
Dynamic Mode Decomposition with Memory
Ryoji Anzaki∗, Kei Sano†, Takuro Tsutsui, Masato Kazui, Takahito Matsuzawa

AI Development Department, System Development Center, Tokyo Electron Ltd.,
Sapporo City 060-0003, Japan

October 19, 2022

Abstract

In many realms of science and engineering, the time-evolution of a system plays a key role
in analyzing, controlling and predicting the behavior of the system. Ranging from the climate
data collected by the observation satellites to the classical mechanical motion of manufacturing
equipment, there are vast amount of accumulated time-series data in ready-to-use formats.

One established and still developing method for time-series data analysis is the dynamic mode
decomposition (DMD), a linear operation-based, model-free method proposed in 2008 by Schmid
et al. The DMD, especially in the context of the Koopman theory, assumes the time-evolution
model in which the variables evolve in time according to a homogeneous, constant-coefficient
first-order ordinary differential equation (ODE). Although the DMD proves itself as one of the
successful methods for time-series data analysis in its relatively short history, the abovementioned
limitations on the time-evolution model still restricts the DMD from application to wider range
of phenomena. Among such phenomena, we pay attention to the memory effects in time-series
data. A system is said to have memory if its time-evolution is determined by the past states of
the system. The DMD is based on the ODEs and thus cannot incorporate the memory effects.

In this paper, we present a novel method, DMD with memory (DMDm), to overcome the
memoryless restriction on the time-evolution model in the existing DMD methods. We introduce
a class of initial value problems whose solutions correspond to the eigenmode of a linear operation.
Using such a linear transformation in time domain, instead of the time-difference operator, we
enlarge the DMD into a wider class of time-evolution models.

As a solid example of this idea, we utilize the Caputo fractional differential to extend the DMD
so that one can analyze the time-series data with power-low memory effects, which is seen in various
phenomena e.g., viscoelastic matter, fluid dynamics with surface effects, and the mechanical slider
with grease. We thus developed fractional DMD, a DMD-based method with arbitrary (real-value)
order differential operations. We want to emphasize the fact that you can actually optimize the
order of the equation with a standard optimization algorithm, so that one get the order of the
equation that best explains the nature of the time-series data. This is also true for any DMDm
method with a parameterized time-evolution model. We demonstrated the results for the synthetic
data, and successfully estimated the model parameters.

The proposed method is expected to be useful not only for the scientific use, but also for
model estimation, control and failure detection of mechanical, thermal and fluid systems in factory
machines, such as in modern semiconductor manufacturing equipment.
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1 Introduction
Dynamic mode decomposition (DMD) [16, 23, 2, 17] is a model-free, linear algebra-based method for
time-series data analysis. First developed by Schmid for analysis of experimental data in fluid dynamics
[16], the DMD becomes popular among wide variety of scientific realms, ranging from climatology
[10, 15], plasma physics [14] to dissipative quantum systems [12], as well as applications in fluid
dynamics [7]. Besides its success in data-driven science, the mathematical structure of the DMD is
also attracting wide attention, especially in terms of its connection with the Koopman theory [6, 11, 2].

1.1 Algorithm of DMD
We show the algorithm of DMD in its simplest form, the exact DMD [23, 17]. Suppose we have a
sequence of time points T = {t0, t1, ..., tm−1} with tj > ti for j > i. Suppose we have a collection
of data pairs, such as instantaneous observations of a system, {x0, ...,xm−1}. Each observation xk ∈
Rn(k = 0, ...,m − 1) is a state (column) vector at time tk. The exact DMD is formulated as the
least-squares method for ẋk with the time-evolution model in continuous time,

ẋ(t) = Ax(t), (1)

with A ∈ Rn×n being the parameter of continuous-time time-evolution model. For a uniformly dis-
cretized T with time interval ∆t > 0, the optimization of A is performed by a matrix manipulation
by letting X =

[
x0,x1, ...,xm−2

]
and X ′ =

[
x1,x2, ...,xm−1

]
, as

A ' A− 1̂n
∆t

, A = argmin
A′
‖X ′ −A′X‖F = X ′X+, (2)

where 1̂n is the n × n unit matrix, and ‖ • ‖F is the matrix Frobenius norm. Note that the matrix
A is the transition matrix: Axk = xk+1. The Moore-Penrose pseudo-inverse •+ can be calculated by
the singluar-value decomposition (SVD) X = UΣV ∗. Here U ∈ Cn×n and V ∈ Cm×m are unitary,
i.e., U∗U = 1̂n and V ∗V = 1̂m, where •∗ denotes the adjoint matrix. Σ ∈ Rn×m contains the singular
values of X. The pseud-inverse X+ is now calculated as X+ = V Σ−1U∗, so that the parameter of the
discrete-time time evolution model is now given by,

A = X ′V Σ−1U∗. (3)

The rank-r approximation of the SVD for a positive integer r < n becomes X ' UrΣrV
∗
r for Ur ∈

Cn×r,Σr ∈ Cr×r and Vr ∈ Cn×r. Thus we can get the rank-r representation of the discrete-time
time-evolution model as follows:

Ar = U∗
rAUr = U∗

rX
′VrΣ

−1
r . (4)

The low-rank representation is often used for data with large dimensions.

