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Abstract

Subjective experience unfolds continuously yet also makes discrete, qualitative jumps. To model this
phenomenological duality, we propose a discrete dynamical system. This yields a control-theoretic framework
governed by a Mind Topography Map (MTM) of affective gain G and cognitive bias µ. The MTM’s structure
is isomorphic to a cusp catastrophe. Allowing negative gain (G < 0) generates error-amplifying loops
that produce bistability, hysteresis, and period-doubling bifurcations. A key insight is that psychological
stability is implementation-dependent. This analysis reveals a distinct zero-inertia state: the Ideal Dynamical
Equilibrium (IDE).

To account for the mind’s complexity, we extend the model into a multidimensional framework termed
Structural Gain–Bias Dynamics (SGBD). This extension resolves a fundamental computational duality of
mental life: how stable psychological “states” can coexist with persistent “processes” such as rumination. We
show that this computational duality emerges from the interaction matrix’s symmetric (state-seeking) and
skew-symmetric (process-sustaining) components. We term this principle Cognitive Phase Dynamics (CPD).

To ground the framework empirically, we introduce two dimensionless indicators: DIDE to quantify the
balance between inertia and responsiveness, and DCPD to distinguish states from processes. Supported by
these metrics, our model serves as a computational bridge between the physics of the Free Energy Principle
(FEP) and the teleology of Perceptual Control Theory (PCT). It thus offers a tractable and testable program
for the future of mathematical psychology and computational psychiatry.
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1. Introduction

1.1. The Phenomenological Duality of Subjectivity and the Dynamical Systems Perspective
As James (1890) observed, subjective experience unfolds as both a continuous stream of consciousness

and as discontinuous moments—sudden insights or shifts in mood. This phenomenological duality highlights
a theoretical gap between the presumed continuity of neural and cognitive processes and the apparent
discreteness of psychological state transitions.

An early and influential attempt to account for such discontinuity from the perspective of nonlinear
dynamics was catastrophe theory (Thom, 1975), which formalized how continuous variations in input can
yield abrupt, qualitative changes in a system’s state. Walter J. Freeman later grounded this framework
in neurophysiology, conceptualizing the brain as a self-organizing dynamical system in which transitions
between meanings occur as discontinuous “jumps” rather than gradual shifts (Freeman, 2000). Extending this
line of thought, we seek a computational mechanism that can generate the kind of discontinuous transitions
Freeman described, advancing the theoretical lineage through a mathematically verifiable model.

This phenomenological duality also reveals a deeper tension between the objective description of neural
processes and the subjective texture of lived experience. While bridging this divide remains one of the
grand challenges of science, the present work takes a concrete step toward that goal by proposing a testable
mathematical formulation. This historical and philosophical backdrop motivates our development of a formal
framework, which we now situate within contemporary theories of cognition and consciousness.

1.2. Positioning the Model Within Foundational Theories
Current research on consciousness encompasses a diverse landscape of theories, broadly divided into those

concerned with the ontology of consciousness (what it is) and those focused on its process (how it operates).
Among the ontological approaches, Integrated Information Theory (IIT) (Tononi, 2004) offers a rigorous

account of the causal structure underlying conscious experience. However, IIT’s primary emphasis lies on
static causal architectures, leaving the temporal dynamics of subjective state transitions largely unexplored.

In contrast, process-oriented frameworks such as the Free Energy Principle (FEP) (Friston, 2010),
Perceptual Control Theory (PCT) (Powers, 1973), and Global Workspace Theory (GWT) (Baars, 1988)
illuminate the dynamic organization of cognition. Yet these approaches share a common limitation: their
formulations typically rely on continuous-time dynamics, making it difficult to capture the qualitative “leaps”
or structural reorganizations characteristic of psychological change. This tension is particularly salient when
comparing the smooth, gradient-like dynamics of FEP with the discrete reorganizations central to PCT.
While FEP, through the framework of Active Inference, allows for discrete policy selection, its foundational
dynamics remain inherently continuous.

Our framework aims to resolve this limitation by introducing a computational architecture that gives
rise to discrete transitions from an underlying continuous substrate. Rooted in Dynamical Systems Theory
(DST) in cognition (van Gelder, 1995b), our model diverges structurally from previous approaches, offering a
bridge between continuous neural processes and discrete psychological dynamics. The specific contributions
of this framework are detailed in the following section.

1.3. Key Contributions of the Proposed Framework
In examining the complex phenomenon of subjectivity, this paper adopts a two-stage approach. First,

we introduce a scalar model that abstracts the core principles of subjectivity at a high level of generality.
Insights from this model then inform its extension into a multidimensional framework capable of capturing
more intricate features, including individual differences. Guided by this design philosophy, the specific
contributions of the paper can be summarized in the following six points:

• A Basic Mechanism of Subjectivity: Introducing the Mind Topography Map (MTM)—a phase
diagram of subjectivity isomorphic to a cusp catastrophe—which formalizes the error-amplifying
dynamics underlying various forms of psychopathology.

• A New Dynamical State of Equilibrium: Defining the Ideal Dynamical Equilibrium (IDE), a
distinctive zero-inertia state, and proposing a testable metric, DIDE, to quantify the balance between
inertia and responsiveness.
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• A Structural Model of the Inner World: Developing the multidimensional Structural Gain–Bias
Dynamics (SGBD) framework to computationally represent complex mental organizations such as
internal conflict.

• A Core Mechanism for States and Processes: Introducing Cognitive Phase Dynamics (CPD)
as a unifying principle for the dynamics of stable psychological states and persistent processes (e.g.,
rumination), supported by the testable indicator DCPD.

• A Methodological Foundation for Discrete Dynamics: Reframing the relation between continuous
theories and discrete events as an implementation problem, revealing that psychological stability depends
on individual cognitive style and temporal rhythm.

• An Integrated Cognitive Architecture: Proposing the Trinity Architecture as a computational
bridge linking the physical causality of the FEP with the teleological normativity of PCT.

1.4. Structure of This Paper
This paper is organized to develop the theoretical framework in a stepwise manner. The first half

establishes the core single-variable model: Section 2 formulates its control-theoretic foundation and identifies
the IDE state; Section 3 presents the “Discrete-in-Continuous” perspective; and Section 4 examines the
model’s dynamics through the MTM.

The second half extends this foundation. Section 5 introduces the multidimensional SGBD framework to
account for both psychological “states” and “processes,” while Section 6 situates this framework within the
integrative Trinity Architecture, linking FEP and PCT.

Finally, Section 7 summarizes the main contributions, discusses limitations, and outlines directions for
future research. The appendices provide additional support: Appendix A elaborates on the mathematical
foundations, Appendix B clarifies the connection to cusp catastrophe theory, and Appendix C presents a
conceptual application.

2. A Control-Theoretic Formulation of the Scalar Model

2.1. A Control-Theoretic Blueprint for Subjectivity
The conceptual starting point and central hypothesis of this paper is the control-theoretic blueprint for

subjectivity illustrated in Figure 1. While previous models have explored feedback systems in the mind, this
framework is novel in its explicit positioning of objective and subjective states and its integration of cognitive
bias and affective gain into a mathematically tractable feedback architecture.

Modeling this comprehensive blueprint in its entirety is a formidable challenge. Therefore, as a crucial first
step, this paper focuses on analyzing the dynamics of the core internal loop of subjectivity—the subsystem
enclosed by the dotted line. By isolating this computational “engine,” we aim to derive the fundamental
principles governing subjective experience, thereby laying the groundwork for the future research directions
outlined in Subsection 7.4.

This blueprint comprises the following main components:
• External/Internal World: The external physical and social environment, and the internal mental

domain where an individual’s objective state (Mo) and subjective state (Ms) are defined.
• Filter Bank (Fr, Fi, Fe): Functional modules responsible for different stages of information processing,

such as recognition, interpretation, and evaluation.
• Objective State (Mo): A representation of the external world, derived through the recognition filter

(Fr). It contrasts with the subjective state (Ms).
• Subjective State (Ms): A representation within the individual’s internal mental world, shaped by

their perception and interpretation of reality. It contrasts with the objective state (Mo).
• Error (e): The discrepancy between the objective and subjective states (e = Mo −Ms), serving as the

driving force for updating the subjective state (Ms).
• Cognitive Bias (µ): A persistent tendency that attracts or repels the subjective state in a particular

direction. Beliefs, memories, and values are included in this category.
• Process Noise (ε): Transient noise that perturbs the subjective state.
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• Mental Fluctuation (ω): Internal perturbation, where ω = µ+ ε (cognitive bias + process noise),
that augments the output of the Evaluation Filter (Fe).

• Affective Gain (G): A coefficient representing the system’s sensitivity to the combined signal from
the Evaluation Filter (Fe) and Mental Fluctuation (ω), dynamically modulating its influence.

• Self-System (S): A higher-order control element that dynamically adjusts the system’s parameters,
including (G) and (µ). It can be regarded as a central component of subjectivity, responsible for
learning, adaptation, and decision-making.

• Action (A): The action generated toward the external world in response to the update signal of the
subjective state (Ms).

A key distinction from PCT lies in the nature of the target state. Whereas PCT’s “reference signal”
represents an internal goal to be achieved, our objective state Mo corresponds to an external reality that
functions as an attractor. This difference is crucial: PCT models error minimization with respect to an
internal standard, while our framework explains how subjective state Ms can reach a stable equilibrium
at a finite distance from external reality, anchored by the cognitive bias µ. This enables the modeling of
phenomena in which subjectivity systematically diverges from objectivity—from wishful thinking to paranoia.

From this blueprint, the signal for updating the subjective state Ms can be expressed in its most general
form as follows. This equation serves as the theoretical starting point:

Update Signal(t) = G(S, t) [Fe(Mo(t)−Ms(t), S, t) + µ(S, t) + ε(S, t)] (1)

This equation indicates that the gain G, bias µ, process noise ε, and evaluation filter Fe are dynamic
quantities that may vary over time under the modulation of the self-system S. A list of the main symbols used
in this paper is provided in Table 1. While this general form captures the system’s full complexity, a more
tractable formulation is required to analyze its core dynamics; the next section introduces the simplifying
assumptions made for this purpose.

2.2. The Continuous-Time Stochastic Differential Equation
To refine the general form in Equation (1) into a tractable model of the system’s core dynamics, we

introduce four standard assumptions:
Assumption 1: Standardized Objective Model: The objective state is set to zero (Mo ≡ 0) to isolate

the system’s intrinsic dynamics.
Assumption 2: Linear Evaluation Filter: The evaluation filter is assumed to be linear, Fe(e) = e. While

this scalar simplification is essential for the foundational model, the internal structure of
this filter will be elaborated in the multidimensional extension (Section 5).

Assumption 3: Fixed Parameters: The affective gain G and cognitive bias µ are treated as fixed
parameters, temporarily disregarding their adaptive modulation by the self-system S.

Assumption 4: Nonlinear Saturation: To capture biological constraints that prevent unbounded growth
(e.g., neural saturation), a standard nonlinear saturation term −αM3

s (where α > 0) is
introduced, acting as a restoring force (Strogatz, 2018).

Under these assumptions, the rate of change of the subjective state, dMs/ dt, can be expressed as:

dMs(t)

dt
= G(−Ms(t) + µ)− αMs(t)

3 +Gε(t)

Formalizing the process noise term Gε(t) as a Wiener process dWt with intensity σ, we obtain the model’s
foundational Stochastic Differential Equation (SDE):

dMs(t) =
(
−GMs(t)− αMs(t)

3 +Gµ
)
dt+Gσ dWt (2)

The properties of this SDE, including its stationary variance, are detailed in Subsubsection Appendix A.1.1.
This equation serves as the continuous-time theoretical foundation from which our discrete implementation
is derived.
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2.3. The Implementation Problem: From Continuous Theory to Discrete Reality
An abstract continuous theory must ultimately be instantiated in a physical system such as the brain,

which operates through discrete events. This gives rise to an often-overlooked theoretical challenge that we
term the implementation problem. Any realization of a continuous theory requires temporal sampling, and
the choice of sampling scheme profoundly shapes the resulting dynamics.

