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This study proposed a novel method of dynamic mode decomposition with memory (DMDm)
to analyze multi-dimensional time-series data with memory effects. The memory effect is a widely
observed phenomenon in physics and engineering and is considered to be the result of interactions
between the system and environment. Dynamic mode decomposition (DMD) is a linear operation-
based, data-driven method for multi-dimensional time-series data proposed in 2008. Although DMD
is a successful method for time-series data analysis, it is based on ordinary differential equations
and thus, cannot incorporate memory effects. In this study, we formulated the abstract algorithmic
structure of DMDm and demonstrate its utility in overcoming the memoryless restriction imposed
by existing DMD methods on the time-evolution model. In the numerical demonstration, we utilized
the Caputo fractional differential to implement an example of DMDm such that the time-series data
could be analyzed with power-law memory effects. Thus, we developed a fractional DMD, which
is a DMD-based method with arbitrary (real value) order differential operations. The proposed
method was applied to synthetic data from a set of fractional oscillators and model parameters were
estimated successfully. The proposed method is expected to be useful for scientific applications, and
aid in model estimation, control, and failure detection of mechanical, thermal, and fluid systems in
factory machines, such as modern semiconductor manufacturing equipment.

I. INTRODUCTION

Dynamic mode decomposition (DMD) [1–4] is a data-
driven, linear algebra-based method for time-series data
analysis. It was first developed by Schmid for the analy-
sis of experimental data in fluid dynamics [1] and is now
widely used in a wide variety of scientific fields such as
climatology [5, 6], plasma physics [7], dissipative quan-
tum systems [8], and fluid dynamics applications [9]. In
addition to its success in data-driven science, the math-
ematical structure of DMD has garnered attention, par-
ticularly in terms of its connection with Koopman theory
[3, 10, 11].

The basic idea of DMD is to find the best-fit matrix co-
efficient assuming a constant-coefficient linear difference
equation for a given multi-dimensional time-series data.
Using DMD, we can extract the coefficients of the time-
evolution equation and time-dependent modes of the dy-
namics. In DMD, a mode varies both in spatial- and
temporal directions, and that is the reason of the name
dynamic mode decomposition. For example, in [7], Sasaki
et al. extracted the time-evolution patterns of the plasma
using DMD.
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A. DMD Algorithm

We show the DMD algorithm in its simplest form, ex-
act DMD [2, 4]. Consider a set of time points T =
{t0, t1, ..., tm−1} with tj > ti for j > i. Assume a
collection of data, such as instantaneous observations
of a system {x0, ...,xm−1}. Each observation xk ∈
Rn(k = 0, ...,m − 1) is a state (column) vector at a
time tk ∈ T. The exact DMD is formulated as the least-
squares method for ẋk with the time-evolution model in
continuous time, as follows:

ẋ(t) = Ax(t), (1)

where A ∈ Rn×n is a coefficient matrix of the contin-
uous time-evolution model. For a uniformly discretized
T with time interval ∆t > 0, A is estimated by ma-
trix manipulation by letting X =

[
x0,x1, ...,xm−2

]
and

X ′ =
[
x1,x2, ...,xm−1

]
as follows:

A ' A− 1̂n
∆t

, A = argmin
A′

‖X ′ −A′X‖ = X ′X+, (2)

where 1̂n is the n × n unit matrix and ‖ • ‖ is the ma-
trix Frobenius norm. For time-series data that obey
the first-order difference equation, the matrix A becomes
the transition matrix Axk = xk+1. The Moore–Penrose
pseudo-inverse •+ can be calculated using singular value
decomposition (SVD) X = UΣV ∗. Here, U ∈ Cn×n

and V ∈ Cm×m are unitary; that is, U∗U = 1̂n and
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V ∗V = 1̂m, where •∗ denotes the adjoint matrix. In
this paper, we use Ka×b to denote the set of a × b ma-
trices with their matrix elements being in K = R,C.
Matrix Σ ∈ Rn×m contains singular values of X. Note
that we use the full SVD, i.e., Σ is an oblong matrix,
whereas U and V are square matrices, so that the equal-
ities UU∗ = 1̂n = U∗U and V V ∗ = 1̂m = V ∗V holds
exactly. The pseudo-inverse X+ is now calculated as
X+ = V Σ+U∗. Consequently, the parameter of the
discrete-time-evolution model is expressed as

A = X ′V Σ+U∗. (3)

The rank-r approximation of the SVD for a positive in-
teger r < n becomes X ' UrΣrV

∗
r for Ur ∈ Cn×r,Σr ∈

Cr×r and Vr ∈ Cn×r. Thus, we can obtain the rank-r
representation of the discrete-time time-evolution model
as follows:

Ar = U∗
rAUr = U∗

rX
′VrΣ

+
r . (4)

Low-rank representations are frequently used for data
with large dimensions.

B. Time-evolution Model

The time-evolution model of the existing DMD is the
first-order ordinary differential equation (ODE) Eq. (1),
whose generic solution is expressed as the superposition
of the DMD modes (i.e., as the eigenvectors of the co-
efficient matrix A) with the time-evolution function ex-
pressed as a time-dependent exponential function:

x(t) =

n−1∑
j=0

~φj exp(ωjt)bj = Φ exp(Ωt)b, (5)

where Φ =
[
~φ0, ~φ1, ..., ~φn−1

]
and Ω =

diag(ω0, ω1, ..., ωn−1) are the eigenvectors and eigenval-
ues of A, respectively. The vector ~φj is the j-th DMD
mode corresponding to the DMD eigenvalue ωj , and bj
is the loading for each DMD mode. The DMD mode and
the corresponding exponential function have the same
eigenvalue to satisfy Eq. (1). A low-rank representation
corresponds to the replacement of

∑n−1
j=0 →

∑r−1
j=0 in

Eq. (5) for 1 < r < n.
Using the generic solution listed above, the time-

evolution model Eq. (1) can be solved for a particular
initial value x0 by replacing b = Φ+x0 in Eq. (5).

C. Non-uniform Time Points

A set of time points T can be uneven in several real-
istic situations. In these cases, a discretized representa-
tion of the time-derivative operator can be constructed.
Hereafter, we assume that data matrix X is defined by

X = [x0,x1, ...,xm−1]. The time-evolution model now
has the form

XD(1)
m = A

[
0,x1,x2, ...,xm−1

]
, (6)

where the matrix D(1)
m ∈ Rm×m is

D(1)
m =


0 −θ01 0 0
0 +θ01 −θ12 0

0 0 +θ12
. . . 0

...
. . . −θm−2,m−1

0 0 0 +θm−2,m−1

 , (7)

where θk−1,k = 1/(tk − tk−1) > 0. Eq. (6) exhibits itself
as a special case of the following generic matrix equation
for an integer 0 ≤ q ≤ m − 1 and an upper triangular
matrix D ∈ Cm×m whose first q columns are zero vector
0 =

[
0, ..., 0

]>:

XD = A
[
0, ...,0,xq,xq+1, ...,xm−1

]
, (8)

where D is a matrix acting on the temporal indices of the
data matrix X ∈ Cn×m and A ∈ Cn×n is a matrix that
acts on the spatial indices of X.

D. DMD with Control

Among the extensions of DMD, DMD with control
(DMDc) [12] is a method used for analyzing time-series
data corresponding to a non-autonomous dynamical sys-
tem. The term non-autonomous refers to the existence
of an exogenous external force, whose time dependence is
not affected by the status of the dynamical system itself.
One example is the forced oscillation, wherein an exter-
nal force is applied to the oscillator. The generic form
of the non-autonomous dynamical system of interest is
expressed as follows:

dx

dt
= Ax(t) +Bu(t), (9)

where x is the n-dimensional state vector and u is the `-
dimensional external force vector. Coefficients A ∈ Rn×n

and B ∈ Rn×` are constant over time. The DMDc is
formulated as the estimation of matrices A,B from the
observations X and external force Υ = [u0,u1, ...,um−1]
as follows:

[
A B

]
'

[
Ā B̄

]
= XD(1)

m

[[
0,x1,x2, ...,xm−1

][
0,u1,u2, ...,um−1

]]+, (10)

where [A B] is a block matrix with two blocks A and B.
The application of the standard procedure for singular-
value decomposition leads to reduced representation [12].
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E. Other Related Works

The simple, highly extensive algorithmic structure of
DMD has aided researchers in developing better numeri-
cal methods based on the original DMD. Residual DMD
(resDMD) [5] is a neural-network-based method with
residual blocks, and its reference is replaced by the re-
sults of the DMD algorithm. The incorporation of neu-
ral networks enables resDMD to handle time-series data
that are best fitted by highly nonlinear time-evolution
models. The optimized DMD (optDMD) [13] and bag-
ging, optimized DMD (BOP–DMD) [6] are extensions of
DMD, with their nonlinear optimization yielding better
de-biasing outcomes. Conversely, the bagging of snap-
shots provides a better convergence to the optimization
and enables uncertainty quantification.

