1 2	Microbial Systematics
23	The Revision of Schizosaccharomycetaceae*
4	The Revision of Schizosaccharomycetaceae
4 5	Huong Thi Lan Vu ¹ , Pattaraporn Yukphan ² , Somboon Tanasupawat ³ , Kozaburo Mikata ⁴ ,
6	Yuzo Yamada ^{**2,5}
7	
8 9	¹ Department of Microbiology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-HCM City, 227 Nguyen Van Cu Street, Ward 4,
10	District 5, Hochiminh City, Vietnam
11	² BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and
12	Biotechnology (BIOTEC), National Science and Technology Development Agency
13	(NSTDA), 113 Thailand Science Park, Phaholyothin Road, Klong 1,Klong Luang,
14	Pathumthani 12120, Thailand
15	³ Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences,
16	Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok
17	10330, Thailand
18	⁴ Institute for Fermentation, Osaka, 2-17-85 Juso-honmachi, Yodogawa-ku, Osaka 532-
19	8686, Japan
20	⁵ Laboratory of Applied Microbiology (Professor Emeritus), Department of Agricultural
21	Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku,
22	Shizuoka 422-8529, Japan;
23	
24	*This work was presented at The 28th Annual Meeting of JSMRS (Yamada et al.
25	2022a).
26	
27	**Corresponding author
28	Yuzo Yamada
29	E-mail: ymdy333@kdt.bigglobe.ne.jp
30	ORCID, 0000-0002-2799-7045
31	
32	Keywords: Schizosaccharomyces; Octosporomyces; Hasegawaea; fission yeasts
33	
34	Abstract
35	Although the genus Hasegawaea was introduced along with the recognition of the
36	genus Octosporomyces in the classification of fission yeasts, the two additional genera
37	were neither accepted nor recognized. However, the genus Schizosaccharomyces sensu
38	Kurtzman et Robnett was taxonomically heterogeneous-natured and corresponded to a
39	higher-ranked taxon, i.e., a monotypic family. Thus, the following three genera were
40	confirmed in the family Schizosaccharomycetaceae. The genus Schizosaccharomyces

41 sensu stricto was comprised of *Schizosacchromyces pombe*, the genus *Octosporomyces*

42 was of the three species, *Schizosaccharomyces octosporus*, *Schizosaccharomyces*

- 43 osmophilus, and Schizosaccharomyces cryophilus as Octosporomyces octosporus,
- 44 Octosporomyces osmophilus, and Octosporomyces cryophilus, and the genus
- 45 *Hasegawaea* was of *Schizosaccharomyces japonicus* as *Hasegawaea japonica*. In
- 46 conclusion, the precise classification of microorganisms will not be able to be expected
- 47 in the generic designation without the presence of taxonomic homogeneous-natured
- 48 taxa. The phylogenetic distances have to be absolutely considered. Namely, the longer
- 49 the distances are, the more taxonomic heterogeneous natures will be increased in the
- 50 resulting genus.
- 51

52 Supplementary Abstrct

The family Schizosaccharomycetaceae Beijerinck et Klöcker						
Species						
S. pombe Lindner (1893)						
<i>O. octosporus</i> (Beijerinck) Kud- <u>r</u> iavzev (1960)						
O. osmophilus (Brysch-Herzberg et al.) Vu et al. comb. nov.						
<i>O. cryophilus</i> (Helston et al.) Vu et al. comb. nov.						
<i>H. japonica</i> (Yukawa et Maki) Yamada et Banno (1987)						

The family Schizosaccharomycetaceae Beijerinck et Klöcker	
Genus	Species
Schizosaccharomyces Lindner (1893) sensu Kurtzman et	S. pombe Lindner (1893),
Robnett (1991)	S. octosporus Beijerinck (1894),
	S. japonicus Yukawa et Maki (1931),
	S. cryophilus Helston et al. (2010),
	S. osmophilus Brysch-Herzberg et al.