To formalize this, we discretize the SDE (Equation (2)) using a fundamental implementation approach: the
forward Euler method for the deterministic component and the Euler–Maruyama method for the stochastic
component. For simplicity, the time step is set to ∆t = 1.

First, the deterministic skeleton of the system yields the fixed-point equation describing its stable equilibria
(M∗

s ):
α(M∗

s )
3 +GM∗

s −Gµ = 0 (3)

Second, the stochastic Wiener process term Gσ dWt becomes a discrete process noise term Gε(t), where ε(t)
is drawn from a standard normal distribution scaled by σ.

Combining these components produces the core update rule for subjective dynamics—a discrete map
that serves as the central mechanism of our model:

Ms,t+1 = (1−G)Ms,t − αM3
s,t +Gµ+Gε(t) (4)

Together, Equation (3) defines the stability landscape (the MTM), while Equation (4) governs the system’s
evolution upon it. This pair of equations constitutes the mathematical mechanism of our model. The next
section examines a key insight that emerges from analyzing its linear properties.

2.4. The Ideal Dynamical Equilibrium (IDE) State
A close examination of the core update equation, Equation (4), reveals a crucial insight. The linear

autoregressive coefficient (1−G) determines how strongly the previous state Ms,t influences the next state
Ms,t+1. This term represents the system’s cognitive inertia—its intrinsic tendency to carry forward its prior
momentum. The behavior of this inertia term at two singular parameter values, G = 0 and G = 1, exposes a
fundamental distinction between dynamic regimes.

When G = 0, the system becomes purely inertial, effectively disconnected from both the cognitive bias µ
and process noise ε(t). The update equation simplifies to Ms,t+1 = Ms,t − αM3

s,t, reducing the system to
a deterministic echo of its past. In contrast, when G = 1, the inertia term (1−G) vanishes entirely. The
system’s linear memory is erased, enabling perfect responsiveness to current inputs (µ and ε(t)). We refer to
this unique, zero-inertia state as the Ideal Dynamical Equilibrium (IDE).1 The key functional distinctions
between these two regimes are summarized in Table 2.

The IDE state is not merely a mathematical abstraction. Its properties—a dynamic balance between
stability and immediate responsiveness—resonate with psychological notions of mindfulness. For instance,
the emphasis on the “here and now” in contemplative traditions such as Zen and the Middle Way reflects
a mental state free from attachment to the past (cognitive inertia) and highly responsive to the present
moment (Tang et al., 2015). The term “Ideal” is thus employed in a technical rather than normative sense,
denoting a condition of pure responsiveness. Identifying this functionally significant equilibrium motivates a
deeper exploration of its properties and the conditions under which it emerges—a topic addressed in the
following section.

3. Discrete Dynamics in a Continuous Framework: Implementation-Dependent Stability

3.1. Two Core Propositions of the Subjectivity Model
We formalize the relationship between our discrete model and its continuous origin—a viewpoint we term

the Discrete-in-Continuous perspective—to ensure the model is both faithful to the theory and offers new
insights. This formalization rests on the following two core propositions.

1For G = 1, µ = 0, although f ′(0) = 0, the zero fixed point remains stable with cubic convergence due to xt+1 = −αx3
t . We

formalize this concept operationally in Definition IDE.
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Proposition 1 (Equilibrium Equivalence). In short: The system’s stable “resting points” occur at the same
locations in both the continuous theory and the discrete model.

The set of fixed points of the discrete map is identical to the set of equilibria of the original continuous
system, provided that the discretization method is fixed-point preserving.2

Proposition 2 (Implementation-Dependent Stability). In short: Even if a resting point exists, whether the
system can actually “remain” there depends on the implementation (e.g., cognitive style or rhythm).

The stability of a fixed point—and the bifurcations that arise from it—depend critically on the implementa-
tion details of the discretization (method H and timestep ∆t). Local stability holds when |λd(λc;H,∆t)| < 1,
where the mapping from the continuous eigenvalue λc to the discrete eigenvalue λd is specific to the chosen
implementation scheme H.3

These propositions are grounded in standard principles of dynamical systems theory (see Subsubsec-
tion Appendix A.1.1). Their key implication—particularly that of Proposition 2—is that psychological stability
is not intrinsic but emergent. This reveals that, for the same underlying conflict (an unstable continuous
eigenvalue λc), the psychological outcome—whether a thought remains a stable concern or escalates into
rumination—can depend entirely on an individual’s cognitive style (implementation method H) or rhythm
(timescale ∆t) (Kuznetsov, 2004; Guckenheimer and Holmes, 1983; Strogatz, 2018).

3.2. Theoretical Rationale for a Discrete-Time Model
Our adoption of a discrete-time model is not merely an approximation but a core theoretical commitment.

Although it originates from a continuous SDE, we argue that the dynamics emerging from its discrete
implementation are not numerical artifacts to be minimized, but rather the very source of the model’s
explanatory power for subjectivity.

The significance of this choice is substantial. As shown in Tables 3 and 4, the differing stability criteria of
discrete maps (|λd| < 1) and continuous flows (Re(λc) < 0) enable a richer repertoire of dynamic behaviors. In
particular, our discrete framework gives rise to two key phenomena that are impossible in its one-dimensional
continuous counterpart:

1. Period-doubling (flip) bifurcations, providing a direct mechanistic basis for oscillatory states such
as rumination and for the sudden onset of psychological instability.

2. The IDE, a unique zero-inertia state of perfect responsiveness that cannot be captured by continuous
dynamics.

It is precisely these implementation-dependent phenomena that offer a new lens through which to understand
the mind. Thus, we embrace the discrete framework not as a surrogate for continuous theory, but as an
indispensable tool for revealing dynamics that would otherwise remain hidden.

3.3. The Canonical Skeleton of Discrete Dynamics
Having established the theoretical necessity of adopting a discrete perspective, we now generalize our

model to show that it rests upon a canonical computational skeleton. This generalization enables us to
move from a bottom-up observation derived from a specific implementation to a top-down formulation of a
potentially canonical principle. We specialize this general form into the following canonical structure, whose
coefficients ΦH and ΓH explicitly capture the implementation-dependent dynamics of inertia and drive:

Ms,t+1 = ΦH(G,∆t)Ms,t︸ ︷︷ ︸
Inertia

+ΓH(G,∆t)µ︸ ︷︷ ︸
Drive

+ (nonlinear term)︸ ︷︷ ︸
Saturation

+ (process noise)︸ ︷︷ ︸
Fluctuation

(5)

This “inertia + drive + saturation” structure is a ubiquitous mathematical form. It constitutes the
backbone of the discrete-time state-space model in control engineering (xk+1 = Axk + Buk) and parallels

2A method is fixed-point preserving if an equilibrium of the continuous system is always a fixed point of the discrete map,
and vice versa.

3Here, λc and λd denote the eigenvalues of the system’s Jacobian matrix at the fixed point for the continuous and discrete
systems, respectively. The stability criteria are Re(λc) < 0 for continuous systems and |λd| < 1 for discrete maps.
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the hidden-state update equation of a recurrent neural network (RNN) (ht = f(Whhht−1 + Wxhxt)). By
grounding our psychological model explicitly in this canonical skeleton, we can articulate two novel principles
that extend from it:

1. Allowance for Negative Gain. We explicitly permit negative affective gain (G < 0), which provides
the core mechanism for modeling a range of pathological dynamics, as demonstrated in Subsection 4.2.

2. Implementation-Dependent Stability. We propose that psychological stability is not intrinsic but
depends on cognitive implementation, which predicts the emergence of unique states such as the IDE
from specific cognitive styles H and rhythms ∆t.

The following section details the dynamical phenomena that arise from these implementation details.

3.4. IDE as an Implementation-Dependent Principle
This section explores a key implication of implementation-dependent stability: that variations in cognitive

style H and rhythm ∆t shape the system’s dynamics. To analyze this, we define the dimensionless product
κ := G∆t as the key control parameter. The most significant consequence is that the IDE is not a universal
feature but an emergent state dependent on the specific implementation, as we now formalize:

Definition IDE (Operational Definition of IDE). The IDE is a singular state of pure responsiveness
characterized by two conditions: the absence of directional bias (µ = 0) and the complete disappearance
of linear cognitive inertia (ΦH(κ) = 0). The precise conditions for realizing this zero-inertia state are
implementation-dependent, as illustrated in Table 5 and Figure 2.

3.4.1. IDE Indicator: “Inertia” vs. “Responsiveness”
To translate this principle into a testable scientific claim, we introduce a dimensionless indicator. Following

a long scientific tradition of employing such ratios to characterize complex systems (e.g., the Reynolds number),
DIDE quantifies the balance between cognitive inertia and responsiveness.

Indicator 1 (IDE indicator DIDE).

DIDE :=

∣∣∂Ms,t+1/∂Ms,t

∣∣∣∣∂Ms,t+1/∂µ
∣∣ ∣∣∣

Ms=0,µ=0
=
|ΦH(κ)|
|ΓH(κ)|

. (6)

This indicator is non-negative, with a theoretical range of [0,∞).

The indicator becomes zero (DIDE = 0) precisely at the IDE state, where ΦH(κ) = 0. From a psychological
perspective, the parameters that constitute this indicator offer a fertile ground for interpretation. The
timescale ∆t can be viewed as a manipulable “cognitive rhythm,” while the implementation style H can
be understood as a stable “cognitive style.” For instance, a simple implementation scheme (e.g., forward
Euler) can be seen as paralleling fast, intuitive reasoning, whereas a more sophisticated one (e.g., Tustin)
corresponds to deliberate, analytical processing.

This reinterpretation of engineering methodologies as “cognitive styles” lies at the core of our contribution.
The discretization methods discussed here are, of course, standard tools in control engineering, traditionally
employed to analyze system properties such as stability and frequency response (Franklin et al., 1998).
Our novelty does not lie in the methods themselves, but in their conceptual recontextualization: rather
than pursuing technical objectives such as controller design, we apply these methods from a psychological
standpoint to investigate how different cognitive styles influence psychological stability.

4. Analysis of the Scalar Model: The Mind Topography Map

4.1. The MTM as a Cusp Catastrophe
Through our Discrete-in-Continuous perspective, we now explore the model’s dynamics. To this end, we

introduce the Mind Topography Map (MTM)—a central contribution of this paper (Figure 3). The MTM
functions as a “phase diagram” of subjectivity, visualizing how affective gain G and cognitive bias µ jointly
shape the landscape of stable states and pathological transitions.
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The MTM’s structure is rigorously grounded in catastrophe theory (Thom, 1975; Zeeman, 1977), as
our model’s equilibrium equation (Equation (3)) is mathematically isomorphic to a cusp catastrophe. This
isomorphism confirms that G and µ act as its control parameters (see Appendix B). The map’s boundaries
are bifurcation curves defined by the discriminant of this equation. We use a reduced discriminant ∆̃ to
partition the MTM into distinct regions (see Table 6):

∆̃ = −4G3 − 27αG2µ2. (7)

Physically, the MTM can be viewed as a potential landscape where stable psychological states are “valleys”
(Tanaka et al., 2019). However, this static analogy is incomplete; as established in Section 3, our discrete
framework generates unique phenomena that have no counterpart in continuous flows. This critical distinction
calls for a direct analysis of the model’s dynamics, which we now undertake.

4.2. Negative Affective Gain and Error-Amplifying Dynamics
A key feature of our model is its allowance for negative affective gain (G < 0), which shifts the dynamics

from healthy, error-correcting to pathological, error-amplifying ones. While DST has long examined such
feedback as unstable dynamics (van Gelder, 1995b,a), our discrete framework reveals specific consequences
that continuous formulations cannot capture: a formal isomorphism to a cusp catastrophe (Appendix B)
and the emergence of period-doubling bifurcations. The most profound outcome of this error-amplifying
dynamic is the creation of a bistable region on the MTM. This occurs because the nonlinear saturation term
(−αM3

s ) constrains runaway growth, producing a landscape of new, distant attractors instead of unbounded
divergence.4 This bistable landscape gives rise to history dependence, or hysteresis, which provides a
computational account for self-reinforcing loops (e.g., “anxiety begets more anxiety”) and explains clinically
salient phenomena such as mood relapse and the persistence of cognitive biases. While this section focuses
on the mechanistic consequences of negative gain, its broader implications will be discussed in Section 6.