F. Generic Time-Evolution Equation

In this paper, we define time-evolution as an initial-
value problem (IVP). An IVP is a pair of initial con-
ditions and time-evolution equation. For instance, for
` ∈ Z>0, a `-th order ODE d`x

dt`
= f(x(t), t), x ∈ Rn with

` initial conditions x(0) = xini,0, ...,x
(`−1)(0) = xini,`−1

is an IVP. The number of independent initial conditions
q necessary to specify the time-series x(t) depends on the
time-evolution equation. Let us call the number of initial
conditions q the nullity of the time-evolution equation or
the corresponding operator in the time domain. In the
example above, q is equal to the order of the ODE. This
generic idea can be further generalized to other types of
time-evolution equations, such as difference equation in
the discrete cases. In this paper, we concentrate on the
IVPs, leaving other ways to specify the degrees of free-
dom (e.g., final-value problem) for the future works.

In general, the time-evolution equation on the set of
time points T has the form

π(x)(t) = f(x(t), t), x ∈ Rn, t ∈ T , (11)

where π is a functional of x, corresponding to the trans-
formation of x in time domain. To interpret Eq. (11) as a
time-evolution equation, one has to impose the causality
on the functional π: π(x)(t) is not dependent on x(t′)
for any t′ > t (t, t′ ∈ T ). If the functional π is not
causal, Eq. (11) together with initial conditions falls into
a self-reference, and thus irrelevant for a time-evolution
function.

Note that, in a functional space with sufficiently
smooth functions, a differential operator d`

dt`
has causal-

ity, since it is equivalent to the left derivative, and thus
can be calculated without using the future states. Let
us suppose that the set of time points is an interval, i.e.,
T = [0, T ] with T > 0. At the minimum of the interval
t = 0, a function has no left derivative, and thus the do-
main of the differential operator d`

dt`
is (0, T ]. The lack

of the derivatives at t = 0 is the origin of the nonzero
nullity of the ODEs as time-evolution equations.

Let us discretize the interval [0, T ] into m time points
ti = i∆t for i = 0, ...,m− 1 with ∆t = T/(m− 1). Then
we can construct a discretized representation of the `-th
order ODE as follows:

D(`)
m

[
x(t0),x(t1), ...,x(tm−1)

]
=

[
0, ...,0, f(x(t`), t`), ..., f(x(tm−1), tm−1)

]
,(12)

where D(`)
m is a `-th order difference operator. For ` = 1,

one can find D
(1)
m in Eq. (7). Note that, the rank of the

difference matrix is given by rank(D
(`)
m ) = m − `, and

thus our choice of the term nullity coincides with that
in linear algebra (i.e., dimension minus rank for a square
matrix). To specify the vectors x(ti) for i = 0, 1, ...,m−1,
one needs q = m− ` independent initial conditions, such
as

x(t0) = c0, x(t1)− x(t0) = ∆tc1,

x(t2)− 2x(t1) + x(t0) = ∆t2c2 . . . , (13)

For given constant vectors c0, c1, c2, ..., corresponding to
the position, velocity, and acceleration at t = 0. In gen-
eral, one can specify the initial conditions by the follow-
ing linear equation:[

x(t0),x(t1), ...,x(tq−1)
]
Ω = γ, (14)

for given constant vector γ ∈ Rq and an invertible matrix
Ω ∈ Rq×q.

G. Memory Effects

Despite the tremendous success of the aforementioned
methods, there is scope for improvement in terms of in-
corporation of time-evolution models by DMD. Exist-
ing DMDs either use the first-order ODE (exponential)
model [2, 3, 12] or a neural network-based method to deal
with the nonlinearity in time-evolution models [5]. More-
over, the time-evolution model can be extended within
the linear model but with memory effects.

Many known fundamental physical processes are
governed by first- or second-order ODEs, leading to
exponential-like behaviors over time. Thus, exponential
time evolution plays a crucial role in theoretical physics.

Although microscopic and fundamental physics are
governed by integer-order ODEs (i.e., memoryless equa-
tions of motion), systems with strong coupling to an ex-
ternal system or reservoir behave differently. Consider
that the internal state of the system is known and no mi-
croscopic information on the internal state of the reser-
voir is available. Upon applying a stimulus to the system,
the system state changes, thus leading to a change in
the reservoir state via the system-reservoir interactions.
Subsequently, changes in the reservoir may also affect the
system via the system-reservoir surface. Such an indirect
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effect via an external system leads to a memory effect
wherein the time evolution of the system appears to be
affected by the current status and history of its time evo-
lution [14, 15].

In the realm of materials science and engineering,
memory effect is also known as hysteresis. It is also re-
ferred as the non-Markovian effects in some realms of
science and engineering. Among the wide variety of phe-
nomena that exhibits hysteresis, the B −H response of
the magnetic materials, friction [16], and piezoelectric-
ity [17] are well-known examples in engineering. For in-
stance, piezoelectric actuators are used in high-accuracy
position controller in modern industrial machines (e.g.,
semiconductor processing equipment) and its behavior
including the hysteresis is of great interest in control the-
ory [17, 18].

As explained above, the memory of a system implies
nonlocal behavior in the time domain, which mostly
arises from the limitations of our observations. In the
time-evolution equations explained in the previous sec-
tion, memory effect corresponds to the nonlocality in the
functional π. Assuming a linear functional, one can ex-
press π as follows:

π(x)(t) =

∫
dt′ g(t, t′)x(t′), (15)

with g(t, t′) being the memory kernel. One example
of the memory kernel is the power memory kernel [19]:
g(t, t′) ∝ (t− t′)−α for t′ < t. The power memory kernel
corresponds to a memory weight which decays in time ac-
cording to the power law, and it is shown that the power
memory kernel leads to an equation of motion described
by fractional differential equations (e.g., [20]). Another
important example of memory kernel is the exponential
memory kernel [21].

H. Study Aims

In this study, we proposed a DMD with memory
(DMDm) method, whose time-evolution models are de-
scribed by a wider class of equations that enable the
description of the system with memory effects. As the
basis of our discussion, we used the definition of the ex-
act DMD given by Tu et al. (Definition 1 in [2]). Let
us assume a linear functional relation, y = π(x) for two
time-series datasets, x : t 7→ x(t) and y : t 7→ y(t). As we
have seen in section I F, if the value y(t) = π(x)(t) is not
affected by the values x(t′) for t′ > t, then the linear map
π is causal, because the operation is performed without
knowing the future values of x.

Moreover, the construction of an eigenfunction of a
causal linear operator can also be formulated as an IVP.
This is also true in discrete-time-series data and in the
discretized representation of the linear operator Dπ, as
shown in the next section. The discretized represen-
tation of the eigenfunction z : t 7→ z(t) ∈ R cor-
responding to an eigenvalue λ is an array of numbers

[
z(t0), z(t1), ..., z(tm−1)

]
that satisfy the following ma-

trix equation:[
z(t0), z(t1), ..., z(tm−1)

]
Dπ = λ

[
0, ..., 0, z(tq), ..., z(tm−1)

]
,

(16)
where the first q columns of matrix Dπ are zero vectors
and m − q is the rank of Dπ. For a causal Dπ, the el-
ement of the array z(tk) is constructed using an IVP or
by applying the transition operator Ktk to the initial q
states of the system z(t0), z(t1), ..., z(tq−1). This results
in a mode decomposition of a form similar to Eq. (5):

x(t) =

r−1∑
j=0

~φjFπ,λj ,zini
(t). (17)

In Eq. (17), the vector ~φj ∈ Rn is the DMD mode of
the problem and the function Fπ,λ,zini

is the solution to
the IVP π(z)(t) = λz(t),

[
z(t0), z(t1), ..., z(tq−1)

]
= zini.

