# TAD 理論とその応用: 履歴を可視化する数理フレームワーク

松井 泰生(Independent Researcher)

y-matsui@ab.em-net.ne.jp

2025年10月26日

# 目次

| 第Ⅰ部 | TAD 理論の契機としての在庫鮮度モデル                                                                                      | 5  |
|-----|-----------------------------------------------------------------------------------------------------------|----|
| 第1章 | 在庫鮮度(離散)モデル                                                                                               | 7  |
| 1.1 | 入庫・出庫時系列データと $g$ -行列 $\dots$                                                                              | 7  |
| 1.2 | $g$ -行列の定義と動的更新 $\ldots$ | 8  |
| 1.3 | 在庫量・出庫在庫鮮度・入庫在庫鮮度の指標化                                                                                     | 10 |
| 第2章 | 在庫鮮度(連続)モデル                                                                                               | 12 |
| 2.1 | 離散モデルから連続モデルへの移行                                                                                          | 12 |
| 2.2 | 連続モデルの基本関数                                                                                                | 12 |
| 2.3 | 出力方程式                                                                                                     | 12 |
| 2.4 | 履歴分布 $g(t,T)$ の発展方程式                                                                                      | 13 |
| 2.5 | 境界条件                                                                                                      | 13 |
| 2.6 | 在庫量・出庫在庫鮮度・入庫在庫鮮度の連続モデルへの移行                                                                               | 13 |
| 第3章 | 在庫鮮度モデルの実務への応用                                                                                            | 15 |
| 3.1 | 出庫在庫鮮度と入庫在庫鮮度の定式化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                     | 15 |
| 3.2 | 在庫量との関係と需給ギャップ評価                                                                                          | 15 |
| 3.3 | 在庫管理業務における新しいマネジメントの視点                                                                                    | 17 |
| 3.4 | 従来の在庫管理の限界と TAD 在庫鮮度モデルの意義                                                                                | 18 |
| 第Ⅱ部 | TAD 理論の数理構造と拡張                                                                                            | 19 |
| 第4章 | TAD 理論の数学的基礎と構造展開                                                                                         | 21 |
| 4.1 | 微分方程式による連続モデルの導出                                                                                          | 21 |
| 4.2 | 変数分離による明示解の導出                                                                                             | 21 |
| 4.3 | 離散モデルとの対応とアダマール積                                                                                          | 22 |
| 4.4 | 無限乗積と指数関数への移行・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                         | 22 |
| 4.5 | 行列としての $g,\;\mu$ のダイナミクスと視覚的構造                                                                            | 23 |
| 第5章 | TAD 理論の履歴構造とエントロピー進化                                                                                      | 24 |

<u>目</u>次 <u>2</u>

| 5.1                                                                                            | 履歴構造 $g(t,T)$ と因果律                                                                                                                                                                                                                                                                  | 24                                                                               |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 5.2                                                                                            | 割当関数 $\mu(t,T)$ の一般構造と設計自由度                                                                                                                                                                                                                                                         | 25                                                                               |
| 5.3                                                                                            | TAD エントロピー $S(t)$ の定義と時間発展式                                                                                                                                                                                                                                                         | 25                                                                               |
| 5.4                                                                                            | 対角湧き出しの場合のエントロピー進化                                                                                                                                                                                                                                                                  | 29                                                                               |
| 5.5                                                                                            | 定常状態におけるバルクと境界の釣り合い                                                                                                                                                                                                                                                                 | 29                                                                               |
| 第6章                                                                                            | TAD の構造拡張と普遍的性質                                                                                                                                                                                                                                                                     | 32                                                                               |
| 6.1                                                                                            | 補正項 $\gamma(t,T)$ とスケール変換 $\sigma(t,T)$ の導入                                                                                                                                                                                                                                         | 32                                                                               |
| 6.2                                                                                            | 拡張 TAD の基本的な数理基盤                                                                                                                                                                                                                                                                    | 32                                                                               |
| 6.3                                                                                            | TAD の普遍的性質(エントロピー、DC 制約、会計恒等式)                                                                                                                                                                                                                                                      | 35                                                                               |
| 6.4                                                                                            | TAD 共通の応用事象(ヴィンテージ効果と線形成長帯)                                                                                                                                                                                                                                                         | 38                                                                               |
| 第7章                                                                                            | TAD による事象の再現(予測)・逆設計への応用                                                                                                                                                                                                                                                            | 42                                                                               |
| 7.1                                                                                            | 再現(予測)への応用                                                                                                                                                                                                                                                                          | 42                                                                               |
| 7.2                                                                                            | 逆設計への応用                                                                                                                                                                                                                                                                             | 43                                                                               |
| 7.3                                                                                            | 準定常状態におけるラプラス解析                                                                                                                                                                                                                                                                     | 49                                                                               |
| 7.4                                                                                            | ラプラス解析による再現(予測)と逆設計の一般化                                                                                                                                                                                                                                                             | 51                                                                               |
| 第Ⅲ部                                                                                            | TAD による既存理論の再構成と他分野応用                                                                                                                                                                                                                                                               | 54                                                                               |
|                                                                                                |                                                                                                                                                                                                                                                                                     |                                                                                  |
| 第8章                                                                                            | 物理学の既存理論への接続                                                                                                                                                                                                                                                                        | 56                                                                               |
| <b>第8章</b><br>8.1                                                                              | <b>物理学の既存理論への接続</b><br>線形応答理論への接続                                                                                                                                                                                                                                                   |                                                                                  |
|                                                                                                |                                                                                                                                                                                                                                                                                     | 56                                                                               |
| 8.1                                                                                            | 線形応答理論への接続・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                      | 56<br>57                                                                         |
| 8.1<br>8.2                                                                                     | 線形応答理論への接続                                                                                                                                                                                                                                                                          | 56<br>57<br>61                                                                   |
| 8.1<br>8.2<br>8.3                                                                              | 線形応答理論への接続                                                                                                                                                                                                                                                                          | 56<br>57<br>61<br>63                                                             |
| 8.1<br>8.2<br>8.3<br>8.4                                                                       | 線形応答理論への接続                                                                                                                                                                                                                                                                          | 56<br>57<br>61<br>63<br>67                                                       |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5                                                                | 線形応答理論への接続  即時全量割当(完全可逆過程)の挙動 .  解析力学との形式的対応(TAD-EL/Noether 同型) .  スケール変換 σ の摂理的意味と新たな知見 .  孤立系におけるエントロピー増大則の並行性 .                                                                                                                                                                  | 56<br>57<br>61<br>63<br>67<br>68                                                 |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6                                                         | 線形応答理論への接続  即時全量割当(完全可逆過程)の挙動  解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見  孤立系におけるエントロピー増大則の並行性 物理分野におけるヴィンテージ効果と線形成長帯                                                                                                                                                    | 56<br>57<br>61<br>63<br>67<br>68                                                 |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7                                                  | 線形応答理論への接続 即時全量割当(完全可逆過程)の挙動 解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見 孤立系におけるエントロピー増大則の並行性 物理分野におけるヴィンテージ効果と線形成長帯 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)                                                                                                                        | 56<br>57<br>61<br>63<br>67<br>68<br>69                                           |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7                                                  | 線形応答理論への接続 即時全量割当(完全可逆過程)の挙動 . 解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見 . 孤立系におけるエントロピー増大則の並行性 . 物理分野におけるヴィンテージ効果と線形成長帯 . TAD モデル対比表(仮定・直感・既存理論との対比・優位性) 人口動態モデルへの応用                                                                                                    | 56<br>57<br>61<br>63<br>67<br>68<br>69                                           |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>第9章</b><br>9.1                             | 線形応答理論への接続 即時全量割当(完全可逆過程)の挙動 . 解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見 孤立系におけるエントロピー増大則の並行性 物理分野におけるヴィンテージ効果と線形成長帯 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)  人口動態モデルへの応用 TAD 構造による人口モデル                                                                                          | 56<br>57<br>61<br>63<br>67<br>68<br>69<br>70                                     |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>第9章<br>9.1<br>9.2                             | 線形応答理論への接続 即時全量割当(完全可逆過程)の挙動 解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見 孤立系におけるエントロピー増大則の並行性 物理分野におけるヴィンテージ効果と線形成長帯 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)  人口動態モデルへの応用 TAD 構造による人口モデル 在庫的解釈と履歴の可視化                                                                               | 566<br>577<br>611<br>633<br>677<br>688<br>699<br>700<br>71                       |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>第9章<br>9.1<br>9.2<br>9.3                      | 線形応答理論への接続 即時全量割当(完全可逆過程)の挙動 解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見 孤立系におけるエントロピー増大則の並行性 物理分野におけるヴィンテージ効果と線形成長帯 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)  人口動態モデルへの応用 TAD 構造による人口モデル 在庫的解釈と履歴の可視化 既存モデルとの整合性と拡張                                                                 | 56<br>57<br>61<br>63<br>67<br>68<br>69<br>70<br>71<br>72                         |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>第9章<br>9.1<br>9.2<br>9.3<br>9.4               | 線形応答理論への接続 即時全量割当(完全可逆過程)の挙動 解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見 孤立系におけるエントロピー増大則の並行性 物理分野におけるヴィンテージ効果と線形成長帯 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)  人口動態モデルへの応用 TAD 構造による人口モデル 在庫的解釈と履歴の可視化 既存モデルとの整合性と拡張 TAD による新たな予言と拡張的視点                                              | 56<br>57<br>61<br>63<br>67<br>68<br>69<br>70<br>71<br>72<br>78                   |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>第9章<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5        | 線形応答理論への接続 即時全量割当(完全可逆過程)の挙動 解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見 孤立系におけるエントロピー増大則の並行性 物理分野におけるヴィンテージ効果と線形成長帯 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)  人口動態モデルへの応用 TAD 構造による人口モデル 在庫的解釈と履歴の可視化 既存モデルとの整合性と拡張 TAD による新たな予言と拡張的視点 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)               | 566<br>577<br>611<br>633<br>677<br>688<br>699<br>700<br>711<br>722<br>788<br>799 |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>第9章</b><br>9.1<br>9.2<br>9.3<br>9.4<br>9.5 | 線形応答理論への接続 即時全量割当(完全可逆過程)の挙動 解析力学との形式的対応(TAD-EL/Noether 同型) スケール変換 σ の摂理的意味と新たな知見 孤立系におけるエントロピー増大則の並行性 物理分野におけるヴィンテージ効果と線形成長帯 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)  人口動態モデルへの応用 TAD 構造による人口モデル 在庫的解釈と履歴の可視化 既存モデルとの整合性と拡張 TAD による新たな予言と拡張的視点 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)  教育・記憶モデルへの応用 | 56<br>57<br>61<br>63<br>67<br>68<br>69<br>70<br>71<br>72<br>78<br>79<br>80<br>80 |