(2019)

- 53
- 54
- 55
- 56 In the family Schizosaccharomycetaceae Beijerinck ex Klöcker, the genus *Hasegawaea*
- 57 Yamada et Banno was introduced for *Schizosaccharomyces japonicus*, along with the
- 58 recognition of the genus *Octosporomyces* Kudriavzev, based on the differences in
- 59 ubiquinone isoprenologues as one of the most decisive criteria as well as in ascospore

60	morphology (Yamada and Banno 1987, 1989; Yamada <i>et al.</i> 1973; Mikata and Banno
61	1987). The resulting three genera <i>Schizosaccharomyces</i> , <i>Octosporomyces</i> , and
62	<i>Hasegawaea</i> were thus taxonomically homogeneous-natured, i.e., morphologically, physiologically, chemotaxonomically, phylogenetically, and genetically. However, the
63 64	two generic names were neither accepted nor recognized taxonomically (Kurtzman and
65	Robnett 1991, 1998; Vaughan-Martini and Martini 2011).
66	This paper describes the historical surveys in the classification of fission yeasts to
67	retrieve the generic names of <i>Hasegawaea</i> and <i>Octosporomyces</i> from the phylogenetic
68	and the phenotypic points of view.
69	
70	The family Schizosaccharomycetaceae Beijerinck ex Klöcker
71	The type genus is <i>Schizosaccharomyces</i> . The three genera are included.
72	
73	Genus I. Schizosaccharomyces Lindner (MB 4905)
74	Four-spored, warty ascospores and ubiquinone-10 (Q-10)
75	Schizosaccharomyces pombe Lindner (1893) (MB 212377)
76	The type strain is NBRC 1628^{T} (= CBS 356^{T} = CLIB 833^{T}).
77	
78	Kurtzman and Robnett (1991) described that Schizosaccharomyces pombe and
79	Schizosaccharomyces octosporus were more closely related to one another than were
80	Saccharomyces kluyveri and Saccharomyces unisporus and that Schizosaccharomyces
81	octosporus and Schizosaccharomyces japonicus were separated by a distance only 25%
82	greater than found for outlying Saccharomyces species based on their phylogenetic tree.
83	However, the two Saccharomyces species were later transferred to the separate two
84	genera Lachancea and Kazachstania as Lachancea kluyveri and Kazachstania unispora
85	(Kurtzman 2003), indicating that the Schizosaccharomyces species should also share the
86	same fate. Therefore, the authors' opinion rejecting the two generic names of fission
87	yeasts completely lost its validity due to the mistakes in reference standard or reference
88	control selection.
89	Yamada et al. (1993) determined the partial base sequences of fission yeasts in the
90	three regions of 26S rRNA (positions 493-622, 130 bases, designated as region a) and
91	positions 1611-1835, 225 bases, designated as region b) and 18S rRNA (positions 1451-
92	1618, 168 bases, designated as region c). In the partial base sequencings, Schizosac-
93	charomyces octosporus represented one base substitution, when compared with
94	Schizosaccharomyces pombe, in region c. However, the maximum homologies were
95	very low (75-77%) in region a and the base substitutions were very high (45-16) in
96	region b compared with the remaining two species. In addition, Schizosaccharomyces
97	japonicus represented very low maximum homologies and very high base substitutions
98	in all the three regions, i.e., 75-84% maximum homologies in regions a , 45-37 base
99	substitutions in region b , and 7-6 base substitutions in region c .

