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Abstract—Cardiovascular diseases (CVDs) remain the leading
cause of mortality worldwide, with early detection being crucial
for effective intervention. Artificial intelligence (AI) has shown
promise in analyzing complex medical data for predictive ana-
lytics.

This study aimed to develop and validate an AI-powered
predictive model for early detection of cardiovascular diseases
using electronic health records (EHRs).

We conducted a retrospective cohort study using EHR data
from 50,000 patients collected between 2015 and 2020. We
developed a deep learning model combining convolutional neural
networks (CNNs) and long short-term memory (LSTM) networks
to analyze structured and unstructured EHR data. The model
was trained on 70% of the data and validated on the remaining
30%. Performance metrics included accuracy, sensitivity, speci-
ficity, and area under the receiver operating characteristic curve
(AUC-ROC).

The AI model achieved an overall accuracy of 92.7% (95%
CI: 91.8%-93.6%), sensitivity of 89.4% (95% CI: 87.9%-90.9%),
specificity of 94.1% (95% CI: 93.2%-95.0%), and AUC-ROC of
0.96 (95% CI: 0.95-0.97). The model identified key predictors
including age, blood pressure, cholesterol levels, diabetes status,
and lifestyle factors. When compared to traditional risk assess-
ment tools like the Framingham Risk Score, our AI model showed
a 23.5% improvement in early detection rates.

The AI-powered predictive model demonstrated superior per-
formance in early detection of cardiovascular diseases compared
to traditional methods. This approach has the potential to
enhance preventive cardiology and enable timely interventions,
ultimately reducing CVD morbidity and mortality.
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I. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of
death globally, accounting for approximately 17.9 million
deaths annually according to the World Health Organization
[1]. Early detection and intervention are critical for reducing
mortality and improving patient outcomes [2]. Traditional risk
assessment tools, such as the Framingham Risk Score and
the ACC/AHA Pooled Cohort Equations, have been widely
used but have limitations in predictive accuracy, especially for
diverse populations [3].

The rapid adoption of electronic health records (EHRs)
has created unprecedented opportunities for leveraging large-
scale healthcare data for predictive analytics [4]. Artificial
intelligence (AI), particularly deep learning techniques, has
shown remarkable success in analyzing complex medical data
and identifying patterns that may not be apparent through
traditional statistical methods [5].

Recent studies have demonstrated the potential of AI in
various healthcare applications, including medical imaging,
clinical decision support, and risk prediction [6], [7]. However,
there remains a need for comprehensive validation of AI
models in real-world clinical settings, particularly for cardio-
vascular disease prediction [8].

This study aims to develop and validate an AI-powered
predictive model for early detection of cardiovascular diseases
using EHR data. We hypothesize that our deep learning
approach will outperform traditional risk assessment tools and
provide clinically actionable insights for preventive cardiology.

II. BACKGROUND

A. Cardiovascular Disease Risk Prediction
Cardiovascular disease risk prediction has traditionally re-

lied on statistical models that incorporate demographic, clin-
ical, and laboratory variables. The Framingham Risk Score,
developed in 1998, was one of the first widely adopted tools
for predicting 10-year risk of coronary heart disease [9].
More recently, the ACC/AHA Pooled Cohort Equations were
developed to predict atherosclerotic cardiovascular disease risk
[3].

While these tools have been valuable in clinical practice,
they have several limitations. First, they were developed pri-
marily using data from populations of European ancestry and
may not generalize well to other ethnic groups [10]. Second,
they typically incorporate a limited set of variables and may
not capture complex interactions between risk factors [11].
Third, they often fail to account for temporal changes in risk
factors and the dynamic nature of disease progression [12].

B. AI in Healthcare
Artificial intelligence has emerged as a powerful tool for an-

alyzing complex healthcare data. Machine learning algorithms
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can identify patterns and relationships in large datasets that
may not be apparent through traditional statistical methods
[5]. Deep learning, a subset of machine learning, uses neural
networks with multiple layers to progressively extract higher-
level features from raw input [13].

In the context of cardiovascular disease prediction, several
studies have demonstrated the potential of AI approaches. For
example, [14] developed an AI algorithm to detect asymp-
tomatic left ventricular dysfunction from electrocardiograms,
achieving a sensitivity of 85.7% and specificity of 85.7%.
Similarly, [15] used deep learning to predict cardiovascular
risk factors from retinal fundus photographs, demonstrating
the ability of AI to extract clinically relevant information from
unconventional data sources.