<u>目次</u> <u>3</u>

| 10.4   | TAD モデル対比表(仮定・直感・既存理論との対比・優位性) | 84  |
|--------|--------------------------------|-----|
| 第 11 章 | マーケティング(広告効果)への応用              | 85  |
| 11.1   | 広告効果モデル                        | 85  |
| 11.2   | TAD による新たなモデル設計の可能性            | 88  |
| 11.3   | TAD モデル対比表(仮定・直感・既存理論との対比・優位性) | 91  |
| 第 12 章 | 経済理論への応用                       | 92  |
| 12.1   | 標準 Solow モデル                   | 92  |
| 12.2   | TAD における設定と一般解                 | 92  |
| 12.3   | 標準 Solow モデルの TAD による再現        | 93  |
| 12.4   | 経済学におけるヴィンテージ効果と線形成長帯          | 93  |
| 12.5   | TAD モデル対比表(仮定・直感・既存理論との対比・優位性) | 95  |
| 第 13 章 | 自然言語モデル (LLM:Transformer) への応用 | 96  |
| 13.1   | TAD に基づくメモリ管理層の定式化(基本構造)       | 96  |
| 13.2   | 減衰率の構造                         | 96  |
| 13.3   | アテンション補正項の定義                   | 97  |
| 13.4   | 一般解                            | 97  |
| 13.5   | 規格化と候補集合の選別                    | 97  |
| 13.6   | アテンションへの接続                     | 98  |
| 13.7   | 従来型 Attention との比較             | 98  |
| 13.8   | TAD モデル対比表(仮定・直感・既存理論との対比・優位性) | 99  |
| 第Ⅳ部    | TAD 理論による新しい知見と予言及び総括          | 100 |
| 第 14 章 | 既存理論の再解釈と統一・新たな原理の導出           | 102 |
| 14.1   | ロジスティック成長モデルの TAD による再解釈と統一    | 102 |
| 14.2   | 教育・記憶モデルの TAD による新たな原理の導出      | 105 |
| 14.3   | TAD モデル対比表(仮定・直感・既存理論との対比・優位性) | 111 |
| 第 15 章 | 全体総括と将来展望                      | 112 |
| 15.1   | 全体総括                           | 112 |
| 15.2   | 将来展望                           | 117 |

目次 4

# 本研究の動機と背景

在庫管理の一般論として、在庫とは需要と供給のタイミングのずれを吸収するクッションとして理解される。しかし、観測される在庫量が同一であっても、必ずしも需給バランスが同一とは限らない。すなわち、マクロな在庫量の背後には、直接観測できない「在庫の質」とも呼ぶべき内部状態が存在すると考えられる。具体的には、入庫からの経過時間(滞留時間)、および出庫に至るまでの経過時間(鮮度)を考慮することで、需給ギャップをより的確に把握できるとの仮説である。本研究は、この実務上の観察を契機として、入庫の履歴時刻 T と現在時刻 t を明示する履歴構造 g(t,T) を導入し、在庫の「いつ入って現在どれだけ残っているか」を可視化する枠組を与える。さらに、在庫鮮度モデルを原型として、時間とともに蓄積・割当・消散が進む多様な現象を統一的に扱う一般理論(TAD: Time-Allocation Dynamics)へ拡張することを目的とする。

## 応用範囲と本論文の位置付け

本論文は、在庫鮮度モデルを基盤に TAD の基礎を定め、理論の拡張と多分野応用を段階的に展開する四部 構成をとる。

### 第I部:TAD の契機としての在庫鮮度モデル(想定読者:在庫管理の実務家)

入出庫データから鮮度分布を復元し、過多・不足・滞留の兆候を可視化する実装指針を提示する。必要最小限のデータ要件、ダッシュボード化、現場アクションへの接続までを整理し、「現場で活用可能な在庫の質の指標」を提示する。

#### 第 II 部:TAD の数理構造と拡張(想定読者:数理寄りの理論家)

入力一履歴一出力を支配する抽象構造を定式化し、連続時間の骨格(汎用フレームワーク化)、情報エントロピーの導入、係数拡張(価値変換や自然消散)、変分法による目的関数の最適化を展開する。またラプラス解析の手法を用い、TADによる再現(予測)および逆設計問題への応用を示す。

#### 第 III 部:TAD による既存理論の再構成と他分野応用(想定読者:各分野の専門家)

物理学(非平衡統計)、人口動態、広告・CRM、資本・価格、感染ダイナミクス、記憶、LLM メモリ管理などを単一の骨格で再構成する。既存モデルとの整合と差分、新しい予測可能性、設計自由度の活かし方を比較可能な形で提示する。

#### 第 IV 部:TAD 理論による新しい知見と予言及び総括(想定読者:全読者)

TAD 理論による新しい知見と予言を提示し、学際領域をまたがる共通フレームワークとしての TAD の可能性を確認する。その上で本研究の総括と今後の展望について述べる。

#### 読み方の提案

まず第 I 部で動機を掴み、第 II 部で骨格と拡張を確認し、第 III 部で各自の専門に近い章から参照の上、第 IV 部にて共通フレームワークとしての TAD のポテンシャルと将来展望について確認いただきたい。

# 第Ⅰ部

TAD 理論の契機としての在庫鮮度モデル

第 I 部では、本研究の背景にある在庫管理業務における「在庫鮮度」の考え方や実務での応用について述べる。在庫鮮度とは、入庫された商品が経過時間とともに劣化していく度合いや、新鮮さをどの程度保持しているかを表す概念である。例えば食品や医薬品の流通においては、同じ在庫量でもその鮮度分布が異なれば利用可能性や価値は大きく変化する。したがって、在庫量の総和だけでなく、「各入庫時点ごとの残存量とその時間的推移」を追跡することが不可欠であるはずだが、現実の実務ではそこまで捉えられていないのが実情である。

TAD 理論では、この「鮮度の推移」を g(t,T) という二変数関数で表し、過去の入庫 T と現在の時刻 t を結ぶ履歴構造として定式化する。この枠組みにより、従来の在庫管理では捉えにくかった「時間の経過による在庫の質的変化」を数理的に扱えるようになる。

また、ここで示した在庫鮮度の考え方は、単に一つの応用領域にとどまるものではなく、「時間を通じた資源の割当と劣化」を普遍的に記述するための基盤となる。この枠組みは、在庫管理を超えて、人口動態や記憶モデル、さらには物理学や情報理論に至るまで多様な分野に適用可能である。すなわち、在庫鮮度モデルは TAD 理論の出発点であると同時に、他分野への応用を展望するための原型でもある。第 II 部以降では、この基盤をもとに TAD の理論的拡張と応用可能性を順次示していく。第 I 部はそのための布石である。

# 第1章 在庫鮮度(離散)モデル

この章では、在庫管理における入庫⇒在庫⇒出庫の一連の流れを素朴に数理モデル化し、新しい考え方である「在庫鮮度」の概念を離散モデルで数理的に定義する。また、メトリクスとしての在庫量・出庫在庫鮮度・入庫 在庫鮮度の指標化を試みる。

# 1.1 入庫・出庫時系列データと g-行列

本章では、TAD 理論の基礎となる在庫鮮度における離散モデルを構成する。対象となるのは、ある商品の 入庫時刻  $T_i(i=1,2,3,\cdots,m)$  と出庫時刻  $t_k(k=1,2,3,\cdots,n)$  である。これらには以下の時系列制約が課される:

$$T_1 < T_2 < \dots < T_m, \quad T_1 < t_1 < t_2 < \dots < t_n$$

ここで、時刻  $T_1$  を入出庫記録の初期時点とする。各入庫間隔を  $\delta T_i = T_i - T_{i-1}$ 、各出庫間隔を  $\delta t_k = t_k - t_{k-1}$  と定義し、単位時間あたりの入庫量を  $G(T_i)$ 、単位時間あたりの出庫量を  $f(t_k)$  とすれば、入出庫量は以下のように表される:

• 入庫量:  $G(T_i) \cdot \delta T_i$ • 出庫量:  $f(t_k) \cdot \delta t_k$ 

これらの関数は外部から与えられる所与の関数であり、実務上の入力データとして利用される。なお、ここで定義される入出庫データは後続の連続モデル構成において積分形式へと拡張される前段階である。

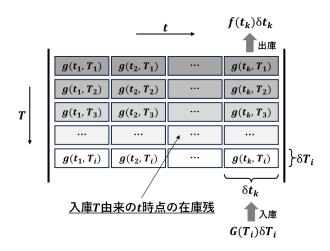


図 1.1 入庫・出庫の時系列イメージ

# 1.2 q-行列の定義と動的更新

#### 1.2.1 g-行列の構造

入庫・出庫の履歴を保持するため、二変数関数  $g(t_k,T_i)$  を導入する。これは、時刻  $T_i$  に入庫された在庫が時刻  $t_k$  の出庫直前の段階で単位時間あたりどれだけ残存しているかを表す量であり、離散モデルでは (k,i) をインデックスとする)行列 (q-行列)として表現される。

行方向(*i*):入庫イベント(過去時刻)列方向(*k*):出庫イベント(現在時刻)

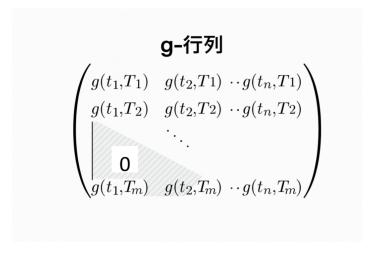


図 1.2 g-行列の定義

### 1.2.2 割当係数と在庫更新

単位時間あたりの割当係数を  $\mu(t_k,T_i)$  とすると、出庫量  $f(t_k)\delta t_k$  は次式で表される:

$$f(t_k)\delta t_k = \sum_{i:t_k > T_i} \mu(t_k, T_i)\delta t_k \cdot g(t_k, T_i) \cdot \delta T_i$$

つまり、

$$f(t_k) = \sum_{i;t_k > T_i} \mu(t_k, T_i) \cdot g(t_k, T_i) \cdot \delta T_i$$
(1.1)

時刻  $t_k$  における出庫  $f(t_k)\delta t_k$  はその時点の在庫残量  $g(t_k,T_i)\delta T_i$  のうち、 $\mu(t_k,T_i)\delta t_k$  の割合だけ出庫に割り当て、それをすべての入庫時刻  $T_i$  について足し合わせたものとする、という考え方である。この時、在庫残量は次式に従い更新される:

$$g(t_{k+1}, T_i)\delta T_i = [1 - \mu(t_k, T_i) \cdot \delta t_k]g(t_k, T_i)\delta T_i$$

つまり、

$$g(t_{k+1}, T_i) = [1 - \mu(t_k, T_i) \cdot \delta t_k] g(t_k, T_i)$$
(1.2)

これは入庫  $T_i$  に紐づく次の時刻  $t_{k+1}$  における在庫残量  $g(t_{k+1},T_i)\delta T_i$  は現在時刻  $t_k$  において割り当てら

れなかった部分に相当する、という考え方に基づくものである。また、 $\mu(t_k,T_i)\cdot\delta t_k$  には以下の自然な制約条件が課される。

$$0 \le \mu(t_k, T_i) \cdot \delta t_k \le 1 \tag{1.3}$$

よって、この在庫残量の更新は常に非負で安定に定義される\*1。

#### 1.2.3 境界条件と因果律

$$G(T_i) = g(t_k, T_i), \quad k = \max\{k \mid t_k \le T_i\} + 1$$
 (1.4)

この定義により、入庫時刻における入庫量は、その後の最初の出庫イベントにおける履歴構造の初期値として g-行列に設定される。(入庫業務が完了した在庫から最初の出庫割り当てがされる。)

また、出庫は出庫時刻以前の入庫に対してしか割り当てられないので、 $t_k < T_i$  の場合は  $g(t_k, T_i) = 0$  (因果律)とする。従って、 $t_n, T_m$  まで時間発展した後の g-行列は以下のような三角行列のイメージとなる。

行列要素が 0 となる三角領域の範囲は  $T_1 < T_2 < \cdots < T_m$ ,  $T_1 < t_1 < t_2 < \cdots < t_n$  の各  $t_k, T_i$  の大小関係に依存する。

#### 1.2.4 具体的な q-行列の更新イメージ

 $T_1 < t_1 < T_2 < t_2 < T_3 < t_3$  という時系列で入庫  $(T_1, T_2, T_3)$  と出庫  $(t_1, t_2, t_3)$  があるとする。

- 入庫量:  $G(T_1) = 100$ ,  $G(T_2) = 80$ ,  $G(T_3) = 60$
- 割当係数:
  - $-\mu(t_1,T_1)=0.2$
  - $-\mu(t_2, T_1) = 0.3, \ \mu(t_2, T_2) = 0.5$
  - $-\mu(t_3, T_1) = 0.1, \ \mu(t_3, T_2) = 0.2, \ \mu(t_3, T_3) = 0.4$

更新過程で非整数値が生じるのは、連続比率による分配を許容しているためであり、整数在庫制約は課していないことに注意されたい。

■第 1 入庫  $T_1$  直後(初期状態):g-行列は  $1 \times 1$  行列

■第1出庫  $t_1$  直後:g-行列は1×2行列

列が追加され、

 $\mu(t_1,T_1)=0.2$  の割当されなかった分 80 が  $g(t_2,T_1)$  に新規追加される。 このとき、出庫は  $f(t_1)=20$  となる。

<sup>\*1</sup> 本論文では有限個の入出庫イベントを対象とする。連続モデルでは可測性・可積分性の仮定を置くことで同様の更新則が正則に拡張される。

■第 2 入庫 T<sub>2</sub> 直後: g-行列は 2 × 2 行列

行が追加され、 $G(T_2)=80$  が  $g(t_2,T_2)$  に新規追加される。因果律より、 $g(t_1,T_2)=0$  となる。

■第 2 出庫 t<sub>2</sub> 直後:g-行列は 2 × 3 行列

$$\begin{bmatrix} 100 & 80 & 56 \\ 0 & 80 & 40 \end{bmatrix}$$

列が追加され、

 $\mu(t_2, T_1) = 0.3$  の割当されなかった分 56 が  $g(t_3, T_1)$  に、

 $\mu(t_2, T_2) = 0.5$  の割当されなかった分 40 が  $g(t_3, T_2)$  にそれぞれ新規追加される。

このとき、出庫は  $f(t_2) = 24 + 40 = 64$  となる。

■第 3 入庫  $T_3$  直後:g-行列は 3 × 3 行列

行が追加され、 $G(T_3)=60$  が  $g(t_3,T_3)$  に新規追加される。因果律より、 $g(t_1,T_3)=g(t_2,T_3)=0$  となる。

■第 3 出庫  $t_3$  直後:q-行列は 3 × 4 行列

列が追加され、

 $\mu(t_3, T_1) = 0.1$  の割当されなかった分 50.4 が  $g(t_4, T_1)$  に、

 $\mu(t_3, T_2) = 0.2$  の割当されなかった分 32 が  $g(t_4, T_2)$  に、

 $\mu(t_3, T_3) = 0.4$  の割当されなかった分 36 が  $g(t_4, T_3)$  にそれぞれ新規追加される。

このとき、出庫は  $f(t_3) = 5.6 + 8 + 24 = 37.6$  となる。

この例は入庫時刻と出庫時刻が交代で現れる場合であるが、そうでない場合でも同様の手順でg-行列が更新される。すなわち一般にg-行列は長方行列となり、出庫が連続すれば列(横)方向に長くなり、入庫が連続すれば行(縦)方向に長くなる。また、因果律により三角領域の行列要素が連続して0となる三角行列となる。

#### 1.3 在庫量・出庫在庫鮮度・入庫在庫鮮度の指標化

TAD 理論にもとづく在庫管理の管理指標として、以下の指標を定義する。出庫在庫鮮度  $F(t_n)$  は過去の出庫を振り返る指標、入庫在庫鮮度  $D(t_n)$  は現在残っている在庫の鮮度を評価する指標である。

#### 在庫量

$$I(t_n) = \sum_{i;t_n > T_i} g(t_n, T_i) \cdot \delta T_i$$
(1.5)

これは、時刻 $t_n$ における総在庫量を表す。

#### 出庫在庫鮮度

$$F(t_n) = \frac{\sum_{k=1}^{n} \sum_{i;t_k > T_i} \mu(t_k, T_i) \cdot g(t_k, T_i) \cdot (t_k - T_i) \cdot \delta T_i \cdot \delta t_k}{\sum_{k=1}^{n} \sum_{i;t_k > T_i} \mu(t_k, T_i) \cdot g(t_k, T_i) \cdot \delta T_i \cdot \delta t_k}$$

$$= \frac{\sum_{k=1}^{n} \sum_{i;t_k > T_i} \mu(t_k, T_i) \cdot g(t_k, T_i) \cdot (t_k - T_i) \cdot \delta T_i \cdot \delta t_k}{\sum_{k=1}^{n} f(t_k) \delta t_k}$$
(1.6)

