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Abstract

Learning systems often face instability when trained on limited or noisy data. We
present a Free-Energy–Bayesian Framework that unifies free-energy minimization
with a Bayesian stability index to construct a composite Lyapunov-like function ensur-
ing probabilistic stability. Theoretical analysis establishes Lyapunov convergence under
mild assumptions, while experiments on synthetic noisy datasets confirm robustness
and reduced variance compared to baselines.

1 Introduction

Data-driven inference frequently becomes unstable under small or noisy samples. Free-
energy minimization reduces prediction error [1, 2], while Bayesian inference quantifies un-
certainty [3]. However, these approaches are seldom unified. We propose a Free-Energy–
Bayesian Framework for Probabilistic Stability Analysis that combines both under
an explicit Lyapunov formulation. Experiments on noisy synthetic data validate that the
proposed framework maintains stable convergence even under strong stochastic perturba-
tions.

2 Framework

We formalize the proposed framework under explicit analytical assumptions.

2.1 Assumptions

A1 (Regularity). The free-energy function F : Rn → R is continuously differentiable,
µ-strongly convex (µ > 0), and has L-Lipschitz continuous gradients:

⟨∇F (x)−∇F (y), x− y⟩ ≥ µ∥x− y∥2, ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥.
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A2 (Boundedness). For all t ≥ 0, the predictive distribution p(y|x, θt) has finite
Shannon entropy H[p(y|x, θt)] < ∞. The Bayesian stability index is defined as

S(t) = exp[−λH[p(y|x, θt)]] ∈ (0, 1].

A3 (Dynamics). The parameter trajectory evolves under continuous-time gradient
flow:

ẋ(t) = −η∇F (x(t)), 0 < η < 2/L,

ensuring Ḟ (x(t)) = −η∥∇F (x(t))∥2 ≤ 0 and implying Ṡ(t) ≥ 0 in expectation.

2.2 Composite Function and Main Theorem

Define the composite Lyapunov-like function

V (x, S) = αF (x) + β(1− S(t)), α, β > 0.

Theorem 1 (Lyapunov Stability).
Remark (LaSalle’s Principle Application). The proof relies on LaSalle’s invariance
principle, which states that for an autonomous system with a continuously differentiable
function V satisfying V̇ ≤ 0, all bounded trajectories converge to the largest invariant set
M where V̇ = 0. In our case, V̇ (x, S) = −αη∥∇F (x)∥2 − βṠ(t) ≤ 0. The equality V̇ = 0
holds only when ∇F (x∗) = 0 and Ṡ = 0 (i.e., S = S∗ = 1). Since F is µ-strongly convex
(A1), x∗ is unique, and thus M = {(x∗, S∗)}. All assumptions A1–A3 ensure the system is
autonomous and trajectories are bounded. This establishes global asymptotic convergence
under mild assumptions.

Under A1–A3, V (x, S) is a valid Lyapunov function satisfying

V̇ (x, S) = αḞ (x)− βṠ(t) ≤ 0,

with equality only at the equilibrium (x⋆, S⋆) where ∇F (x⋆) = 0 and S⋆ = 1. Thus (x⋆, S⋆)
is globally asymptotically stable.

Proof. (i) From Assumption A1, the free-energy function F (x) is nonnegative and its
gradient-flow dynamics satisfy

Ḟ (x) = ∇F (x)⊤ẋ = −η∥∇F (x)∥2 ≤ 0.

Hence F (x) decreases monotonically along trajectories. (ii) From Assumptions A2–A3, the
predictive entropyH[p(y|x, θt)] is finite and nonincreasing in expectation, so that Ṡ(t) ≥ 0 for
the Bayesian stability index S(t) = exp[−λH[p(y|x, θt)]]. (iii) Therefore, the time derivative
of the composite function

V (x, S) = αF (x) + β(1− S(t)), α, β > 0

is
V̇ (x, S) = αḞ (x)− βṠ(t) = −αη∥∇F (x)∥2 − βṠ(t) ≤ 0.