Recent advances in quantum-accelerated neural networks
have shown promise in handling complex medical data im-
putation tasks [24], which could further enhance the quality
of EHR data for predictive modeling.

C. Electronic Health Records for Predictive Analytics

Electronic health records provide a rich source of data for
predictive analytics, containing structured data (e.g., laboratory
results, vital signs, medications) and unstructured data (e.g.,
clinical notes, discharge summaries) [4]. The longitudinal
nature of EHRs allows for tracking patient health over time,
enabling dynamic risk assessment [7].

However, EHR data presents several challenges for AI
applications. These include data heterogeneity, missing values,
irregular sampling intervals, and documentation biases [16].
Addressing these challenges requires sophisticated data pre-
processing techniques and robust modeling approaches [17].

Data standardization efforts across different healthcare sys-
tems have been critical for improving interoperability and
enabling more effective data analysis [25]. Similar standard-
ization approaches in healthcare data could enhance the quality
and utility of EHRs for predictive analytics.

III. METHODS

A. Study Design and Data Source

We conducted a retrospective cohort study using de-
identified EHR data from 50,000 patients collected between
January 2015 and December 2020 from three academic med-
ical centers in the United States. The study was approved by
the Institutional Review Board of each participating institution
(Protocol #2021-045).

B. Patient Population

The study included patients aged 30-80 years with at least
three years of continuous EHR data prior to the index date.
Patients with a prior diagnosis of cardiovascular disease (my-
ocardial infarction, stroke, heart failure, or revascularization
procedures) before the index date were excluded. The final
cohort consisted of 50,000 patients, of whom 8,725 (17.45%)
developed cardiovascular disease during the follow-up period.

C. Data Collection and Variables

We extracted the following variables from the EHRs:
• Demographics: Age, sex, race/ethnicity, socioeconomic

status (based on zip code)
• Clinical measurements: Blood pressure, body mass in-

dex (BMI), heart rate
• Laboratory results: Total cholesterol, LDL cholesterol,

HDL cholesterol, triglycerides, fasting glucose, HbA1c,
creatinine

• Medical history: Diabetes, hypertension, dyslipidemia,
chronic kidney disease, family history of CVD

• Medications: Antihypertensives, lipid-lowering agents,
antidiabetic medications

• Lifestyle factors: Smoking status, alcohol use, physical
activity (when available)

• Clinical notes: Physician assessments, patient-reported
symptoms

The primary outcome was the development of cardiovascu-
lar disease, defined as myocardial infarction, stroke, coronary
revascularization, or cardiovascular death, as documented in
the EHRs and validated through manual chart review by two
independent cardiologists.

D. Data Preprocessing

We applied several preprocessing steps to handle the chal-
lenges of EHR data:

1) Missing data: We used multiple imputation with
chained equations (MICE) to handle missing values in
structured data fields [18]. For variables with more than
30% missing values, we created indicator variables for
missingness.

2) Temporal alignment: We aligned all measurements
to regular 3-month intervals using linear interpolation
for continuous variables and forward-fill for categorical
variables.

3) Feature extraction from clinical notes: We used a
Bidirectional Encoder Representations from Transform-
ers (BERT) model fine-tuned on clinical text to extract
relevant features from physician notes [19].

4) Normalization: We standardized all continuous vari-
ables to have zero mean and unit variance.

For efficient processing of large-scale EHR data, we imple-
mented cloud-based computation models similar to those de-
veloped for mobile devices [26], which allowed for distributed
processing of patient records while maintaining data privacy
and security.

E. Model Development

We developed a hybrid deep learning model combining
convolutional neural networks (CNNs) and long short-term
memory (LSTM) networks to analyze both structured and
unstructured EHR data (Fig. 1).

The model architecture consists of:
1) Structured data pathway: A 1D CNN with three

convolutional layers (64, 128, and 256 filters) followed
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Hybrid Deep Learning Model Architecture
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Fig. 1: Architecture of the hybrid deep learning model for cardiovascular disease prediction. The model processes structured
EHR data through a CNN-LSTM pathway (blue) to capture temporal patterns, while unstructured clinical notes are processed
through a BERT-based pathway (green) for semantic feature extraction. Features from both pathways are fused (orange) and
passed through fully connected layers to predict cardiovascular disease risk.

by an LSTM layer with 128 units to capture temporal
patterns in structured clinical data.