これは、時刻  $t_1$  から  $t_n$  において、実際に出庫された商品の"在庫であった期間  $t_k - T_i$ "の出庫量にもとづく加重平均を表す。業務的には需要側(出庫側)の在庫の鮮度を表す指標であり、この値が小さいほど在庫鮮度は高いと評価される。(当該期間の出庫が平均的に短時間の在庫期間を経て行なわれたと評価される。)

#### 入庫在庫鮮度

$$D(t_n) = \frac{\sum_{i;t_n > T_i} g(t_n, T_i) \cdot (t_n - T_i) \cdot \delta T_i}{\sum_{i;t_n > T_i} g(t_n, T_i) \cdot \delta T_i} = \frac{\sum_{i;t_n > T_i} g(t_n, T_i) \cdot (t_n - T_i) \cdot \delta T_i}{I(t_n)}$$
(1.7)

これは、時刻  $t_n$  において、実際に在庫として存在している商品の"在庫である期間  $t_n - T_i$ "の在庫量にもとづく加重平均を表す。業務的には供給側(入庫側)の在庫の鮮度を表す指標であり、この値が小さいほど在庫鮮度は高いと評価される。(現在在庫の入庫からの滞留期間が平均的に短時間であると評価される。)

これら3つの指標(在庫量・出庫在庫鮮度・入庫在庫鮮度)はその式の定義から、出庫時刻の始点  $t_1$  と終点  $t_n$  及び入庫時刻の始点  $T_1$  と終点  $T_m$  の任意性があることに注意する。これは実務的には、評価対象とする期間を任意に選択できるため、任意の期間におけるこれら3つの指標の時系列の横並び評価が可能であることを意味する。従って、縦軸に評価対象期間の始点、横軸に終点をとった3つの指標のヒートマップを作成可能であることを示唆するが、詳細は後の章にて議論する。本モデルは従来の在庫理論における数量ベースの把握を超えて、履歴構造を明示的に組み込んだ点で新規性を有する。

# 第2章 在庫鮮度(連続)モデル

この章では、前章で定義した在庫鮮度の離散モデルをもとに連続極限で連続モデルに移行する。これによって、 数理モデルとしての構造が見通しやすくなり、離散モデルで定義した各指標も自然に連続移行される。

# 2.1 離散モデルから連続モデルへの移行

第1章で構築した離散モデルは、実務上の入出庫データを忠実に表現できる一方で、数理解析や理論展開には扱いづらさが残る。そこで連続モデルに移行することで、入庫・出庫の時系列構造を積分や微分の形で一般化でき、在庫鮮度の動態をより抽象的かつ統一的に記述できるようになる。これにより、既存理論の再現や対応関係を明示しやすくなり、TADの理論的基盤を拡張する上で重要な役割を果たす。

具体的には、離散時刻  $T_i,t_k$  を連続変数 T,t に置き換え、刻み幅  $\delta T,\delta t$  を 0 に近づける極限操作で実現する。和は積分に、差分方程式は偏微分方程式に移行する。

# 2.2 連続モデルの基本関数

• 入庫流量: G(T) (単位時間あたりの入庫量)

● 出庫流量: f(t) (単位時間あたりの出庫量)

• 履歴分布:g(t,T) (時刻 T に入庫された在庫の、時刻 t における残存流量)

• 割当関数: $\mu(t,T)$ (時刻 t における単位時間あたりの割当率)

因果律: t < T の場合 g(t,T) = 0 (未来の入庫は現在に寄与しない)。

割当関数の符号制約: 離散モデルでは  $0 \le \mu(t_k,T_i)\,\delta t_k \le 1$  であったが、 $\delta t_k \to +0$  の極限を取ることで連続モデルでは  $\mu(t,T)>0$  となる。\*1

# 2.3 出力方程式

離散モデルの式

$$f(t_k) = \sum_{i: t_k > T_i} \mu(t_k, T_i) g(t_k, T_i) \delta T_i$$

$$0 \le \int_{t_0}^{t_1} \mu(s, T) \, ds \le 1$$

が保たれることが必要十分である。この条件は「有限時間内に割り当て総量が 100% を超えない」ことに対応する。

<sup>\*1</sup> 離散モデルでは、一ステップで割り当てられる量は残量の高々 100% であり、 $0 \le \mu(t_k,T_i) \Delta t_k \le 1$  が成り立つ。連続極限  $\Delta t_k \to +0$  では、 $\mu(t,T)$  は単位時間あたりの割当「速度(密度)」を表すため、上限は  $\Delta t$  とともに消失し、 $\mu$  自体には上限を課さないのが自然である。物理的な拘束は積分形に移り、任意の有限時間区間に対して

を積分形  $(\delta T_i \rightarrow 0)$  に置き換えると、連続モデルの出力方程式は次式となる:

$$f(t) = \int_{T_1}^{t} \mu(t, T) g(t, T) dT$$
 (2.1)

ここで  $T_1$  は入庫記録の開始時刻である。

# 2.4 履歴分布 g(t,T) の発展方程式

離散モデルの更新式

$$g(t_{k+1}, T_i) = [1 - \mu(t_k, T_i) \delta t_k] g(t_k, T_i)$$

を差分方程式とみなし、移項して整理すると、

$$\frac{g(t_{k+1},T_i)-g(t_k,T_i)}{\delta t_k} = -\mu(t_k,T_i)g(t_k,T_i)$$

 $\delta t_k \rightarrow 0$  の極限を取ると、次の偏微分方程式が得られる:

$$\frac{\partial g(t,T)}{\partial t} = -\mu(t,T) g(t,T) \tag{2.2}$$

これは各入庫群が $\mu(t,T)$ を速度係数とする指数減衰に従うことを意味する。

# 2.5 境界条件

離散モデルの境界条件

$$G(T_i) = g(t_k, T_i), \quad k = \max\{k \mid t_k \le T_i\} + 1$$

は、連続モデルでは次式に対応する:

$$g(T,T) = G(T) \tag{2.3}$$

すなわち、入庫時刻 T における入庫流量がそのまま履歴分布 (残存流量) g の初期値となる。  $(\delta t_k \to 0, \delta T_i \to 0$  により、 $t_k = T_i = T$  となる。)\*<sup>2</sup>

### 2.6 在庫量・出庫在庫鮮度・入庫在庫鮮度の連続モデルへの移行

同様の論理で、在庫量・出庫在庫鮮度・入庫在庫鮮度は連続モデルへの移行で以下のようになる。離散モデルと同様に、出庫在庫鮮度 F(t) は過去の出庫を振り返る指標、入庫在庫鮮度 D(t) は現在残っている在庫の鮮度を評価する指標である。

# 在庫量

$$I(t) = \int_{T_1}^{t} g(t, T) dT$$
 (2.4)

 $<sup>^{*2}</sup>$  これはデルタ関数入力に対応する特殊ケースも含む。

# 出庫在庫鮮度

$$F(t) = \frac{\int_{t_1}^{t} \left[ \int_{T_1}^{t'} \mu(t', T) g(t', T) (t' - T) dT \right] dt'}{\int_{t_1}^{t} \left[ \int_{T_1}^{t'} \mu(t', T) g(t', T) dT \right] dt'} = \frac{\int_{t_1}^{t} \left[ \int_{T_1}^{t'} \mu(t', T) g(t', T) (t' - T) dT \right] dt'}{\int_{t_1}^{t} f(t') dt'}.$$
 (2.5)

t は現在の観測時点、 $t_1$  は出庫時刻の始点を表し、F(t) の値が小さいほど出庫在庫鮮度は高い。

#### 入庫在庫鮮度

$$D(t) = \frac{\int_{T_1}^t g(t,T) (t-T) dT}{\int_{T_1}^t g(t,T) dT} = \frac{\int_{T_1}^t g(t,T) (t-T) dT}{I(t)}$$
(2.6)

t は現在の観測時点、 $T_1$  は入庫時刻の始点  $T_1$  を表し、D(t) の値が小さいほど入庫在庫鮮度は高い。

## 連続モデルの意義と拡張性

離散モデルから連続モデルへの移行には次のような意義と拡張性がある。

#### 意義

- 離散的な入出庫データを連続時間の枠組みに移すことで、在庫鮮度の推移を積分・微分方程式で表現で きる。
- これにより、理論解析(安定性、漸近挙動、ラプラス解析など)が可能となり、既存の数理モデルの再 現や対応関係を整理しやすくなる。

### 拡張性

- 一般化:連続時間モデルは離散モデルの極限形として位置づけられ、様々な入庫・出庫パターンに統一的に適用できる。
- 他分野応用:在庫管理に限らず、物理学や経済学、人口動態等幅広い分野の数理的記述に応用できる可能性がある。(第 II・第 III 部で詳述)
- 解析手法との親和性:連続モデルは微分方程式やラプラス解析など高度な数理手法と自然に接続できる。

#### 在庫鮮度モデルの実務への応用 第3章

在庫管理の現場では、単に在庫量だけでなく、出庫される在庫の鮮度と滞留の度合いを同時に把握することが 重要となる。従来は経験則に頼っていたこれらの指標を、TAD モデルによって定量的に可視化できるのが本 章のポイントである。

ここで用いる主要指標の前提として、出庫在庫鮮度 F(t)、入庫在庫鮮度 D(t) ともに値が小さいほど鮮度 が高く、値が大きいほど鮮度が低いことを意味する。この理解に基づいて、需給ギャップやそのトレンドを評 価する。