1.2 Time-evolution model
The time-evolution model of the existing DMD is the first-order ordinary differential equations (ODEs)
1, and the generic solution is expressed as the superposition of the DMD modes (i.e., eigenvectors of
the coefficient matrix A) with time-evolution function expressed in exponential of time:

x(t) =

n−1∑
j=0

~φj exp(ωjt)bj = Φ exp(Ωt)b, (5)

with Φ =
[
~φ0, ~φ1, ..., ~φn−1

]
and Ω = diag(ω0, ω1, ..., ωn−1) being the eigenvectors and eigenvalues of

A, respectively. The vector ~φj is the j-th DMD mode, corresponding to the DMD eigenvalue ωj , while
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bj is the loadings for each DMD mode. Note that the DMD modes and the exponential function share
the same eigenvalues to satisfy Equation 1. A low-rank representation corresponds to the replacement∑n−1

j=0 →
∑r−1

j=0 in Equation 5.
Using the generic solution above, the time-evolution model Equation 1 can be solved for a given

initial value x0, via the replacement b = Φ+x0 in Equation 5.

1.3 Non-uniform time points
The sequence of time points T is uneven in many realistic situations. In such cases, one can employ the
discrete representation of the time-derivative operator. Hereafter, let us assume that the data matrix
X is defined by X = [x0,x1, ...,xm−1]. The time-evolution model now becomes of the form,

XD(1)
m = AX1:|0, (6)

with

Xk:|a = [

k︷ ︸︸ ︷
a, ...,a,xk,xk+1, ...,xm−1]; a = [a, a, ..., a]

>
, (7)

and the matrix D
(1)
m ∈ Rm×m being

D(1)
m =



0 −θ01 0 0
0 +θ01 −θ12 0

0 0 +θ12
. . . 0

...
. . . −θm−2,m−1

0 0 0 +θm−2,m−1

 , (8)

where θk−1,k = 1/(tk − tk−1) > 0. Equation 6 shows itself as a special case of the generic matrix
equation

XD = AX, (9)

where D is a matrix acting on the temporal indices of the data matrix X, while A is a matrix acting
on the spatial indices of X. We will return to this point later in this section.

1.4 DMD with control
Among the extensions of the DMD, the DMD with control (DMDc) [9] is a method for analysis of
time-series data corresponding to a non-autonomous dynamical system. The term non-autonomous
means the existence of the exogenous external forcing, whose time-dependence is not affected by the
status of the dynamical system itself. One example is the forced oscillation, in which one apply the
external forcing to the oscillator. The generic form of the non-autonomous dynamical system of our
interest is expressed as follows:

dx

dt
= Ax(t) +Bu(t), (10)

with x being the n-dimensional state vector and u being the `-dimensional external forcing vector.
The coefficients A ∈ Rn×n and B ∈ Rn×` are constants in time. The DMDc is formulated as the
estimation of matrices A,B from the observations X and the external forcing Υ = [u0,u1, ...,um−1]
as follows: [

A B
]
'

[
Ā B̄

]
= XD(1)

m

[
X1:|0
Υ1:|0

]+
, (11)

where [A B] is a block matrix with two blocks A and B. The application of the standard procedure
of singular-value decomposition (SVD) leads to the reduced representation [9].
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1.5 Other Related Works
Since its highly extensive algorithmic structure, the DMD is also extended by many researchers. The
residual DMD (resDMD) [10] is an neural network-based method with ResNet-like blocks with its
reference is replaced by the results of the DMD algorithm. The incorporation of neural nets enables
resDMD to deal with time-series data that is best fitted by a highly nonlinear time-evolution models.
The optimized DMD (optDMD) [1] and bagging, optimized DMD (BOP-DMD) [15] are extensions of
DMD, with a nonlinear optimization gives a better de-biasing while a bagging of snapshots gives a
better convergence to the optimization and enables an uncertainty quantification.

