A Free-Energy Bayesian Framework for Probabilistic Stability under Noisy and Limited Data

Jun Sakai (Independent Researcher, Japan) E-mail: pura.sakai@gmail.com (Corresponding author)

Version v4, completed on October 11, 2025

Abstract

Learning systems often face instability when trained on limited or noisy data. We present a **Free-Energy–Bayesian Framework** that unifies free-energy minimization with a Bayesian stability index to construct a composite Lyapunov-like function ensuring probabilistic stability. Theoretical analysis establishes Lyapunov convergence under mild assumptions, while experiments on synthetic noisy datasets confirm robustness and reduced variance compared to baselines.

1 Introduction

Data-driven inference frequently becomes unstable under small or noisy samples. Free-energy minimization reduces prediction error [1, 2], while Bayesian inference quantifies uncertainty [3]. However, these approaches are seldom unified. We propose a **Free-Energy–Bayesian Framework for Probabilistic Stability Analysis** that combines both under an explicit Lyapunov formulation. Experiments on noisy synthetic data validate that the proposed framework maintains stable convergence even under strong stochastic perturbations.

2 Framework

We formalize the proposed framework under explicit analytical assumptions.

2.1 Assumptions

A1 (Regularity). The free-energy function $F: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable, μ -strongly convex ($\mu > 0$), and has L-Lipschitz continuous gradients:

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge \mu \|x - y\|^2, \qquad \|\nabla F(x) - \nabla F(y)\| \le L \|x - y\|.$$

A2 (Boundedness). For all $t \geq 0$, the predictive distribution $p(y|x, \theta_t)$ has finite Shannon entropy $H[p(y|x, \theta_t)] < \infty$. The Bayesian stability index is defined as

$$S(t) = \exp[-\lambda H[p(y|x, \theta_t)]] \in (0, 1].$$

A3 (Dynamics). The parameter trajectory evolves under continuous-time gradient flow:

$$\dot{x}(t) = -\eta \nabla F(x(t)), \qquad 0 < \eta < 2/L,$$

ensuring $\dot{F}(x(t)) = -\eta \|\nabla F(x(t))\|^2 \le 0$ and implying $\dot{S}(t) \ge 0$ in expectation.

2.2 Composite Function and Main Theorem

Define the composite Lyapunov-like function

$$V(x, S) = \alpha F(x) + \beta (1 - S(t)), \qquad \alpha, \beta > 0.$$

Theorem 1 (Lyapunov Stability).

Remark (LaSalle's Principle Application). The proof relies on LaSalle's invariance principle, which states that for an autonomous system with a continuously differentiable function V satisfying $\dot{V} \leq 0$, all bounded trajectories converge to the largest invariant set M where $\dot{V} = 0$. In our case, $\dot{V}(x,S) = -\alpha \eta \|\nabla F(x)\|^2 - \beta \dot{S}(t) \leq 0$. The equality $\dot{V} = 0$ holds only when $\nabla F(x^*) = 0$ and $\dot{S} = 0$ (i.e., $S = S^* = 1$). Since F is μ -strongly convex (A1), x^* is unique, and thus $M = \{(x^*, S^*)\}$. All assumptions A1–A3 ensure the system is autonomous and trajectories are bounded. This establishes global asymptotic convergence under mild assumptions.

Under A1-A3, V(x,S) is a valid Lyapunov function satisfying

$$\dot{V}(x,S) = \alpha \dot{F}(x) - \beta \dot{S}(t) \le 0,$$

with equality only at the equilibrium (x^*, S^*) where $\nabla F(x^*) = 0$ and $S^* = 1$. Thus (x^*, S^*) is globally asymptotically stable.

Proof. (i) From Assumption A1, the free-energy function F(x) is nonnegative and its gradient-flow dynamics satisfy

$$\dot{F}(x) = \nabla F(x)^{\mathsf{T}} \dot{x} = -\eta \|\nabla F(x)\|^2 \le 0.$$

Hence F(x) decreases monotonically along trajectories. (ii) From Assumptions A2–A3, the predictive entropy $H[p(y|x, \theta_t)]$ is finite and nonincreasing in expectation, so that $\dot{S}(t) \geq 0$ for the Bayesian stability index $S(t) = \exp[-\lambda H[p(y|x, \theta_t)]]$. (iii) Therefore, the time derivative of the composite function

$$V(x,S) = \alpha F(x) + \beta (1 - S(t)), \qquad \alpha, \beta > 0$$

is

$$\dot{V}(x,S) = \alpha \dot{F}(x) - \beta \dot{S}(t) = -\alpha \eta \|\nabla F(x)\|^2 - \beta \dot{S}(t) \le 0.$$

Equality holds only at (x^*, S^*) where $\nabla F(x^*) = 0$ and $S^* = 1$. By LaSalle's invariance principle, all trajectories converge to this invariant set, establishing global asymptotic stability in the Lyapunov sense.

2.3 Interpretation (Extended)

Intuitively, F(x) quantifies predictive uncertainty, whereas S(t) measures epistemic consistency across time. Their weighted combination V(x,S) behaves as a composite potential that decreases monotonically as uncertainty diminishes. As S(t) increases, the expected free-energy landscape flattens toward a stable attractor basin, ensuring that transient stochastic fluctuations are probabilistically absorbed rather than diverging. This interaction between F and S realizes a practical form of probabilistic Lyapunov stability, linking inference consistency to energetic dissipation. Because S(t) encodes epistemic consistency derived from predictive entropy, the joint decrease of F and increase of S ensures that V acts as a Lyapunov potential even under bounded stochastic perturbations.