あわせて、TAD の概念を用いた現場目線/経営目線両面での課題解決の可能性を模索する。

# 3.1 出庫在庫鮮度と入庫在庫鮮度の定式化

出庫在庫鮮度 F(t) および入庫在庫鮮度 D(t) は、履歴分布 g(t,T) と割当関数  $\mu(t,T)$  を用いて以下で定義 される:

$$F(t) = \frac{\int_{t_1}^{t} \left[ \int_{T_1}^{t'} \mu(t', T) g(t', T) (t' - T) dT \right] dt'}{\int_{t_1}^{t} f(t') dt'}$$

$$D(t) = \frac{\int_{T_1}^{t} g(t, T) (t - T) dT}{\int_{T_1}^{t} g(t, T) dT}$$

これらの指標は、現在までに出庫された在庫の新しさ(滯留期間)と現在在庫の新しさ(滯留期間)を定量的 に評価するための基盤となる。

# 3.2 在庫量との関係と需給ギャップ評価

総在庫量 I(t) と F(t)、D(t) の関係を整理し、需給バランスを評価する方法を提示する。さらに、需給ギャップ 評価のために以下の量を計算することを示す。ここで総在庫量 I(t) は第 2 章で定義した  $I(t) = \int_{T_1}^t g(t,T) \, dT$ と同じ式で表される。

- 1. 総在庫量 *I*(*t*)
- 2. 需給ギャップ  $\Delta(t)=F(t)-D(t)$ 3. 需給ギャップトレンド  $\frac{d\Delta(t)}{dt}=\frac{dF(t)}{dt}-\frac{dD(t)}{dt}$

これらの指標の解釈として、需給ギャップ  $\Delta(t)$  で滞留傾向や鮮度低下リスクを定量的に把握できる。

- $\Delta(t) > 0$ : 新規入庫に比べて出庫が古い在庫に偏っている
- $\Delta(t) < 0$ : 古い在庫が消化され、新規在庫の出庫が進んでいる

また、需給ギャップトレンド  $\frac{d\Delta(t)}{dt}$  は、 $\Delta(t)$  の改善や悪化の動き(微分係数:トレンド)を示し、鮮度改善策や出庫方針の効果、異常変化の早期検知にも有効である。

これらは任意の期間  $(t_{\text{start}} \sim t_{\text{end}})$  を対象に計算でき、縦軸に  $t_{\text{start}}$ 、横軸に  $t_{\text{end}}$  を取ったグリッド上にマッピングしたヒートマップを作成することで、期間ごとの需給トレンドや異常値をモニタリングできる。このヒートマップに基づき、次に取るベきアクションを同じグリッド上に示すことも可能となる。従来は経験や勘に依存していた業務領域に対し、データに基づく科学的アプローチを導入する試みである。

なお本稿では、各指標の理論的な構造を示すため連続モデルを使って説明しているが、実際にシステム化する際は離散モデルの表式を使うことになるはずである。離散モデルの表式はそのままアルゴリズムとみなせるので、コード化するのは容易であると思われる。ただし、 $\frac{d\Delta(t)}{dt} = \frac{dF(t)}{dt} - \frac{dD(t)}{dt}$  については観測量として取得できる最小幅の離散データを使って該当期間の変化量(勾配)を計算したもので代替する等の工夫が必要である。 $^{*1}$ 

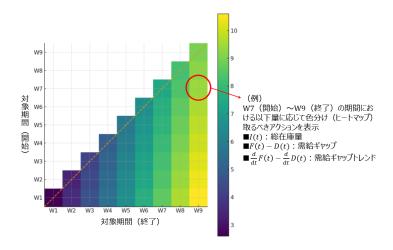


図 3.1 在庫鮮度ヒートマップ

 $<sup>^{*1}</sup>$  例えば、 $t=t_b$  における需給ギャップトレンド  $\Delta'(t_b)$  は観測できる最小幅の区間  $[t_a,t_b]$  において、 $\Delta'(t_b) pprox \frac{\Delta(t_b) - \Delta(t_a)}{t_b - t_a}$  とすればよい。

# 3.3 在庫管理業務における新しいマネジメントの視点

在庫管理業務において、総在庫量・需給ギャップ・需給ギャップトレンドに基づき、オペレーションレベルの意思決定を行なうマイクロマネジメントを想定できる。代表的な状況と推奨アクションを整理した仮説的な対応表を以下に示す。留意点としては、推奨アクションは製品特性や取引先との関係、在庫引当方式の違い等によって異なるため、これらの指標を実際の業務運用の中でカスタマイズする必要がある点である。また、短期的スパン/中長期的スパンでも推奨アクションが異なることが想定される。例えば、短期的スパンのアクションとしては当面の供給計画の見直し等が考えられるが、在庫引当ロジックの見直しは短期で実行可能なアクションではなく、中長期的に BPR(業務プロセスの見直し)含めて検討すべきアクションである。いずれにせよ最小データセットによる PoC での仮説検証が必要であり、その結果を踏まえた仕組み化(システム化やサービス化)が必要である。

| 状況           | 指標の特徴              | 解釈          | 推奨アクション     |
|--------------|--------------------|-------------|-------------|
| A: 在庫過多・鮮度低下 | I(t) 高、 $F-D$ 正、トレ | 古い在庫が滞留(供給過 | 生産計画を下方修正し、 |
|              | ンド悪化               | 多)          | 古在庫優先で出庫    |
| B: 在庫適正・鮮度良好 | I(t) 適正、 $F-D$ 負、ト | 鮮度高い在庫が順調に出 | 現状維持、需要変動に応 |
|              | レンド安定              | 庫(需要強)      | じ柔軟対応       |
| C: 在庫不足・鮮度高  | I(t) 低、 $F-D$ 負、トレ | 鮮度高だが欠品リスク  | 生産計画上方修正、入庫 |
|              | ンド上昇               | (需要過多)      | 強化          |
| D: 在庫過剰・鮮度良好 | I(t) 高、 $F-D$ 負、トレ | 新規在庫が積み上がり  | 出庫促進策と同時に生産 |
|              | ンド停滞               | (需要変動小)     | 抑制          |
| E: トレンド急変    | dF/dt - dD/dt が急変  | 鮮度または滞留の変化が | アラート発報し原因分  |
|              |                    | 加速          | 析・即応策検討     |

また、この仕組みを実現するために必要なお膳立てとしては、以下の3種類のデータが揃えば十分に運用可能であると想定できる。

- マスタ類(製品マスタ等)
- 在庫マスタ (月次または週次のスナップショット)
- 入出庫明細(入庫・出庫の時系列データ)

これらのデータがあれば、TAD モデルに基づく需給評価とアクション提案をヒートマップや対応表で自動化できる。入庫明細と出庫明細の紐づけ(履歴分布 g(t,T) の生成)を厳密に行なうために製造ロット番号が双方の明細に存在すればなお良いと思われるが、必ずしも必須ではない。製品のロットトレースが厳格な業界(医薬業界や一部の食品業界等)においては基幹システムにおいてこれらが担保されている可能性があるが、存在しない場合でも現場の在庫引当ロジックと同等のロジックで双方の明細を紐づければよい。 $^{*2}$ これらの想定データモデルは以下の通りである。

<sup>\*&</sup>lt;sup>2</sup> 現場の在庫引当ロジックを厳密に再現する必要はなく、許容される解像度の在庫鮮度指標を求めることができれば十分である。(業務ロジックに揃えるほど評価指標は現実に近づく。)

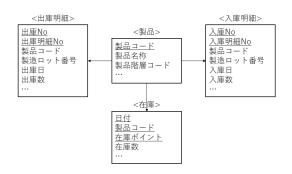


図 3.2 在庫鮮度モデルを実現する必要なデータモデル例

# 3.4 従来の在庫管理の限界と TAD 在庫鮮度モデルの意義

#### 3.4.1 現場課題 (オペレーションの限界)

従来の在庫管理の限界:在庫は数量ベースでのみ管理されることが多く、鮮度や入庫タイミングごとの品質差が無視されがちである。その結果、「在庫量が十分ある」と判断されても、実際には古い在庫ばかりで販売できず、廃棄や返品が発生する。また、FIFO(先入れ先出)の徹底だけでは、需要急変や入庫ロットの鮮度分布の偏りに柔軟に対応できない。

**TAD 在庫鮮度モデルの解決可能性**:各入庫時点 T の在庫残存量を g(t,T) として時系列的に管理することで、「どのロットがどれだけ残っているか」を明示化できる。さらに、出庫割当  $\mu(t,T)$  を制御することで、古い在庫から優先出庫する、新鮮在庫を特定用途に振り向ける、特定品目の入庫量や入庫タイミングを調整するといった動的マネジメントが可能となる。現場担当者は「単なる在庫数」ではなく「在庫の鮮度構造」に基づいて出庫判断できるため、廃棄ロス削減と需要対応の両立が実現しやすくなる。

#### 3.4.2 経営課題(マネジメントの限界)

**従来の在庫管理の限界**:経営レベルでは在庫を「コスト」としてのみ捉えがちで、鮮度劣化による潜在的な価値毀損を十分に把握できない。廃棄ロスや返品率は事後的に集計されるのみで、予兆をもとに戦略的意思決定を行う仕組みが弱い。また、在庫指標が「回転率」「在庫日数」など静的な指標に留まり、需給変動やトレンド急変に対して先手を打ちにくい。