Here, the eigenvector in the spatial direction ~φj and
eigenfunction in the time domain Fπ,λj

and zini share
the common eigenvalue λj , corresponding to the factor-
ization of the solution into temporal and spatial parts.
In addition, the proposed framework contains the exact
DMD, because

F d
dt ,λ,[1]

= exp(λt). (18)

For π = d
dt , the rank of the discretized representation

D d
dt

∈ Rm×m is m− 1.
As an example of this discussion, we use fractional

calculus [14, 15, 22, 23] for time-domain transformation.
The fractional derivatives of real-valued [15, 22, 23] and
complex-valued orders [24] are useful in physics with
memory effects using power law [14, 15]. The idea of in-
troducing a fractional (non-integer)-order derivative has
also attracted attention in control theory [25, 26]. One
notable application of fractional calculus in control the-
ory is the PIλDµcontroller [26].

The α-th-order fractional integral of an integrable
function f and real value α > 0 are expressed as [22, 23].

(Iαf)(t) =
1

Γ(α)

∫ t

−∞
dt′

f(t′)

(t− t′)1−α
, (19)

where Γ : α 7→ Γ(α) is the gamma function. Note that
the above definition corresponds to the case g(t, t′) =
(t− t′)α−1/Γ(α), i.e., the power memory kernel.

The fractional integral satisfies the following properties
for any integrable function f, g and the real values α, β >
0:

1. Iα(f + g) = Iαf + Iαg,

2. IαIβf = Iα+βf ,

3. I1f(t) =
∫ t

−∞ dt′ f(t′).

The first and second conditions correspond to linearity
with respect to the function and additivity of the order,
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respectively. The third condition is the equivalence of Iα
to the Riemann integral, for α = 1. As the integral is the
inverse of the derivative, the α-order derivative can be
constructed for any α ∈ R [22] for a smooth, integrable
function f : (−∞, t1] → R (t1 > −∞ is the upper
bound of the domain of f).

Although the power-law in memory effects is just an
approximation in some applications (e.g., [19]), the use
of power memory kernel in terms of fractional deriva-
tive has two major advantages: 1) the set of fractional
derivative operators forms a one-parameter group, 2) the
implementation is relatively easy, because we can use the
libraries for fractional derivatives.

In the following sections, we present the generic idea
of DMDm and the detailed algorithm of fractional DMD
or fracDMD. The fracDMD is a DMDm method wherein
fractional differential equations determine the time de-
pendency of each DMD mode instead of first-order dif-
ferential equations. DMDm is a theoretical extension of
DMD, enabling the analysis of multidimensional time-
series data with memory effects in the DMD framework.
Compared with existing DMD methods, our method has
a wider degree of freedom in time-evolution models.

The remainder of this paper is organized as follows. In
Section II, we investigate the properties of a causal linear
function and its eigenfunctions. In Section III, we intro-
duce the DMDm. In Sections IV and V, we introduce
an arbitrary order DMD (fracDMD) as an example of
the DMDm. In Sections VI and VII, we apply fracDMD
to synthetic time-series data to demonstrate the validity
of the proposed method. Further, Section VIII discusses
the numerical results, and finally, Section IX concludes
the study.

Throughout this study, we denote a n ×m matrix as
V = [V0, V1, ..., Vm−1] = [Vij ] so that we can refer the
column vectors Vi and elements Vij with 0 ≤ i ≤ m −
1 and 0 ≤ j ≤ n − 1. We frequently use zero-padded
matrices for a given matrix V e.g.,[

0, ...,0, Vq, .., Vm−1

]
∈ Rn×m. (20)

Hereafter, we assume that a zero-padded matrix is of
the same shape as the original matrix, and thus one can
assume that appropriate number of zero vectors are used.

II. CAUSAL LINEAR OPERATORS AND ITS
PROPERTIES

In this section, we investigate the conditions for linear
operator π, introduced in the previous section. Let us
denote the set of maps {f : D → C} from set D to set C
by hom(D, C) or CD.

For a particular set of time points T ⊆ R, we denote
a set of one-dimensional (1D) time-series data by CT . A
time-series datum V ∈ CT is a map from the set of time
points T to complex numbers; that is, V : T → C.

A. Causal Linear Operator

Assume a set of time points T and its subset S ⊆ T .
The original set T is either a closed interval in R or
finite subset of R. We define a causal linear operator
π : CT 3 V 7→ W ∈ CS as a linear functional π ∈
hom(CT ,CS) between two time series that satisfy the
causality condition. For a bounded set T , we assume
that min(T ) = 0 and max(T ) = T > 0 without loss of
generality.

• Let Ṽ (−, t′) : t 7→ Ṽ (t, t′) is a function such that
Ṽ (t, t′) = V (t)Θ(t′ − t).

• Then, π is causal def⇔ π(V )(t) = π(Ṽ (−, t′))(t) for
any t, t′ ∈ S satisfying 0 ≤ t ≤ t′ ≤ T ,

where Θ : R → C is the step function, Θ(t) = 0 for
t < 0 and Θ(t) = 1 for t ≥ 0. We use a placeholder
− to distinguish the function f(−) and value f(x) for
f : x 7→ f(x). Note that the more intuitive definition
given in section I F coincides with the above definition.

B. Eigenfunction of the Causal Linear Operator

Hereafter, we assume that the causal linear operator
π has a positive nullity q ≥ 1, so that, by definition, we
have to impose q initial condition(s). This means that
the domain of the operator π is smaller than the set of
time points we are interested in. Let the set of time
points considered here be T = [0, T ] for T > 0, and the
domain of the operator π becomes S = (0, T ]. Note that
the lack of t = 0 in S corresponds to the needs for the
initial conditions for time-evolution equations of the form
π(x)(t) = f(x(t), t).

For a particular causal linear operator π ∈
hom(CT ,CS) and the initial conditions, we can approx-
imate the eigenfunction of π using an iterative method
as follows. First, we introduce and fix a finite subset of
T as shown below:

T = {ti ∈ T |i = 0, 1, 2, ...,m−1, ti > tj for i > j, t0 = 0, tm−1 = T} ⊂ T .
(21)

Furthermore, we introduce a (row) vector representation
of time series V on T as V =

[
V0, V1, ..., Vm−1

]
, where

Vk = V (tk) ∈ C (k = 0, 1, ...,m − 1). Then, the ma-
trix representation of π is introduced using the following
equation:

V Dπ = π(V ), (22)

where standard matrix multiplication is assumed on the
left-hand side. Owing to the causality of the linear
operator π, the matrix representation Dπ is an upper-
triangular matrix whose first q (1 ≤ q ≤ m − 2) column
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vectors are zero.

Dπ =



0 · · · 0 ∗ · · · ∗ ∗
. . .

... ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
πqq ∗ ∗

. . .
...

...
πm−2,m−2 ∗

O 0 πm−1,m−1


.

(23)
Hereafter, we assume that the product of the
lower m − q diagonal elements is nonzero, that is,
πqqπq+1,q+1 · · ·πm−1,m−1 6= 0. The integer q corresponds
to the nullity of the operator π. Note that the zeroth col-
umn vector of the matrix Dπ corresponds to t = 0 6∈ S.

The eigenvalue problem for the linear operator π is ap-
proximately expressed by the following matrix equations
in association with the initial condition for the row vector
V and matrix Dπ:

V Dπ = λ
[
0, ...,0, Vq, Vq+1, ..., Vm−1

]
, (24)

[
V0, V1, ..., Vq−1

]
Ω = γ, (25)

where Ω ∈ Cq×p is a matrix and γ ∈ Cp is a constant
row vector. For the IVP Eq. (24) and Eq. (25) to be
solvable, we must impose that rank(Ω) = q. Note that
the second equation Eq. (25) corresponds to the initial
conditions, specifying the first q components of vector
V , and the first equation specifies the other components
Vq, Vq+1, ..., Vm−1 based on the first q values. The sim-
plest class of initial conditions is to assign the first q
values to the time series V :

[V0, V1, ..., Vq−1] = [Vini,0, Vini,1, ..., Vini,q−1], (26)

corresponding to the cases Ω = 1̂q and γ =
[Vini,0, Vini,1, ..., Vini,q−1] in Eq. (25).

The eigenfunction of the operator π is numerically ap-
proximated via the following successive calculations for
the particular initial condition: for k = 0, 1, ..., q − 1,

Vk =

p−1∑
j=0

(
Ω+

)
jk
γj , (27)

and for k = q, q + 1, ...,m− 1, solving Eq. (24) for Vk in
terms of V0, ..., Vk−1 yields the iterative equation:

Vk =

[[
V0, ..., Vk−1,0, ...,0

]
Dπ

λ− πkk

]
k

. (28)

The procedure to obtain the approximated eigenmode
of the causal linear operator π from the first q values
V0, V1, ..., Vq−1 is summarized in Algorithm 1.

