Table S1 High-FPKM contigs containing full or partial open reading frames for putative L. bostrychophila esterases

Contig ID	Contig length	FPKM (gene) ^{*1}	Blastn TopHit (percent identity) ^{*2}	Blastn TopHit ID	ORF status ^{*3}	Amino acids seq length	UniProt Blast TopHit Accession	UniProt Blast TopHit (percent identity)	UniProt E- value	Molecular Function (GO ID)	Molecular Function (GO Term)
comp59220_c1_seq1	1885	438.8	No hits		complete	554	E0VEL6	Pediculus humanus corporis Carboxylic ester hydrolase (46.7%)	6.80E-172	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp62262_c0_seq1	1989	349.44	No hits		complete	577	A0A8K0DIJ4	Ignelater luminosus Carboxylic ester hydrolase (47.8%)	1.50E-154	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp62654_c0_seq7	1559	261.07	No hits		internal	519	E0VEL6	Pediculus humanus corporis Carboxylic ester hydrolase (44.1%)	3.40E-152	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp61411_c0_seq3	1961	171.8	No hits		complete	590	E0W271	Pediculus humanus corporis Carboxylic ester hydrolase (28.4%)	6.30E-48	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp62642_c0_seq2	2127	170.37	Liposcelis bostrychophila esterase 4 mRNA (64.78%)	KR905662.1	complete	565	A0A067QFP9	Zootermopsis nevadensis Carboxylic ester hydrolase (42.5%)	2.30E-147	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp62769_c0_seq2	1792	153.15	Pediculus humanus corporis Esterase FE4 precursor, putative mRNA (65.99%)	XM_002424515.1	5'-prime_partial	537	E0VEL6	Pediculus humanus corporis Carboxylic ester hydrolase (49.8%)	0.00E+00	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp60632_c1_seq4	1514	135.05	No hits		complete	392	A0A2J7Q6N7	Cryptotermes secundus Carboxylic ester hydrolase (41.6%)	5.70E-102	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp61080_c0_seq5	1140	123.22	Liposcelis bostrychophila esterase 4 mRNA (94.95%)	KR905662.1	3'-prime_partial	349	A0A2J7QJE6	Cryptotermes secundus Carboxylic ester hydrolase (54.4%)	3.90E-124	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp63171_c1_seq4	1423	85.86	No hits		5'-prime_partial	415	A0A1W4WNW7	Agrilus planipennis Carboxylic ester hydrolase (43.8%)	4.50E-106	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp61270_c1_seq2	1807	70.51	No hits		5'-prime_partial	540	A0A2J7RMN7	Cryptotermes secundus Carboxylic ester hydrolase (41.6%)	2.30E-126	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp51226_c0_seq1	2142	63.88	No hits		complete	570	Q7PWX6	Anopheles gambiae Carboxylic ester hydrolase (31.2%)	4.10E-52	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp61175_c0_seq1	2518	47.09	Liposcelis bostrychophila esterase 1 mRNA (96.48%)	EU854151.1	complete	610	A0A2J7RMN7	Cryptotermes secundus Carboxylic ester hydrolase (48.3%)	3.00E-164	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity
comp62403_c1_seq1	3095	30.76	Liposcelis bostrychophila esterase 2 mRNA (97.11%)	EU854152.1	complete	617	E0W271	Pediculus humanus corporis Carboxylic ester hydrolase (44.8%)	2.30E-165	GO:0052689//GO:0016787	carboxylic ester hydrolase activity//hydrolase activity

*1 Filtered with the criterion of a FPKM value > 30.

 $^{\ast 2}$ Filtered with the criterion of a query coverage rate > 30%.

 *3 Filtered with the criterion of ORF length > 1,000 nt.