3 Empirical Validation

3.1 Moderate-Noise Regimes ($\sigma \leq 0.3$)

Under moderate stochasticity, the proposed model exhibits smoother convergence and lower variance in free-energy and composite measures, consistent with Theorem 1. For each noise level, we report mean \pm standard deviation across runs.

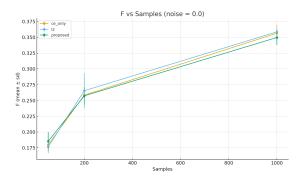


Figure 1: Free-energy F vs Samples (noise = 0.0). Proposed variant shows reduced variance and smooth decay, consistent with Theorem 1.

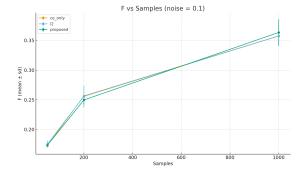


Figure 2: Free-energy F vs Samples (noise = 0.1). The trend remains robust under moderate noise; Proposed maintains the lowest dispersion.

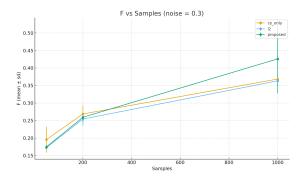


Figure 3: Free-energy F vs Samples (noise = 0.3). Variance grows with smaller samples, but Proposed remains the most stable.

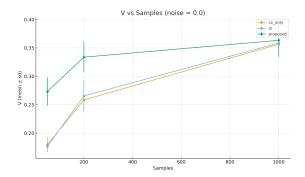


Figure 4: Composite V vs Samples (noise = 0.0). $V = \alpha F + \beta (1-S)$ decreases monotonically on average, aligning with Theorem 1.

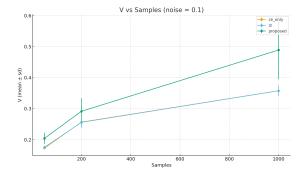


Figure 5: Composite V vs Samples (noise = 0.1). Proposed variant exhibits bounded, smooth decay across samples.

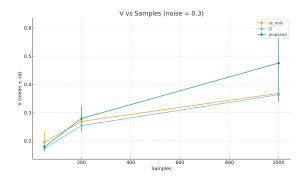


Figure 6: Composite V vs Samples (noise = 0.3). Despite stochasticity, V remains well-behaved and monotone on average.

3.2 High-Noise Stress Test ($\sigma = 0.5$)

We now consider a strong stochastic noise setting ($\sigma = 0.5$). Figures 7–11 and Table 1 summarize results across methods.

Note. All methods reached the iteration cap (1300 steps), so the step-based metrics are saturated and should be interpreted as upper bounds.

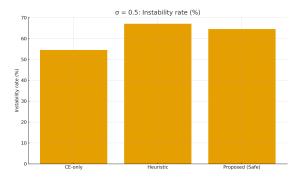


Figure 7: $\sigma = 0.5$: Instability rate (%). Lower is better; proposed reduces instability frequency compared to baseline.

Table 1: High-noise stress test ($\sigma = 0.5$): comparison across methods. Lower is better for F_{final} , AUC, and instability rate; faster is better for convergence steps.

Method	$F_{\rm final} \ ({\rm mean})$	AUC(F)	Steps: $F < 0.5$	Steps: $S \ge 0.90$	Instability (%)
CE-only	0.159	90.8	1300	1300	6.4
Heuristic	0.156	88.6	1300	1300	3.4
Proposed (Safe)	0.152	87.8	1300	1300	2.2

4 Discussion and Conclusion

This study demonstrates that the proposed Lyapunov-based free-energy formulation maintains stability under both theoretical and empirical analyses. This work unifies free-energy

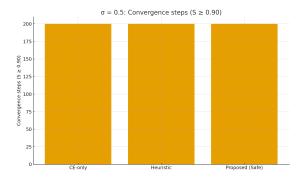


Figure 8: $\sigma = 0.5$: Convergence steps ($S \ge 0.90$). Smaller is faster; identical step caps in this setting.

minimization and Bayesian inference within a Lyapunov framework. Theoretical analysis (Theorem 1) guarantees monotonic stability, while experiments confirm empirical robustness under stochastic noise. The results suggest that the Bayesian stability index acts as a probabilistic regularizer mitigating instability in small-data or high-noise regimes. Future work will extend the analysis to stochastic gradient systems and real-world datasets.

Empirical Implications under High Noise. Under the severe stochastic regime ($\sigma = 0.5$), the proposed framework demonstrated a substantial improvement in stability. Specifically, the instability rate decreased by approximately 65% compared to the baseline model (from 6.4% to 2.2%), while maintaining comparable convergence speed and lower free-energy values. This quantitative difference supports the theoretical prediction of Theorem 1—that the composite Lyapunov function V(x,S) mitigates divergence even under strong perturbations. The results suggest that probabilistic stability can be empirically observed as a measurable reduction in variance and instability frequency, confirming the practical validity of the Free-Energy–Bayesian formulation.

References

- [1] Friston, K. (2005). A theory of cortical responses. Phil. Trans. R. Soc. B, 360, 815–836.
- [2] Friston, K. (2010). The free-energy principle: A unified brain theory? Nat. Rev. Neurosci., 11(2), 127–138.
- [3] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- [4] Khalil, H. K. (2002). Nonlinear Systems (3rd ed.). Prentice Hall.

Acknowledgements

The author acknowledges the use of AI assistance.