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​Abstract​
​Human tissues progressively lose their function during aging. In the context of​

​cellular differentiation and dedifferentiation, this process can be quantified as decrease and​
​increase in liberality, defined as transcriptome diversity. In this study, we collected over 5,000​
​human transcriptome datasets and measured their liberality. We found a positive correlation​
​between aging and liberality, as well as between disease status and liberality.​

​Introduction​
​The human aging process has been investigated from multiple perspectives. At the​

​cellular level, telomere shortening​ ​(Goldstein, 1990)​​and increasing spatial transcriptomic​
​diversity at the individual level have been reported​​(Ma et al., 2024)​​. Phenotypic observations​
​indicate that human tissues lose their function with age, leading to the prediction that human​
​cells undergo dedifferentiation during aging. To examine this hypothesis, we analyzed more​
​than 5,000 RNA-seq datasets derived from human tissues across various ages​​(Shokhirev &​
​Johnson, 2021)​​. The metadata included age, sex, health condition, and batch information​
​(Batch effects reflect technical conditions of the samples, such as tissue source and sampling​
​time. Generally, RNA-seq data may be affected by surgical procedures, cell lysis, RNA​
​extraction, library preparation, sequencing pool construction, and variation across sequencing​
​instruments). We have no interest in sex. We measured liberality in these RNA-seq datasets​
​and analyzed the effects of age and health condition on liberality.​

​Maternals and Methods​
​Raw count data derived from RNA-seq experiments were obtained as supplemental​

​data from a previous study​​(Shokhirev & Johnson, 2021)​​. Liberality was measured as​
​previously described​​(Ogata et al., 2012, 2015)​​. The contributions of metadata factors to​
​liberality were analyzed using linear regression with the lm package in R​​(R Core Team,​
​2024)​​. The model evaluated the effects of age and health condition (healthy vs. diseased) on​
​liberality.​

​Results and Discussion​
​We measured liberality, defined here as the α-diversity of intracellular transcriptomes,​

​in RNA-seq data collected from human tissues and compared it with sample metadata. Both​
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​age and health status showed positive correlations with liberality. The age-dependent increase​
​in liberality was greater in samples classified as healthy than in those classified as diseased.​
​Nevertheless, the liberality of diseased samples was consistently higher than that of healthy​
​samples. This suggests that the apparently weaker effect of age in diseased samples is not due​
​to a suppression of age-related increases, but rather because poor health itself elevates​
​liberality, thereby diminishing the apparent contribution of age. It is possible that samples​
​considered healthy under current medical standards may in fact include undetected disease​
​cases, and that the frequency of such hidden diseases increases with age.​

​Figure 1. Correlation between Age and Liberality​
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