2) Unstructured data pathway: A BERT-based model to
extract features from clinical notes, followed by a dense
layer with 64 units.

3) Fusion layer: The outputs from both pathways are
concatenated and passed through two fully connected
layers (256 and 128 units) with dropout regularization
(dropout rate = 0.5).

4) Output layer: A sigmoid activation function to produce
the probability of developing cardiovascular disease
within the next 5 years.

We used the Adam optimizer with a learning rate of 0.001
and binary cross-entropy as the loss function. To address
class imbalance, we used weighted loss functions where the
weight for the positive class was inversely proportional to its
frequency in the training set.

F. Model Training and Validation

We randomly split the dataset into training (70%), validation
(15%), and test (15%) sets, ensuring that patients from the
same family were not distributed across different sets. We
trained the model for 100 epochs with early stopping if the
validation loss did not improve for 10 consecutive epochs.

We performed 5-fold cross-validation on the training set
to optimize hyperparameters, including the number of CNN
filters, LSTM units, dropout rate, and learning rate. The
hyperparameter combination that achieved the highest mean
AUC-ROC on the validation sets was selected for the final
model.

G. Statistical Analysis

We evaluated the model performance using the following
metrics:

• Accuracy: (TP + TN) / (TP + TN + FP + FN)
• Sensitivity (Recall): TP / (TP + FN)
• Specificity: TN / (TN + FP)
• Precision: TP / (TP + FP)
• F1-score: 2 × (Precision × Recall) / (Precision + Recall)
• Area under the receiver operating characteristic curve

(AUC-ROC)
• Area under the precision-recall curve (AUC-PR)
where TP = true positive, TN = true negative, FP = false

positive, and FN = false negative.
We compared the performance of our AI model with tradi-

tional risk assessment tools, including the Framingham Risk
Score and the ACC/AHA Pooled Cohort Equations, using
DeLong’s test for comparing AUC-ROC values [20].

We conducted subgroup analyses to evaluate model per-
formance across different demographic groups (age, sex,
race/ethnicity) and clinical subgroups (presence of diabetes,
hypertension, etc.).

To identify the most important predictors, we used SHAP
(SHapley Additive exPlanations) values [21], which provide
a unified measure of feature importance by assigning each
feature an importance value for a particular prediction.

All statistical analyses were performed using Python (ver-
sion 3.8) with scikit-learn (version 0.24.2), TensorFlow (ver-
sion 2.6.0), and SHAP (version 0.40.0). Statistical significance
was defined as a two-sided p-value ¡ 0.05.

IV. RESULTS

A. Patient Characteristics

The study included 50,000 patients with a mean age of 54.7
years (SD = 12.3). The cohort was 52.3% female and racially
diverse: 62.1% White, 18.4% Black, 12.3% Hispanic, 5.2%
Asian, and 2.0% Other. During the follow-up period (mean
= 4.2 years, SD = 1.3), 8,725 patients (17.45%) developed
cardiovascular disease.
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Table I presents the baseline characteristics of the study
population, stratified by cardiovascular disease outcome.

B. Model Performance

The AI model achieved an overall accuracy of 92.7% (95%
CI: 91.8%-93.6%), sensitivity of 89.4% (95% CI: 87.9%-
90.9%), specificity of 94.1% (95% CI: 93.2%-95.0%), and
AUC-ROC of 0.96 (95% CI: 0.95-0.97) on the test set. The
precision was 82.3% (95% CI: 80.5%-84.1%), and the F1-
score was 85.7% (95% CI: 84.0%-87.4%). The AUC-PR was
0.91 (95% CI: 0.90-0.92).

Table II compares the performance of our AI model with
traditional risk assessment tools.

The AI model significantly outperformed both the Framing-
ham Risk Score (DeLong’s test, p ¡ 0.001) and the ACC/AHA
Pooled Cohort Equations (DeLong’s test, p ¡ 0.001) across all
performance metrics. The improvement in AUC-ROC was 0.23
compared to the Framingham Risk Score and 0.19 compared
to the ACC/AHA equations.