Description	Organism	Signal sequence	Accession	Reference (DOI)
estalpha2 esterase	Culex quinquefasciatus	No	CAA88030.1	10.1042/bj3250359
serine esterase	Culex quinquefasciatus	No	CAA83643.1	10.1042/bj3050651
serine esterase	Culex quinquefasciatus	No	CAA83644.1	10.1042/bj3050651
E3	Lucilia cuprina	No	AAB67728.1	10.1016/s0965-1748(96)00065-3
carboxylesterase E3	Cochliomyia hominivorax	No	ACR56068.1	10.1111/j.1365-2915.2008.00788.x
esterase-1	Culex nigripalpus	No	AIT56591.1	10.1111/jvec.12195
esterase	Diabrotica virgifera virgifera	No	ALP46202.1	10.1111/imb.12194
esterase B1	Musca domestica	No	NP 001295905.1	10.1016/s0965-1748(99)00035-1
carboxylesterase MdaE7	Musca domestica	No	AAD29685.1	10.1016/s0965-1748(99)00035-1
carboxylesterase (Esterase FE4)	Myzus persicae	Yes	CAA52649.1	10.1042/bj2940569
carboxylesterase (Esterase E4)	Myzus persicae	Yes	CAA52648.1	10.1042/bj2940569

 Table S2 Carboxylesterases reported to be associated with insecticide resistance

Description	Organism	Query Cover (%)	E value	Per. Ident (%)	Accession
alpha-esterase-7 in complex with [3-bromo-5-(pyrrolidin-1-yl)phenyl]borinic acid	Lucilia cuprina	95	4E-101	36.28	5TYM_A
E3 alpha-esterase-7 carboxylesterase	Lucilia cuprina	95	3E-100	35.99	5CH3_A
The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina	Lucilia cuprina	95	4E-100	35.99	4FNG_A
The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina	Lucilia cuprina	95	4E-100	35.99	4FNM_A
The alpha-esterase-7 carboxylesterase, E3, from the blowfly <i>Lucilia cuprina</i> : phosphorylated-enzyme ensemble refinement	Lucilia cuprina	95	4E-100	35.99	5IVK_A
Lucilia cuprina alpha esterase 7: Gly137Asp	Lucilia cuprina	95	2E-99	35.8	5C8V_A
alpha-esterase-7 in complex with (3-bromo-5-phenoxylphenyl)boronic acid	Lucilia cuprina	95	2E-99	35.8	5TYJ_A
Culex quinquefasciatus carboxylesterase B2	Culex quinquefasciatus	85	2E-72	35.58	5W1U_A
Crystal Structure of Juvenile Hormone Esterase from <i>Manduca sexta</i> , with OTFP covalently attached	Manduca sexta	90	5E-82	34.36	2FJ0_A
Chain A, Acetylcholinesterase	Anopheles gambiae	90	1E-66	33.52	5X61_A
Chain A, Acetylcholinesterase	Anopheles gambiae	90	3E-66	33.52	5YDH_A
Chain A, Carboxylesterase-24	Epiphyas postvittana	94	2E-83	33.52	7MP4_A
Crystal structure of an insecticide-resistant acetylcholinesterase mutant from the malaria vector <i>Anopheles gambiae</i> in complex with a difluoromethyl ketone inhibitor	Anopheles gambiae	91	7E-66	33.33	6ARY_A
Crystal structure of an insecticide-resistant acetylcholinesterase mutant from the malaria vector <i>Anopheles gambiae</i> in the ligand-free state	Anopheles gambiae	90	1E-65	33.33	6ARX_A
Crystal structure of the Fab410-BfAChE complex	Bungarus fasciatus	94	3E-73	32.36	4QWW_A
<i>Mus musculus</i> Acetylcholinesterase in complex with N-(2-Diethylamino- ethyl)-3-trifluoromethyl-benzenesulfonamide	Mus musculus	94	1E-81	32.31	4B84_A
Crystal structure of the Y337A mutant of mouse acetylcholinesterase	Mus musculus	94	4E-81	32.31	2XUD_A
Crystal Structure Of Mache-Y337a-Tz2pa6 Anti Complex (1 Mth)	Mus musculus	94	4E-81	32.31	2XUF_A
Crystal structure of the mouse acetylcholinesterase-gallamine complex	Mus musculus	94	4E-81	32.31	1N5M_A
Chain A, ACETYLCHOLINESTERASE	Electrophorus electricus	94	4E-81	32.31	1C2B_A