1.6 Memory Effects
Despite the huge success of the abovementioned methods, there is a room for improvements in the way
DMD incorporates the time-evolution models. Existing DMDs are either using the first-order ODE
(exponential) model [23, 9, 2] or, using neural network-based method to deal with the nonlinearity
in the time-evolution models [10]. As another extension of DMD, it is possible to extend the time-
evolution model within the linear model but with the memory effects.

Many known fundamental physical processes are governed by the first- or second-order ODE,
leading to exponential-like behaviors in time. Thus the exponential time-evolution plays a crucial
role in various realms in physics.

Although the microscopic, fundamental physics are governed by low-order ODEs (i.e., the mem-
oryless equations of motion), systems with strong coupling with an external system, or a reservoir,
behave differently. Suppose we know the internal state of the system, and we have no information
on the internal state of the reservoir. Once we apply a stimulus to the system, it causes a change of
the system state, leading to a change of the reservoir state. Subsequently, the change in the reservoir
might also affects the system itself via the system-reservoir surface. This sort of indirect effects via
an external system leads to a memory effect, in which the time-evolution of the system seems to be
affected not only by the current status, but also by the history of its time-evolution [20, 3], leading to
an equation of motion described by fractional differential equations (e.g., [19]).

As explained above, the memory of a system means a nonlocal behavior in time-domain, mostly
arising from limitations of our observations.

1.7 Aim of This Paper
In this paper, we propose a DMD-based method, DMD with memory (DMDm), whose time-evolution
models are described by a wider class of equations that allows the descriptions of the system with
memory effects. We restrict our attention to the definition of exact DMD given by Tu et al. (see
Definition 1 of [23]). Let us assume a linear functional relation y = π(x) for two time-series data
x : t 7→ x(t) and y : t 7→ y(t). If the value y(t) is not affected by the values x(t′) for t′ > t, the linear
map π is said to be causal, since the operation is performed without knowing the future values of x.

It is worth noting that the construction of an eigenfunction of a causal linear operator can also be
formulated as an initial-value problem. This is also true in the discrete-time time-series data and the
discretized representation of the linear operator Dπ. The discretized representation of the eigenfunction
z : t 7→ z(t) corresponding to an eigenvalue λ is the array of numbers

[
z(t0), z(t1), ..., z(tm−1)

]
, that

satisfies the matrix equation:[
z(t0), z(t1), ..., z(tm−1)

]
Dπ = λ

[
z(t0), z(t1), ..., z(tm−1)

]
, z(t0) = z0. (12)

For a causal Dπ, the element of the array z(tk) is constructed by an initial-value problem, or, by
applying the transition operator Ktk to the initial status of the system. The above discussion leads to
the mode decomposition of the form, similar to Equation 5:

x(t) =

r−1∑
j=0

~φjFπ,λj ,1(t)bj ; bj = (x0)j . (13)

4



In Equation 13, the vector ~φj ∈ Rn is the DMD mode of the problem, and the function Fπ,λ,z0 is
the solution of the initial value problem π(z)(t) = λz(t) (z(0) = z0). Note that the eigenvector in
spatial direction ~φj and the eigenfunction in time domain Fπ,λj ,1 share the common eigenvalue λj ,
corresponding to the factorization of the solution into temporal and spatial parts. Also it is worth
noting that this proposed framework contains the exact DMD, because

F d
dt ,λ,1

= exp(λt). (14)

As an solid example of the above discussions, we use the fractional derivative [3, 20, 21] for the
time-domain transformation. Fractional derivative of real-valued [3, 21] and complex-valued orders
[13] are quite useful in physics with memory effects with power-law [20, 3]. The idea of introducing
fractional (non-integer) order derivative is also attracting attention in the control theory [22, 8], with
famous PIλDµ-controllers [8]. The α-th order fractional integral of an integrable function f and a real
value α > 0 is given by the following [21].

(Iαf)(t) =
1

Γ(α)

∫ t

−∞
dt′

f(t′)

(t− t′)1−α
. (15)

The fractional integral satisfies the following properties for any integrable functions f, g and real values
α, β > 0:

1. Iα(f + g) = Iαf + Iαg,

2. IαIβf = Iα+βf ,

3. I1f(t) =
∫ t

−∞ dt′ f(t′).

The first and second conditions correspond to linearity with respect to the function and additivity for
the order, respectively. The third condition is the equivalence of Iα with the Riemann integral for the
case α = 1. Noting that the integral is the inverse operation of the derivative, one can construct α-th
order derivative fot any α ∈ R [21] for an integrable function f : (−∞, t1] → R (t1 > −∞ is the
upper bound of the domain of f).

In the following text, we will see a concrete definition for the α-th order fractional derivative dαf
dtα

for an integrable function f : R ⊃ [t0, t1] → R and show the idea of fractional DMD, or fracDMD,
in which fractional derivative determines the time-dependency of each DMD modes, instead of the
first-order derivative.