4.3. A Quadrant-Based Analysis of the G-µ Plane
The MTM is best interpreted using the quadrant-based heuristic summarized in Table 7. This classification

arises from the distinct roles of the two axes: affective gain G functions as the system’s primary dynamic
switch, toggling between an error-correcting regime (G > 0) and an error-amplifying one (G < 0), while
cognitive bias µ sets the system’s target. The critical insight from this analysis is the asymmetry it reveals:
while the adaptive region (G > 0) captures stable goal pursuit, it is the escapist region (G < 0) that produces
the complex, history-dependent dynamics (e.g., hysteresis) essential for modeling persistent maladaptive
states.

4.4. Representative Dynamics on the MTM: Simulation Cases
To ground the MTM’s abstract topology in observable behavior, we now simulate its dynamics at four

representative points on the map (Figure 3), governed by the update rule in Equation (4).5
Adaptive, High Sensitivity (G > 1) With parameters G = 1.5 and µ = ±0.5, placing the system in the

monostable region, the subjective state converges steeply toward the bias, modeling an overly sensitive
or hyper-responsive cognitive style (Figure 4).

Adaptive, Standard (0 < G < 1) With parameters G = 0.3 and µ = ±0.5, also in the monostable region,
the state converges more gradually to the bias, representing a moderate and stable adaptive dynamic
characteristic of healthy learning (Figure 5).

Escapist, Bistable (G < 0) With parameters G = −0.5 and µ = ±0.5, placing the system in the bistable
region, a single trajectory is captured by one of two distinct attractors, demonstrating history dependence
(Figure 6). The existence of this dual-attractor structure is statistically confirmed by the bimodal
distribution that emerges in long-term simulations (Figure 7).

4The coexistence of an amplifying force and a nonlinear containing force is a standard feature of DST models of self-
organization, evident in mechanisms ranging from logistic growth to the saturating activation functions of neural networks.

5In all simulations, the nonlinear saturation coefficient was set to α = 0.1 and the process noise intensity to σ = 0.05.
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The IDE State (G = 1, µ = 0) At this unique point within the monostable region, linear inertia vanishes.
The state exhibits a perfect balance between stability and responsiveness, agilely tracking process noise
without being captured by it—embodying a centered state of mind (Figure 8).

A comparison of the two regimes reveals the model’s most critical dynamic: the belief amplification effect.
Whereas the adaptive region (G > 0) causes the subjective state Ms to converge directly to the bias µ, the
escapist region (G < 0) amplifies a mild bias (|µ| = 0.5) into a strong, stable conviction with a magnitude
(|Ms|) of 2.0 to 2.5, as shown in Figure 6. This amplification is not unbounded; the error-amplifying feedback
from G < 0 is constrained by the nonlinear saturation term, which carves out new, distant attractors in the
system’s landscape.

The underlying probability landscape in Figure 7 reveals the origin of this effect: a dual asymmetry in
the attractors’ locations and probabilities. This symmetry breaking is caused by the constant force from
the Gµ term, which simultaneously shifts the attractors’ positions and tilts the potential landscape. A
positive bias (µ > 0), for example, draws the corresponding positive attractor closer to the origin (Ms ≈ 2.0)
while deepening its basin of attraction, thereby increasing its likelihood. This mechanism provides a formal
computational account of how a minor cognitive bias can evolve into a deeply entrenched and nuanced
pathological fixation.

4.5. Dynamics of a Navigated Trajectory: A Simulation Case
Having analyzed the system’s behavior under fixed parameters, we now provide a proof of concept

illustrating the self-system S and its role in active self-regulation. This simulation demonstrates how S can
dynamically adjust the affective gain G and cognitive bias µ to navigate the MTM, transitioning through
distinct psychological states. The spiral trajectory plotted on the map in Figure 3 unfolds as a compelling
mental journey comprising three phases (Figure 9).
Phase 1: Adaptive Tracking (Timesteps 0–400) The journey begins in the adaptive, monostable re-

gion (G > 0). Here, the subjective state Ms(t) effectively tracks the evolving negative bias µ(t),
demonstrating a flexible and proportionate response to shifting internal conditions.

Phase 2: Pathological Fixation (Timesteps 400–700) As the parameters move into the escapist, bistable
region (G < 0), a catastrophic bifurcation occurs around timestep 400. The subjective state Ms(t)
detaches from the bias and locks into the belief amplification dynamic. This pathological state becomes
self-sustaining through hysteresis, persisting even after the bias µ(t) reverses sign.

Phase 3: Recovery and Centering (Timesteps 700–1000) Upon re-entering the adaptive, monostable
region (G > 0) near timestep 700, the system escapes the pathological attractor and rapidly reconverges
with the bias. The self-system then guides both parameters toward the IDE point (G = 1, µ = 0),
achieving a stable, centered equilibrium.

This trajectory unifies a full psychological cycle—from healthy adaptation and pathological fixation to
recovery—into a single process of self-regulation. It demonstrates how the self-system S navigates the MTM’s
stability landscape to integrate these distinct mental states.

5. From States to Processes: The Multidimensional SGBD Framework

5.1. Extension to a Multidimensional Framework
While the preceding scalar model revealed a rich landscape of dynamics, its central limitation is its

representation of subjectivity as a single variable Ms. To address this, we extend the core scalar update rule
(Equation (4)) into a multidimensional form. This is achieved by replacing each scalar component—subjective
state Ms, gain G, bias µ, saturation α, and noise ε—with its corresponding vector form, as detailed in
Table 1. We term this multidimensional extension the Structural Gain–Bias Dynamics (SGBD) framework,
designed to capture the intricate tapestry of the inner world, where multiple, often conflicting, mental states
coexist.
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5.2. The Subjectivity Vector and Its Structure
The true power of this vector representation lies in its ability to structure the high-dimensional subjective

space into a set of psychologically meaningful subspaces. This elevates the model from a single point to a
rich canvas upon which the architecture of the mind can be drawn.

Mathematically, this corresponds to partitioning the N -dimensional subjective vector Ms into a collection
of functionally distinct sub-vectors:

Ms =


Msub 1
Msub 2
Msub 3

...


}N1 dimensions
}N2 dimensions
}N3 dimensions

such that N =
∑
i

Ni.

By assigning specific psychological meanings to each sub-vector, we can illustrate the expressive potential of
this framework. For example, it can model:

• Hierarchical structures of the self , such as the interplay among sub-vectors representing the
Freudian “superego,” “ego,” and “id” (Freud, 1923).

• An inner society of self and others, by placing sub-vectors for the “self” alongside those representing
“internalized others,” such as a demanding boss or an idealized mentor.

• Conflicts of value, by juxtaposing mutually exclusive goals—for instance, a sub-vector oriented
toward “career success” and another toward “family time.”

Thus, the vectorized framework provides the foundational blueprint for the mind’s static architecture. Yet
this remains only a schematic design. The critical question is: what constitutes the “mechanism” that drives
the dynamics upon this blueprint?

5.3. Decomposition of Dynamics: States and Processes
The key to modeling these complex dynamics lies in a component of our initial blueprint (Figure 1):

the Evaluation Filter (Fe). In the foundational scalar model (Assumption 2), this filter was treated as a
simple linear element, rendering it effectively invisible. In the SGBD framework, we lift this simplification
by promoting Fe to a square matrix, termed the evaluation weight matrix, WFe. Because this matrix
governs the relationships among the dimensions of the subjective vector Ms, it functions as the system’s
core interaction matrix. This innovation is powerful, as it allows us to model the rich structure of the inner
world—a capability impossible in the scalar model. As detailed in Subsection Appendix A.2, this extension
yields the general update equation for the SGBD framework, shown as Equation (8).

Ms(t+ 1) = Ms(t)−α⊙ (Ms(t))
◦3 +Geff(t)⊙ (−WFeMs(t) + µeff(t) + ε(t)) (8)

A mathematical analysis of the force term −WFeMs reveals a key insight. Although decomposing any
square matrix into its symmetric (S) and skew-symmetric (R) components is a standard mathematical
operation, its application to differentiate psychological “states” from “processes”—a perspective common in
fields such as physics, engineering, and neuroscience (see Table 8)—has been largely overlooked in psychology.
As we will demonstrate, these two components have fundamentally different dynamic roles that directly
address our central question:

• The symmetric component (S) generates a gradient force. This force drives the system down the
slope of a potential energy landscape toward a stable minimum. It produces convergence, corresponding
to the formation of a psychological “state.”

• The skew-symmetric component (R) generates a rotational force. Always orthogonal to the state
vector, it performs no net work on the system but induces cyclic or orbital motion on the potential
landscape. It produces persistence and recurrence, corresponding to a psychological “process.”

This mechanistic duality—between gradient and rotational dynamics—maps directly onto a psychological
one, separating state-seeking from process-sustaining forces. We hypothesize that the rotational forces
generated by the skew-symmetric component are the computational manifestation of asymmetric relationships
among psychological values. For example, a strong focus on “career success” may actively suppress the value
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of “family time,” whereas the reverse influence may be weaker or absent. It is precisely such hierarchical or
one-way value interferences that the skew-symmetric component captures, giving rise to the dynamics of
persistent trade-offs and unresolved inner conflicts.

5.3.1. A Mechanistic Duality in Dynamics: Introducing Cognitive Phase Dynamics (CPD)
We refer to this core principle—the conceptual distinction between gradient and rotational dynamics—as

Cognitive Phase Dynamics (CPD). CPD offers a unified, mechanistic account of how a single cognitive
architecture can accommodate both stable psychological phenomena, such as beliefs and moods, and persistent
dynamic phenomena, such as rumination and creative thought.

5.3.2. CPD Indicator: “States” vs. “Processes”
This insight naturally raises a testable question: within any given mental state, what is the balance

between these two forces? To quantify this relationship and render the CPD concept empirically verifiable,
we introduce a dimensionless indicator.

Indicator 2 (CPD indicator DCPD). Given the decomposition WFe = S+R, with S⊤ = S and R⊤ = −R,
we define the CPD indicator as the dimensionless ratio

DCPD :=
∥S∥F
∥R∥F

. (9)

Here, ∥·∥F denotes the Frobenius norm. In the special case where the rotational component is zero (∥R∥F = 0),
as in a purely symmetric matrix, we define DCPD ≡ ∞ to represent the absolute dominance of state-seeking
dynamics. The indicator thus ranges theoretically over [0,∞]. Values of DCPD > 1 indicate S-dominant
(state/gradient) dynamics, DCPD < 1 indicate R-dominant (process/rotational) dynamics, and DCPD = 1
marks the balance point between the two regimes.

For convenience, we also define a signed logarithmic version:

DCPD,log := log
∥S∥F
∥R∥F

. (10)

5.3.3. A Two-Dimensional Cognitive Map: Linking IDE and CPD
The two indicators introduced in this paper, DIDE and DCPD, can be combined to construct a two-

dimensional cognitive map. These indicators form two orthogonal6 axes that are semantically complementary:
the DIDE axis quantifies the balance between “inertia” and “responsiveness,” while the DCPD axis quantifies
the balance between “state” and “process” dynamics.7 Together, these axes define a plane that allows the
classification of four primary cognitive regimes:

• DCPD,log > 0, DIDE > 0: Rigid Beliefs — A regime dominated by states and high inertia, leading to
inflexible or dogmatic thinking.

• DCPD,log < 0, DIDE > 0: Rigid Rumination — A regime dominated by processes and high inertia,
characteristic of obsessive or depressive thought loops.

• DCPD,log > 0, DIDE ≈ 0: Adaptive Goal-Focus — A regime dominated by states and high respon-
siveness (low inertia), oriented toward stable goal attainment.