**TAD 在庫鮮度モデルの解決可能性**:鮮度分布を持った在庫を定量的に管理することで、「廃棄リスク」や「販売可能在庫の質的状態」を経営指標として可視化できる。g(t,T) の履歴構造をもとに、将来の欠品リスクや鮮度劣化による損失リスクをシミュレーション可能である。経営層は「在庫量が多い/少ない」という次元だけでなく、「在庫の質的構造が健全かどうか」に基づいて生産計画や需給調整を設計できる。これにより、サプライチェーン全体で「廃棄ロス最小化 × 欠品回避 × 利益最大化」のトリレンマをより戦略的にマネジメント可能となる。特に廃棄コストが重い業界では定量的な評価指標として導入効果が大きい。

# 第川部

TAD 理論の数理構造と拡張

第 I 部では、在庫鮮度という実務に根ざした課題を出発点として、TAD 理論の基本的な枠組みを離散モデルおよび連続モデルの形で定式化した。これにより、時間を通じた資源の割当と劣化を二変数関数 g(t,T) として記述する基盤を整えることができた。

第 II 部では、この基盤の上に立ち、TAD 理論の数学的構造をさらに精緻に掘り下げる。次に、TAD における情報エントロピーの概念を導入し、その発展方程式の構造を示す。 さらに、 $\sigma(t,T)$  および  $\gamma(t,T)$  の拡張を通じて、基本的な TAD の発展方程式を変更することなく適用範囲を広げられることを明らかにする。 最後に、TAD 理論の構造的特徴を整理するとともに、その応用可能性を変分法、ラプラス解析の手法も用いながら、予測や逆設計の文脈で議論する。

第 II 部は、TAD 理論を「在庫鮮度モデルの定式化」から「普遍的な数理枠組み」へと飛躍させる過程であり、以降の応用展開に向けた理論的な中核を形成するものである。

# 第4章 TAD 理論の数学的基礎と構造展開

本章では、第I部で扱った在庫という具体的文脈から離れ、TAD系を抽象的な入出力ダイナミクスとして定式化する。その際、主要な変数・関数について以下のように抽象化・再解釈する:

- G(T): 時刻 T における外部からの 入力関数 (源泉)
- f(t): 時刻 t において系から観測される 出力関数 (放出)
- g(t,T):入力 T が時刻 t においてどの程度残存・寄与しているかを表す **履歴分布**
- $\mu(t,T)$ : 時刻 t の出力に対して、過去入力 T をどの程度割り当てるかを決める **割当関数**

この再定義により、在庫管理に特有の用語に依存せず、TADを一般的な「時間を通じた入力と出力の対応 関係を支配する数理構造」として扱うことが可能になる。

# 4.1 微分方程式による連続モデルの導出

連続モデルにおける履歴構造 g(t,T) の時間発展は次の一次線形偏微分方程式で表される (t>T):

$$\frac{\partial g(t,T)}{\partial t} = -\mu(t,T) g(t,T) \qquad (t > T)$$
(4.1)

境界条件は g(T,T)=G(T) とする。この式は g(t,T) の t 方向の連続の式と言えるものである。T 方向の流速項  $\frac{\partial g(t,T)}{\partial T}$  がないが、これは T は入力の発生時点を示す不変なラベルであり、t 方向のみに g(t,T) のダイナミクスが存在することに由来する。総括すると、TAD 理論が時系列入力 G(T) ⇒履歴分布 g(t,T) ⇒出力 f(t) のメカニズムを理論の中核としている限り、T は発生時刻のラベルであり、幾何的な隣接がない(=流速項は不要)ということである。この点は TAD 理論に通底している摂理的な原理としておさえておきたいポイントである。

## 4.2 変数分離による明示解の導出

(4.1) は T を固定したときの変数分離型であり、両辺を g(t,T) で割って t について積分すると

$$\int \frac{1}{g(t,T)} \frac{\partial g(t,T)}{\partial t} \, dt = - \int \mu(t,T) \, dt$$

より

$$\ln g(t,T) = -\int_T^t \mu(s,T) \, ds + C(T)$$

となる。境界条件 g(T,T)=G(T) から  $C(T)=\ln G(T)$  を得るので、

$$g(t,T) = G(T) \exp\left(-\int_{T}^{t} \mu(s,T) ds\right) \tag{4.2}$$

が明示解である。\*1

# 4.3 離散モデルとの対応とアダマール積

離散モデルでは、出力  $f(t_k)$  は入力履歴の残存量  $g(t_k,T_i)$  と割当係数  $\mu(t_k,T_i)$  のアダマール積(行列要素 ごとの積)の総和で表される:

$$f(t_k) = \sum_{i=1}^{k} \mu(t_k, T_i) g(t_k, T_i)$$

また、各入力時点  $T_i$  における履歴分布(残存量)の更新は(時間刻み  $\delta t_k$  を明示すると)

$$g(t_{k+1}, T_i) = [1 - \mu(t_k, T_i) \delta t_k] g(t_k, T_i)$$

と記述される。

# 無限乗積と指数関数への移行

上の逐次更新を繰り返すと、特定の入力時刻  $T_i$  に対する履歴分布(残存量)は

$$g(t_k, T_i) = G(T_i) \prod_{i=1}^{k-1} (1 - \mu(t_j, T_i) \, \delta t_j)$$
(4.3)

となる。この表式を見れば、最初の入力  $G(T_i)$  から出発し、出力  $f(t_k)$  に対する割り当て  $\mu(t_i,T_i)$  によって重 畳的に履歴分布  $g(t_k, T_i)$  が減衰していくダイナミクスが一目瞭然となる。

時間刻み  $\delta t_i \rightarrow 0$  の極限で、積の対数をとれば

$$\ln g(t_k, T_i) = \ln G(T_i) + \sum_{j=i}^{k-1} \ln (1 - \mu(t_j, T_i) \, \delta t_j)$$

$$\approx \ln G(T_i) - \sum_{j=i}^{k-1} \mu(t_j, T_i) \, \delta t_j$$

$$= \ln G(T_i) - \int_{T}^{t} \mu(s, T_i) \, ds$$
(4.4)

であり、したがって

$$g(t,T) = G(T) \exp\left(-\int_{T}^{t} \mu(s,T) ds\right)$$

$$\tag{4.5}$$

と連続モデルの明示解に一致する。\*2ただし、途中、テーラー展開

$$\ln(1-x) = -(x + \frac{x^2}{2} + \frac{x^3}{3} + \dots)$$

<sup>\*1</sup> 各固定された T に対し、 $\mu(\cdot,T),G(\cdot,T)\in L^1_{\mathrm{loc}}$  かつ  $\mu(t,T)\geq 0$  を仮定すれば、初期値  $g(T^+,T)=0$  をもつ発展方程式  $\partial_t g=-\mu g+G$  は一意の絶対連続解をもつ。積分形  $g(t,T)=\int_T^t G(s,T)\exp(-\int_s^t \mu(u,T)\,du)ds$  がその構成解を与える。 \*2  $\sup_j \mu(t_j,T_i)\delta t_j<1$  かつ  $\sum_j \mu(t_j,T_i)\delta t_j<\infty$  なら、 $\prod_j (1-\mu\delta t)\to \exp(-\int \mu)$  に一致する。

において、 $x = \mu(t_j, T_i) \delta t_j$  として、(4.4) の和は  $\delta t_j \to 0$  の極限で  $\ln(1-x) = -x + o(x)$  よりリーマン和としては 1 次の項のみが寄与し、 $\ln(1-x)$  に収束することを用いた。

# 4.5 行列としての g, $\mu$ のダイナミクスと視覚的構造

離散モデルにおいてgは三角行列として構成され、次のダイナミクスを持つ:

- 因果律による構造: $g(t_k, T_i) = 0$  for  $T_i > t_k$  より g-行列は三角行列となる。
- G による行の追加:新たな入力時刻  $T_{m+1}$  が追加されると、g-行列に 1 行が追加される。(新しい入力が生じた瞬間の境界条件)
- f による列の追加:新たな出力時刻  $t_{n+1}$  において、 $\mu$  割当によって、g-行列に 1 列が追加される。(時間発展に伴う割当・減衰)

直感的理解として、G による入力のたびに g 行列の行方向(縦方向)が拡張され、その時刻以降の出力から割り当てが行われるため、入力で追加される g は境界要素のみとなる。行方向(縦方向)は G によって外生的に追加されるだけで行と行の間の連関はないことに注意する。 $*^3$ 一方で列方向(横方向)は出力のたびに拡張され、出力量は割当  $\mu$  によって決まり、残量(履歴分布)が次の出力に使われるため、t 方向には自律的な時間発展(減衰機構)が存在する。

連続モデルではこの下三角行列構造は無限次元の線形作用素の構造に対応し、積分核 g(t,T) と割当関数  $\mu(t,T)$  の積により履歴が連続的に更新される。したがって、離散・連続の両モデルは統一的に理解でき、スペクトル解析や固有値問題など無限次元解析への拡張も可能である。

(1) 初期の g (小サイズ) (2) 境界入力  $G(T_{m+1})$  により **行が追加** (3) 次の出力  $t_{n+1}$  で **列が追加** & 成長

