot S, Yukphan P, Yamada Y. Kockiozyma gen. nov., for Zygozyma suomiensis:
370	The phylogeny of the Lipomycetaceous yeasts. Ann Microbiol 2012; 62: 1831-1840.
371	Kock JLF, van der Walt JP, Yamada Y. Smithiozyma gen. nov. (Lipomycetaceae). South
372	<i>Afr J Bot</i> 1995; 61 : 232-233.
373	Kurtzman CP. Phylogenetic circumscription of Saccharomyces and Kluyveromyces and
374	other members of the Saccharomycetaceae, and the proposal of the new genera
375	Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS
376	Yeast Res 2003; 4: 233-245.
377	Kurtzman CP, Albertyn J, Basehoar-Powers E. Multigene phylogenetic analysis of the
378	Lipomycetaceae and the proposed transfer of Zygozyma species to Lipomyces and
379	Babjevia anomala to Dipodascopsis. FEMS Yeast Res 2007; 7: 1027-1034.

380	Kurtzman CP. Discussion of teleomorphic and anamorphic ascomycetous yeasts and
381	yeast-like taxa. In: Kurtzman CP Fell JW Boekhout T (ed). The Yeasts, A Taxonomic
382	Study, 5th edition. vol. 2. London: Elsevier, 2011, p. 293-307.
383	Nakase T, Komagata K. Significance of DNA base composition in the classification of the
384	yeast genus Pichia. J Gen Appl Microbiol 1970; 16: 511-521.
385	Smith MTh, van der Walt JP, Yamada Y, Batenburg-van der Vegte WH. Zygozyma
386	suomiensis sp. nov. (Lipomycetaceae), a new species from Finland. Antonie van
387	Leeuwenhoek 1989; 56: 283-288.
388	Smith MTh, van der Walt JP, Batenburg-van der Vegte WH. Babjevia gen. nov a new
389	genus of the Lipomycetaceae. Antonie van Leeuwenhoek 1995; 67: 177-179.
390	Smith MTh, de Hoog GS. Dipodascopsis Batra & P. Millner emend. Kurtzman, Albertyn
391	& Bosehoar-Powers (2007). In: Kurtzman CP Fell JW Boekhout T (ed). The Yeasts,
392	A Taxonomic Study, 5th edition. vol. 2. London: Elsevier, 2011, p. 379-384.
393	Smith MTh, Kurtzman CP. Lipomyces Lodder & Kreger-van Rij (1952). In: Kurtzman CP
394	Fell JW Boekhout T (ed). The Yeasts, A Taxonomic Study, 5th edition. vol. 2.
395	London: Elsevier, 2011, p. 545-560.
396	van der Walt JP, von Arx JA, Ferreira NP, Richard PDG. Zygozyma gen. nov., a new
397	genus of the Lipomycetaceae. Syst Appl Microbiol 1987; 9: 115-120.
398	van der Walt JP, Smith MTh, Yamada Y. Nakase T, Richard PDG. Lipomyces japonicus
399	sp. nov. from Japanese soil. Syst App. Microbiol 1989a; 11: 302-304.
400	van der Walt JP, Smith MTh, Yamada Y, Richard PDG. Zygozyma arxii sp. n.
401	(Lipomycetaceae), a new species from Southern Africa. Syst Appl Microbiol 1989b:
402	12 , 288-290.
403	van der Walt JP, Wingfield MJ, Yamada Y. Zygozyma smithiae sp. n. (Lipomycetaceae), a
404	new ambrosia yeast from Southern Africa. Antonie van Leeuwenhoek 1990; 58: 95-
405	98.
406	Vu HTL, Yukphan P, Tanasupawat S, Yamada Y. The revision of the family
407	Lipomycetaceae. 27th Ann Meet JSMRS 2021; Gen Lect O-7: p. 15; on line
408	presentation, p. 1-10.
409	Yamada Y, Okada T, Ueshima O, Kondo K. Coenzyme Q system in the classification of
410	the ascosporogenous yeast genera Hansenula and Pichia. J Gen Appl Microbiol 1973;
411	19 : 189–208.
412	Yamada Y, Nakase T. Waltomyces, a new ascosporogenous yeast genus for the Q10-
413	equipped species, slime-producing organisms whose asexual reproduction is by
414	multilateral budding and whose ascospores have smooth surfaces. J Gen Appl
415	<i>Microbiol</i> 1985; 31 : 491-492.
416	Yamada Y. The coenzyme Q system in strains of species of anamorphic yeast genus
417	<i>Myxozyma. J Gen Appl Microbiol</i> 1986; 32 : 259-261.
418	Yamada Y, Nakase T, van der Walt JP. The coenzyme Q system in strains of species in
419	the ascosporogenous yeast genera Lipomyces and Waltomyces. Trans Mycol Soc Jpn