Table S3 BLASTP-hits for LBCE1-homogous proteins against the PDB database

Ligand	Mode	Affinity (kcal/mol)	Distance from RMSD lower bound	Distance from RMSD upper bound	Interacting residues
	1	-4.7	0	0	R351, M90, L447, A462, I142, F446
	2	-4.6	1.68	2.485	M90, L447, A462, F446, I142
	3	-4.2	1.563	4.35	R351, I347, M90, A462, I142, F446
	4	-4.2	2.537	4.714	R351, I347, M90, L447, A462, I142
Malathion	5	-4.1	2.283	6.391	M90, F446, A462, I142
	6	-4.1	1.729	4.384	R351, M90, A462, F446, I142
	7	-4.1	1.471	4.674	R351, I347, M90, A462, I142, F446
	8	-3.7	2.143	5.915	R351, M90, A462, F446, I142
	9	-3.7	2.023	5.542	R351, I347, M90, L447, A462, I142, F446
	1	-5.5	0	0	M90, A462, I142, F446
	2	-5.2	1.562	3.641	M90, R351, A462, L447, F446, I142
	3	-4.9	1.553	2.79	M90, R351, A462, F446, I142
	4	-4.7	3.293	5.947	M90, R351, A462, I142
Diazinon	5	-4.5	1.795	3.218	M90, R351, L447, A462, F446, I142
	6	-4.4	1.834	2.255	R351, M90, A462, I142, F446
	7	-4.1	1.887	3.386	M90, I142, A462, F446, L447
	8	-4	3.334	5.248	R351, I347, M90, A462, I142
	9	-3.7	3.632	6.132	R351, I347, M90, A462, I142

 Table S4 Docking result of ligand binding to LBCE1

Ligand	Mode	Affinity (kcal/mol)	Distance from RMSD lower bound	Distance from RMSD upper bound	Interacting residues
	1	-2.5	0	0	F309, M308, G136, S218, F354, M460
	2	-1.7	1.994	5.724	M308, S218, G136, F354, M460
Malathion	3	-1.2	2.091	5.557	F309, M308, G136, S218, F354, M460
	4	-0.5	2.36	5.946	F309, M308, G136, S218, F354, M460
	5	-0.2	1.614	4.715	F309, M308, G136, S218, F354, M460
	1	-1.8	0	0	M308, G136, S218, F354, M460
	2	-1.2	0.832	2.718	F309, M308, G136, S218, F354, M460
Diaginan	3	-0.5	3.062	6.123	F309, M308, G136, S218, F354, M460
Diazinon	4	-0.5	1.35	2.773	M308, G136, S218, F354, M460
	5	0.4	2.923	5.877	F309, M308, G136, S218, F354, M460
	6	1.1	1.95	3.833	F309, M308, G136, S218, F354, M460