The remainder of the paper is organized as follows: in Section 2, we investigate the property of the
causal linear functional and its eigenfunctions. In section 3, we introduce DMDm, and in Sections 4-6
we introduce fracDMD as an example of DMDm. In Sections 7, 8, we apply fracDMD to synthetic
time-series data. Section 9 is devoted for the discussions of the numerical results.

Throughout this paper, we denote any complex matrix by •, and any scaler by−. The column vector
•k and slice •k:` of a matrix for 0 ≤ k ≤ ` ≤ m are defined as, for a matrix M =

[
m0,m1, ...,mm−1

]
∈

Cn×m,
Mk = mk, Mk:` = [mk, ...,m`−1]. (16)

Also, we use Mk: = Mk:m and M:` = M0:` for short. A block matrix with blocks Ai (i = 1, 2, ..., q)
being stacked column-wise is denoted by

[
A1;A2; ...;Aq

]
, i.e.,

[
A1;A2; ...;Aq

]
=


A1

A2

...
Aq

, (17)

for short.
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2 Time-Evolutions as Eigenvalue Problems
In this section, we investigate the conditions for the linear operator π introduced in the previous section.
Let us denote the set of one-dimensional time-series data by CT . A time-series datum V ∈ CT is a
map from set of time points T to complex numbers, i.e., V : T → C. Let us denote the number of
time points by m = |T | > 0. In the followings, we assume that m <∞.

2.1 Causal Linear Operator
Let us define a causal linear operator π : CT 3 V 7→W ∈ CT as a linear functional π ∈ hom(CT ,CT )
between two time-series that satisfies the following condition.

• π is causal: π(V ):k = π(V:`):k for any `, k satisfying 1 ≤ k ≤ ` ≤ |T |.

The causality defined above corresponds to the fact that the i-th component Wi of the time-series
W = φ(V ) is not dependent on Vk for k > i.

2.2 Eigenfunction of Causal Linear Operator
For a given causal linear operator π ∈ hom(CT ,CT ) and an initial value V0, we can construct the
eigenfunction of π by an iterative method as follows. First, we introduce the (row) vector representation
of V as V =

[
V0, V1, ..., Vm−1

]
with Vk ∈ C (k = 0, 1, ...,m − 1). The matrix representation of π is

then introduced by the followings:
V Dπ = π(V ), (18)

where, in the left-hand side, a standard matrix multiplication is assumed. Note that, due to the
causality of π, the matrix representation Dπ is an upper-triangle matrix:

Dπ =


π00 ∗ ∗ · · · ∗
0 π11 ∗ · · · ∗
...

. . .
0 πm−2,m−2 ∗
0 0 · · · 0 πm−1,m−1

. (19)

The eigenvalue problem for the linear operator π is expressed as the following eigenvalue equation for
the row vector V and the matrix Dπ:

V Dπ = λV. (20)

Since the inverse of an upper-tirangle matrix is also an upper-triangle matrix, the above equation
becomes,

V = λV D−1
π , (21)

with

D−1
π =


(π00)

−1 ∗ ∗ · · · ∗
0 (π11)

−1 ∗ · · · ∗
...

. . .
0 (πm−2,m−2)

−1 ∗
0 0 · · · 0 (πm−1,m−1)

−1

. (22)

Here we assumed that Dπ is invertible. Thus the eigenfunction of π is given by the following successive
calculations for given V1:

Vk =

[
λV:k|0(D

−1
π )×

1− π−1
kk λ

]
k

(k = 2, 3, ...), (23)
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where, the zero-padded vector •:k|0 and the off-diagonal parts of a matrix •× is defined as the followings:

V:i|0 =
[
V0, V1, ...., Vi−1,

m−i︷ ︸︸ ︷
0, ..., 0], (aij)× =

{
aij (i 6= j)

0 (i = j).
(24)

The procedure to obtain the eigenmode of π from a given initial value V0 is summarized in 1.

Algorithm 1 Values of the Eigenfunction Vi = Fπ,λ,V0
(ti) for a Causal Linear Operator π

Require: causal linear operator π, real-valued parameter λ, initial value V0 ∈ R, time ti ∈ T
V ← [V0, 0, ..., 0] ∈ Cm

for k ∈ {1, ...,m− 1} do
Vk ←

[
λV (D−1

π )×
1−πkkλ

]
k

V ←
[
V0, V1, ..., Vk, 0, ..., 0

]
∈ Cm

end for
return V

Using a sequence of time-points T with its maximum time interval ∆tmax → +0, 1 can approximate
a smooth function.