100	Actually, the phylogenetic branches among Schizosaccharomyces pombe,
101	Octosporomyces octossporus and Hasegawaea japonica were much longer than that
102	between Vanderwaltozyma polyspora (Kurtzman 2003) and Saccbaromyces cerevisiae
103	used as reference standards (Fig. 1).
104	Additionally, the calculated sequence similarities (84.9-91.5%) among the three
105	species were lower than that (91.7%) (Vu et al. 2021; Yamada et al. 2022b) between
106	Babjevia anomala (= Dipodascopsis anomala, Q-9) and Lipomyces starkeyi (Q-9) in the
107	26S rRNA gene D1/D2 domain sequences (Table 1). By the way, the sequence simi-
108	larity between Vanderwaltozyma polyspora (Q-6) and Saccharomyces cerevisiae (Q-6)
109	was 93.8% (unpublished data).
110	Thus, the genera Hasegawaea and Octosporomyces should be enough to be
111	unequivocally accepted and retained in the classification of fission yeasts.
112	
113	Genus II. Octosporomyces Kudriavzev (MB 3551)
114	Basically eight-spored, smooth ascospores and ubiquinone-9 (Q-9)
115	The type species is Octosporomyces octosporus.
116	Three species are included.
117	1. Octosporomyces octosporus (Beijerinck) Kudriavzev (1960) (MB 335285)
118	Basionym: Schizosaccharomyces octosporus Beijerinck (1894).
119	The type strain is NBRC 10373^{T} (= CBS 371^{T} = CLIB 832^{T}).
120	2. Octosporomyces osmophilus (Brysch-Herzberg, Tobias, Seidel, Wittmann,
121	Fischer, Dlauchy et Péter) Vu, Yukphan, Tanasupawat, Mikata et Yamada comb.
122	nov.
123	Basionym: Schizosaccharomyces osmophilus Brysch-Herzberg, Tobias, Seidel,
124	Wittmann, Fischer, Dlauchy et Péter, FEMS Yeast Res 19; foz038-10: 2019.
125	The type strain is CBS 15793^{T} (= CLIB 3267^{T})
126	MycoBank number is 846278.
127	3. Octosporomyces cryophilus (Helston, Box, Tang et Baumann) Vu, Yukphan,
128	Tanasupawat, Mikata et Yamada comb. nov.
129	Basionym: <i>Schizosaccharomyces cryophilus</i> Helston, Box, Tang et Baumann, FEMS
130	Yeast Res 10; 784: 2010.
	MycoBank number 1s 8462/9.
 131 132 133 134 135 136 137 138 139 	The type strain is NRRL Y-48691 ^T (= CBS 11777 ^T = NBRC 106824 ^T). MycoBank number is 846279. In the fission yeasts, the two new <i>Schizosaccharomyces</i> species were described (Helston <i>et al.</i> 2010; Brysch-Herzberg <i>et al.</i> 2019). Of the two, <i>Schizosaccharomyces osmophilus</i> was phylogenetically very closely related to <i>Octosporomyces octosporus</i> (Fig. 1). The sequence similarity was 98.1% between the two species (Table 1), indicating that the new species was obviously classified in the genus <i>Octosporomyces</i> but not in the genus <i>Schizosaccharomyces</i> sensu

140 stricto. The phylogenetic data obtained above was supported by Brysch-Herzberg et al. 141 (2019) who calculated 1.8% base substitution (= 98.2% sequence similarity). However, 142 the authors accommodated the new species to the genus Schizosaccharomyces sensu 143 Kurtzman et Robnett, which is taxonomic-heterogeneous natured, but not to the genus 144 Octosporomyces Kudriavzey, which is phylogenetically close-related and taxonomic-145 homogeneous natured. The calculated sequence similarity mentioned above was almost 146 the same as that (98.0%) between *Kockiozma suomiensis* (= Zvgozvma suomiensis, O-8) 147 and Myxozyma geophila (Q-8) (Vu et al. 2021; Yamada et al. 2022b). 148 Concerning Schizosaccharomyces cryophilus, the phylogenetic position of the 149 species was not so closely related (Fig. 1). The sequence similarities were 95.2% and 150 96.3% respectively to Schizosaccharomyces octosporus and Schizosaccharomyces 151 osmophilus (Table 1). The calculated sequence similarities were not so high, so that the 152 species may be able to be accommodated to a different genus, as shown in the 153 relationship between Babjevia anomala and Neoaidaea tothii, in which the calculated 154 sequence similarity was 95.6% (Vu et al. 2021; Yamada et al. 2022b). However, it is 155 adequate at the present time to be temporarily classified in the genus Octosporomyces, since the species had ubiquinone-9 (Q-9) (Kaino et al. 2018) and an almost identical 156 157 length of ITS1 (307 bp, internal transcribed spacer 1) to that (343 bp) of Schizo-158 saccharomyces octosporus (Helston et al. 2010). Incidentally, Schizosaccharomyces 159 pombe had 417 bp ITS1 and Schizosaccharomyces japonicus had 183 bp ITS1. 160 161 Genus III. Hasegawaea Yamada et Banno (MB 25179) 162 Basically eight-spored, smooth ascospores without papillae, dimorphic growth, 163 respiration deficiency and no detectable ubiquinone (a trace amount of Q-10) 164 Hasegawaea japonica (Yukawa et Maki) Yamada et Banno (1987) (MB 132784) 165 Basionym: Schizosaccharomyces japonicus Yukawa et Maki (1931). 166 Synonym: Octosporomyces japonicus (Yukawa et Maki) Kudriavzev (1960). The type strain is NBRC 1609^T (= CBS 354^T = CLIB 3267^T) 167 168 169 Schizosaccharomyces japonicus is especially distant phylogenetically, i.e., the 170 species is the furthest removed from other species among the fission yeasts (Liu et al. 171 2009; Rhind et al. 2011; Aoki et al. 2017). 172 Liu et al. (2009) made phylogenomic analyses on the basis of the monophyly of 173 Taphrinomycotina, including Schizosaccharomyces fission yeasts. In the phylogenetic 174 tree, Schizosaccharomyces japonicus evolved first and separated from the remaining 175 two species, Schizosaccharomyces pombe and Schizosaccharomyces octosporus, as 176 described above (Aoki et al. 2017). There is, however, a certain risk that a heterogeneous-natured taxon is sometimes given taxonomically in the generic 177 178 designation (Vu et al. 2021; Yamada et al. 2022b), when based on the monophyly only, 179 and the resulting genus corresponds to a higher-ranked taxon, e.g., the family 180 Schizosaccharomycetaceae. In the monotypic family Schizosaccharomycetaceae, the