420 1986; **27**: 313-319.

- 421 Yamada Y, Nogawa C. The phylogeny of the Lipomycetaceous yeasts based on the partial
 422 sequences of 18S and 26S ribosomal RNAs. *Bull Fac Agric Shizuoka Univ* 1995a 45:
 423 13–23.
- Yamada, Y. and Nogawa, C. *Kawasakia* gen. nov., for *Zygozyma arxii*, the Q9- equipped
 species in the genus *Zygozyma* (Lipomycetaceae). *Bull Fac Agric Shizuoka Univ*1995b; 45: 31–34.
- Yamazaki A, Kawasaki H. *Lipomyces chichibuensis* sp. nov., isolated in Japan, and
 reidentification of the type strains of *Lipomyces kononenkoae* and *Lipomyces spencermartinsiae*. *Int J Syst Evol Microbiol* 2014; 64: 2566–2572.
- Yamazaki A, Kanti A, Kawasaki H. Three novel lipomycetaceous yeasts, *Lipomyces maratuensis* sp. nov., *Lipomyces tropicalis* sp. nov. and *Lipomyces kalimantanensis*f.a. sp. nov. isolated from soil from the Maratua and Kalimantan islands, Indonesia.

433 *Mycoscience* 2017a; **58**: 413-423.

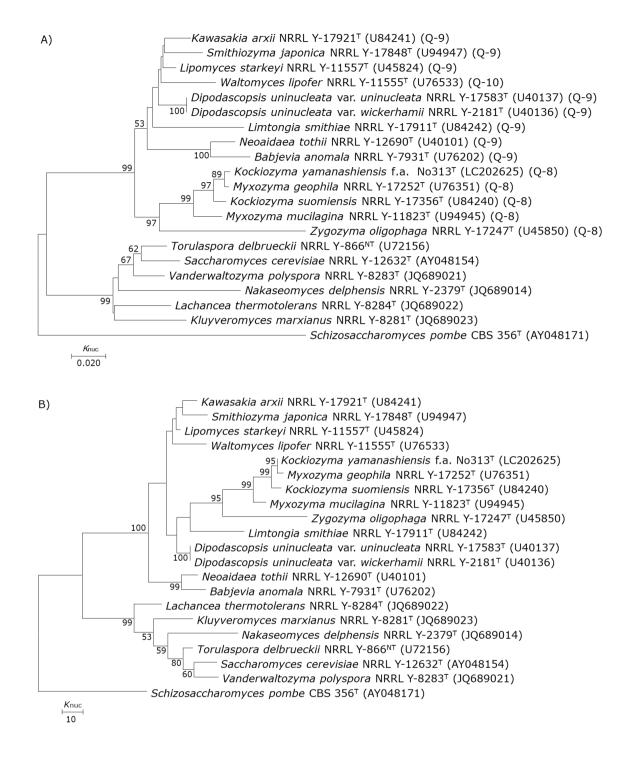
434 Yamazaki A, Yanagiba M, Naganuma T. Two novel Lipomycetaceous yeast species,
435 *Lipomyces okinawensis* sp. nov. and *Lipomyces yamanashiensis* f.a., sp. nov., isolated
436 from soil in the Okinawa and Yamanashi prefectures, Japan. *Int J Syst Evol Microbiol*

437 2017b; **67**: 2941-2946.