Algorithm 1 Approximated eigenfunction φπ,λ,Vini for
a causal linear operator π
Require: Nullity of the operator q, parameter λ, initial val-

ues Vini =
[
V0, V1..., Vq−1

]
∈ Cq, matrix representation Dπ

corresponding to the discrete set of time points T
V ← [V0, V1, ..., Vq−1, 0, ..., 0] ∈ Cm

for k ∈ {q, q + 1, ...,m− 1} do

Vk ←
[ [

V0, ..., Vk−1,0, ...,0
]
Dπ

λ−πkk

]
k

V ←
[
V0, V1, ..., Vk, 0, ..., 0

]
∈ Cm

end for
φπ,λ,Vini ← V
return φπ,λ,Vini

By using a sequence of time points T with the maxi-
mum time interval ∆tmax → +0, Algorithm 1 can ap-
proximate a smooth function. To ensure that Algo-
rithm 1 functions properly, we must identify a matrix
Dπ whose first q columns are zero vector, whereas the
other column vectors are linearly independent.

III. DYNAMIC MODE DECOMPOSITION
WITH MEMORY

Using the causal linear operator and its eigenfunctions
introduced in the previous section, we postulated the con-
cept of DMDm, which is a new method that includes
memory effects in the DMD framework. It employs a
causal linear operator instead of the difference operator
used in existing DMD. This enabled us to handle the ef-
fects of past data in the time-evolution model without
losing the advantages of the DMD framework. Through-
out this section, we define the intervals T ,S ⊂ R as
T = [0, T ] and S = (0, T ] ⊂ T for T > 0.

A. Model Definition

We assume that the linear functional π : T → S is
causal. We introduce a linear time-evolution model of
the form

π(x)(t) = Ax(t) (t ∈ S), (29)

where A ∈ Rn×n denotes the constant matrix. By re-
stricting t to the (finite) set of time points T = {ti ∈
T |i = 0, 1, ...,m − 1, t0 = 0, tm−1 = T, ti > tj for i >
j} ⊂ T , the continuous time-evolution model can be dis-
cretized to obtain the matrix representation

XDπ = A
[
0, ...,0,xq, ...,xm−1

]
, (30)

where matrix A and n-dimensional time-series data X
are used instead of scalar λ and 1D time-series V in
Eq. (24). The nullity q depends on the nature of operator
π. Considering the use of (full) SVD X = UΣV ∗ with
the unitary (square) matrices U and V , we can transform
Eq. (30) as follows:

U∗XDπ = U∗AU
(
U∗[0, ...,0,xq, ...,xm−1

])
. (31)
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For a diagonalizable matrix A ∼ diag(λ0, ..., λn−1),
an array can always be identified with new variables
Ξ = U−1U∗X (i.e., we define a new variable as ξ(t) =
U−1U∗x(t) and Ξ =

[
ξ0, ξ1, ..., ξm−1

]
) for an appropriate

matrix U such that

ΞDπ = diag(λ0, ..., λn−1)
[
0, ...,0, ξq, ..., ξm−1

]
. (32)

The equation above leads to a solution for the original
variable x in the following form:[

x(t0),x(t1), ...,x(tm−1)
]

= UU

 φ>
π,λ0,ξ0,ini

...
φ>

π,λn−1,ξn−1,ini


=

n−1∑
i=0

(UUei)φ>
π,λi,ξi,ini

, (33)

where the column vector φπ,λ0,ξi,ini
is defined in Algo-

rithm 1 and ei =
[
δ0i, δ1i, ..., δn−1,i

]> with the Kro-
necker delta δij (δii = 1 and δij = 1 for i 6= j), and
ξi,ini =

[
ξi,0, ξi,1, ..., ξi,q−1

]
is a vector comprising the val-

ues of ξi = ei ·ξ at the first q time points. The expression
above is similar to that of Eq. (17).

B. Model Fitting based on DMD Scheme

Our goal is to determine an appropriate matrix A that
can be used to explain the data X on a discrete set of
time points T. We assume that model Eq. (30) holds
for the observed data X. The best-fit parameter A that
achieves least squares for π(x)(t) is estimated as follows:

A = argmin
A′

∥∥XDπ −A′[0, ...,0,xq, ...,xm−1

]∥∥
= XDπ

[
0, ...,0,xq, ...,xm−1

]+
. (34)

Similar to Eq. (3), we can compute A using SVD[
0, ...,0,xq, ...,xm−1

]
= UΣV ∗ to obtain an explicit ex-

pression for DMD with memory:

A = XDπV Σ+U∗. (35)

The low-rank approximation can also be performed in a
manner similar to that in Eq. (4).

C. DMDc with Memory

The DMDc scheme is applicable to the proposed
method. In the resultant method, DMD with control and
memory, we assume the following time-evolution model
for a causal linear operator π : T → S.

π(x)(t) = Ax(t) +Bu(t) (t ∈ S), (36)

which corresponds to the matrix representation.

XDπ = A
[
0, ...,0,xq, ...,xm−1

]
+B

[
0, ...,0,uq, ...,um−1

]
,

(37)
where A ∈ Cn×n and B ∈ Cn×` are coefficient matrices
and q is the nullity of Dπ. The DMDc prescription pro-
vides direct calculation of the optimal coefficients, similar
to Eq. (10), as

[
A B

]
= XDπ

[[
0, ...,0,xq, ...,xm−1

][
0, ...,0,uq, ...,um−1

]]+. (38)

Algorithm 1 is readily applicable for the multidimen-
sional case, and the time-evolution of the model Eq. (37)
for a given initial condition XΩ = Γ, external force
Υ = [u0,u1, ...,um−1], and coefficient matrices A,B is
obtained by the following successive calculations: for
k = 0, 1, ..., q − 1,

Xk =

p−1∑
j=0

(
Ω+

)
jk
Γj , (39)

and for k = q, q + 1, ...,m− 1:

Xk =

[
(A

[
x0, ...,xk−1,0, ...,0

]
+B

[
u0, ...,uk−1,0, ...,0

]
)Dπ

A− πkk1̂n

]
k

.

(40)
where the fractions of matrices G ∈ Cn×m and H ∈
Cn×n are defined by G/H = H−1G. This is a natural
extension of DMDc.

IV. FRACTIONAL DMD

The order of the differential operator can be extended
to any real-valued number [22, 23]. The term for this gen-
eralized differentiation, the fractional derivative, is actu-
ally misleading. This is because we can also specify an
irrational number α ∈ R\Q as the order of differentia-
tion. One of the definitions of the α-th order differential
of a smooth integrable function f : R → R is the Caputo
derivative. Specifically, for t > 0,

dαf

dtα
=

{
1

Γ(ν)

∫ t

0
dt′ f(n+

α )(t′)
(t−t′)1−ν (α 6∈ Z≥0)

f (α)(t) (α ∈ Z≥0)
(41)

where n+α = max(0, dαe), ν = n+α − α, f (`) is the `-th
order derivative of the function f for ` ∈ Z≥0 and the
ceiling y = dxe is the minimum integer y ∈ Z such that
y − x ≥ 0. The exception for α ∈ Z≥0 (the second line
in Eq. (41)) is not necessary because the two cases in
Eq. (41) coincide at α → α0 ∈ Z≥0, both of which yield
d`f
dt`

= f (`) for ` ∈ Z≥0. Moreover, the right-hand side
of Eq. (41) with α 6∈ Z≥0 coincides with the definition of
the fractional integral in Eq. (19) with the replacements
α 7→ ν and f 7→ f (`) and 0 < ν < 1. In this section, we
consider real-valued functions for simplicity.
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We can construct the corresponding eigenmode for the
α-th order differential operator with an initial condition.
To demonstrate this, we denote the discrete representa-
tion of a generic-order fractional differential operator dα

dtα

by D(α)
m for α ∈ R.

If a square matrix D(`)
m ∈ Rm×m satisfies the following

equation for N ∈ Z≥0, let D(`)
m be an N -th order approx-

imation of the `-th order integer-order derivative: For a
smooth function f : C → C and finite set of time points
T = {ti ∈ R|i = 0, 1, ...,m− 1, ti > tj for i > j}.