• DCPD,log < 0, DIDE ≈ 0: Creative Exploration — A regime dominated by processes and high
responsiveness (low inertia), characterized by open-ended, rotational cognition.

The origin (DCPD,log ≈ 0, DIDE ≈ 0) represents a notable synthesis: a highly adaptive condition that balances
responsiveness with centered equilibrium.

6Here, “orthogonal” is used conceptually to indicate that the two indicators measure independent, non-redundant aspects of
the system’s dynamics.

7Note that DIDE is defined as a ratio of absolute values and is therefore always non-negative, whereas DCPD,log is a log-ratio
whose sign indicates which component (S or R) is dominant.
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5.4. A Taxonomy of Psychodynamics
We now analyze how the symmetric (gradient) and skew-symmetric (rotational) forces arising from WFe

interact with the system’s overall regime, determined by the sign of affective gain G (adaptive vs. escapist).
This interaction yields four characteristic psychodynamic regimes, which are summarized in Table 9. Their
qualitative dynamics are illustrated as vector fields in Figure 10, generated by the representative parameter
sets in Table 10 (assuming µeff = 0). The functional interpretation of each regime is outlined below.

• Healthy Conflict (Figure 10A): An adaptive, state-dominant system produces a stable saddle point,
modeling a clear decision point that guides the state toward resolution.

• Severe Conflict (Figure 10B): An escapist, state-dominant system inverts stability, turning the origin
into an unstable repeller. This captures a dissociative state in which the system cannot settle.

• Stable Rumination (Figure 10C): An adaptive, process-dominant system exhibits a stable spiral
convergence, modeling a manageable cognitive process that culminates in resolution.

• Catastrophic Rumination (Figure 10D): An escapist, process-dominant system shows an unstable
spiral divergence, which—when extended to the full nonlinear model—manifests as a limit cycle,
modeling a self-sustaining vicious loop of thought.

5.5. A Dynamic Reinterpretation of Russell’s Circumplex Model
To demonstrate the utility of the psychodynamic taxonomy, we apply it to a classic model in affective

science: Russell’s circumplex model of affect (Russell, 1980), a foundational framework that maps emotions
onto a two-dimensional space defined by Valence and Arousal. The synergy is evident: the circumplex model
provides an empirical description of what emotions are, whereas our SGBD framework offers a mechanistic
account of how they behave.

This complementarity enables new explanations for complex emotional phenomena that static maps
cannot capture:

• The Paradox of Happiness: Why can the deliberate pursuit of happiness lead to greater unhappiness?
Our framework explains this through the S-dominant escapist regime (Figure 10B). When the goal of
“being happy” is pursued under an escapist gain (G < 0), it becomes an unstable repeller, driving the
subjective state away from the desired emotion.

• Vicious Cycles of Anxiety: How does anxiety sustain itself? Our framework models this using
the R-dominant escapist regime (Figure 10D). Here, the interaction of rotational forces with error-
amplifying gain produces a limit cycle—a self-sustaining loop that traps the subjective state in persistent
rumination.

This reinterpretation provides a concrete bridge between dynamic theory and empirical observation. A
key direction for future research is to formalize a mathematical transformation linking G–µ plane with the
Valence–Arousal plane. Establishing this mapping would deepen our understanding of both the structure
and dynamics of human emotion, creating a direct and testable interface between the two frameworks.

6. The Trinity Architecture: An Integrative Framework for FEP and PCT

6.1. An Architecture of Three Interacting Layers
To bridge the conceptual gap between the brain’s physical basis and the mind’s goal-directed nature,

we propose the Trinity Architecture. This framework posits that our discrete computational model—the
Structural Layer (SGBD)—functions as the crucial bridge between two other fundamental layers: the
foundational Physical Layer (governed by FEP) and the goal-setting Normative Layer (governed by PCT).

• Layer 1: Physical Layer (FEP): The foundational layer representing the continuous physical basis
of the mind.

• Layer 2: Structural Layer (SGBD): The intermediate layer describing the discrete computational
model of subjectivity.

• Layer 3: Normative Layer (PCT): The highest layer, which functions as a hierarchical control
system governing the entire architecture.
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A detailed comparison of these layers is presented in Table 11. The dynamic cycle across them, illustrated
in Figure 11, is best understood through an example: the process of overcoming a mental block.
Layer 1 → Layer 2 (Physical basis shapes computational structure): A physical state such as fa-

tigue can alter the parameters of the computational model, for instance, by reducing affective gain
G. This shallows the potential wells of the MTM, weakening concentration and diminishing task
performance.

Layer 2 → Layer 3 (Structural state informs normative evaluation): The current state of the com-
putational model, that is, the subjective state Ms, is evaluated by the hierarchical control system. A
discrepancy from the normative goal (a PCT-like error) triggers a corrective response.

Layer 3 → Layer 2 (Parameter Modulation): Based on its evaluation, the normative layer modulates
the parameters (G,µ) of the structural layer to guide the system toward its goals.

Layer 3 → Layer 1 (Implementation Lever): The normative layer can also employ meta-control strate-
gies, using the implementation lever to act on the physical basis, for instance, by selecting an optimal
style H or resetting the cognitive rhythm ∆t to restore functional balance.

The dynamic interplay among the Physical, Structural, and Normative Layers, unfolding across distinct
timescales, gives rise to adaptive and creative cognition. The agent orchestrating this complex interplay is
the self-system S, whose computational mechanism we detail in the following section.

6.2. The Role of the Self-System S in The Trinity Architecture
As the core component of the Normative Layer, the self-system S is the agent responsible for driving

the dynamic cycle across the architecture. We formalize S as a hierarchical Bayesian agent that learns and
infers across two distinct timescales. This dual-timescale structure finds a powerful parallel in the distinction
between the fast, intuitive System 1 and the slow, deliberate System 2 of dual-process theory (Kahneman,
2011), enabling both rapid adaptation and long-term personal development. Its mathematical formulation is
provided in Subsection Appendix A.3.
Tactical Level (Fast Timescale): On short timescales, the self-system acts as a tactical controller. It

infers the optimal operational parameters (G,µ) based on the recent history of subjective states. This
process generates the Parameter Modulation signals sent to the Structural Layer, corresponding to
selecting the most suitable “tactic” for the present context.

Strategic Level (Slow Timescale): On longer timescales, the self-system operates as a strategic learner.
It updates its fundamental beliefs—the metaparameters θS that govern tactical inference—by evaluating
the long-term outcomes of its actions against a core objective function, L. This meta-learning process
informs its meta-control strategies, such as when and how to use the Implementation Lever to act on
the Physical Layer.

This hierarchical organization establishes a self-referential loop in which strategy θS guides tactics (G,µ),
and the outcomes of those tactics, evaluated against the objective function L, in turn, drive the evolution of
the strategy itself.

6.3. Contributions to Existing Theories
Within the proposed Trinity Architecture, the SGBD framework functions as the core “Structural Layer.”

This positioning allows it to serve not merely as a complementary model, but as a concrete computational
bridge that integrates FEP and PCT. While both frameworks share the goal of “predicting or controlling
perception,” they are expressed in different formalisms: FEP as Bayesian inference (a generative model) and
PCT as feedback control. The SGBD is proposed as the mechanism that mediates between the physical
causality described by FEP and the teleological normativity of PCT. The following subsections detail how
this Structural Layer contributes to the theories governing the other layers.

6.3.1. Contribution to the Free Energy Principle
Our framework provides a computational foundation, as the Structural Layer, for the principles of the

Physical Layer described by FEP. In its adaptive regime (G > 0), our model’s update rule can be interpreted
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as a concrete, discrete-time implementation of the error-minimizing dynamics that FEP prescribes.8 The
unique contribution of our model, however, lies in its ability to unify this healthy, FEP-compliant functioning
with its potential collapse into pathology within a single formal structure. A crucial theoretical distinction
must be emphasized. In FEP, the “precision” parameter is, by definition, non-negative. In contrast, our
affective gain G can take negative values within the Structural Layer. This is not a mere technical difference;
it is the defining feature that allows our model to formally capture the transition from FEP-like error
minimization to the pathological, error-amplifying dynamics fundamental to a comprehensive theory of
subjectivity. By allowing the gain to become negative (G < 0), the very same mechanism transitions from
FEP-compliant dynamics to a pathological regime. This offers a formal account of the system’s failure to
minimize free energy, modeling pathology not as a special case, but as an emergent property of one coherent
dynamical mechanism.

6.3.2. Contribution to Perceptual Control Theory
Our framework offers a computational substrate for the principles of PCT. We acknowledge that PCT

originally proposes a detailed hierarchy of control, spanning from low-level intensity to high-level system
concepts.9 The Trinity Architecture does not attempt to replicate this entire structure, but rather strategically
models PCT’s highest-level function—the goal-setting driven by principles and self-concept—as its Normative
Layer. Our contribution is to provide a formal mathematical implementation of the Structural Layer (SGBD)
that serves as the object of this top-down normative control. This approach allows us to formalize higher-order
PCT concepts within the dynamics of the Structural Layer. For example, the rotational forces of Cognitive
Phase Dynamics (CPD) offer a concrete mechanism for the “persistence” of hierarchical conflict, while the
bifurcation structure of the Mind Topography Map (MTM) translates PCT’s concept of “reorganization”
into a specific mathematical event: a noise-induced transition to a new basin of attraction. The model thus
provides a unified substrate that the Normative Layer governs, from which both elementary control and
higher-order phenomena such as reorganization can naturally arise.

7. General Discussion

7.1. Summary of Theoretical Contributions
This paper makes six core theoretical contributions. To clarify their logical progression, we present them

organized into three key themes:

Core Dynamics of the Scalar Model.
1. We introduced the MTM as a foundational “phase diagram” of subjectivity, demonstrating its iso-

morphism to a cusp catastrophe and establishing a formal basis for bistability, hysteresis, and the
error-amplifying dynamics of psychopathology (G < 0).

2. We identified the IDE—a distinct zero-inertia state of pure responsiveness—and rendered it empir-
ically testable via the indicator DIDE, which quantifies the balance between cognitive “inertia” and
“responsiveness.”

Extension to Multidimensional Subjectivity.
3. We developed the multidimensional SGBD framework to move beyond a scalar representation of

subjectivity, providing a formal “canvas” for modeling complex mental structures such as internal
conflict.

4. We resolved the fundamental mechanistic duality of mental life by proposing CPD, a mechanism
explaining how both stable “states” and persistent “processes” emerge from the symmetric and skew-
symmetric components of the interaction matrix (WFe), respectively. This mechanism was further
operationalized through its empirical indicator DCPD.

8If the objective function L is interpreted as the Evidence Lower Bound (ELBO), this model connects naturally to the
framework of FEP and active inference.

9See, for example, the comprehensive hierarchy detailed in Powers (1973).
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Unifying Principles.
5. We established a methodological foundation by framing psychological stability as an “implementation

problem,” revealing that it critically depends on cognitive implementation styles H and temporal
rhythms ∆t.

6. We proposed the Trinity Architecture, an integrative framework that positions our model as a compu-
tational bridge mediating between the physical causality of the FEP and the teleological normativity of
PCT.

7.2. Relation to Scientific Theories of Consciousness
Our model contributes to the scientific study of consciousness by offering a computational “engine” that

integrates with other major theories, which are the focus of ongoing empirical investigation and debate
(Melloni et al., 2023). As the following examples illustrate, our framework provides a dynamic mechanism for
the static causal structures of IIT and a formal implementation of the “ignition” metaphor in GWT.

Dynamizing IIT’s Causal Structures. The relationship with IIT, an ontological theory, is one of structure
versus dynamics. IIT defines the static causal structure that constitutes an experience, whereas our framework
provides the dynamic mechanism that operates upon that structure. If IIT offers the “hardware” blueprint of
consciousness, our model supplies the “software” that runs on it, transforming IIT’s causal snapshot into a
dynamic movie of subjective experience.