Figure 2 shows the ROC curves for the AI model and
traditional risk assessment tools.
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Fig. 2: Receiver operating characteristic (ROC) curves for the
AI model and traditional risk assessment tools. The AI model
achieved an AUC-ROC of 0.96, compared to 0.73 for the
Framingham Risk Score and 0.77 for the ACC/AHA Pooled
Cohort Equations.

C. Subgroup Analyses

The AI model demonstrated consistent performance across
different demographic and clinical subgroups (Table III).

The model performed well across all age groups, with
slightly higher sensitivity in older patients (65-80 years).
Performance was comparable between males and females, with
no statistically significant differences (p = 0.12). The model
showed consistent performance across racial/ethnic groups,
although the AUC-ROC was slightly lower for Asian patients
(0.93) compared to White patients (0.96).

D. Feature Importance

Figure 3 shows the top 15 most important predictors of
cardiovascular disease according to the SHAP analysis.
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Fig. 3: SHAP feature importance analysis showing the top 10
predictors of cardiovascular disease. The blue bars represent
mean absolute SHAP values, while the red line shows the
overall trend. The green dashed line indicates the significance
threshold (SHAP ¿ 0.05). Features are grouped by category:
demographic (Age), clinical (Systolic BP, LDL Cholesterol,
Diabetes, Clinical Notes, Diastolic BP, HDL Cholesterol), and
lifestyle (Smoking, BMI, Family History). The exponential
decay pattern highlights the disproportionate impact of the top-
ranked features, particularly age and systolic blood pressure,
on the model’s predictive performance.

Age was the most important predictor, followed by systolic
blood pressure, LDL cholesterol, and diabetes status. Other
important predictors included diastolic blood pressure, HDL
cholesterol, smoking status, BMI, and family history of CVD.
Interestingly, features extracted from clinical notes, such as
patient-reported symptoms and physician assessments, were
among the top 20 predictors, highlighting the value of un-
structured data in risk prediction.

E. Early Detection Performance

To evaluate the model’s performance in early detection, we
analyzed the lead time between model prediction and actual di-
agnosis of cardiovascular disease. The model identified 73.5%
of CVD cases at least 6 months before clinical diagnosis,
compared to 50.0% for the Framingham Risk Score and 59.5%
for the ACC/AHA equations (Fig. 4).

The median lead time for the AI model was 14.2 months
(IQR: 7.8-23.4 months), compared to 6.3 months (IQR: 2.1-
12.7 months) for the Framingham Risk Score and 8.7 months
(IQR: 3.5-15.2 months) for the ACC/AHA equations.

V. DISCUSSION

In this study, we developed and validated an AI-powered
predictive model for early detection of cardiovascular diseases
using electronic health records. The model demonstrated supe-
rior performance compared to traditional risk assessment tools,
with an AUC-ROC of 0.96 and a 23.5% improvement in early
detection rates compared to the Framingham Risk Score.
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TABLE I: Baseline Characteristics of the Study Population

Characteristic Overall (N=50,000) No CVD (N=41,275) CVD (N=8,725)

Age, years, mean (SD) 54.7 (12.3) 52.8 (11.9) 63.5 (10.2)
Female, n (%) 26,150 (52.3) 22,384 (54.2) 3,766 (43.2)
Race/ethnicity, n (%)
White 31,050 (62.1) 25,921 (62.8) 5,129 (58.8)
Black 9,200 (18.4) 7,413 (18.0) 1,787 (20.5)
Hispanic 6,150 (12.3) 5,021 (12.2) 1,129 (12.9)
Asian 2,600 (5.2) 2,198 (5.3) 402 (4.6)
Other 1,000 (2.0) 722 (1.7) 278 (3.2)
Systolic BP, mmHg, mean (SD) 128.7 (16.4) 126.3 (15.2) 139.8 (17.1)
Diastolic BP, mmHg, mean (SD) 78.2 (10.3) 77.1 (9.8) 83.4 (10.9)
BMI, kg/m², mean (SD) 28.7 (5.6) 28.2 (5.4) 31.1 (5.9)
Total cholesterol, mg/dL, mean (SD) 195.4 (38.2) 192.1 (36.8) 210.7 (39.4)
LDL cholesterol, mg/dL, mean (SD) 118.3 (34.7) 115.2 (33.1) 133.8 (36.2)
HDL cholesterol, mg/dL, mean (SD) 51.2 (14.8) 52.7 (14.2) 44.1 (14.9)
Diabetes, n (%) 11,500 (23.0) 8,275 (20.0) 3,225 (37.0)
Hypertension, n (%) 21,250 (42.5) 15,413 (37.3) 5,837 (66.9)
Current smoker, n (%) 9,500 (19.0) 7,213 (17.5) 2,287 (26.2)