- 438 Yamazaki A, Lorliam W, Kawasaki H, Uchino M, Suzuki K. Fourteen novel
 439 lipomycetaceous yeast species isolated from soil in Japan and transfer of
- 440 *Dipodascopsis anomala* to the genus *Babjevia* based on ascospore production
- 441 phenotype. *Int J Syst Evol Microbiol* 2020; **70**: 1372-1397.
- 442 443
- 444

445

446


447

448

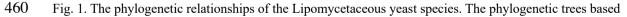

	Sequence similarity (%)										
Species											
	1	2	3	4	5	6	7	8	9	10	11
1. Lipomyces starkeyi											
2. Waltomyces lipofer	95.2										
3. Zygozyma oligophaga	85.5	83.0									
4. Babjevia anomala	91.7	91.0	81.6								
5. Smithiozyma japonica	96.4	93.6	85.5	89.9							
6. Kawasakia arxii	97.5	94.1	85.7	92.2	95.7						
7. Limtongia smithiae	92.4	89.9	82.9	86.8	90.6	91.0					
8. Kockiozyma suomiensis	90.6	88.9	85.9	86.2	90.3	90.6	86.4				
9. Myxozyma geophila	90.4	89.0	86.6	85.9	90.4	90.3	85.7	98.0			
10. D. uninucleata var. uninucleata	95.7	94.0	85.5	90.4	95.0	95.4	91.2	90.2	90.2		
11. D. uninucleata var. wickerhamii	95.6	93.8	85.4	90.3	94.9	95.2	91.0	90.1	90.1	99.8	
12. Neoaidaea tothii	92.6	90.5	83.4	95.6	90.1	95.2	87.8	87.8	86.7	90.6	90.:

Table 1. The pair-wise 26S rRNA gene D1/D2 domain sequence similarity.

D. uninucleata; *Dipodascopsis uninucleata*: The type strains were used of the respective species. The pair-wise 26S rRNA gene D1/D2 domain sequence similarities were calculated for 555-568 bases with the program BioEdit (version 7.2.5) (Hall, *GERF Bull Biosci* 2011; **2**: 60,).

- 461 on the 26S rRNA gene D1/D2 domain sequences (526 bases) were constructed for the Lipomycetaceous
- 462 yeast species by the neighbour-joining method (A) and by the maximum parsimony method (B).
- 463 Saccharomyces cerevisiae and its related species were utilized for reference standards. Schizosaccharomyces
- 464 *pombe* was used as outgroup. The evolutionary distances were computed using the Kimura 2-parameter
- 465 method (Kimura, *J Mol Evol* 1980; 16: 111). The numerals at the nodes of the respective branches indicate
- 466 bootstrap values (%) deduced from 1000 replications (Felsenstein, *Evolution* 1985; **39**: 783). The bootstrap

- 467 values below 50% were deleted. For the additional phylogenetic trees based on the concatenated four-gene
- 468 sequences, i.e., 18S rRNA, 26S rRNA, mitochondrial small subunit rRNA, and $EF1-\alpha$, derived from the
- three methods, refer to Jindamorakot et al. (2012). According to the theory of Kurtzman et al. (2007), the
- 470 Lipomycetaceous yeast species are designated as *Lipomyces lipofer*, *L. oligophagus*, *L. japonicus*, *L.*
- 471 *smithiae*, *L. arxii*, *L. suomiensis*, *Dipodascopsis uninucleata*, *D. anomala*, and *D. tothii* instead.
- 472
- 473