D(`)
m



f(t0)
...

f(t`−1)
f(t`)

...
f(tm−1)


=



0
...
0

f (`)(t`) +O
(
(∆tmax)

N
)

...
f (`)(tm−1) +O

(
(∆tmax)

N
)


, (42)

where ∆tmax = max({ti+1 − ti|i = 0, 1, ...,m− 2}) is the
maximum time interval and O is a big O notation. Here,
rank(D

(`)
m ) = m − `. The explicit expression of D(α)

m is
now constructed using the Caputo fractional differential
[22] as follows:

D(α)
m = D

(n+
α )

m

[
w

(n+
α−α)

0 ,w
(n+

α−α)
1 , ...,w

(n+
α−α)

m−1

]
. (43)

For the lowest order, weight w(ν)
k is approximated as fol-

lows:

(w
(ν)
k )i =

{
1

Γ(ν+1) ((tk+1 − ti)
ν − (tk+1 − ti+1)

ν) (i ≤ k)

0 (i > k)
.

(44)
where ∆ti = ti+1 − ti. The approximation error Eq. (44)
is O(T∆tmax), where T = tm−1 − t0 is the total time.
The matrix representation for the fractional derivative is
then decomposed into the `-th order (integer-order) dif-
ferential and the (−ν)-th order fractional derivative (i.e.,
the fractional integral of order 0 < ν < 1). Clearly,
the discretized representation D(α) satisfies linearity and
causality, thereby ensuring the existence of eigenmodes
constructed by Algorithm 1. More elaborate implementa-
tions with higher-order schemes may be used in an actual
numerical analysis. In the continuous limit, the eigen-
function of the fractional derivative operator is expressed
by the Mittag-Leffler function [23, 27, 28].

Because rank(D
(`)
m ) = m−` and {w(ν)

k |k = 0, 1, ...,m−
1} is a set of m linearly independent vectors for ν 6=
1, we can conclude that rank(D(α)) = rank(D

(n+
α )

m ) =
m−n+α . Thus, the discretized equation for the fractional
differential equation, coupled with the initial condition[
x0, ..,xn+

α−1

]
Ω = Γ for Ω ∈ Cn+

α×p and Γ ∈ Cn×p is
expressed as follows:

XD(α) = A
[
0, ...,0,xn+

α
, ...,xm−1

]
;

[
x0, ..,xn+

α−1

]
Ω = Γ.
(45)

For the given time-series data X ∈ Rn×m arranged in
matrix form and a fixed order of derivative α, the best-
fit matrix A for the model equation Eq. (45) is obtained
as follows:

A = XD(α)
[
0, ...,0,xn+

α
, ...,xm−1

]+
. (46)

The expression above is analogous to Eq. (3) for a first-
order (ordinary) DMD. The SVD of the matrix X =

Û Σ̂V̂ ∗ ' ÛrΣ̂rV̂
∗
r with rank 0 < r ≡ rank(Σ̂r) < n and

unitary matrices Û , Ûr, V̂ , V̂r, diagonal matrices Σ̂, Σ̂r

yield a low-rank representation of the dynamics for ξ =

Û∗
rx ∈ Rr.

dαξ

dtα
= Λξ, Λ = Û∗

rXD(α)V̂rΣ̂
−1
r . (47)

If the order α is unknown, matrix A∗ and the optimal
fractional order α∗ is estimated using Algorithm 2.

Algorithm 2 Grid search for order α
Require: Time-series data in matrix form X, candidates

α = {α0, α1, ...}
for α ∈ α do

A← XD(α)
[
0, ...,0,x

n+
α
, ...,xm−1

]+
L(α)←

∥∥∥XD(α) −A
[
0, ...,0,x

n+
α
, ...,xm−1

]∥∥∥
end for
α∗ ← argminα (L(α))

A∗ ← XD(α∗)
[
0, ...,0,x

n+
α
, ...,xm−1

]
The above algorithm is to find the optimal α∗

that minimizes the reconstruction error L(α) =∥∥XD(α) −A
[
0, ...,0,xn+

α
, ...,xm−1

]∥∥ with A being the
optimal coefficient matrix for a given α: A =

XD(α)
[
0, ...,0,xn+

α
, ...,xm−1

]+. Using this algorithm,
one can find the optimal order and coefficient without
using any a priori information.

V. FRACTIONAL DMD WITH CONTROL

The fracDMD proposed in the previous section is
only valid for autonomous dynamical systems. Analo-
gous to DMDc [12], we can extend our method to non-
autonomous systems with input terms. We assume that
T = [0, T ] and S = (0, T ] ⊂ T . The Caputo derivative
is a causal linear operator, dα

dtα : T → S. Consider the
following dynamical system:

dαx

dtα
= Ax+Bu(t) (t ∈ S), (48)

with the state vector x ∈ Rn and an external force
(exogenous input) vector u(t) ∈ R`. Matrices X =
[x0,x1, ...,xm−1] and Υ = [u0,u1, ...,um−1] were con-
structed. Similar to Eq. (10), we obtained the following
estimation for the coefficients.[
A B

]
'

[
Ā B̄

]
= XD(α)

[[
0, ...,0,xn+

α
, ...,xm−1

][
0, ...,0,un+

α
, ...,um−1

]]+.
(49)
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The SVDs X = Û Σ̂V̂ ∗ ' ÛrΣ̂rV̂
∗
r and [X; Υ] = Ũ Σ̃Ṽ ∗ '

ŨpΣ̃pṼ
∗
p with p > r can be used to obtain an approximate

low-rank representation of the dynamics for ξ = Û∗x ∈
Rr, as follows:

dαξ

dtα
= Λξ+Γu, [Λ Γ] ' Û∗

rXD(α)ṼpΣ̃
−1
p Ũ∗

p

[
Û∗
r 0

0 1̂p−r

]
.

(50)
Thus, the time-series data of the input u(t) and output
x(t) can be analyzed for a system in the fracDMD frame-
work, as well as for autonomous systems. The fracDMD
algorithm is described explicitly in Algorithm 3. Func-
tion SVD(•, r) denotes the SVD of a matrix with rank
r.

Algorithm 3 FracDMD with control
Require: Input data in matrix form Υ, observation data in

matrix form X, ranks p > r > 0, and order of the fractional
differential equation α
Ûr, Σ̂r, V̂r ← SVD(

[
0, ...,0,x

n+
α
, ...,xm−1

]
, r)

Ũp, Σ̃p, Ṽp ← SVD(
[[
0, ...,0,x

n+
α
, ...,xm−1

]
;
[
0, ...,0,u

n+
α
, ...,um−1

]]
, p)

X ′ ← XD(α)

[Λ Γ]← Û∗
rX

′ṼpΣ̃
−1
p Ũ∗

p

[
Û∗

r 0

0 1̂p−r

]

VI. QUANTITATIVE MODEL EVALUATIONS

The fracDMD and existing DMD minimize the Frobe-
nius norm of the matrix ‖X ′−AX−BΥ‖, where X ′ is the
fractional derivative XD(α) for fracDMD. The Frobenius
norm-based reconstruction error L(α)

Frobenius(A,B;X) =

‖XD(α) −AX −BΥ‖ is considered to be the sum of the
squared reconstruction error in α-th order time deriva-
tive, with AX + BΥ regarded as the reconstruction by
the model.

Another method of evaluating the model is to use the
sum of squared errors (SSE) in the reconstructed states
xi (i = 0, 1, ...,m−1). The explicit expression of the SSE
L(α)
SSE(A,B;X) as a function of α,A,B and the observa-

tion data X = [x0,x1, ...,xm−1] is given by

L(α)
SSE(A,B;X) =

m−1∑
i=0

|x(ti)− xi|2, (51)

where x(ti) is the solution of the time-evolution equation
Eq. (48) with the coefficients A and B and the initial
condition, whose explicit expression is shown in Eq. (33).

VII. NUMERICAL EXPERIMENTS

We performed numerical experiments to demonstrate
the utility of the fracDMD against synthetic data. We
numerically generated a solution for the fractional os-
cillator [29] analyzed by Svenkeson et al. [14] in the

context of spectral decomposition. Svenkeson et al. per-
formed numerical tests on the real-time behavior of a sin-
gle noise-free fractional oscillator with known parameters
to demonstrate the utility of fractional-order calculus in
analyzing memory effects. We extended their method to
include multidimensional noisy fractional oscillators. In
addition, we used an observation matrix R 6= 1̂ such that
the mode reconstruction became highly nontrivial.