Implementing GWT’s Ignition Phenomenon. For GWT, a process-oriented theory, our framework provides a
concrete mathematical implementation of its central metaphor of “ignition.” GWT presents a functional
account of conscious access, in which information must cross a nonlinear threshold to be globally “broadcast.”
Our model translates this functional description into a precise mathematical mechanism: the crossing of a
bifurcation boundary on the MTM. This reframes ignition as a predictable, catastrophic transition, thereby
offering a rigorous computational grounding for GWT’s core claim.

7.3. Relation to the Philosophy of Mind: Functional Structuralism
Our framework’s primary contribution to the philosophy of mind is an approach we term Functional

Structuralism. This stance proposes to redefine the boundary between the “easy” and “hard” problems of
consciousness (Chalmers, 1995). While the raw phenomenal quality of experience remains elusive, Functional
Structuralism posits that the structure of subjective dynamics is mathematically tractable and thus falls
within the domain of the “easy” problems.

The power of this approach is best illustrated by Cognitive Phase Dynamics (CPD). The phenomenological
distinction between a stable psychological “state” and a dynamic “process”—a defining feature of inner
experience—has long resisted formal description. Our model demonstrates that this distinction is not a
philosophical enigma but corresponds directly to a fundamental mathematical property: the decomposition
of the interaction matrix (WFe) into its symmetric and skew-symmetric components.

By translating a core phenomenological feature into a formal mathematical property, this work embodies
the promise of Functional Structuralism. It demonstrates that the architecture of inner experience possesses
an analyzable structure, thereby taking a concrete step to extend the reach of scientific inquiry and bring a
greater portion of the inner world within its grasp.

7.4. Limitations and Future Directions
As a broad theoretical framework, the primary limitations of this paper also define its most promising

directions for future research. While additional constraints undoubtedly exist, the most significant ones fall
into three categories—each stemming from deliberate strategic choices made to ensure conceptual clarity.

• Model Simplifications and Abstractions: To isolate the core mechanism of subjective dynamics,
we deliberately assumed static parameters (G,µ) and adopted a canonical cubic saturation term. While
this choice clarifies the model’s essential structure, it necessarily omits the crucial process by which the
self-system S dynamically learns and adapts these parameters over time.
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• Methodological and Empirical Constraints: To first establish a coherent theoretical foundation,
this paper has focused on the model’s formal structure. As a result, the framework currently remains
a theoretical construct awaiting direct empirical validation. A key challenge for future work is to
develop robust estimation techniques that can fit the model’s parameters to real-world psychological or
neurocognitive data.

• Conceptual and Scope Limitations: To focus on the internal dynamics, this paper does not model
the entire loop shown in Figure 1. Three key processes are omitted:

– How external inputs are filtered by Fr to form Mo and then by Fi to influence Ms.
– How the subjective state Ms generates an action A that influences the external world.
– How feedback from the external world updates the self-system S.

Completing this loop is a key direction for future work. Doing so would frame the internal dynamics
analyzed herein as the core computational “engine” within a fully embodied agent.

Despite these limitations, the framework is not merely speculative. On the contrary, they directly give
rise to a generative research program by making a set of falsifiable predictions that can be empirically tested
to address these open challenges:

• Prediction 1 (Hysteresis Phenomenon): The model predicts that when system parameters enter
the bistable region (G < 0), the dynamics will exhibit history dependence (hysteresis). This provides a
directly testable model for clinically relevant phenomena such as mood relapse and belief perseverance.

• Prediction 2 (Dynamic Signature of IDE): As the system approaches the IDE state, its dynamic
signature—quantified by the indicator DIDE (indicator 1)—should converge toward zero. This hypothesis
can be tested by manipulating task demands (affecting ∆t) and measuring the resulting response
dynamics.

• Prediction 3 (Pathological Process Signature): The transition from focused concentration to
rumination should correspond to a measurable shift toward process-dominance, reflected in a decrease
of the DCPD indicator (indicator 2). This can be empirically tested by fitting a vector autoregressive
(VAR) model to time-series data and computing DCPD from the estimated interaction matrix.

• Prediction 4 (Adaptive Process Signature): Adaptive processes such as meditation—conceptualized
as a pathway toward the IDE—should involve a controlled, temporary decrease in DCPD. This transient
shift into a process-dominant state facilitates escape from suboptimal attractors. Over the long term,
practitioners should exhibit a baseline shift of their DIDE indicator toward zero.

• Prediction 5 (Process Noise-Driven Reorganization): Increased process noise (σ) near the IDE
should enhance response variance and increase the likelihood of a process noise-induced jump to a new
stable state. This offers a mechanistic, testable account of PCT’s concept of “reorganization.”

8. Conclusion

To account for the phenomenological duality of subjectivity—its continuous flow and discrete transi-
tions—this paper modeled the mind as a self-organizing discrete dynamical system within the Discrete-in-
Continuous perspective. This approach revealed that psychological stability is implementation-dependent :
identical continuous mechanisms may yield distinct discrete behaviors depending on cognitive style and
temporal rhythm. From this foundation, the Mind Topography Map (MTM) was proposed as a formal
phase diagram that captures catastrophic state shifts and the error-amplifying dynamics characteristic of
psychopathology when G < 0.

Two complementary and dimensionless principles emerged from this framework. The Ideal Dynamical
Equilibrium (IDE), quantified by DIDE, represents a zero-inertia state of pure responsiveness. The Cognitive
Phase Dynamics (CPD), measured by DCPD, explains how the mind maintains both stable “states” and
ongoing “processes” through the interplay of gradient and rotational dynamics. Together, these principles
form the Structural Layer of the proposed Trinity Architecture, bridging the physical causality of the Free
Energy Principle and the teleological normativity of Perceptual Control Theory.

By unifying these layers, the framework offers more than a theoretical synthesis—it provides a testable
blueprint for computational psychiatry. Through the formal translation of phenomenological structure
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into mathematical dynamics, it advances what we call Functional Structuralism: a program to render the
architecture of the human mind a tractable object of scientific inquiry.
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Tables

Table 1: List of major symbols. This table offers a quick reference for the core mathematical notation used throughout the
paper to build the dynamical model of subjectivity.

Symbol Name Description

Ms, Ms Subjective state (scalar, vector) The central variable of the model.

S Self-system The higher-order control system that modulates sys-
tem parameters.

G, Geff Affective gain (scalar, vector) Sensitivity to the error signal.

µ, µeff Cognitive bias (scalar, vector) The target point of the subjective state.

ε(t), ε(t) Process noise (scalar, vector) Transient random perturbations.

ω Mental Fluctuation The sum of internal perturbations (ω = µ+ ε).

θS Metaparameters The strategic-level parameters of the self-system S.

L Objective function A function L that quantifies long-term goals.

IDE Ideal Dynamical Equilibrium A singular state of pure responsiveness where linear
inertia vanishes.

DIDE IDE Indicator A dimensionless metric for the balance between iner-
tia and responsiveness.

DCPD CPD Indicator A dimensionless metric for the balance between state
and process dynamics.

ginput, µinput Source vectors Universal inputs transformed by individual-specific
structural matrices.

MG, Mµ Structural matrices Matrices that encode individual cognitive tendencies.

α, α Saturation coefficient The nonlinear stabilizing coefficient that prevents
divergence.

H,∆t Implementation The method and time step for discretizing the con-
tinuous system.

ΦH ,ΓH Discretization coefficients The inertia and drive coefficients dependent on the
implementation.

WFe Interaction matrix The evaluation weight matrix that defines the inter-
actions among subjective dimensions.

S,R S/R components The symmetric (S) and skew-symmetric (R) compo-
nents of WFe.
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Table 2: Functional comparison of IDE and inertial states. This table contrasts the dynamic properties of the IDE state (G = 1)
with the disconnected inertial state (G = 0), highlighting IDE as a state of adaptive, responsive equilibrium rather than mere
inaction.

Feature IDE (G = 1, µ = 0) Inertial State (G = 0, µ = 0)

Stability Strongly stable Neutrally stable
Responsiveness Highly responsive to process noise Unresponsive
Interpretation Dynamic and adaptive equilibrium Static and disconnected state

Table 3: Mathematical comparison of discrete and continuous models. This table formally contrasts the properties of the discrete
map used in this paper with its continuous-time origin. The comparison reveals that the discrete implementation uniquely gives
rise to period-doubling (flip) bifurcations—a critical mechanism for modeling abrupt psychological shifts.

Item Discrete Model (This Paper) Continuous Model (Hypothesis)

State Update Rule Difference Equation (Map)
Ms,t+1 = (1−G)Ms,t−αM3

s,t+Gµ+Gε(t)
Differential Equation (Flow)
Drift (ODE): dMs

dt = −GMs − αM3
s +Gµ

Diffusion (SDE): dMs = (−GMs−αM3
s +

Gµ) dt+Gσ dWt

Deterministic Part Map Function f(Ms)
f(Ms) = (1−G)Ms − αM3

s +Gµ
Drift Term F (Ms)
F (Ms) = −GMs − αM3

s +Gµ

Fixed-Point
Condition

Ms,t+1 = Ms,t

α(M∗
s )

3 +GM∗
s −Gµ = 0

dMs

dt = 0
α(M∗

s )
3 +GM∗

s −Gµ = 0

Stability
Condition

|f ′(M∗
s )| < 1

(f ′(M∗
s ) = 1−G− 3α(M∗

s )
2)

F ′(M∗
s ) < 0

(F ′(M∗
s ) = −G− 3α(M∗

s )
2)

Nature of IDE
(G = 1, µ = 0)

Linear inertia vanishes.
Ms,t+1 = −αM3

s,t + ε(t)
Strong linear restoring force.
dMs = (−Ms − αM3

s ) dt+ σ dWt

Types of
Bifurcation

Period-doubling (flip) Bifurcation:
f ′(M∗

s ) = −1
→ Period-doubling, route to chaos

Hopf Bifurcation: (Does not occur in one-
dimensional systems)
→ Limit cycle
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Table 4: Conceptual comparison of discrete and continuous systems. This table outlines the differing psychological interpretations
of discrete versus continuous modeling. This comparison justifies our choice of a discrete framework to capture the “event-like”
nature of subjective experience.

Comparison Item Discrete Model (This Paper) Continuous Model (Hypothesis)

Affinity with
Psychological
Phenomena

Suitable for modeling “stepwise” or event-
like phenomena such as decision-making,
developmental stages, and learning trials.

Suitable for modeling “smooth” or “quan-
titative” phenomena such as changes in
emotional intensity or mood waves.

Nature of
Attractors

Periodic points: Cycles through a finite
number of points.
Chaotic behavior can emerge even in one
dimension (including in specific parameter
regions of this model).

Limit cycles: Moves smoothly along a
closed curve.
Chaos occurs in three or more dimensions.

Nature of IDE
(G = 1, µ = 0)

Dynamic and flexible responsiveness: The
linear inertia term vanishes, directly re-
flecting process noise.

Responsive but strongly damped: A
strong linear restoring force constantly
pulls the state toward the center.

Table 5: Effect of implementation style on discretization parameters. This table demonstrates how different discretization
methods (implementation styles) alter the model’s core coefficients, highlighting that the existence and conditions for IDE are
implementation-dependent.

Style H ΦH(κ) ΓH(κ) IDE Condition

ZOH e−κ 1− e−κ No finite solution for κ > 0;
ΦH→0 as κ→∞

Tustin
1− κ/2

1 + κ/2

κ

1 + κ/2
κ = 2 ⇒ ΦH = 0, ΓH = 1

forward Euler 1− κ κ κ = 1 ⇒ ΦH = 0, ΓH = 1

2nd-order Taylor 1− κ+ κ2

2 κ− κ2

2 None

Table 6: Relationship between the discriminant and stability regions. This table explains how the sign of the discriminant of the
fixed-point equation determines the number of real equilibria, which in turn defines the distinct regions of the Mind Topography
Map.

Discriminant Number of Real
Roots

Region Type Dynamic Behavior

∆̃ < 0 1 Monostable /
Unstable

The system has a single real equilibrium, which
can be either stable or unstable depending on
the gain G.