5

181 genus *Schizosaccharomyces* sensu Kurtzman et Robnett actually had quite hetero-

- 182 geneous natures genetically (Helston et al. 2010), chemotaxonomically (Yamada et *al.*
- 183 1973; Mikata and Yamada 1999; Kaino et al. 2018), and physiologically (Vaughan-
- 184 Martini and Martini 2011; Sipiczki et al. 1998; Aoki et al. 2017). In addition, it is of
- 185 interest that the branch between Schizosaccharomyces japonicus and Schizosaccharo-
- 186 myces pombe was much longer than that between Saccharomyces (Q-6) and Pichia (Q-
- 187 7) in the phylogenetic tree based on the concatenated sequences of 13 proteins (cox1,
- 188 *cox2*, *cox3*, *cob*, *atp6*, *atp9* and *nad1*, *nad2*, *nad3*, *nad4*, *nad4L*, *nad5*, *nad6*) encoded

by mtDNA. The experimental data obtained above indicated that the genus *Hasegawaea*could not be rejected but retained.

A maximum-likelihood phylogeny of the fission yeasts from the concatenationbased analysis of 815 BUSCO amino acid genomic sequences (total 56,2376 sites) was studied by Rhind *et al.* (2011). The resulting phylogenetic tree was very similar in topology to that of Liu *et al.* (2009) as well as to that mentioned above based on the 26S rRNA gene D1/D2 domain sequences (Fig. 1).

In the comparative study on *wtf* genes in the family Schizosaccharomycetaceae by De Carvalho (2020), it was emphasized that the only *Schizosccharomyces japonicus* did not have such genes. And the evolutionary analysis indicated that a very similar

- 199 topology to those described above was found in the resulting phylogenetic tree.
- 200 Schizosaccharomyces japonicus was first distantly removed from the others, and then
- 201 *Schizosaccharomyces pombe* was. In contrast, the branches were quite short among
- 202 Schizosaccharomyces octosporus, Schizosaccharomyces osmophilus, and Schizo-
- saccharomyces cryophilus, indicating that the existence of three genera was confirmed and the latter three species were adequate to be accommodated to the genus
- 205 Octosporomyces (Fig. 2).
- 206

Kurtzman (2003) introduced 'clade' or 'phylogenetically circumscribed genus' as
generic concept. However, it was not yet perfect to get the taxonomic homogeneousnatured taxon for the genus. Namely, the branch lengths should be additionally
considered in the phylogenetic trees.

211

In the seven ranks used for the systematics of plants and animals, the taxonomically homogeneous taxa can be available only when the lower-ranked two taxa, i.e., species and genus are used. Therefore, the present authors naturally selected a taxonomic homogeneous-natured taxon in the generic designation, since the longer the phylogenetic distances are the more taxonomic heterogeneities will be increased.

- 217
- Thus, the genus *Schizosaccharomyces* Lindner sensu Kurtzman et Robnett (1991)
 would correspond to the monotypic family that actually includes the phylogenetic-
- 220 distant and the phenotypic-distinct species, as far as the genus is not divided into three,