TABLE II: Performance Comparison of AI Model and Traditional Risk Assessment Tools

Metric AI Model (95% CI) Framingham (95% CI) ACC/AHA (95% CI)

Accuracy 92.7% (91.8-93.6) 76.3% (75.1-77.5) 79.8% (78.7-80.9)
Sensitivity 89.4% (87.9-90.9) 65.2% (63.1-67.3) 70.5% (68.5-72.5)
Specificity 94.1% (93.2-95.0) 80.1% (79.0-81.2) 82.7% (81.7-83.7)
Precision 82.3% (80.5-84.1) 58.4% (56.2-60.6) 63.7% (61.6-65.8)
F1-score 85.7% (84.0-87.4) 61.6% (59.6-63.6) 66.9% (65.0-68.8)
AUC-ROC 0.96 (0.95-0.97) 0.73 (0.71-0.75) 0.77 (0.75-0.79)
AUC-PR 0.91 (0.90-0.92) 0.56 (0.54-0.58) 0.61 (0.59-0.63)

A. Key Findings

The key findings of our study can be summarized as follows:
1) The AI model achieved high accuracy (92.7%) and dis-

crimination (AUC-ROC = 0.96) in predicting cardiovas-
cular disease risk, significantly outperforming traditional
risk assessment tools.

2) The model demonstrated consistent performance across
different demographic and clinical subgroups, suggest-
ing its potential applicability to diverse patient popula-
tions.

3) The model identified 73.5% of CVD cases at least 6
months before clinical diagnosis, with a median lead
time of 14.2 months, highlighting its potential for early
intervention.

4) Age, systolic blood pressure, LDL cholesterol, and dia-
betes status were the most important predictors, consis-
tent with established cardiovascular risk factors.

5) Features extracted from clinical notes contributed sig-
nificantly to the model’s predictive performance, under-
scoring the value of unstructured data in risk prediction.

B. Comparison with Previous Studies

Our findings extend and complement previous research on
AI-based cardiovascular disease prediction. [14] developed an

AI algorithm to detect asymptomatic left ventricular dysfunc-
tion from electrocardiograms, achieving an AUC-ROC of 0.85.
While their approach focused on a specific cardiac condition
using a single data modality, our model integrates multiple data
sources to predict a broader range of cardiovascular outcomes.

[15] used deep learning to predict cardiovascular risk
factors from retinal fundus photographs, demonstrating the
potential of AI to extract clinically relevant information from
unconventional data sources. Our study extends this approach
by incorporating both structured and unstructured EHR data,
providing a more comprehensive assessment of cardiovascular
risk.

Several studies have evaluated machine learning approaches
for cardiovascular disease prediction using EHR data. For
example, [22] used random forests to predict coronary heart
disease risk from EHR data, achieving an AUC-ROC of
0.79. Similarly, [23] developed a gradient boosting model for
predicting heart failure onset, with an AUC-ROC of 0.82.
Our model’s superior performance (AUC-ROC = 0.96) can
be attributed to the use of deep learning techniques that can
capture complex temporal patterns and interactions between
risk factors, as well as the integration of unstructured clinical
notes.

Recent advances in AI-driven analysis of complex datasets
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TABLE III: Subgroup Analysis of AI Model Performance

Subgroup AUC-ROC (95% CI) Sensitivity (95% CI)