∆̃ > 0 3 Bistable The system has two stable equilibria, separated
by an unstable one. The final state depends on
initial conditions.

∆̃ = 0 2 (one repeated) Bifurcation
Boundary

A qualitative change in the system’s stability
landscape occurs, separating the other regions.
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Table 7: Four-quadrant classification on the G-µ plane. This table offers a heuristic for interpreting the Mind Topography Map
by classifying the four quadrants based on the psychological meaning of the signs of gain G and bias µ.

Quadrant Cognitive-Affective
Label

Mathematical Basis (Discrimi-
nant & Stability)

Summary of Dynamic Features

G > 0, µ > 0 Adaptive Optimism ∆̃ < 0. Contains both monos-
table and unstable regions.

Realistic enthusiasm. Flexible
pursuit of goals.

G < 0, µ > 0 Escapist Optimism Sign of ∆̃ depends on G,µ.
monostable and bistable regions
coexist.

Wishful thinking detached from
reality. Amplifies beliefs.

G < 0, µ < 0 Escapist Pessimism Sign of ∆̃ depends on G,µ.
Monostable and bistable regions
coexist.

Severe pessimism and helpless-
ness. Fixation on a negative sta-
ble state.

G > 0, µ < 0 Adaptive Vigilance ∆̃ < 0. Contains both monos-
table and unstable regions.

Cautious realism. Predicts risks
and deals with them construc-
tively.

Table 8: Cross-disciplinary applications of Symmetric/Skew-symmetric decomposition. This table highlights the novelty of
our psychological application by contrasting it with established uses in physics, engineering, and neuroscience. While the
mathematical tool is common, its semantic mapping to psychological “states” and “processes” is the unique contribution of this
paper.

Field Object of
Analysis

Symmetric (S)
Interpretation

Skew-symmetric
(R) Interpretation

Primary Goal

Physics /
Mechanics

Force matrix,
velocity gradient

Potential/conservative
forces,
strain/deformation

Non-potential/
rotational forces,
vorticity

Analyze energy
conservation, separate
deformation from
rotation.

Control
Engineering

System state
matrix A

Rate of energy change
(stability/instability)

Oscillatory
behavior

Prove system stability,
analyze transient
response.

Computational
Neuroscience
(RNNs)

Recurrent
weight matrix
Wrec

Attractor dynamics
(memory storage)

Sequential
dynamics, temporal
processing

Model memory and
complex temporal
computation.

This Paper
(CPD)

Psychological
interaction
matrix WFe

Stable psychological
“states”

Persistent
psychological
“processes”

Explain the coexistence
of states and processes
in subjectivity.

Table 9: A 2x2 classification of the four psychodynamic regimes. The taxonomy is based on two axes: the sign of the affective
gain G and the dominance of the symmetric (S) versus skew-symmetric (R) components of the evaluation matrix WFe.

G > 0 (Adaptive) G < 0 (Escapist)

Symmetric (S-dominant) Healthy Conflict / Mode
Switching

Severe Internal Conflict /
Dissociation

Skew-symmetric (R-dominant) Stable Rumination / Creative
Process

Catastrophic Rumination /
Vicious Cycle
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Table 10: Parameter settings for the four most representative dynamic regimes. These parameters, assuming a zero cognitive
bias (µeff = 0), are chosen to most clearly illustrate the fundamental distinction between purely state-dominant (A, B) and
process-dominant (C, D) dynamics, as shown in Figure 10.

Panel G DCPD WFe Comment

(A) Healthy Conflict 0.8 ∞
(
−1.0 0.0
0.0 1.0

)
A symmetric system where the origin func-
tions as a saddle point (choice point).

(B) Severe Conflict -0.8 ∞
(
1.0 0.0
0.0 1.0

)
A symmetric system where stability is in-
verted by G < 0, making the origin a repeller.

(C) Stable Rumination 0.4 0.4
(

1.0 2.5
−2.5 1.0

)
A skew-symmetric system where attractive
force (S) and rotational force (R) create a
spiral convergence.

(D) Catastrophic
Rumination

-0.4 0.4
(

1.0 2.5
−2.5 1.0

)
A skew-symmetric system where repulsive
force (G < 0) and rotational force (R) create
a spiral divergence.

Table 11: The three layers of the Trinity Architecture. This table summarizes the distinct roles and characteristics of each layer
within the proposed integrative framework.

Layer Core Description Role and Timescale

Physical Layer
(FEP)

Continuous Physical Basis Provides the physical and informational grounding
for the entire system.
(Timescale: Fast, milliseconds to seconds)

Structural Layer
(SGBD)

Discrete Computational Model Implements the discrete dynamics of subjectivity,
acting as the computational engine.
(Timescale: Medium, seconds to minutes)

Normative Layer
(PCT)

Hierarchical Control System Governs the architecture through top-down modu-
lation and meta-control to achieve goals.
(Timescale: Slow, minutes to days)
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Table 12: Situating the SGBD framework in relation to major theories of consciousness. This table is not intended as a
competitive evaluation, but rather to clarify the unique contribution of the SGBD framework by highlighting its complementary
role alongside IIT and GWT.

Comparison Item IIT GWT SGBD Framework

Central Question Ontology: What is the
causal structure of
experience? (Φ).

Mechanism: How does
conscious access occur?
(Global broadcast &
ignition).a

Implementation: How do discrete
subjective dynamics emerge?
(Bifurcation, IDE).

Concept of Time Static (causal structure at a
moment).b

Dynamic (ignition process
over time).

Discrete-time dynamics
(implementation-dependent
stability).

Core Mechanism Integrated information (Φ),
causal structure.

Global broadcast via
network ignition.c

G-µ dynamics, IDE (ΦH = 0),
S/R decomposition.

Key Contribution Provides a formal theory of
what consciousness “is”.

Provides a functional model
of what consciousness
“does”.

Provides a computational model
of how subjectivity “changes”.

Treatment of
Pathology

Outside of primary scope. Explains failures of access
(e.g., disorders of
consciousness).

Models pathological dynamics
via error-amplification (G < 0).

Complementary
Role

Provides the “hardware
diagram” (static structure)
for which SGBD could serve
as the “software.”

Provides the functional
phenomenon (ignition) for
which SGBD could serve as
an implementation principle.

Complements IIT/GWT by of-
fering a dynamic mechanism and
bridging physics (FEP) with pur-
pose (PCT).

a (Baars, 1988; Dehaene and Changeux, 2011; Dehaene, 2014)
b IIT analyzes the causal structure of a system in a single state, which requires evaluating its potential past and
future states, so “static” is a simplification for contrast.
c This neuroanatomical substrate refers specifically to the Global Neuronal Workspace (GNW) theory, a prominent
version of GWT.
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Table 13: A dynamic structural reinterpretation of NDDs. This table illustrates how the framework, particularly Cognitive Phase
Dynamics (CPD), can offer a unifying language for generating hypotheses about the mechanisms underlying neurodevelopmental
disorders.

Disorder Example of Core
Symptoms

A Potential Dynamic Structural Interpretation

Autism Spectrum
Disorder (ASD)a

Restricted interests,
cognitive rigidity, sensory
hypersensitivity

A tendency toward State-Dominance (high DCPD).
Hypothesized as a system with overly stable, deep
attractors, leading to fixation and difficulty in flexible
state-switching.

Tic Disordersb Sudden, involuntary
movements or
vocalizations

A tendency toward Process-Dominance (low DCPD).
Involuntary actions approximated by limit cycle-like
dynamics (processes) driven by strong rotational
forces in motor-control circuits.

Attention-
Deficit/Hyperactivity
Disorder (ADHD)a

Inattention, hyperactivity,
impulsivity, hyperfocus

Instability in Meta-Control. May involve instability
in the meta-control of the state-process balance,
leading to failures in both maintaining stable focus
and disengaging from it.

Specific Learning
Disorder (SLD)

Difficulties in specific
academic skills

Could be associated with a localized distortion or
vulnerability in the cognitive bias µ for a specific
domain, creating a “hole” or “barrier” in the cognitive
landscape.

Developmental
Coordination Disorder
(DCD)

Motor clumsiness,
problems with
coordination

Might be modeled as a challenge in the fine-tuning of
affective gain G or response timing ∆t within the
sensory-motor control loop.

a ADHD and ASD are presented as contrasting heuristics to illustrate the framework’s potential. They are not intended as
definitive clinical models.
b The link between tics and “rotational dynamics” (process-dominance) is a core hypothesis derived from the framework’s
distinction between states and processes.
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Figures

Figure 1: The control-theoretic blueprint for subjectivity. This conceptual diagram illustrates the information flow that generates
subjective experience. External inputs are processed through recognition, interpretation, and evaluation filters, creating an error
signal that drives the internal loop (dotted line). This internal loop is the focus of the mathematical formulation in Section 2.

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Φ
H

2nd-order Taylor
ZOH
Tustin
Forward Euler

Figure 2: Implementation-dependent inertia. This figure illustrates how the system’s inertia (memory of its past state) depends on
the chosen implementation style H. The linear auto-regressive coefficient ΦH is plotted against the dimensionless gain-timescale
product κ. Each curve represents a different style; the zero-inertia IDE state occurs where a curve crosses the ΦH = 0 line. This
demonstrates that core dynamic properties are shaped by cognitive styles or rhythms, a theme of Subsection 3.4.
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Figure 3: The Mind Topography Map (MTM). This figure visualizes the complete landscape of the model’s stability as a function
of affective gain G and cognitive bias µ. The plane is divided into regions by bifurcation boundaries, with shading indicating the
number of stable states. This map serves as a “phase diagram” for subjectivity, allowing us to predict and interpret qualitative
shifts in mental states as catastrophic jumps across boundaries. Markers show simulation points (Figures 4 to 8), and the spiral
represents a navigated trajectory (Figure 9). On the µ = 0 axis, a flip bifurcation occurs at G = 2 for the origin (Ms = 0) and
at G = −1 for the non-zero fixed points (where Ms ̸= 0).
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Figure 4: Representative dynamics: Adaptive, high-sensitivity region. Setting: G = 1.5, µ = ±0.5. Behavior: The subjective
state Ms converges rapidly and steeply to the target bias µ. Interpretation: This represents an overly sensitive or reactive
response style, where the system strongly fixates on the goal.
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Figure 5: Representative dynamics: Adaptive, standard region. Setting: G = 0.3, µ = ±0.5. Behavior: The subjective state Ms

converges gradually to the target bias µ. Interpretation: This represents a moderate and stable response style, characteristic of
a healthy adaptation or learning process.
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Figure 6: Belief amplification in the escapist, bistable region (G < 0, µ ̸= 0). The subjective state Ms diverges from the small
bias and, driven by process noise, settles into one of two distant attractors. This illustrates how a minor bias can be amplified
into a strong conviction. The constant force from the Gµ term breaks the symmetry of the attractors’ locations and probabilities
(see Figure 7).
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Figure 7: Statistical proof of bistability in the escapist region. The bimodal probability distribution confirms the existence of
the two distinct attractors shown in Figure 6. The asymmetry in the attractors’ height and position is caused by the cognitive
bias µ, which tilts the potential landscape and makes the corresponding attractor more probable.
Method: The distribution was generated from two long simulations (N = 10, 000 steps each), initiated from the vicinity of each
stable attractor. The initial 1,000 transient steps of each run were discarded before combining the remaining data.
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Figure 8: Representative dynamics: The IDE state. Setting: G = 1, µ = 0. Behavior: With its linear inertia term gone,
the subjective state Ms responds agilely to process noise without being attached to its past value, fluctuating around zero.
Interpretation: This unique balance of responsiveness and stability makes IDE a key adaptive target for the self-system.
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Figure 9: A proof of concept for dynamic self-regulation on the MTM. The subjective state Ms(t) (solid line) responds to the
self-system’s active manipulation of gain G(t) (dotted) and bias µ(t) (dashed). The trajectory visualizes a complete mental
journey: from adaptive tracking in the monostable region (Phase 1), through a catastrophic fixation within the bistable region
(Phase 2), to a successful recovery in the monostable region and stabilization at the IDE (Phase 3).
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Figure 10: A taxonomy of the four most representative psychodynamic regimes. This figure illustrates the dynamics generated
by the parameters in Table 10 (assuming µeff = 0). (A) Healthy Conflict (G > 0, S-dominant): In a purely state-dominant
system, adaptive gain creates a stable saddle point, modeling a clear choice. (B) Severe Conflict (G < 0, S-dominant): In a
purely state-dominant system, escapist gain creates an unstable repulsion point, modeling a dissociative state. (C) Stable
Rumination (G > 0, R-dominant): In a process-dominant system, adaptive gain creates a stable spiral convergence, modeling
a thought process that finds a conclusion. (D) Catastrophic Rumination (G < 0, R-dominant): In a process-dominant
system, escapist gain creates an unstable spiral divergence leading to a limit cycle, modeling a vicious cycle.