A. Numerical Setup

A 1D fractional linear oscillator is expressed by the
following equation of motion [14]:

dνya
dtν

= Qaya; ya =

[
xa
va

]
, Qa =

[
0 1

−ω2
a 0

]
(a = 0, 1, ..., k−1),

(52)
where the frequency ωa > 0 is a real-valued parameter
and a = 0, 1, ..., k − 1 is the oscillator index. Let us
consider the multidimensional time-evolution equation,
as follows:

dνx

dtν
= Φx; x =


y0
y1
...

yk−1

 ∈ R2k, (53)

Φ =


Q0 O

Q1

. . .
O Qk−1

 ∈ R2k×2k, (54)

where ya and Qa denote the state vector in the single-
oscillator phase space and 2×2 matrix, respectively. We
also considered the following observation equation:

z(t) = Rx(t)+ε(t), εi(t)
iid∼ N (0, σ2) (i = 0, 1, ..., n−1),

(55)
where R ∈ Rn×2k is the constant observation matrix, and
each element of ε(t) =

[
ε0(t), ε1(t), ..., εn−1(t)

]
∈ Rn is

the independent and identically distributed (iid) Gaus-
sian noise, and z ∈ Rn represents the observed signal.
This numerical setup is useful for describing a situation
wherein the oscillators do not interact with each other;
however, the resulting signal is the superposition of the
oscillators.

Hereafter, we assume n ≥ 2k. The observation matrix
R comprises randomly sampled 2k basis vectors vs(µ) ∈
Rn (µ = 0, 1, ..., 2k − 1) for a random orthonormal basis
{v0, v1..., vn−1} and a permutation s ∈ Sn, as follows:

R =
[
vs(0), vs(1), ..., vs(2k−1)

]
∈ Rn×2k. (56)

Note that s(i) 6= s(j) for i 6= j.



10

B. Numerical Tests

Numerical tests were performed to determine the fre-
quency ωa (a = 0, 1, ..., k − 1) in Eq. (52) and Eq. (53).
The eigenvalues of coefficient matrix Φ are ±

√
−1ωa (a =

0, 1, ..., k − 1). We also denote the eigenvalues of the co-
efficient matrix A obtained using fracDMD as λi (i =
0, 1, ..., 2k−1). It is assumed that ω0 > ω1 > ... > ωk−1 >
0 and Imλ0 > Imλ1 > ... > Imλk−1 > Imλ2k−1 >
Imλ2k−2 > ... > Imλk.

The error L in the frequency estimation is expressed
as follows:

L =

k−1∑
i=0

|λi − ωi|2 +
k−1∑
i=0

|λi+k + ωi|2. (57)

In the full reconstruction case, λi =
√
−1ωi and λk+i =

−
√
−1ωi (i = 0, 1, ..., k − 1) such that L = 0.

We show the frequency reconstruction error L for var-
ious values of the noise standard deviation σ and the di-
mensions of the observation vectors n in Fig. 1 and Fig. 2
below. We assume that rank 2k and order ν of the sys-
tem equation Eq. (53) are known. We used second-order
numerical discretization of the Caputo fractional differ-
ential instead of the first-order scheme shown in Eq. (43)
and Eq. (44). We also modified Eq. (46) to use the frac-
tional integral instead of the fractional differential with
a positive order α to achieve better numerical conver-
gence. For details on the numerical implementations, see
Appendix B.

We can construct the observed data in two ways: one is
to give the analytical solution using Mittag-Leffler func-
tions with the given coefficient matrices, and the other
is to give the result of the numerical time-evolution us-
ing Algorithm 1. The numerical solution of the time-
evolution equation has discretization errors, and thus
does not coincide with the analytical solutions.

The estimated coefficients by fracDMD are optimized
for the numerical time-evolution scheme with finite time-
step, and thus we have a greater reconstruction error for
the analytically obtained observation data, as shown in
Fig. 2 and Fig. 1. In other words, a reconstruction er-
ror of the analytically generated (continuous) time-series
data includes both discretization error Ldisc and model-
ing error Lmodel, whereas we can suppress Ldisc in a case
with numerically generated observation data.

10−4 10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

σ

L
(σ
)

n = 8 n = 32 n = 64 n = 128

FIG. 1. Frequency reconstruction error L (Eq. (57)) for the
analytically generated observation data. We plot the error L
as a function of the noise standard deviation σ for various
values of observation size n. The numerical setups are k = 4,
ωi = i + 1 (i = 0, 1, 2, 3), and the order of the system equa-
tion Eq. (53) is set to ν = 1.2. The fracDMD parameters
are as follows: the SVD rank r is set to the actual system
size 2k, and the order α is set to the actual value ν. Each
mark denotes a mean of 10 synthetic data generated by the
system equation with different noise realizations and initial
conditions. The initial conditions for each oscillator are ran-
domly chosen such that the initial (pseudo) energy of each
oscillator becomes unity. We discretize the time interval [0, 5]
to 100 time points, and we use all time points in fracDMD.
The observed data is calculated using the Mittag-Leffler func-
tions with the coefficients specified above.

0.8 1 1.2 1.4 1.6 1.8

0
25
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L

0.8 1 1.2 1.4 1.6 1.8
0
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15
20
25
30
35

α

L

FIG. 3. Frequency reconstruction error L as a function of the
order α used in the fracDMD. Upper panel: ν = 1.2. Lower
panel: ν = 1.5. In both tests, σ = 10−2 and n = 8. The other
numerical setups are the same as in Fig. 1. The SVD rank r
is set to the actual system size 2k. The achieved numerical
minima are at α = 1.200 for (a) and α = 1.478 for (b).

Fig. 3 shows the function L(α) with its minima located
approximately at α = ν, thus indicating that an erro-
neous value of α leads to a larger reconstruction error
value.

We also show the results of the frequency reconstruc-
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n = 8 n = 32 n = 64 n = 128

FIG. 2. Frequency reconstruction error L (Eq. (57)) for the
numerically generated observation data. We plot the error L
as a function of the noise standard deviation σ for various val-
ues of observation size n. The numerical setups are the same
as in Fig. 1. The observed data is calculated by Algorithm 1
with the coefficients specified above.

tion for the case with nonzero external forces u ∈ R2.
We used three different profiles of u, as shown below.

u(t) =



[
0.4Θ(t− 2.5)

0.2Θ(t− 1.25)Θ(3.75− t)

]
(step-wise)[

1

1

]
δ(t) (impulse)[

1

1

]
(constant)

.

(58)
We set the coefficient B as follows:

B =
1

4



1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1


. (59)

The results are shown in Fig. 4 and Fig. 5 below.
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n = 8 n = 32 n = 64 n = 128

FIG. 4. Frequency reconstruction error L as a function of the
noise standard deviation σ for various values of observation
size n for the system of fractional oscillators with external
force. The external force is the step-wise function shown in
Eq. (58). The other numerical set-ups are the same as in
Fig. 1. The observed data is calculated by Eq. (40) with the
coefficients specified above.
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FIG. 5. Frequency reconstruction error L as a function of the
order α used in the fracDMD, with external forces defined in
Eq. (58). Upper panel: ν = 1.2. Lower panel: ν = 1.5. In
both tests, σ = 10−2 and n = 8. The other numerical setups
are the same as in Fig. 4. The SVD rank r is set to the actual
system size 2k.

In Fig. 4, we can see the similar tendency to the case
without external forces (Fig. 2) for the reconstruction
error L = L(σ), whereas the greater errors are seen in
the case with external forces. Fig. 5 shows that the
achieved minima is hugely dependent on the input pro-
file u = u(t), and the estimation becomes worse in the
case ν = 1.5. The constant input tends to have greater
errors, while step-wise and impulse inputs have better
reconstructions.
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C. Numerical Tests with Partial Observations

We next perform a more realistic numerical demon-
stration with a larger system of fractional oscillator. We
assume that the observation matrix R is now a n × 2k
matrix with n < 2k, so the observation is now partial.
We also assume that k = rdd for d, rd ∈ Z>0. We set
the oscillator frequencies as follows: using the division
remainder function rem(−,−) such that rem(a, b) is the
remainder of a divided by b for a, b ∈ Z>0,

ωi = rem(i, d) + 1 (i = 0, 1, ..., k − 1). (60)

Note that the each frequency repeats rd times in Φ. This
is to mimic a realistic physical situation in which several
oscillation modes share common frequencies. We use no
external force in this subsection.

Let us construct the observation matrix R as follows:
using a random orthogonal basis of 2k-dimensional vector
space {w0, w1, ..., w2k} and a permutation s ∈ S2k,

R = [ws(0), ws(1), ..., ws(n)]
> ∈ Rn×2k. (61)

The observed data is constructed using Eq. (55). For each
value of n, we performed 30 times of numerical experi-
ments with different realization of observation matrix R.
The reconstruction error (RMSE) against the observed
data is calculated for each numerical experiment and we
plot the mean RMSE against the observation dimension
n in Fig. 6.