Table S5 Docking result of ligand binding to $LC\alpha E7$

ATG CAG TTC GGC TCC GAC CTT CGA ACG AGT TAC AAT CGC GAA AAA AAA AAA ATG ACT GAA Q G s D L R т S Y N R Е ĸ ĸ ĸ т AGC CAA CCG ATT ATC CGC ATC GCG GAT GGC TCG ATC CGA GGG GAA AAA TCG GAT TCA ATT S Р Ι Ι R Ι А D G s Ι R G Е ĸ s D s Q Ι CGC GGT GGT TCT TAT TAC AGC TTT AAG GGG ATC CCT TAT GCC AAA CCT CCT GTT GGG GAT G s Y Y s F к G Ι ₽ Y A к ₽ ₽ v R G G D TTG AGG TTT AAG GCC CCG GTA CCG GTG GAA CCT TGG ACA GGT GTA AGA GAT GCC TTA AAA Ρ ₽ R ĸ A v v Е P W т G v R D A T. F T. ĸ GAA GCC CCG GCA AAG GAC ATG TTG AAA CAT GAA TAT ATG CAT GGA AGC GAA AAT ACG AGT н G S Е A Ρ A ĸ D М L ĸ H Е Y М Е N т GAG GAT TGC CTG TTC ATC AAC GTC TAC ACG CCA GAA CTT CCG AAA AGC AAA AAT GAC AAA Е D С г F Ι N v Y т ₽ Е L Ρ ĸ S ĸ N D к TTG AAA TCA GTC CTC GTC TGG GTG CAC GGA GGA GGA TTC TCC ATG GGA TCT GGA AAC TCT v v W v н G G G F S G L к S г м S G N AAC TAT TAC GGC CCC GAC TAC CTC ATC GAA GAC GTC GAA ATC ACG GTC CTG GTC ACT TTC D Y т v v v т Ι Y G ₽ г Ι Е D L F N Y CGG TTG GGA GTT TTG GGA TTC CTC AGT CTC GGA ACA GTC GAA TGC CCC GGG AAC TTC GGT v G v Е P ь G L F L s L G т C G N F R G TTG AAG GAT ATG GTC CTT GCC TTA AAA TGG GTT CAA AAG AAC ATT GCC GCT TTC GGC GGA v L W v ĸ N L ĸ D М Α г ĸ Q Ι A А F G G GAT CCG AAC AAC GTC ACG ATT TTC GGT GAA AGC GCG GGA GGA GCC GCC GTT CAG TAC CTT N F s v Y D Ρ Ν v т Ι G Е А G G А А Q L TTG ATT TCG AAA GCG ACC AGA GGA TTG TTC CAT AAG GCC ATT TCC CAA TCG GGA ACC ACT Ι s к т R G г F н ĸ A Ι s Q s G т т А TTG GAC CCG TGG GCG CAT AGA CTG AAT CCC AGA GAT TTC GCG TTT GCT TTG GGG GAA GAG D Ρ W н R L N ₽ R D F A F L G Е A A Е TTG GGA TGC AAA ACA ACC GAC GAC AAA GTG CTT CTC GAC TTC TTG AAA AAA GCA TCG CAA v г G С ĸ т т D D ĸ L L D F L ĸ ĸ Α S Q AAA GAT TTC GTA GAA AAA GAA GGG GAC TTG CCG AAG AAG CTG TAC CCC GAC AGG ATT TTT v G L ₽ ĸ ĸ L Y ₽ D ĸ D F Е к Е D R Ι F CTC CAG TTA TCG TTT GTT CCC GTA GTC GAA CCC GAA CAC GAA GGG GCC TTT TTA ACC AAA v v s Р v Р н Е G А F т т. Q т. F Е Е г ĸ AGC CCA AGG GAA ATT ATT CAA AGC GGG GAT TTC AAT GAT GTC CCG TAT ATT ATC GGA GGA S Ρ R Е Ι Ι Q s G D F Ν D v ₽ Y Ι Ι G G GTT AGC TTG GAA GGC CTT ATT ATT ATC TAC AGA AAT TTC GAA TAT AAA GAA TCG ACG GCG v s г Е G г Ι Ι Ι Y R N F Е Y ĸ E S т Α GAT GAG GAT TTG GAA CAA GTC CTC CCT CTG GGA ACA TTA AAC ATT CAA AAG GGA TCG AAA E D г v L Ρ L G т L N ĸ G D Е Q Ι Q S GAA TCC AAG GAA ATA ACG AAG AAA ATT TAC CGG GAC TTT TTC CCC AAC TAT GAG AAG GGA т ₽ s к Е Ι к к Ι R D F Y F N G Y E к Б GAG AAA CTA GTA GCT GTT CTC TCC GCC ATT TAT TTT CTG AAC GGA ATC GGC AAA ACC TGC v Е к г v Α г s Α Ι Y F L N G Ι G ĸ т С GAT TGG ATC GGC AGA TTA AAG AAC AGA AAT TCT CCC ACT CTG TAC TTC TTC TAT CAT CTG ₽ Y D W Ι G R г ĸ N R N S т L Y н F г F GAC GGA ACC AAG GCC TTC CTT AAG CAT CTT ATA GGC TAC GGG GAT TGG AAA GGA ACT TGC G ĸ ĸ G Y G W D т A F г н г Ι D ĸ G т C CAT GCT GAC GAG CTC GGC TAT CTC TTC CAC ATG CCC ATG CTC CAA GCT AAA CTC GAG CCG A D Е L G Y L F н М ₽ М L A ĸ L Е Ρ н Q AAC ACC CCT GAA TAT ACG ACA GTT CAA CGC ATG ACC AAA TTA TGG ACC GAT TTT GCG AAA N т Ρ Е Y т т v Q R М т ĸ L W т D F А ĸ ACC GGA AAC CCG ACG CCG AAG GAT AAC TCC TGG AAA CCG ATA TCT GAG AAT GAC AAC ACG ₽ Р ĸ D s ₽ т G N т N W ĸ Ι s Е N D N т TTC AAC GAG AAA GAG GCG AAA TAT CTG GAA ATC GAA AAA GAA TTA ACT CTC AAG AAG AAT ĸ т г ĸ N F N Е к Е Y L Е Ι Е E L ĸ А ĸ TTG TGG AAT GAA ATT TAC AAA TCC GTT TGC ACA AGA CAC AAG TAA W N Е Y K S v С R ĸ Ι т н