3 Dynamic Mode Decomposition with Memory
Using the causal linear operators and their eigenfunctions introduced in the previous section, we now
postulate the idea of DMD with memory (DMDm). DMDm is a new method to include the memory
effects in DMD framework. Itemploys a causal linear operator instead of the difference operator used
in the existing DMD. This gives us the ability to handle the effects from the past data in the time-
evolution model without losing advantages of the DMD framework.

3.1 Definition of the Model
Assume we have a causal linear functional π. We introduce a linear time-evolution model of the form,

π(x)(t) = Ax(t), (25)

where A ∈ Rn×n is a constant matrix. Restricting t onto the (finite) set of time points T , we can
discretize this continuous-time time-evolution model to get the matrix representation

XDπ = AX, (26)

where we have a matrix A and n-dimensional time-series data X, instead of a scaler λ and 1-dimensional
time-series V in Equation 20, respectively. Given the SVD X = UΣV ∗ with unitary matrices U and
V , we can transform the Equation 26 as follows:

U∗XDπ = U∗AU(U∗X). (27)

For a diagonalizable matrix A ∼ diag(λ0, ..., λn−1), we can always find an array of new variables
Ξ = U−1U∗X (i.e., we define a new variable by ξ(t) = U−1U∗x(t) and Ξ =

[
ξ0, ξ1, ..., ξm−1

]
) for an

appropriate matrix U such that:
ΞDπ = diag(λ0, ..., λn−1)Ξ. (28)

The above equation leads to the solution for the original variable x of the following form

x(t) = UU

 Fπ,λ0,ξ0(0)(t)
...

Fπ,λn−1,ξn−1(0)(t)

 =

n−1∑
i=0

(UUei)Fπ,λi,1(t)ξi(0), (29)
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where the function F is defined in 1 and ei =
[
δ0i, δ1i, ..., δm−1,i

]> with the unit tensor δij . Note that
the above expression is similar to Equation 13.

3.2 Model Fitting via DMD Scheme
The goal is to find an appropriate matrix A with which one can explain the data X on time points T .
We assume the model Equation 26 for the observed data X. The best fit parameter A that achieves a
least-square for π(x)(t) is,

A = argmin
A′
‖XDπ −A′X‖F = XDπX

+. (30)

Similar to Equation 3, we can compute A using the SVD:

A = XDπV Σ−1U∗. (31)

The low-rank approximation can also be performed in a similar way as in Equation 4.

3.3 DMDc with Memory
The DMDc scheme is readily applicable for the proposed method. The resultant method, DMD with
control and memory (DMDcm) assumes the following time-evolution model.

π(x)(t) = Ax(t) +Bu(t), (32)

which corresponds to the matrix representation

XDπ = AX +BΥ, (33)

where A ∈ Cn×n and B ∈ Cn×` are coefficient matrices. The DMDc prescription gives the direct
calculation of the optimal coefficients, similar to Equation 11[

A B
]
= XDπ

[
X
Υ

]+
. (34)

1 is readily applicable for multi-dimensional case, and the time-evolution of the model Equation 33 for
given initial value x0 and external forcing Υ is obtained by the following successive calculations:

x(ti) =

[
(AX:i|0 +BΥ:i|0)(D

−1
π )×

1̂n − πiiA

]
i

(i = 1, 2, ...). (35)

The coefficients A,B can be estimated by the following equation:[
A B

]
'

[
Ā B̄

]
= XDπ

[
X
Υ

]+
. (36)

As is easily seen, this is a natural extension of DMDc, justifying the name DMDcm.

4 Integer-order Dynamic Mode Decomposition
The finite difference method is employed for the first-order differential equation in Equation 10. A
similar procedure can be used for a-th order differential equation for a = 2, 3, 4, ... as well. The resultant
method is the arbitrary integer-order DMD (intDMD), as described below.

A = X∆(a)
m X+

:m−`+1, (37)

with the matrix representation of the `-th order derivative ∆
(`)
m ∈ Rm×(m−`). Although the ex-

tension to a positive-integer order seems to be nontrivial, the same effect is actually achieved by
introducing auxiliary variables X(n) = X∆

(n)
m for n = 1, 2, ..., a − 1 and using the extended matrix

X = [X;X(1); ...;X(a−1)] in the DMD framework.
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5 Fractional Dynamic Mode Decomposition
The order of the differential operator can be extended to any real-valued numbers [21]. The term
for this generalized differentiation, fractional derivative is somehow misleading, since we can specify
an irrational number α ∈ R/Q as the order of the differentiation. One of the definition of the α-th
order differential of a smooth integrable function f : R→ R is the Caputo derivative, as shown in the
followings:

dαf

dtα
=

1

Γ(ν)

∫ t

0

dt′
f (`)(t′)

(t− t′)1−ν
(t > 0, ν = `− α, ` = max(0, dαe)), (38)

where f (`) is the `-th order derivative of the function f and the ceiling y = dxe is the minimum integer
y ∈ Z such that y − x > 0. Note that the right-hand side of the definition above corresponds to the
case α = ν in the definition of the fractional integral in Equation (15) with 0 < ν ≤ 1, and thus we
can circumvent a divergence. In this section, we consider real-valued functions for simplicity.