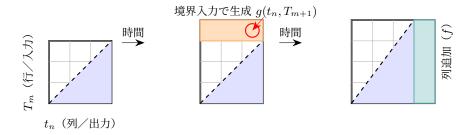


図 4.1 g-行列の成長:入力に応じて行が追加され、出力に応じて列が追加されることで下三角構造が成長する様子を示す

 $<sup>^{*3}</sup>$  それゆえに  $T_i$  はラベルとみなされる。

# 第5章 TAD 理論の履歴構造とエントロピー進化

この章では、TADの履歴構造と因果律を用いて、情報エントロピーの概念を導入する。このエントロピーは情報理論のシャノンエントロピーに相当するものであり、物理学の熱力学的エントロピーとの形式的並行性があることが後の章で示される。

# 5.1 履歴構造 g(t,T) と因果律

ここまでは境界条件として

$$g(T,T) = G(T)$$

を与えてきたが、本章以降ではより一般的な表現として、境界条件によらず発展方程式に「湧き出し項」を 直接導入する立場をとる。 $^{*1}$ 

すなわち、g(t,T) の時間発展は

$$\frac{\partial g(t,T)}{\partial t} = -\mu(t,T) g(t,T) + G(t,T)$$
(5.1)

で与えられるものとする。ここで G(t,T) は時刻 t における入力源泉を履歴構造に付与する項であり、同一の入力履歴 T に対して、時刻 t(>T) においても入力を許容するように一般化したものである。(が、応用上の大半のケースでは対角湧き出し入力 t=T のみで十分である。)当然ながら因果律より、 $G(t,T)\equiv 0$ ( $for\ t< T$ )である。第 I 部で展開したような入力 G(T) は  $\delta$  関数を使って、

$$G(t,T) = G(T)\delta(t-T) \tag{5.2}$$

と表現される。

また、履歴構造の積分範囲は引き続き  $T \le t$  に限定され、因果律

$$g(t,T) \equiv 0 \quad (t < T)$$

と整合する。

 $<sup>^{*1}</sup>$  g(T,T)=G(T) のような対角境界入力およびバルク(T< t)での入力(湧き出し)の両方を一般的に表現できる。この場合、ライプニッツ項の扱いには注意を要する。

# 5.2 割当関数 $\mu(t,T)$ の一般構造と設計自由度

割当関数  $\mu(t,T)$  は、履歴構造 g(t,T) から出力 f(t) への時間あたりの割当率を表す関数であり、次式で定義される:

$$f(t) = \int_{T_1}^{t} \mu(t, T) g(t, T) dT$$
 (5.3)

ここで  $\mu(t,T) \ge 0$  が成り立ち、 $\mu$  が大きいほど履歴の消費速度は速い。設計自由度としては、

- 時間依存型  $(\mu = \mu(t))$
- 経過時間依存型  $(\mu = \mu(t-T))$
- 入庫時刻依存型  $(\mu = \mu(T))$
- 上記の混合型・パラメトリック設計

などが考えられる。

履歴構造 g(t,T) の時間発展は、湧き出し項 G(t,T) を含めて次のように一般化される:

$$\frac{\partial g(t,T)}{\partial t} = -\mu(t,T) g(t,T) + G(t,T) \tag{5.4}$$

このとき、形式的な解 (Green 関数解) は

$$g(t,T) = \int_{T}^{t} G(\tau,T) \exp\left[-\int_{\tau}^{t} \mu(s,T) ds\right] d\tau$$
 (5.5)

と表される。ここで G(t,T) がどのような形をとるかによって、履歴構造の生成プロセスが規定される。 特別な場合として、G(t,T) が

$$G(t,T) = G(T) \delta(t-T)$$

の形をとると、従来の境界条件

$$g(T,T) = G(T)$$

が再現される。この場合、g(t,T) の解は次式で与えられる:

$$g(t,T) = G(T) \exp\left[-\int_{T}^{t} \mu(s,T) ds\right]$$
(5.6)

# 5.3 TAD エントロピー S(t) の定義と時間発展式

### **5.3.1 TAD エントロピー** S(t) の定義

TAD 理論における情報エントロピー S(t) を履歴密度 p(t,T) に基づき次式で定義する:

$$S(t) = -\int_{T_1}^{t} p(t, T) \log p(t, T) dT$$
 (5.7)

ここで、履歴密度の定義は

$$p(t,T) = \frac{g(t,T)}{N(t)}, \qquad N(t) = \int_{T_1}^t g(t,T') dT'$$
 (5.8)

であり、 $p(t,T)\geq 0$  かつ  $\int_{T_1}^t p(t,T)\,dT=1$  となるので、S(t) は情報理論におけるシャノンエントロピーに対応するものと考えられる。 $^{*2}p(t,T)$  は t-T 平面上に隆起する曲面状になっており、

- t = -定の断面で切れば、出力時刻 t における T 方向の履歴密度
- T = -定の断面で切れば、入力時刻 T の履歴密度に対する t 方向の時間減衰

を表す曲線となる。

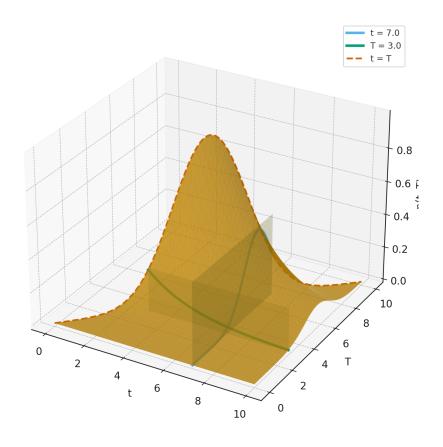


図 5.1 履歴密度 p(t,T) の曲面イメージ

# ${f 5.3.2}$ g(t,T) の時間発展

g(t,T) の発展方程式は、割当による減衰項と湧き出し項を含めて次のように表される:

$$\frac{\partial g(t,T)}{\partial t} = -\mu(t,T)\,g(t,T) + G(t,T). \tag{5.9}$$

したがって、p(t,T) の時間微分は積商微分の公式から

 $<sup>^{*2}</sup>$  この定義は連続エントロピーであり、時間スケールの取り方に依存する。絶対値の比較は同一スケールで、変化率等を併用する必要がある。

$$\frac{\partial p}{\partial t}(t,T) = \frac{\frac{\partial g(t,T)}{\partial t} N(t) - g(t,T) \frac{dN(t)}{dt}}{N^2(t)}.$$

ここで N(t) の時間微分は

$$\frac{dN(t)}{dt} = \int_{T_1}^t \frac{\partial g(t, T')}{\partial t} dT'$$
 (5.10)

となる。ここで、一般にはライプニッツ則により上式右辺には境界項にあたる g(t,t) が現れるが、境界 t=T の寄与は湧き出し G(t,t) による寄与として発展方程式に吸収されるため、g(t,t) の項は現れないことに注意する。

湧き出し項を含む  $\frac{\partial g}{\partial t} = -\mu g + G$  を代入し、ここで湧き出し項に由来する寄与をまとめて整理すると

$$\frac{\partial}{\partial t}p(t,T) = p(t,T)\left(\langle \mu \rangle - \mu(t,T)\right) + \frac{1}{N(t)}\left(G(t,T) - p(t,T)\int_{T_1}^t G(t,T')\,dT'\right) \tag{5.11}$$

ここで、記法  $\langle X \rangle = \int_{T_1}^t X \, p(t,T) \, dT$  を用いた。これは X を履歴密度 p(t,T) を用いて T 方向に平均化したものである。この場合、平均割当率  $\langle \mu \rangle$  は

$$\langle \mu \rangle = \int_{T_1}^t \mu(t, T') p(t, T') dT'$$

となる。

この式から、「湧き出し項 G(t,T) に由来する追加項」が p の時間発展に寄与することがわかる。特に  $G(t,T)=G(T)\delta(t-T)$  の場合、この項は従来の境界項 q(T,T)=G(T) に対応する形へと帰着する。

### 5.3.3 エントロピーの時間微分

定義式

$$S(t) = -\int_{T_1}^t p(t, T) \log p(t, T) dT$$

を時間微分すると、  $\frac{dN(t)}{dt}$  の時と同様に、ライプニッツ則の境界項  $-p(t,t)\log p(t,t)$  は湧き出し項に吸収されるため、

$$\frac{dS(t)}{dt} = -\int_{T_1}^{t} \frac{\partial}{\partial t} (p(t,T) \log p(t,T)) dT$$

積の微分を展開して整理すると

$$\frac{dS(t)}{dt} = -\left\{ \int_{T_t}^t (1 + \log p(t, T)) \frac{\partial}{\partial t} p(t, T) dT \right\}$$
 (5.12)

湧き出し項を含む p(t,T) の時間微分式 (5.11) をエントロピー時間微分式 (5.12) に代入すると、第一項は

$$\begin{split} &-\int p(t,T) \left( \langle \mu \rangle - \mu(t,T) \right) \left( 1 + \log p(t,T) \right) dT \\ &= -\int p(t,T) \left( \langle \mu \rangle - \mu(t,T) \right) \, dT - \int p(t,T) \left( \langle \mu \rangle - \mu(t,T) \right) \, \log p(t,T) \, dT \\ &= -\langle \mu \rangle + \langle \mu \rangle - \langle \mu \rangle \langle \log p \rangle + \langle \mu \log p \rangle \\ &= \operatorname{Cov}(\mu, \log p) \end{split}$$