Figure 11: The Trinity Architecture. This diagram illustrates the proposed integrative framework. It posits three interacting
layers: a foundational Physical Layer (FEP) representing the continuous physical basis, an intermediate Structural Layer
(SGBD) implementing a discrete computational model, and a top-level Normative Layer (PCT) functioning as a hierarchical
control system. The arrows depict the dynamic cycles of influence, modulation, and control that link the layers.

33



Appendices
Appendix A. Mathematical Foundations of the Model

Appendix A.1. The Core Scalar Model
Appendix A.1.1. Implementation Styles and Eigenvalue Mapping

The relationship between implementation styles and dynamics, as presented in Section 3, follows standard
methods used in control engineering for discretizing continuous systems. The derivations for the main cases
are outlined below, beginning with the simple linear continuous system dMs(t)

dt = λcMs(t), whose discrete
counterpart is Ms,t+1 = λdMs,t.

1. Zero-Order Hold (ZOH). This method provides an exact discretization under the assumption that the input
remains constant between steps. The exact solution of the continuous system, Ms((t+1)∆t) = eλc∆tMs(t∆t),
perfectly matches the form of the discrete system. Thus, direct comparison yields λd = eλc∆t.

2. Forward Euler Method. This is the simplest first-order approximation based on the definition of a derivative.
Approximating the continuous differential equation using a forward difference gives Ms,t+1−Ms,t

∆t ≈ λcMs,t.
Solving for Ms,t+1 yields Ms,t+1 = (1+λc∆t)Ms,t, from which λd = 1+λc∆t. For the forward Euler method,
stability requires |λd| < 1⇔ −2 < λc∆t < 0.

3. Tustin’s Method (Bilinear Transform). This method offers a more accurate approximation based on
the trapezoidal rule. Integrating the continuous differential equation and approximating the integral using
the trapezoidal rule gives Ms,t+1 −Ms,t ≈ ∆t

2 (λcMs,t + λcMs,t+1). Solving for Ms,t+1 yields Ms,t+1 =
1+λc∆t/2
1−λc∆t/2Ms,t, from which we obtain λd = 1+λc∆t/2

1−λc∆t/2 .
For a system that includes an input µ, the trapezoidal approximation leads to the discrete update form

Ms,t+1 = ΦHMs,t + ΓHµt, where ΦH =
1−G∆t

2

1+G∆t
2

and ΓH = G∆t
1+G∆t

2

. The input gain for Tustin’s method
increases monotonically for κ > 0, with limκ→∞ ΓH = 2.

Identification of Discrete Process Noise Covariance. To ensure a fair comparison between different imple-
mentation styles (H), the covariance QH of the discrete process noise must be defined so as to preserve
the statistical properties of the underlying continuous system. We achieve this by matching the stationary
variance of the discrete linear system with that of the continuous one. The stationary variance of the
linear part of the continuous system Equation (2) is V ar∞ = Gσ2

2 , whereas for the discrete linear system
Mk+1 = ΦHMk + wk, it is V ar∞ = QH

1−Φ2
H

. Equating these two gives the following definition of QH , under
the assumption of stability (G > 0 and |ΦH(G,∆t)| < 1):

QH =
Gσ2

2
(1− ΦH(G,∆t)2) (Appendix A.1)

This ensures that all comparisons between implementation styles in this paper are rigorous.
The diffusion intensity in the continuous system depends on (Gσ)2, so the sign of G does not directly affect

the width of the distribution, although it does affect the mean dynamics. For α > 0, this one-dimensional
diffusion process has an invariant distribution p∗(x) ∝ exp[−2V (x)/(Gσ)2], where the potential is given by
V (x) = G

2 x
2 + α

4 x
4 −Gµx.

As discussed in Section 7, these process noise-induced fluctuations act as the driving force that enables
the system to escape maladaptive stable states and explore new possibilities.

Appendix A.1.2. Bifurcation and Stability Analysis
The qualitative behavior of the system is revealed by analyzing the deterministic part of Equation (4),

f(Ms) = (1−G∆t)Ms − α∆tM3
s +G∆t µ. The following analysis assumes ∆t = 1.
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Fixed Points and Potential Function. This discrete map can be interpreted as approximately “gradient-like,”
such that f(Ms)−Ms = −∂MsV (Ms). In this case, since V ′(Ms) = Ms − f(Ms) = GMs + αM3

s −Gµ, the
potential function is:

V (Ms) =
G

2
M2

s +
α

4
M4

s −GµMs. (Appendix A.2)

This interpretation is an approximation valid for reasonably small ∆t; it does not imply that a strict Lyapunov
function always exists for a general one-dimensional map. A fixed point M∗

s satisfies f(M∗
s ) = M∗

s , as given
in Equation (3).

Linear Stability Analysis. The stability of a fixed point M∗
s is determined by the derivative (Jacobian) of

f(Ms) at that point: f ′(M∗
s ) = (1−G)− 3α(M∗

s )
2. The condition for stability is |f ′(M∗

s )| < 1.

Derivation of Bifurcation Boundaries. Bifurcations occur at points where the stability condition is violated,
i.e., when |f ′(M∗

s )| = 1.

Saddle-Node Bifurcation (f ′(M∗
s ) = 1): This condition implies −G = 3α(M∗

s )
2. Solving this

simultaneously with the fixed-point equation to eliminate M∗
s yields the curve on the G–µ plane where a

saddle-node bifurcation occurs:
G = −27α

4
µ2. (Appendix A.3)

Period-Doubling (Flip) Bifurcation (f ′(M∗
s ) = −1): This condition implies 2 − G = 3α(M∗

s )
2.

Eliminating M∗
s from this equation and the fixed-point equation gives the curve along which a period-doubling

(flip) bifurcation occurs:

µ2 =
4(1 +G)2(2−G)

27αG2
. (Appendix A.4)

This equation is valid for G ≠ 0 and 2−G ≥ 0 (i.e., G ≤ 2). Notably, along the symmetry axis µ = 0, the
critical point is G = 2, since f ′(0) = 1 − G; period-doubling begins here for the fixed point at the origin.
Moreover, for the non-zero fixed points that exist when G < 0, a flip bifurcation occurs at G = −1.

Symmetric Bifurcation: Under the symmetry condition µ = 0, a pitchfork-type bifurcation occurs at
G = 0, where the fixed points ±

√
−G/α emerge.

These equations collectively define the boundaries of the stability regions depicted in the Mind Topography
Map (Figure 3).

Appendix A.2. The Multidimensional SGBD Framework
The mathematical foundation of the Structural Gain–Bias Dynamics (SGBD) framework, outlined in

Section 5, is detailed below.

Appendix A.2.1. Derivation of the Multidimensional Update Rule
The update of the subjective state vector Ms(t) ∈ RN in the SGBD framework consists of the following

components:
1. An inertia term representing the current state: Ms(t)
2. A nonlinear saturation term preventing divergence: −α⊙ (Ms(t))

◦3

3. An update signal: UpdateSignal(t)
The update signal integrates internal and external influences and scales them by the affective gain. The

evaluation filter (Fe) first processes the error E(t) = Mo(t)−Ms(t) between the objective state Mo and the
subjective state Ms. Under the simplification in the main text (Mo = 0), this becomes E(t) = −Ms(t). The
processing by Fe is modeled as a linear transformation:

Eeval(t) = −WFe(S, t)Ms(t),
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where WFe is the evaluation weight matrix. The effective bias µeff(t) and process noise ε(t) are added to
this evaluated error to form the core of the update signal. The entire signal is then scaled elementwise by the
effective gain vector Geff(t).

Integrating these components yields the general update equation:

Ms(t+ 1) = Ms(t)−α⊙ (Ms(t))
◦3 +Geff(t)⊙ (−WFeMs(t) + µeff(t) + ε(t)). (Appendix A.5)

A core hypothesis of the framework is that these effective vectors, Geff and µeff, are generated by
individual-specific structural matrices, MG and Mµ, which transform universal source vectors, ginput and
µinput:

Geff(t) = MGginput(t), (Appendix A.6)
µeff(t) = Mµµinput(t). (Appendix A.7)

In this formulation, the source vectors can be conceptualized as representing universal psychological inputs,
such as general arousal or valence. The structural matrices, in contrast, function as personalized “cognitive
wiring diagrams,” encoding an individual’s unique emotional and cognitive tendencies. This provides a
powerful mechanism for modeling individual differences. In the simplest case, where the structural matrices
are identity matrices (I), the effective vectors equal the source vectors.

Appendix A.2.2. Decomposition of WFe and Properties of the Dynamical System
The properties of WFe fundamentally determine the system’s dynamics. Any matrix can be uniquely

decomposed into the sum of a symmetric component (S) and a skew-symmetric component (R): WFe = S+R.

Symmetric component S = 1
2 (WFe+W⊤

Fe) and gradient dynamics.. This component gives rise to the system’s
gradient dynamics. The deterministic update vector (without process noise) can be expressed as the negative
gradient −∇V of a potential function V (Ms). To clarify correspondence with the discussion in the main
text, if Geff is represented by a scalar G for simplicity, the potential function is:

V (Ms) =
1

2
M⊤

s SMs +
1

4

N∑
i=1

αiM
4
s,i −Gµ⊤Ms + . . . (Appendix A.8)

The behavior of a gradient system converges to fixed points—the stable valleys (local minima) of this potential
landscape—corresponding to psychologically static, equilibrium states.

Skew-symmetric component R = 1
2 (WFe −W⊤

Fe) and rotational dynamics.. The skew-symmetric component
generates rotational forces that do not alter the potential (since for any vector v, v⊤Rv = 0). This force
causes the state to orbit on the potential landscape, producing dynamic behaviors that cannot arise from
gradient forces alone.

Appendix A.2.3. Dynamic Attractors and the Neimark–Sacker Bifurcation
The stability of the system is determined by the eigenvalues of the Jacobian matrix J of the update

function at a fixed point M∗
s . The fixed point is stable if all eigenvalues satisfy |λi| < 1.

When WFe includes a skew-symmetric component (i.e., is asymmetric), the Jacobian J can have complex
conjugate eigenvalues. As parameters vary, if the magnitude of a complex-conjugate pair exceeds one, the
fixed point loses stability, and a stable limit cycle (an invariant closed curve) emerges around it. This
phenomenon is known as a Neimark–Sacker bifurcation, a primary mechanism by which discrete dynamical
systems produce sustained oscillations (psychological processes).

This mathematical mechanism provides the theoretical basis for why the SGBD framework can coherently
describe not only static psychological states but also dynamic processes such as rumination.
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Appendix A.2.4. Derivation of the Vectorized IDE State
Within the SGBD framework, there exists a unique equilibrium corresponding to the Ideal Dynamical

Equilibrium (IDE) state in the scalar model. Its derivation proceeds by analogy with the simplified scalar
equation (4) using the forward Euler method. Assuming WFe = I (the identity matrix), the update rule
becomes:

Ms(t+ 1) = Ms(t)−α⊙ (Ms(t))
◦3 +Geff(t)⊙ (−Ms(t) + µeff(t) + ε(t)).