Figure S1 Nucleotide sequences of the longest ORF of Comp59220 and the deduced amino acid sequence

Figure S2 Next-generation sequencing reads sharing homologous nucleotide sequences with the CDS of LBCE1. The LBCE1-homologous reads were retrieved from the *L. bostrychophila* RNA (ERR073018) and genomic DNA (SRR17191995 and SRR17191998) sequencing datasets using the blastn suite-SRA tool (shown as red lines). The reads from the dataset ERR073018, SRR17191995 and SRR17191998 show at minimum 92.5-100%, 100%, and 99.33-100% identities with the nucleotide sequence of LBCE1, respectively.

	Score 1097 bits(2	2838)	Expect 0.0	Method Composit	ional m	natrix a	adjust.	Identiti 532/53	es 7(99%)	Posi 535/	tives /537(99%)
LE	SCE1	MTESQE	PIIRIADG PIIRIADG	SIRGEKLDSII SIRGEK DSII	RGGSYYS	FKGIPY/ FKGIPY/	AKPPVGDL AKPPVGDI	_RFKAPVP' RFKAPVP'	VEPWTGVR	D 60	
GA	YV02033066.1	MTESQF	PIIRIADG	SIRGEKSDSI	RGGSYYS	FKGIPY	AKPPVGDL	_RFKAPVP	VEPWTGVR	D 60	
LE	SCE1	ALKHGS ALKHGS	SEAPAKDM SEAPAKDM	LKHEYMENTSI LKHEYMENTSI	EDCLF IN EDCLF IN	VYTPEL	PKSKNDKI PKSKNDKI	_KSVLVWVI _KSVLVWVI	HGGGFSMG HGGGFSMG	S 12 ()
GA	YV02033066.1	ALKHGS	SEAPAKDM	LKHEYMENTSI	EDCLFIN	VYTPEL	PKSKNDKI	KSVLVWV	HGGGFSMG	s 120)
LE	SCE1	GNSE IN	/GPDYLIT	EDVVLVTFNYI EDVVLVTENYI	RLGVLGF RLGVLGE		ECPGNFGL ECPGNFGL	.KDMVLALI	KWVQKNIA. KWVOKNIA	∆ 180	D
GA	YV02033066.1	GNSE I \	GPDYLIT	EDVVLVTFNYI	RLGVLGF	LSLGTVE	ECPGNFGL		< WVQKNIA	 180	0
LE	BCE1	FGGDPN		SAGGAAVQYLI SAGGAAVQYLI	_ISKATR	GLEHKA	I SQSGTTI	DPWAHRLI	NPRDFAFA	_ 240)
GA	YV02033066.1	FGGDPN	NVTIFGE	SAGGAAVQYLI	_ISKATR	GLFHKA	ISQSGTTI	_DPWAHRLI	NPRDFAFA	_ 24(0
LE	SCE1	GEELGO	CKTTDDKVI CKTTDDKVI	LLDFLKKASQI LLDFLKKASQI	KDF VEKE KDF VEKE	GELPKKI G+LPKKI	_YPDRIFL _YPDRIFL	_QLSEVPV' _QLSEVPV'	VEPEHEGA VEPEHEGA	F 300)
GA	YV02033066.1	GEELGO	CKTTDDKV	LLDFLKKASQI	KDFVEKE	GDLPKKI	YPDRIFL	QLSEVPV	VEPEHEGA	F 300)
LE	SCE1	LTKSPF LTKSPF	RETTASGDI RETTASGDI	FNDVPYIIGG' FNDVPYIIGG'	VSLEGLI VSLEGLI	I I YRNFE I I YRNFE	EYKESTAI EYKESTAI)EDLEQVLI)EDLEQVLI	PLGTLNIK PLGTLNI+	K 36 0)