Age group
30-49 years 0.94 (0.92-0.96) 86.2% (83.1-89.3)
50-64 years 0.96 (0.95-0.97) 89.7% (87.8-91.6)
65-80 years 0.95 (0.94-0.96) 91.3% (89.2-93.4)
Sex
Female 0.95 (0.94-0.96) 88.1% (85.9-90.3)
Male 0.96 (0.95-0.97) 90.5% (88.6-92.4)
Race/ethnicity
White 0.96 (0.95-0.97) 89.8% (87.9-91.7)
Black 0.95 (0.94-0.96) 88.3% (85.8-90.8)
Hispanic 0.94 (0.92-0.96) 87.5% (84.2-90.8)
Asian 0.93 (0.91-0.95) 86.1% (81.2-91.0)
Clinical subgroups
Diabetes 0.95 (0.94-0.96) 90.2% (88.1-92.3)
No diabetes 0.96 (0.95-0.97) 88.9% (86.8-91.0)
Hypertension 0.94 (0.93-0.95) 89.5% (87.4-91.6)
No hypertension 0.95 (0.94-0.96) 88.1% (85.2-91.0)
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Fig. 4: Early detection performance of the AI model compared
to traditional risk assessment tools. The AI model identified
73.5% of CVD cases at least 6 months before clinical diagno-
sis, compared to 50.0% for the Framingham Risk Score and
59.5% for the ACC/AHA equations.

have demonstrated the potential for improving predictive accu-
racy across various domains [27]. These approaches could be
further refined and adapted for cardiovascular risk prediction
to enhance our model’s performance.

C. Clinical Implications

The high performance of our AI model has several important
clinical implications:

1) Early detection and intervention: The model’s ability
to identify at-risk patients months before clinical diag-
nosis could enable earlier interventions, potentially pre-
venting or delaying the onset of cardiovascular disease.

2) Personalized risk assessment: The model’s use of a
wide range of predictors, including features from clinical
notes, allows for more personalized risk assessment
compared to traditional tools that rely on a limited set
of variables.

3) Resource allocation: By identifying high-risk patients
with greater accuracy, the model could help healthcare
systems allocate preventive resources more efficiently.

4) Integration with clinical workflows: The model could
be integrated into clinical decision support systems to
provide real-time risk assessment during patient encoun-
ters.

Personalized risk assessment approaches, similar to those
developed for optimizing learning pathways in educational
settings [28], could be adapted to create tailored cardiovascular
prevention strategies for individual patients based on their
unique risk profiles.

D. Strengths and Limitations

Our study has several strengths. First, we used a large,
diverse patient population from multiple academic medical
centers, enhancing the generalizability of our findings. Second,
we developed a comprehensive deep learning model that in-
tegrates both structured and unstructured EHR data, capturing
a wide range of clinical information. Third, we rigorously
validated our model using appropriate statistical methods and
compared it with established risk assessment tools.

However, our study also has limitations. First, the retro-
spective design may have introduced selection and information
biases. Second, despite our efforts to address missing data, the
quality and completeness of EHR data varied across patients
and institutions. Third, while our model demonstrated high
performance in this study, external validation in different
healthcare settings is needed to confirm its generalizability.
Fourth, the model’s ”black box” nature may limit its clinical
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acceptability, although we used SHAP values to provide in-
terpretability. Finally, we did not evaluate the model’s impact
on clinical outcomes or cost-effectiveness, which would be
important for real-world implementation.

E. Future Directions

Future research should focus on several areas. First,
prospective studies are needed to evaluate the model’s impact
on clinical outcomes and healthcare utilization. Second, efforts
should be made to integrate the model into clinical workflows
and assess its usability and acceptability among healthcare
providers. Third, the model should be externally validated
in diverse healthcare settings and patient populations. Fourth,
research should explore the model’s potential for predicting
specific cardiovascular outcomes and its responsiveness to
interventions. Finally, efforts should be made to address ethical
and privacy concerns related to the use of AI in healthcare,
including issues of algorithmic bias and data security.

Collaborative platforms for sharing ideas and innovations
across institutions could accelerate the development and im-
plementation of AI models in healthcare [29]. Such platforms
would facilitate knowledge exchange and help address the
challenges of implementing AI in clinical practice.

VI. CONCLUSION

We developed and validated an AI-powered predictive
model for early detection of cardiovascular diseases using
electronic health records. The model demonstrated superior
performance compared to traditional risk assessment tools,
with high accuracy and discrimination across diverse patient
populations. By identifying at-risk patients months before
clinical diagnosis, this approach has the potential to enhance
preventive cardiology and enable timely interventions, ulti-
mately reducing cardiovascular disease morbidity and mor-
tality. Future research should focus on prospective validation,
clinical implementation, and assessment of the model’s impact
on patient outcomes.
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