Rearranging gives a structure analogous to the scalar model’s equation (4):

Ms(t+ 1) = (1−Geff(t))⊙Ms(t)−α⊙ (Ms(t))
◦3 +Geff(t)⊙ µeff(t) +Geff(t)⊙ ε(t),

where 1 is a vector of ones. Just as the IDE state in the scalar model arises when the inertia term (1−G)
vanishes at G = 1, the vectorized IDE state corresponds to (1 − Geff(t)) becoming a zero vector when
Geff(t) = 1.

Substituting the IDE conditions, Geff(t) = 1 and µeff(t) = 0, yields:

Ms(t+ 1) = (1− 1)⊙Ms(t)−α⊙ (Ms(t))
◦3 + 1⊙ 0+ 1⊙ ε(t)

= −α⊙ (Ms(t))
◦3 + ε(t).

This is the direct vector extension of the scalar IDE equation Ms,t+1 = −αM3
s,t+ ε(t). It describes a dynamic

yet balanced equilibrium in which each subjective dimension is freed from its linear autoregressive term
(inertia) and driven solely by the instantaneous process noise and the nonlinear stabilizing term.

Appendix A.3. A Bayesian Model of the Self-System S
This section provides a detailed mathematical formulation of the self-system S, as outlined in Subsection 6.2,

from the perspective of hierarchical Bayesian learning.

Appendix A.3.1. Tactical Control (Fast Timescale)
On a fast timescale, the self-system S determines the optimal operational parameters (G,µ) through

Bayesian inference, based on the observed history of subjective states {Ms}hist and the current context
(objective model Mo). This can be expressed as maximizing the following posterior probability:

P (G,µ | {Ms}hist,Mo,θS) ∝ P ({Ms}hist | G,µ,Mo) P (G,µ | θS) (Appendix A.9)

Here, P ({Ms}hist | . . . ) represents the likelihood—how well a specific set of (G,µ) explains the observed state
history—while P (G,µ | θS) denotes the prior, reflecting the current control policies and beliefs of the self-
system S, as defined by the metaparameters θS . The self-system regulates subjective dynamics by selecting,
for example, the pair (G∗,µ∗) that maximizes this posterior (MAP estimation). In the multidimensional
SGBD framework, the likelihood can be written as:

Ms,t+1∼N
(
ΦHMs,t −α⊙M◦3

s,t + ΓHµ, QH

)
,

where QH is the multidimensional process noise covariance (see Subsubsection Appendix A.1.1), assumed to
have a diagonal or low-rank structure under the conditions G > 0 and |ΦH | < 1.

Appendix A.3.2. Strategic Learning (Slow Timescale)
On a slower timescale, the self-system S learns its own control policies—the metaparameters θS—through

meta-learning. This process evaluates the trajectory of subjective states {Ms}traj, generated under tactical-
level control, using a long-term objective function L. The update rule for θS follows a general stochastic
gradient ascent:

θ
(k+1)
S = θ

(k)
S + ηθ∇θS

E[L({Ms}traj,Mo | θ(k)
S )], (Appendix A.10)
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where k is the learning epoch and ηθ is the meta-learning rate. The objective function L can reflect various
goals depending on context—for instance, (a) maximizing model evidence (ELBO maximization) or (b)
maintaining proximity to IDE or minimizing an error cost.

The operational parameters themselves may evolve as slow stochastic processes with small process noise
satisfying ε{·} ≪ 1, ensuring a clear timescale separation between the fast Bayesian update (tactical level)
and the slow variation of priors (strategic level):

Gt+1 = Gt + εG ηt, µt+1 = µt + εµ ζt.

Appendix A.3.3. Implementation and Inference
Identifiability and Regularization.. With limited observational data, care must be taken regarding the
identifiability of parameters G and µ, as the mean drift term depends on the product Gµ and the variance
on (Gσ)2. This issue can be mitigated through: (i) experimental manipulations, such as varying the thinking
time (∆t) or introducing external perturbations (temporary shifts in µ); and (ii) weak regularization of the
prior distributions p(G), p(µ), e.g., G ∼ N (1, τ2G), µ ∼ N (0, τ2µ).

Inference Methods. Several computational methods are applicable for online parameter inference. For the
scalar model, extended Kalman filters or particle filters are effective. For higher-dimensional cases in the
SGBD framework, more powerful approximate inference techniques such as Variational Bayes (VB–EM) or
Stochastic Gradient Variational Inference (SGVI) are required.

Algorithm Overview. This hierarchical learning process is summarized in the pseudocode shown in Algo-
rithm 1.

Algorithm 1 Hierarchical Bayesian Learning and Control of the Self-System S

1: Input: Metaparameters θ
(k)
S

2: procedure RegulateAndLearnCycle
// Tactical Level (fast timescale)

3: for t = 1 to T do
4: Observe subjective state history {Ms}hist and context Mo

5: Construct prior P (G,µ | θ(k)
S )

6: Compute likelihood P ({Ms}hist | G,µ,Mo)
7: Evaluate posterior P (G,µ | . . . ) and select (G∗,µ∗) (e.g., MAP estimation)
8: Update subjective dynamics using (G∗,µ∗) and record trajectory {Ms}traj
9: end for

// Strategic Level (slow timescale)
10: Evaluate E[L] based on the collected trajectory
11: Update metaparameters: θ

(k+1)
S ← θ

(k)
S + ηθ∇θS

E[L]
12: end procedure

Appendix B. Connection to Cusp Catastrophe Theory

This appendix connects our framework with the seminal ideas of catastrophe theory (Thom, 1975), a
framework that has had a profound influence on theoretical psychology (Zeeman, 1977). We demonstrate
that the bifurcation structure of the Mind Topography Map (MTM) is mathematically isomorphic to the
canonical form of a cusp catastrophe, as shown below.

The potential function V (x) of a cusp catastrophe is defined by the canonical form:

V (x; a, b) =
1

4
x4 +

1

2
ax2 + bx, (Appendix B.1)
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where x is the state variable and a and b are the control parameters. The equilibrium states of the system
are determined by the stationary points of this potential, obtained by setting its gradient to zero:

∂V

∂x
= 0 ⇒ x3 + ax+ b = 0. (Appendix B.2)

In our model, the fixed-point equation (see Equation (3)) is given by:

α(M∗
s )

3 +GM∗
s −Gµ = 0. (Appendix B.3)

Dividing both sides by α (with α > 0) yields a form directly corresponding to the canonical cusp equation:

(M∗
s )

3 +

(
G

α

)
M∗

s +

(
−Gµ

α

)
= 0. (Appendix B.4)

Comparison with Equation (Appendix B.2) reveals the following variable correspondence:
• State variable: x↔M∗

s

• Control parameters: a↔ G/α, b↔ −Gµ/α
This mathematical isomorphism is significant: it confirms that the MTM is not merely a conceptual

visualization but a concrete instantiation of the canonical structure predicted by catastrophe theory.
Our deliberate choice of the cusp catastrophe (codimension 2) is both minimal and necessary. It is the

simplest form capable of capturing the interaction between the two fundamental control parameters of our
model—affective gain G and cognitive bias µ. A fold catastrophe (codimension 1) would be insufficient,
as it includes only one control parameter, whereas higher-order forms such as the butterfly catastrophe
(codimension 4) would introduce superfluous complexity for our aim of defining the basic generative mechanism
of subjectivity.

At the same time, this focused formulation opens a clear path for future extensions. Modeling the richer
mental structures described within the SGBD framework may require the explanatory reach of higher-order
catastrophes. Thus, the present analysis provides a robust mathematical cornerstone—grounding our model
in a canonical formalism while laying a principled foundation for future theoretical development.

Appendix C. Conceptual Application to Neurodevelopmental Disorders (NDDs)

Appendix C.1. Purpose and Positioning
This appendix presents a conceptual extension of the proposed G–µ–S framework to the domain of Neu-

rodevelopmental Disorders (NDDs). The aim is to offer a unifying theoretical perspective that conceptualizes
NDDs as potential dysregulations of a self-regulatory dynamical system. By translating clinical phenomena
into the formal language of bifurcations, attractors, and stability landscapes, the framework provides a
generative foundation for hypothesis-driven research in computational psychiatry. It is important to clarify
that this appendix does not aim to reduce NDDs deterministically; rather, it proposes a computational
representation that can coexist with diverse neuropsychological models, assuming the heterogeneity of
subtypes, developmental stages, and task dependencies. A summary of this interpretive direction is provided
in Table 13.

Appendix C.2. A Dynamic Reinterpretation of NDDs
This section reinterprets characteristic features of major NDDs through the lens of Cognitive Phase

Dynamics (CPD), moving beyond a purely parametric understanding of gain G and bias µ toward a structural
account of internal dynamics. It should be emphasized that the following descriptions are heuristic in
nature—intended to generate empirically testable hypotheses rather than to encompass the full clinical or
etiological complexity of these conditions.
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Appendix C.2.1. A State-Dominant Signature: Autism Spectrum Disorder (ASD)
One potential dynamic profile of Autism Spectrum Disorder (ASD) can be conceptualized as a tendency

toward excessive state-dominance. This working hypothesis suggests that some features of ASD may
correspond to a system with a chronically elevated CPD indicator (DCPD ≫ 1), reflecting disproportionately
strong stabilizing forces in the symmetric component of the interaction matrix (WFe). This could result in
overly rigid attractor basins, providing a model for the cognitive and behavioral inflexibility that can typify
ASD.

Appendix C.2.2. A Process-Dominant Signature: Tic Disorders and Rumination
In contrast, some features of Tic Disorders can be approximated by a tendency toward excessive process-

dominance. The involuntary, repetitive movements might be modeled as limit cycle-like dynamics emerging
from a system with a low CPD indicator (DCPD ≪ 1). This view is consistent with dysregulations in
cortico-basal ganglia-thalamo-cortical loops, where strong rotational forces could drive persistent looping
activity. While this simple model does not capture the full phenomenology of premonitory urges and
subsequent relief, it provides a potential dynamic substrate. The same mechanism may underlie cognitive
phenomena such as rumination, which also reflect a failure to exit a recurrent process.

Appendix C.2.3. A Meta-Control Instability Signature: ADHD
Attention-Deficit/Hyperactivity Disorder (ADHD) can be interpreted as a case of instability in meta-

control. This hypothesis is complementary to other models of ADHD (e.g., executive function or delay
aversion models). Within our framework, inattention could be conceptualized as a failure to sustain a
state-dominant regime, while the phenomenon of hyperfocus, observed in some individuals, might correspond
to a transient “lock-in” to an overly stable configuration. This perspective suggests a dysregulation within
the self-system S, which is responsible for adaptively managing the balance between focused stability and
flexible exploration.

Appendix C.3. Prospects for Hypothesis Testing and Intervention
This dynamic reinterpretation opens several promising directions for both theoretical and empirical

investigation:
• Neural Correspondence: The search for neural correlates can be refined within this dynami-

cal framework. For example, a high DCPD in ASD may correspond to hyperconnectivity within
specific cortical modules, whereas a low DCPD in Tic Disorders may relate to dysregulated basal
ganglia–thalamo–cortical loops.

• Model-Based Interventions: The effects of interventions could be retrospectively modeled and
understood through this framework. For example, the clinical effects of pharmacological or psychother-
apeutic treatments might be described as a shift in the estimated system parameters (G, σ,WFe),
allowing for a computational characterization of treatment response.

• Transdiagnostic Marker Candidates: The indicators DIDE and DCPD could serve as exploratory
computational marker candidates. As such, they require rigorous psychometric validation (e.g., reliability
and construct validity). A working hypothesis is that cognitive rigidity, a feature common to disorders
like ASD and OCD, might correspond to an elevated DCPD in specific cognitive subspaces.

Appendix C.4. Disclaimer
This appendix constitutes a theoretical exploration intended solely to illustrate the potential applications
of the proposed framework. It does not constitute medical or psychological advice. The dynamical models
of NDDs presented here are hypothetical and simplified representations; their clinical validity remains to
be established through rigorous empirical investigation.
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