GA	YV02033066.1	LTKSPF	RETIQSGD	FNDVPYIIGG	VSLEGL I	I I YRNFE	EYKESTAI	DEDLEQVL	PLGTLNIQ	360)
LE	SCE1	GSKESł GSKESł	(EITKKIR) (EITKKIR)	DFYFPNGYEKI DFYFPNGYEKI	EKLVAVL Eklvavl	SAIYFLI SAIYFLI	NG I GK TCI NG I GK TCI) WIGRLKNI) WIGRLKNI	RNSPTYLY RNSPTYLY	H 42 0 H	0
GA	YV02033066.1	GSKESł	KE I TKK I R	DFYFPNGYEKI	EKLVAVL	SATYFL	NGIGKTC	DWIGRLKN	RNSPTYLY	42	0
LE	SCE1	FLFDG ^T	TKAFLKHL TKAFLKHI	IGYGDWKGTCI IGYGDWKGTCI	HADELGY HADELGY	LEHMPML LEHMPMI	_QAKLEPI		QRMTKLWT ORMTKLWT	D 48 0	D
GA	YV02033066.1	FLFDG	FKAFLKHL	IGYGDWKGTCI	HADELGY	LEHMPM		NTPEYTTV	QRMTKLWT	D 480	0
LE	SCE1	FAKTGN FAKTGN	NPTPKDNS' NPTPKDNS'	WKPISENDNT WKPISENDNT	YLE I EKE YLE I EKE	LTLKKNF LTLKKNF	ENGEEAKL	WNEIYKS' WNEIYKS'	VCTRHK (VCTRHK	537	
GA	YV02033066.1	FAKIGN	NETEKDNS,	WKPISENDNI	YLEIEKE	LILKKN	-NEKEAKI	-WNEIYKS'	VCIRHK 🤅	537	

Figure S3 Sequence alignment between LBCE1 and the deduced amino acid sequence retrieved from the Shotgun Assembly Database entry GAYV02033066.1

Summary of 1 predicted sequences from Eukarya

Predictions list. Use the help page for more detailed description of the output page.

Predicted proteins

Sequence Prediction: Other

Protein type	Signal Peptide (Sec/SPI)	Other
Likelihood	0.0013	0.9987

Download: PNG (/services/SignalP-5.0/tmp/5F086556000069D6FDC500E9/output_Sequence_plot.png) / EPS (/services/SignalP-5.0/tmp/5F086556000069D6FDC500E9/output_Sequence_plot.eps) / Tabular (/services/SignalP-

Figure S4 Prediction of the presence/absence of signal sequences in LBCE1 using the SignalP tool. The probability of the presence of signal sequences was calculated to be 0.0013.

Figure S5 Phylogenetic tree showing the relationship among LBCE1 and homologous carboxylesterases. Numbers shown besides the nodes indicate bootstrap values.

3		N			
4 2 1	Cavity	Pred. Max pKd	Pred. Avg pKd	DrugScore	
	1	9.54	5.89	844.00	
	2	10.55	6.24	2197.00	
21 2 203	3	10.26	6.13	-125.00	
0 0	4	11.81	6.67	-87.00	

Figure S6 Prediction of the druggable surface cavities of LBCE1 using the CavityPlus tool.

Druggability

Strong Strong Medium Medium