One can construct the corresponding eigenmode for the α-th order derivative with an initial value.
To see this, let us denote the discrete representation of a generic-order fractional differential operator
dα

dtα by D(α)
m for α ∈ R. We first define the discrete representation of `-th order integer-order derivative

D
(`)
m for ` ∈ Z+ (e.g., we can define D

(`)
m =

[
Om,` ∆

(`)
m

]
with Oa,b being the a × b zero matrix). The

explicit expression of D(α)
m is calculated using the Caputo fractional differential [21] as follows,

D(α)
m = D(`)

m

[
w

(`−α)
0 ,w

(`−α)
1 , ...,w

(`−α)
m−1

]
, ` = max(0, dαe). (39)

At the lowest order, the weight w
(ν)
k is approximated as follows:

(w
(ν)
k )i =

{
1

Γ(ν)
1

(tk−ti)ν+1 (i < k)

0 (i ≥ k)
. (40)

Thus the derivative above is decomposed into the `-th order (integer-order) differential and the ν-th
order fractional differential (i.e., fractional integral of order 0 < ν ≤ 1). Note, by construction, that
ν > 0, and hence the weight (w

(ν)
k )i → 0 for |k − i| → ∞. Clearly, the discretized representation

D(α) satisfies the linearity and the causality, ensuring the existence of eigenmodes. In an actual
numerical analysis, one might use a more elaborate implementations with higher-order schemes. In
the continious limit, the eigenfunction of the fractional derivative operator is known to be expressed
by the Mittag-Leffler functions [4, 5].

For a given time-series data X ∈ Rn×m arranged in a matrix form and a fixed order of derivative
α, the best fit matrix A for the model equation XD(α) = AX is obtained as follows:

A = XD(α)X+. (41)

The above expression is analogous to Equation 3 for the first-order (ordinary) DMD. The SVD of the
matrix X = Û Σ̂V̂ ∗ ' ÛrΣ̂rV̂

∗
r with rank 0 < r ≡ rank(Σ̂r) < n and unitary matrices Û , Ûr, V̂ , V̂r,

diagonal matrices Σ̂, Σ̂r yields a low-rank representation of the dynamics for ξ = Û∗
rx ∈ Rr,

dαξ

dtα
= Λξ, Λ = Û∗

rXD(α)V̂rΣ̂
−1
r . (42)

If the order α is unknown, the matrix A and the fractional order α is now estimated by 2.
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Algorithm 2 Grid search for order α

Require: data in matrix form X, candidates α = {α0, α1, ...}
if α ∈ α then
A← XD(α)X+

L(α)← ‖XD(α) −AX‖F
end if
α∗ ← argminα (L(α))

6 Fractional Dynamic Mode Decomposition with Control
The original DMD formulation is only for autonomous systems, i.e., it does not include the effects from
the environment or an outer controlling system. As we have seen in the previous sections, DMDc [9]
is an extension of the DMD for the non-autonomous systems with exogenous terms. The DMDc can
further be extended to the dynamical systems which obey the fractional-order differential equations.
Suppose we have a dynamical system

dαx

dtα
= Ax+Bu(t), (43)

with the state vector x ∈ Rn and the external forcing (exogenous input) vector u(t) ∈ R`. We
construct matrices X = [x0,x1, ...,xm−1] and Υ = [u0,u1, ...,um−1]. In an analogy to Equation 11,
we obtain the following estimation for the coefficients.

[
A B

]
'

[
Ā B̄

]
= XD(α)

[
X
Υ

]+
. (44)

We can also make use of the SVDs, X = Û Σ̂V̂ ∗ ' ÛrΣ̂rV̂
∗
r and [X; Υ] = Ũ Σ̃Ṽ ∗ ' ŨpΣ̃pṼ

∗
p with p > r,

to get an approximated low-rank representation of the dynamics for ξ = Û∗x ∈ Rr, as follows:

dαξ

dtα
= Λξ + Γu, [Λ Γ] ' Û∗

rXD(α)ṼpΣ̃
−1
p Ũ∗

p

[
Û∗
r 0

0 1̂p−r

]
. (45)

Thus we can analyze a time-series data of input u(t) and the output x(t) for a system in the fracDMD
framework, as well as for autonomous systems. The fracDMD algorithm is explicitly shown in 3. The
function SVD(−, r) is the SVD of a matrix with rank r.