221	i.e., Schsizosaccharomyces Lindner (1893) sensu stricto, Octosporomyces Kudriavzev
222	(1960), and Hasegawaea Yamada et Banno (1987).
223	
224	Acknowledgements
225	The authors express their sincere thanks for citing a number of articles in detailed
226	discussions.
227	
228	Funding information
229	The authors received no specific grant from any funding agency.
230	
231	Conflict of interest
232	The authors declare that there are no conflicts of interest.
233	
234	Author contributions
235	Y.Y., H.T.L.V., P.Y., S.T., and K.M designed the study. H.T.L.V. performed the main
236	experiments. P.Y. instructed how to make the experiments. Y.Y. prepared the
237	manuscript. The detailed discussion was made among Y.Y., H.T.L.V., P.Y., S.T., and
238	K.M.
239	
240	References
241	Aoki K, Furuya K, Niki H. Schizosaccharomyces japonicus: A distinct dimorphic yeast
242	among the fission yeasts. Cold Spring Harb Protoc 2017; doi: 10.1101/pdb.
243	top082651.
244	Brysch-Herzberg M, Tobias A, Seidel M, Wittmann R, Wohlmann E, Fischer R,
245	Dlauchy D, Péter G. Schizosaccharomyces osmophilus sp. nov., an osmophilic
246	fission yeast occurring in bee bread of different solitary bee species. FEMS Yeast
247	<i>Res</i> 2019; 19 : foz038.
248	De Carvalho M. wft: killing gametes for more than 110 million years. The Open
249	University 2020.
250	Helston M, Box JA, Tang W, Baumann P. Schizosaccharomyces cryophilus sp. nov., a
251	new species of fission yeast. FEMS Yeast Res 2010; 10: 779-786.
252	Kaino, T, Tonoko K, Mochizuki S, Takashima Y, Kawamukai M. Schizosaccharomyces
253	japonicus has low levels of CoQ10 synthesis, respiration deficiency and efficient
254	ethanol production. Biosci Biotechnol Biochem 2018; 82: 1031-1042.
255	Kurtzman CP. Phylogenetic circumscription of Saccharomyces and Kluyveromyces and
256	other members of the Saccharomycetaceae, and the proposal of the new genera
257	Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora.
258	FEMS Yeast Res 2003; 4: 233-245.
259	Kurtzman CP, Robnett CJ. Phylogenetic relationships among species of Saccharomyces,
260	Schizosaccharomyces, Debaryomyces and Schwanniomyces determined from partial
261	ribosomal RNA sequences. Yeast 1991; 7: 61-72.

- Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from
 analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. *Antonie van Leeuwenhoek* 1998; **73**: 331-371.
- Liu Y, Leigh JW, Brinkmann H, Cushion MT. Rodriguez-Ezpeleta N, Philippe H, Lang
 BF. Phylogenomic analyses support the monophyly of Taphrinomycotina, including *Schizosaccharomyces* fission yeasts. *Mol Biol Evol* 2009; 26, 27-34.
- Mikata M, Banno I. Surface structures of ascopsores of the genus *Schizosaccharomyces*.
 IFO Res Commun 1987; 13: 45-51.
- Mikata K, Yamada Y. The ubiquinone system of *Hasegawaea japonica* (Yukawa et
 Maki) Yamada et Banno: A new method for identifying ubiquinone homologs from
 yeast cells. *IFO Res Commun* 1999; 19: 41-46.
- 273 Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S,
- Lin MF, Heiman DI, Young SK, Furuya K. *et al.* Comparative functional genomics
 of the fission yeasts. *Science* 2011; 332 (6032): 930-936.
- doi:10.1126/science.1203357.
- Sipiczki M, Takeo K, Yamaguchi M, Yoshida S, Miklos I. Environmentally controlled
 dimorphic cycle in a fission yeast. *Microbiology* 1998; 144: 1319-1330.
- Vaughan-Martini A, Martini A. *Schizosaccharomyces* Lindner (1893) In: Kurtzman CP
 Fell JW Boekhout T (ed). The Yeasts: A Taxonomic Study, 5th edition. vol. 2.
 London: Elsevier, 2011, p. 779-784.
- Vu HTL, Yukphan P, Tanasupawat S, Yamada Y. The revision of the family Lipomycetaceae. *JSMRS 27th Ann Meet* 2021; *Gen Lect* O-7: p. 15; on line presentation,
 p. 1-10.
- Yamada Y, Banno I. *Hasegawaea* gen. nov., an ascosporogenous yeast genus for the
 organisms whose asexual reproduction is by fission and whose ascospores have
 smooth surfaces without papillae and which are characterized by the absence of
 coenzyme Q and by the presence of linoleic acid in cellular fatty acid composition. *J Gen App. Microbiol* 1987; **33**: 295-298.
- Yamada Y Banno I. A proposal to divide the genus *Schizosaccharomyces* Lindner sensu
 Yarrow into three separate genera. *Yeast*; 1989: 5, S393-S398.
- Yamada Y, Arimoto M, Kondo K. Coenzyme Q system in the classification of the
 ascosporogenous yeast genus *Schizosaccharomyces* and the yeast-like genus
 Endomyces. J Gen Appl Microbiol 1973; 19: 353-358.
- Yamada Y, Asahi T, Maeda K, Mikata K. The phylogenetic relationships of fission
 yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: The
 recognition of *Hasegawaea* Yamada et Banno along with *Schizosaccharomyces*Lindner. *Bull Fac Agric Shizuoka Univ* 1993; 43: 29-38.
- Yamada Y, Vu HTL, Yukphan P, Tanasupawat S, Mikata K. The Revision of Schizosaccharomycetaceae. *JSMRS 28th Ann Meet* 2022a; *Gen Lect* O-2: p. 22.
- 301 Yamada Y, Vu HTL, Yukphan P, Tanasupawat S. The Revision of Lipomycetaceae. Jxiv
- 302 2022b; DOI: https://doi.org/10.51094/Jxiv.189.