Equality holds only at (x⋆, S⋆) where ∇F (x⋆) = 0 and S⋆ = 1. By LaSalle’s invariance prin-
ciple, all trajectories converge to this invariant set, establishing global asymptotic stability
in the Lyapunov sense. □
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2.3 Interpretation (Extended)

Intuitively, F (x) quantifies predictive uncertainty, whereas S(t) measures epistemic con-
sistency across time. Their weighted combination V (x, S) behaves as a composite potential
that decreases monotonically as uncertainty diminishes. As S(t) increases, the expected free-
energy landscape flattens toward a stable attractor basin, ensuring that transient stochastic
fluctuations are probabilistically absorbed rather than diverging. This interaction between
F and S realizes a practical form of probabilistic Lyapunov stability, linking inference con-
sistency to energetic dissipation. Because S(t) encodes epistemic consistency derived from
predictive entropy, the joint decrease of F and increase of S ensures that V acts as a Lya-
punov potential even under bounded stochastic perturbations.

3 Empirical Validation

3.1 Moderate-Noise Regimes (σ ≤ 0.3)

Under moderate stochasticity, the proposed model exhibits smoother convergence and lower
variance in free-energy and composite measures, consistent with Theorem 1. For each noise
level, we report mean ± standard deviation across runs.

Figure 1: Free-energy F vs Samples (noise = 0.0). Proposed variant shows reduced variance
and smooth decay, consistent with Theorem 1.

Figure 2: Free-energy F vs Samples (noise = 0.1). The trend remains robust under moderate
noise; Proposed maintains the lowest dispersion.
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Figure 3: Free-energy F vs Samples (noise = 0.3). Variance grows with smaller samples,
but Proposed remains the most stable.

Figure 4: Composite V vs Samples (noise = 0.0). V = αF+β(1−S) decreases monotonically
on average, aligning with Theorem 1.

Figure 5: Composite V vs Samples (noise = 0.1). Proposed variant exhibits bounded,
smooth decay across samples.
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Figure 6: Composite V vs Samples (noise = 0.3). Despite stochasticity, V remains well-
behaved and monotone on average.

3.2 High-Noise Stress Test (σ = 0.5)

We now consider a strong stochastic noise setting (σ = 0.5). Figures 7–11 and Table 1
summarize results across methods.

Note. All methods reached the iteration cap (1300 steps), so the step-based metrics are
saturated and should be interpreted as upper bounds.

Figure 7: σ = 0.5: Instability rate (%). Lower is better; proposed reduces instability frequency
compared to baseline.

Table 1: High-noise stress test (σ = 0.5): comparison across methods. Lower is better for Ffinal,
AUC, and instability rate; faster is better for convergence steps.

Method Ffinal (mean) AUC(F ) Steps: F < 0.5 Steps: S ≥ 0.90 Instability (%)
CE-only 0.159 90.8 1300 1300 6.4
Heuristic 0.156 88.6 1300 1300 3.4
Proposed (Safe) 0.152 87.8 1300 1300 2.2

4 Discussion and Conclusion

This study demonstrates that the proposed Lyapunov-based free-energy formulation main-
tains stability under both theoretical and empirical analyses. This work unifies free-energy
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Figure 8: σ = 0.5: Convergence steps (S ≥ 0.90). Smaller is faster; identical step caps in this
setting.

minimization and Bayesian inference within a Lyapunov framework. Theoretical analysis
(Theorem 1) guarantees monotonic stability, while experiments confirm empirical robust-
ness under stochastic noise. The results suggest that the Bayesian stability index acts as a
probabilistic regularizer mitigating instability in small-data or high-noise regimes. Future
work will extend the analysis to stochastic gradient systems and real-world datasets.

Empirical Implications under High Noise. Under the severe stochastic regime (σ =
0.5), the proposed framework demonstrated a substantial improvement in stability. Specif-
ically, the instability rate decreased by approximately 65% compared to the baseline model
(from 6.4% to 2.2%), while maintaining comparable convergence speed and lower free-energy
values. This quantitative difference supports the theoretical prediction of Theorem 1—that
the composite Lyapunov function V (x, S) mitigates divergence even under strong pertur-
bations. The results suggest that probabilistic stability can be empirically observed as a
measurable reduction in variance and instability frequency, confirming the practical validity
of the Free-Energy–Bayesian formulation.
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