Algorithm 3 fracDMD
Require: input data in matrix form Υ, output data in matrix form X, ranks p > r > 0, α
Ûr, Σ̂r, V̂r ← SVD(X, r)
Ũp, Σ̃p, Ṽp ← SVD(

[
X; Υ

]
, p)

X ′ ← XD(α)

[Λ Γ]← Û∗
rX

′ṼpΣ̃
−1
p Ũ∗

p

[
Û∗
r 0

0 1̂p−r

]

7 Quantitative Evaluations for the Models
The fracDMD, as well as the existing DMD, is to minimize the Frobenius norm of the matirix ‖X ′ −
AX − BΥ‖, with X ′ being the fractional derivative XD(α) for fracDMD. The Frobenius norm-based
reconstruction error L(α)

Frobenius(A,B;X) = ‖XD(α)−AX−BΥ‖ is considered to be the sum of squared
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reconstruction error in α-th order time derivative, with AX + BΥ regarded as the reconstruction by
the model.

Another way to evaluate the model is to use the sum of squared errors (SSE) in the reconstructed
states xi (i = 0, 1, ...,m − 1). The explicit expression of SSE L(α)

SSE(A,B;X) as a function of α,A,B,
and X = [x0,x1, ...,xm−1] is given by,

L(α)
SSE(A,B;X) =

m−1∑
i=0

|x(ti)− xi|2, (46)

with x(ti) being the time-evolution with coefficients A,B from the initial value x0 for the fractional
differential Equation 43, whose explicit expression is shown in Equation (29).

8 Numerical Experiments
We perform numerical experiments to show the utility of fracDMD against the synthetic data. We
numerically generate the solution of the fractional oscillator [18] analyzed by Svenkeson et al. [20]
in a context of spectral decomposition. Svenkeson et al. performed numerical tests on the real-
time behavior of a single, noise-free fractional oscillator with known parameters to show that the
fractional-order calculus is useful in analyzing the memory effects. We extend their method to include
a multi-dimensional, noisy fractional oscillators. We also added an observation matrix, so that the
mode reconstruction becomes highly nontrivial.

8.1 Numerical Set-up
The one-dimensional fractional linear oscillator is given by the following equation of motion [20]:

dνya

dtν
= Qaya; ya =

[
xa

va

]
, Qa =

[
0 1
−ω2

a 0

]
, (47)

where the frequency ωa > 0 is a real-value parameter and a = 0, 1, ... is the index. Let us further
consider a multi-dimensional time-evolution equation, as follows:

dνx

dtν
= Φx; x =


y0

y1
...

yk−1

 ∈ R2k, Φ =


Q0

Q1

. . .
Qk−1

 ∈ R2k×2k, (48)

where ya and Qa denote the state vector in the single-particle phase space and the 2×2 matrix,
respectively. We also consider the observation equation as follows:

z(t) = Rx(t) + ε(t), εi(t)
iid∼ N (0, σ2) (i = 0, 1, ..., 2k − 1), (49)

where R ∈ Rn×2k is the constant observation matrix, each element of ε(t) ∈ Rn is the independent and
identically distributed (iid) Gaussian noise and z ∈ Rn represents the observed signal. This numerical
set-up is useful to describe the situation in which the oscillators do not interact to each other but the
resulting signal is the superposition of oscillators.

Hereafter we assume that n ≥ 2k. The observation matrix R consists of the randomly sampled 2k
basis vectors vs(µ) ∈ Rn (µ = 0, 1, ..., 2k − 1) for a random orthonormal basis {v0, v1..., vn−1} and a
permutation s ∈ Sn, as follows:

R =
[
vs(0), vs(1), ..., vs(2k−1)

]
∈ Rn×2k. (50)

Note that s(i) 6= s(j) for i 6= j.
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8.2 Numerical Tests
We performthe numerical tests to determine the frequency ωa (a = 0, 1, ..., k − 1) in Equations (47),
(48). The eigenvalues of the coefficient matrix Φ is ±

√
−1ωa (a = 0, 1, ..., k − 1). We also denote the

eigenvalues of the coefficient matrix A obtained by fracDMD (without control) by λi (i = 0, 1, ..., 2k−1).
Let us assume that ω0 > ω1 > ... > ωk−1 > 0 and Imλ0 > Imλ1 > ... > Imλk−1 > Imλ2k−1 >
Imλ2k−2 > ... > Imλk for simplicity.