- 303
- 304
- 305
- 306

	Similarity (%)				
Species	S. pombe	0. octosporus	O. osmophilus	O. cryophilus	H. japonica
Schizosaccharomyces pombe CBS 356 ^T	100	90.5	90.7	91.5	89.6
Octosporomyces octosporus CBS 371°		100	98.1	95.2	84.9
Octosporomyces osmophilus SZ134-FG-A ^T			100	96.3	86.1
Octospormyces cryophilus NRRLY-48691 ^T				100	86.1
Hasegawaea japonica CBS 354 ^T					100

Table 1. The pair-wise 26S rRNA gene D1/D2 domain sequence similarity.

The pair-wise 26S rRNA gene D1/D2 domain sequence similarities were calculated for 590-604 bases with the program BioEdit (version 7.2.5) (Hall, BioEdit: An important software for molecular biology. *GERF Bull Biosci* 2011; **2**: 60).

- 307 308
- 309
- 310
- 211
- 311

312 0.020

313 Fig. 1. The phylogenetic tree of fission yeasts based on the 26S rRNA gene D1/D2 domain

314 sequences. The evolutionary history was inferred using the neighbour-Joining method (Saito and

315 Nei. Mol Biol Evol 1987; 4: 406). Saccharomyces cerevisiae and Vanderwaltozyma polyspora were

316 used as outgroups. The optimal tree with the sum of branch length = 0.40892606 was shown. The

317 percentage of replicate trees, in which the associated taxa clustered together in the bootstrap test

318 (1000 replicates) were shown next to the branches (Felsenstein. *Evolution* 1985; **39**: 783. The tree

319 was drawn to scale, with branch lengths in the same units as those of the evolutionary distances used

Fig. 1

- 320 to infer the phylogenetic tree. The evolutionary distances were computed using the Kimura 2-
- 321 parameter method (Kimura. *Evolution* 1980; **16**: 111) and are in the units of the number of base
- 322 substitutions per site. The analysis involved seven nucleotide sequences. All positions containing
- 323 gaps and missing data were eliminated. There was a total of 563 positions of the 26S rRNA gene
- 324 D1/D2 domain sequences in the final dataset. Evolutionary analyses were conducted in MEGA7
- 325 (Kumar *et al. Mol Biol Evol* 2016; **33**: 1870). According to the theory of Dr. Kurtzman (Kurtzman
- and Robnett 1991, 1998; Vaughan-Martini and Martini 2011), all the fission yeasts were designated
- 327 as Schizosaccharomyces pombe, Schizosaccharomyces octosporus, Schizosaccharomyce japonicus,
- 328 Schizosaccharomyces cryophilus, and Schizosaccharomyces osmophilus.
- 329
- 330

- Fig. 2. The phylogenetic tree of fission yeasts based on the 26S rRNA gene D1/D2 domain
- 333 sequences. The evolutionary history was inferred using the neighbour-Joining method.
- 334 Saccharomyces cerevisiae was used as outgroup. The optimal tree with the sum of branch length =
- 335 0.32701129 was shown. The percentage of replicate trees, in which the associated taxa clustered
- 336 together in the bootstrap test (1000 replicates) are shown next to the branches. The analysis involved
- 337 23 nucleotide sequences. There was a total of 494 positions of the 26S rRNA gene D1/D2 domain
- sequences in the final dataset. The phylogenetic tree was constructed under the same condition as in
 Fig. 1.
- 340
- 341
- 342

343

344 Appendix:

- 345 According to Gabor Peter (private communication), the calculated pair-wise 26S
- 346 rRNA gene D1/D2 domain sequence similarity was 72-78% between *Novakomyces olei*
- 347 and *Schizosaccharomyces pombe*.

348