We can see that the reconstruction is relatively good
for n & 2d. Note that the number of independent time-
evolution modes is 2d, because we have d unique fre-
quencies in Φ and each frequency corresponds to a two-
dimensional subspace in the state space. In this sense,
the intrinsic dimension of the system is 2d.
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(b) d = 4
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(c) d = 6

0 2 4 6 8 10 12 14 16 18 20 22 24 26

10−3

100

103

106

109

1012

n

m
ea
n
R
M
S
E

σ = 10−1 σ = 10−2 σ = 10−3 σ = 10−4

FIG. 6. Reconstruction error (mean RMSE) as a function
of the number of observations n used in the fracDMD. The
ground truth is the observation data. The parameters are as
follows: (a) d = 3, rd = 4, (b) d = 4, rd = 3, (c) d = 6, rd = 2.
The mean is taken over 30 iterations with different realization
of the observation matrix R. The SVD rank r is set to the
actual observation size n.

Examples of the reconstructed time-series data for n =
3 and n = 4 with σ = 10−4 are shown in Fig. 7 and in
Fig. 8, respectively. We can see that the reconstructions
are successful for n ≥ 2d cases, while the reconstructions
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significantly deviate from the observed data for n < 2d.

(a) d = 3, n = 5
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(b) d = 3, n = 6
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FIG. 7. Reconstructed and observed time-series data. A circle
(◦) denotes an observed data point (obs), and a cross (×)
denotes a reconstructed data point (recon). In the legend, the
numbers following the type of data (i.e., obs or recon) denote
the indices of the data. The parameters are as follows: (a)
d = 3, n = 5, (b) d = 3, n = 6. For both panels, σ = 10−4.
The SVD rank r is set to the actual observation size n.

(a) d = 4, n = 6
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(b) d = 4, n = 7
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(c) d = 4, n = 8
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FIG. 8. Reconstructed and observed time-series data. A circle
(◦) denotes an observed data point (obs), and a cross (×)
denotes a reconstructed data point (recon). In the legend, the
numbers following the type of data (i.e., obs or recon) denote
the indices of the data. The parameters are as follows: (a)
d = 4, n = 6, (b) d = 4, n = 7, (c) d = 4, n = 8. For
all panels, σ = 10−4. The SVD rank r is set to the actual
observation size n.

Since the observation matrix R is randomly generated
using Eq. (61), the reconstructed data sometimes suffers
from huge reconstruction errors, resulting in the devia-
tions of mean RMSEs from its trend in Fig. 6.
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VIII. DISCUSSION

A fractional oscillator is an oscillator with power-law
memory effects. The reconstruction of the frequencies
in the previous section was consistent with the ground
truth. The reconstruction error increased as a function
of the noise standard deviation, whereas the dimension
of the observation space did not significantly affect the
error. Thus, we conclude that the fracDMD can recon-
struct isolated fractional oscillators well.

We also performed numerical experiments for various
values of α. The reconstruction error L has a minimum
value at approximately α = ν for the case without ex-
ternal forces with sufficiently weak noise. This implies
that the proposed method is useful for estimating the or-
der of the system equation. Noting that the case α = 1
corresponds to DMD, we can also infer that our method
achieved better reconstruction than DMD for fractional
oscillators. Although this inference appears to be ex-
act, the introduction of a higher-order scheme and frac-
tional integral may lead to small discrepancies between
the DMD and fracDMD results, even for α = 1.

The cases with external forces need more careful con-
sideration: the reconstructed frequencies and order may
have a huge discrepancy from the ground truth, while
the error is dependent on the time profile of the exter-
nal force and the noise standard deviation σ. We have
not conducted a comprehensive research on the effects of
the external forces, however, it seems that the external
forces only with low-frequency components lead to erro-
neous results. In the impulse case, the reconstruction
error has its minima appropriately at the ground truth
α = ν, meaning a successful estimation of the order α.

We performed numerical tests with partial observa-
tions using the fractional oscillators as well. We suc-
cessfully reconstructed the partial observation data using
the proposed method for sufficiently large observation di-
mensions. The minimum dimension of the observation
needed to reconstruct the observed data approximately
coincides with the intrinsic dimension of the system. This
implies that the modeling of memory effects using the
proposed method might be useful in various fields of sci-
ence to extract the intrinsic dynamics from the observa-
tions. For example, in a macroscopic solid-state matter,
we have around NA (Avogadro’s number) variables each
of which describes the coordinate of an atom. However,
the oscillation normal modes of the matter are usually
highly degenerate and the dynamics of the oscillation is
described by a small number of frequencies, enabling us
to reconstruct the dynamics from a relatively small num-
ber (� NA) of observations.

Our method can be used to model unknown physical
processes such as the mechanical motion of industrial ma-
chines and thermal systems. One possible manner of us-
ing this method is to estimate the memory effects of the
system. If the reconstruction error by fracDMD has its
minima at approximately α = 1, it can be concluded that
the system is memoryless; otherwise, the optimal value

of α can be used to include the memory effects in the
model.

Among the possible extensions, modifications to incor-
porate the nonlinearity to the fractional DMD scheme
might be of utmost importance. Another way to include
more complex situations is to use nonpower-law mem-
ory. In our current numerical setup, we used power-law
memories that were mathematically shown to be equiv-
alent to fractional-order equations of motion [14]. How-
ever, in principle, the memories in real data can decay
according to any smooth function. Possible extensions
are to use the Caputo-Fabrizio fractional derivative [30],
or exponential-law memory [19]. We can use the Caputo-
Fabrizio fractional derivative to circumvent the singular-
ity around the origin of time difference, while the use of
exponential-law memory might enable us to incorporate
different types of physics.

We can further extend our method by using an arbi-
trary memory kernel function g(t, t′) in Eq. (15). Noting
that the causal linear operator π has a one-to-one cor-
respondence to the memory kernel such that g(t, t′) =
g(t, t′)Θ(t− t′), one can construct the corresponding ma-
trix Dπ using the method described in the main text.
Although we can no longer enjoy the advantages of frac-
tional derivatives (i.e., they form a one-parameter group,
and easily estimated using the existing numerical li-
braries), this generalization might be quite useful in some
cases where the power-law does not holds.

Within the scope of fractional derivative, another pos-
sible extension is to include multiple derivatives in the
time-evolution model of x, as follows:

K∑
k=0

Ak
dα+kx

dtα+k
= Bu(t), (62)

where Ak is the coefficient matrix for α + k-th order
derivative, and B is the coefficient for the external force
u(t). In this way, we might extend our method for the
systems with fractional transfer functions. One famous
example is the Warburg impedance, extensively studied
in the context of lithium-ion batteries [31].

In the reconstruction considered herein, we assumed
that we knew the actual size of the problem (i.e., system
size). This assumption makes the problem easier to solve.
However, in realistic situations, the actual dimensions of
system equations are rarely known. In future work, we
may optimize the rank of the system and coefficients.

IX. SUMMARY

We proposed a new framework DMDm (a DMD-based
numerical tool) to analyze time-series data. The use of
a more generic linear operator instead of a finite differ-
ence operator enabled us to consider the memory effects
in time-evolution models. The memory effect is an ex-
tensively observed phenomenon in the real world, as ob-
served in (among others) viscoelastic matter and fluid
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dynamics. As an example of DMDm, we formulated
fracDMD to indicate the use of a fractional-order deriva-
tive. The incorporation of a fractional-order derivative
in DMDm is equivalent to assuming power-law mem-
ory effects. We successfully demonstrated that by us-
ing fracDMD, the frequencies of fractional oscillators can
be reconstructed from noisy observations. The proposed
method is expected to be useful for modeling unknown
physical processes such as thermal and mechanical pro-
cesses in modern industrial machines.
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Appendix A: Improvements in Numerical
Implementation

In the main text, we introduced fractional dynamic
mode decomposition (fracDMD) using first-order dis-
cretization of the Caputo derivative. In this section, we
present two ingredients to improve the numerical scheme
for the fracDMD.

In appendix A 2, we present a scheme wherein the dis-
cretization error converges to zero with respect to second-
order time intervals. A more accurate reconstruction was
expected for the second-order scheme. In appendix A 3,
we demonstrate the use of the fractional integral instead
of the fractional derivative in fracDMD. In fractional cal-
culus, it may be considered that the derivative and in-
tegral are treated in a unified manner; however, there
are certain subtleties in the fractional derivative because
the derivative of the order α > 1 requires integer-order
derivatives in the Caputo derivative. In certain limited
cases, the use of fractional derivatives can be circum-
vented and hence, integer-order derivatives can be ap-
plied by integrating both sides of the time-evolution equa-
tion.