The error L of the frequency estimation is now given by the followings:

L =

k−1∑
i=0

|λi − ωi|2 +
k−1∑
i=0

|λi+k + ωi|2. (51)

In the full reconstruction case, λi =
√
−1ωi and λk+i = −

√
−1ωi (i = 0, 1, ..., k − 1), so that L = 0.

We show the frequency reconstruction error L for various values of noise standard deviation σ
and the dimension of the observation n in 8.2 below. We assume that the rank 2k and the order
ν of the system Equation (48) are known. We use the second-order numerical discretization of the
Caputo fractional differential, instead of the first-order scheme shown in Equations (39), (40). We also
modified Equation (41) so that we can use the fractional integral instead of the fractional differential
with positive order α in order to achieve a better numerical convergence.

Figure 1: The frequency reconstruction error L against the noise standard deviation σ, for various
values of observation size n. The numerical set-ups are as follows: k = 4, ωi = i + 1 (i = 0, 1, 2, 3),
and the order of the system euqation Equation (48) is set to ν = 1.2. The fracDMD parameters are as
follows: the SVD rank r is set to the actual system size 2k, and the order α is set to the actual value
ν. Each mark denotes a mean of 10 numerical calculations with different noise realizations and initial
conditions. The initial conditions are randomly chosen so that the initial energy of each oscillator is
unity.

We can see that the reconstruction error L is an increasing function of σ for σ > 10−3, while L is
almost constant for σ < 10−3. This implies that the major part of the reconstruction error vanishes
with σ → 0, leaving the constant part of the error for small σ.
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(a) ν = 1.2 (b) ν = 1.5

Figure 2: The frequency reconstruction error L against the order α used in the fracDMD. (a) ν = 1.2,
(b) ν = 1.5. In both tests, σ = 10−2 and n = 8. The other numerical set-ups are the same as in 8.2.
The fracDMD parameters are as follows: the SVD rank r is set to the actual system size 2k.

As we can see, the function L(α) has with its minima located around α = ν, indicating that a
wrong value of α leads to a larger value of reconstruction error.

9 Discussion
The fractional oscillator is a model for the oscillator with power-law memory effects. The reconstruc-
tion of the frequencies in the previous section is in a good agreement with the ground truth. The
reconstruction error increases with the increasing noise standard deviations, while the dimension of
the observation space does not affect the error severely. We thus conclude that the fracDMD can
reconstruct the isolated fractional oscillators well.

We also performed numerical experiments for various values of α. It is shown that the reconstruction
error L has its minima around α = ν. This implies that our method is also useful to estimate the order
of the system equation. Noting that the case α = 1 roughly corresponds to the DMD, we can also
infer that our method achieves a better reconstruction than the DMD for the fractional oscillators.
Although this inference seems exact, the introduction of a higher-order scheme and the fractional
integral might lead to a discrepancy between DMD and fracDMD results even for α = 1 cases.

Our method can be used to model unknown physical processes e.g., mechanical motion of industrial
machines and thermal systems. One possible way to use the method is to estimate the memory effect
in the system. If the reconstruction error by the fracDMD has its minima around α = 1, one may
conclude that the system is memoryless; otherwise, one can use the optimal value of α to include the
memory effects to the model.

Among possible extensions, nonlinear coupled oscillators are one possible way to extend our anal-
ysis. Another way to include more complex situations is to use the non power-law memories. In our
current numerical set-up, we use power-law memories, which is mathematically shown to be equivalent
to the fractional-order equations of motion [20]. However, the memories in real data can, in principle,
decay according to any smooth functions.

In the reconstruction considered in the previous section, we assume that we know the actual size
of the problem (i.e., the system size). This assumption makes the problem easy to approach. In a
realistic situation, however, the actual dimension of the system equation is seldom known. In a future
work, one may optimize the rank of the system as well as the coefficients.
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10 Summary
We proposed a new framework, DMD with memory, or, DMDm, a DMD-based numerical tool to
analyze time-series data. Use of more generic linear operator instead of the finite difference operator
enables us to take the memory effects into account in the time-evolution models. The memory effect is
a widely seen phenomena in real world, e.g., viscoelastic matter and fluid dynamics. As one example
of DMDm, we formulated fracDMD, whose name stands for fractional DMD, indicating the use of
fractional-order derivative. The incorporation of fractional-order derivative in DMDm is equivalent
to assume the power-law memory effects. We successfully show that using the fracDMD one can
reconstruct the frequencies of fractional oscillators from noisy observations. The proposed method is
expected to be useful to model unknown physical processes, such as thermal and mechanical processes
in modern industrial machines.
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