In this section, we assume a set of time points T =
{ti = i∆t|i = 0, 1, ...,m− 1} for ∆t > 0.

1. First-order Numerical Scheme Revisited

We discretize the following equation within a first-
order error in ∆t, assuming T = tm−1 − t0 is constant.
For a smooth integrable function f : C → C, the α-th
order fractional derivative at time t is derived as follows:

D
(α)
f (t) =

1

Γ(α)

∫ t

0

dτ f(τ)(t− τ)α−1. (A1)

Note that f(τ) = f(ti)+O(∆t) for τ ∈ [ti, ti+1], and the
above expression for t = tk+1 becomes:

D
(α)
f (tk+1)

=
1

Γ(α)

k∑
i=0

∫ ti+1

ti

dτ (f(ti) +O(∆t))(tk+1 − τ)α−1

=
1

Γ(α)α

k∑
i=0

f(ti)((tk+1 − ti)
α − (tk+1 − ti+1)

α) +O(∆t),

(A2)

where we use the fact O(k∆t2) = O(∆t) for k ' m.
Hence,

D(tk+1) =
1

Γ(α+ 1)

k∑
i=0

((tk+1 − ti)
α − (tk+1 − ti+1)

α) f(ti)

+O(∆t). (A3)

In the matrix representation Eq. (43) in the main text,
we require matrix W (α) =

[
w

(α)
0 ,w

(α)
1 , ...,w

(α)
m−1

]
to be
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invertible. To achieve this, the derivative at t = tk+1

can be stored in the k-th element of the resultant (row)
vector ~y = ~xW (α) for given time-series data ~x such that
the diagonal elements of W (α) become nonzero without
violating the requirements of the first-order scheme. By
adopting this convention, we can derive the expression
for weights Eq. (44) in the main text.

2. Second-order Numerical Scheme

In this subsection, we derive a second-order discretiza-
tion scheme for the Caputo derivative. We performed

discretization of the following integral:

D
(ν)
f (t) =

1

Γ(ν)

∫ t

0

dτ
f(τ)

(t− τ)1−ν
, (A4)

where the integrand f : C → C is an integrable scalar
function and ν < 1 is the real-valued order. The value of
D

(ν)
f (t) is evaluated as

D
(ν)
f (tk+1) = D

(ν)
f ((k + 1)∆t)

=
1

Γ(ν)

∫ (k+1)∆t

0

dτ
f(τ)

((k + 1)∆t− τ)1−ν
. (A5)

Let us define Fk = {f0, f1, ..., fk−1|fi = f(ti)} for k =

1, 2, ...,m. We approximate D(ν)
f (tk+1) (0 < k < m − 1)

using Fk+1. The direct calculation of D(ν)
f (tk+1) is as

follows.

1

Γ(ν)

∫ (k+1)∆t

0

dτ
f(τ)

((k + 1)∆t− τ)1−ν

=
1

Γ(ν)

k∑
i=0

∫ (i+1)∆t

i∆t

dτ
f(τ)

((k + 1)∆t− τ)1−ν

=
1

Γ(ν)

k∑
i=0

∫ 1

0

ds∆t
f(i∆t+ s∆t)

((k + 1)∆t− (i∆t+ s∆t))1−ν

=
1

Γ(ν)

k∑
i=0

∫ 1

0

ds∆t ((k + 1)∆t− (i+ s)∆t)
ν−1

f(i∆t+ s∆t).

(A6)

Assuming that f is sufficiently smooth, we can use the Taylor expansion to obtain the following approximation for
0 < s < 1:

f(i∆t+ s∆t) = (1− s)fi + sfi+1 +O(∆t2). (A7)

Substituting Eq. (A7) into Eq. (A6), we obtain the following expression for D(ν)
f (tk+1):

D
(ν)
f (tk+1) =

1

Γ(ν)

k∑
i=0

∫ 1

0

ds (∆t)ν((k + 1)− (i+ s))
ν−1

[(1− s)fi + sfi+1] +O(∆t2). (A8)

We introduce the distance between time points k, i as Ck,i = k − i+ 1 and the normalized (inverse) distance Dk,i =

1− C−1
k,i ∈ [0, 1). A straightforward calculation yields:

D
(ν)
f (tk+1) =

1

Γ(ν + 2)

k∑
i=0

∆tνCν+1
k,i

[
fi

(
Dν+1

k,i −Dk,i − νC−1
k,i

)
+ fi+1

(
1−Dν

k,i

(
1 + νC−1

k,i

))]
+O(∆t2).

(A9)

Subsequently, we attempt to express the summation in
Eq. (A9) using the dot products of the constant-weight

vectors. Let ψ(k+1) =
[
ψ
(k+1)
0 , ψ

(k+1)
1 , ...ψ

(k+1)
k+1

]>
∈
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Rk+2 denote a weight vector.

ψ
(k+1)
i =


P

(ν)
k+1(0) (i = 0)

P
(ν)
k+1(i) +Q

(ν)
k+1(i− 1) (1 ≤ i ≤ k)

Q
(ν)
k+1(k) (i = k + 1),

(A10)

where,

P
(ν)
k+1(i) =

1

Γ(ν + 2)
∆tνCν+1

k,i

(
Dν+1

k,i −Dk,i − νC−1
k,i

)
,

Q
(ν)
k+1(i) =

1

Γ(ν + 2)
∆tνCν+1

k,i

[
1−Dν

k,i

(
1 + νC−1

k,i

)]
.

(A11)

The value of the fractional derivative D(ν)
f at time t =

tk+1 was estimated using the following expression:

D
(ν)
f (tk+1) =

[
f0, f1, ..., fk+1

]
ψ(k+1) +O(∆t2). (A12)

Note that Eq. (A12) is the second-order scheme for
Eq. (A4). To implement the second-order numerical
scheme for fracDMD, the weight vector w(ν)

k in Eq. (44)
can be simply replaced by the following expression:

(w
(ν)
k )i =

{
ψ
(k)
i (i ≤ k)

0 (i > k).
(A13)

The vanishing elements for i > k correspond to causality
in the time-evolution equation.

3. Use of the Fractional Integral

In the main text, we derived fracDMD using the frac-
tional differential equation Eq. (48), wherein the frac-
tional derivative of the time-dependent variable x ∈ Rn

is expressed in terms of a linear function of x and the
exogenous input term u(t) ∈ R`, as follows:

dαx

dtα
= Ax+Bu(t). (A14)

However, a naïve discretization of the original form
Eq. (A14) leads to subtlety in the numerical treatments
at approximately t = 0, and the solution of the time-
evolution equation Eq. (48) is, in general, a nonzero vec-
tor at t = 0. However, the Caputo derivative of a function

vanishes at the initial time t = 0, leading to an inconsis-
tency at t = 0. This is the primary reason for the assump-
tion that π ∈ hom(CT ,CS) with S = (0, T ] ⊂ [0, T ] = T
for linear operator π in the main text.

Alternatively, to circumvent this difficulty, we can per-
form a fractional derivative of order −α on both sides of
equation Eq. (A14) to cancel the derivative on the left-
hand side and obtain an alternative form for α < 0 as
follows:

x
?
=

d−α

dt−α
(Ax+Bu(t)). (A15)

We can demonstrate that this transformation is accurate
for α < 0 [23]. However, for an arbitrary integrable func-
tion x = x(t) and α > 0, the transformation from the
original form Eq. (A14) to the alternative form Eq. (A15)
is not possible because, in general, the function x has
nonzero integer-order derivatives at t = 0. However, it
can be shown that the difference between the original
function x and the retrieved function x̃ = d−α

dt−α
dαx
dtα can

be expressed as a polynomial of t, as (see Lemma 2.22 in
[23]),

d−α

dt−α

dαx

dtα
= x(t)−

n+
α−1∑
`=0

x(`)(0)

`!
t`. (A16)

Because α = 0 is a trivial case, mode decomposition
can be performed by discretizing the alternative form
Eq. (A15) for α < 1. The resultant equation is as fol-
lows:

x =
d−α

dt−α
(Ax+Bu(t)) + x(0). (A17)

Even for α > 1, Eq. (A17) is an approximation of the
exact fractional integral equation Eq. (A16). An alter-
native version of fracDMD uses Eq. (A17) and the same
procedure described in the main text.

Appendix B: Numerical Test

In Section VIII, we used the approximated alternative
form of fracDMD shown in the previous section (i.e., the
fractional integral equation Eq. (A17) and second-order
discretization Eq. (A13)).
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