となる。よって、最終的に

$$\begin{split} \frac{dS(t)}{dt} &= \operatorname{Cov}(\mu, \log p) - \frac{1}{N(t)} \int_{T_1}^t \left( G(t, T) - p(t, T) \int_{T_1}^t G(t, T') \, dT' \right) (1 + \log p(t, T)) \, dT \\ &= \operatorname{Cov}(\mu, \log p) \\ &- \frac{1}{N(t)} \int_{T_1}^t \{ G(t, T) + G(t, T) \log p(t, T) \} dT + \frac{G_{tot}(t)}{N(t)} \int_{T_1}^t \{ p(t, T) + p(t, T) \log p(t, T) \} dT \\ &= \operatorname{Cov}(\mu, \log p) - \frac{1}{N(t)} \{ G_{tot}(t) + \int_{T_1}^t G(t, T) \log p(t, T) dT \} + \frac{G_{tot}(t)}{N(t)} \{ 1 - S(t) \} \\ &= \operatorname{Cov}(\mu, \log p) - \frac{1}{N(t)} \int_{T_1}^t G(t, T) \log p(t, T) dT - \frac{G_{tot}(t)}{N(t)} S(t) \end{split}$$

が得られる。但し、

$$G_{tot}(t) = \int_{T_1}^{t} G(t, T) dT$$

である。つまり、

$$\frac{dS(t)}{dt} = \text{Cov}(\mu, \log p) - \frac{1}{N(t)} \int_{T_1}^t G(t, T) \log p(t, T) dT - \frac{G_{tot}(t)}{N(t)} S(t)$$
 (5.13)

となる。この式は、エントロピー進化が次の三つの要素によって決まることを示している。

- 第1項  $Cov(\mu, \log p)$ : 割当関数  $\mu$  と履歴密度 p の対数との共分散を表す。履歴に偏りを持った割当が行われると、その相関に応じてエントロピーが増減する。
- 第 2 項  $-\frac{1}{N(t)}\int G\log p$ : 湧き出し G(t,T) がどの T に入力されるかによって生じる寄与を表す。新規入力が既存分布の「どの部分」に重なるかによって、エントロピーに正負両方向の影響を及ぼす。
- 第3項  $-\frac{G_{tot}(t)}{N(t)}S(t)$ : 総湧き出し  $G_{tot}(t)$  が系全体のエントロピー S(t) を規格化する効果を表す。これは新しい入力が既存の多様性を希釈・リセットする項であり、 $G_{tot}/N$  が大きいほど過去の多様性が急速に押し下げられる。

すなわち、TAD系におけるエントロピー進化は「割当と履歴密度の相関」「新規入力の直接効果」「新規入力による多様性の希釈効果」という三つの要因のバランスとして理解できる。

# 5.4 対角湧き出しの場合のエントロピー進化

以降の議論では、入力は対角湧き出し成分のみに与えられると仮定する。TAD エントロピーの本質的なダイナミクスを捉えるにはその仮定で十分であると考えられるためである。

$$G(t,T) = G(T) \delta(t-T)$$

このとき、総入力は  $\int_{T_1}^t G(t,T) \, dT = G(t)$ 、また

$$p(t,t) = \frac{G(t)}{N(t)}$$

が成り立ち  $(N(t)=\int_{T_1}^t g(t,T)\,dT)$ 、新規入力の規格化率を表す。

# 5.4.1 S(t) の非斉次線形方程式

対角湧き出し入力の下で、エントロピー S(t) は (5.13) に  $G(t,T)=G(T)\delta(t-T)$  を代入して、

$$\frac{dS(t)}{dt} + p(t,t)S(t) = \operatorname{Cov}(\mu, \log p) - p(t,t)\log p(t,t)$$
(5.14)

という非斉次線形方程式に従う。\*3式 (5.14) は、等価に

$$\frac{dS}{dt} = -p(t,t)\left\{S(t) - S_{\text{eq}}(t)\right\}, \qquad S_{\text{eq}}(t) := \frac{\text{Cov}(\mu,\log p)(t)}{p(t,t)} - \log p(t,t)$$
(5.15)

と書ける。これは

- p(t,t) はその時点の 緩和率(時定数 1/p(t,t))を表し、大きいほど S(t) は迅速に目標  $S_{\rm eq}(t)$  に近づく。
- $Cov(\mu, \log p)(t)$  は **内部混合の駆動**(減衰の強い部分ほど疎: $-\log p$  が大)の度合いを表し、目標値を押し上げる方向に働く。
- ullet  $-p(t,t)\log p(t,t)$  は 境界(対角)からの新規エントロピー注入であり、関数  $-x\log x$  の性質から x=1/e 付近で最大になり、 $x\to 0,1$  では寄与が小さい。

したがって式 (5.15) は,「境界駆動と内部混合で決まる時間依存の目標  $S_{\rm eq}(t)$  に、S(t) が緩和率 p(t,t) をもって一次遅れで追従する」ことを意味する。

### 5.5 定常状態におけるバルクと境界の釣り合い

# 5.5.1 定常状態の関係式

(5.14) において、定常状態では  $\frac{dS(t)}{dt}=0$  かつ  $S(t)\equiv S$  (定数) なので、

$$Cov(\mu, \log p) = p(t, t) \left\{ S + \log p(t, t) \right\}$$
(5.16)

したがって、本来はバルクの統計量である  $\mathrm{Cov}(\mu, \log p)$  が、湧き出し境界 p(t,t)(と定常エントロピー S)の みによって表される。これは「定常エントロピーを介してバルクと境界が釣り合っている」と解釈できる。

 $<sup>*^3</sup>$  左辺第二項 p(t,t) S(t) は記憶の洗い替え速度を表すと考えられる。

#### 5.5.2 Cov = 0 ( $\mu$ が分布に影響しない) の場合の一般解と緩和

特別な場合として、 $\mu$  が p(t,T) の T 分布に影響しない場合(例: $\mu(t,T)=\mu(t)$ (履歴非依存))を考える。これは割当  $\mu$  が p(t,T) の T 方向の分布を一切考慮せずに作用(減衰)し、出力 f への割り当てが無差別に(ランダム一様に)行われることを意味する。このような場合、バルクに由来するエントロピー変化への寄与がなくなり、Cov=0 となる。\*4 このとき、エントロピーの発展式は

$$\frac{dS(t)}{dt} + p(t)S(t) = -p(t)\log p(t)$$
(5.17)

となる。ただし  $p(t) \equiv p(t,t)$  と簡略化した。これはエントロピー変化が対角履歴密度 p(t) のみで駆動されることを意味する。

特に  $p(t) \equiv p_0 \in (0,1)$  を定数として (5.17) を解くと

$$S(t) = -\log p_0 + (S_0 + \log p_0) e^{-p_0(t-t_0)}$$
(5.18)

よって長時間極限は

$$\lim_{t \to \infty} S(t) = -\log p_0$$

と緩和される。

#### 5.5.3 境界エントロピー流入

ここまで見てきたように、定常状態 S(t)=S(定数)かつ  $\mathrm{Cov}=0, p(t)\equiv p_0$ (定数)のとき、(5.17) より、以下が成立する。

$$p_0 S = -p_0 \log p_0 \implies p_0 = e^{-S}$$
 (5.19)

ここで、境界におけるエントロピー流入(流量)は

$$S_f := -p(t) \log p(t) = -p_0 \log p_0$$

と表される。式 (5.19) の下では  $S_f(S) = S e^{-S}$  となる。 $S_f(S)$  の極値を求めると

$$S'_{f}(S) = e^{-S}(1-S) = 0 \implies S = 1$$

で極大となり、

$$S_f^{\text{max}} = S_f(1) = \frac{1}{e}, \qquad p_0 = \frac{1}{e}$$

以上より、Cov=0 かつ定常状態(対角湧き出しのみで生成されるエントロピーの定常状態)においては  $p=e^{-S}$  が成り立つ。その中で境界エントロピー流入  $-p\log p$  は S=1 (p=1/e) で最大となり、これは発展方程式 (5.14) の湧き出し項  $-p(t,t)\log p(t,t)$  が p(t,t)=1/e で最大になる事実と一致する。

<sup>\*</sup> $^4$  Cov $(\mu,\log p)=0$  は  $<\mu\log p>=<\mu><\log p>$  が成り立つことを要請するものである。これは  $\mu$  と  $\log p$  の一次相関が消えていることを意味するが、統計的独立まで要請するものではない。(そこまで強い制約ではない。)

例えば、 $\mu(t,T)=a(t)+b(t)h(T)$  で任意の時点で < h>=0 となるように設計すると、 $\mathrm{Cov}(\mu,\log p)=0$  となるが統計的独立ではない。対比的な例として  $\mu(t,T)\propto 1/p(t,T)$  のような補償的な設計(密度が高いほど割当を低くする=秩序がある部分は割当で削らないようにする)はむしろ強い負の相関を作る。

# 5.5.4 最適停止問題との対応

興味深いことに、この p=1/e は「最適停止問題(いわゆる秘書問題)」において最適戦略を与える閾値と一致する。すなわち、n 人の候補を逐次観察して 1 人だけを選ぶ問題においては、最初の n/e 人を捨ててその後に現れる最大値を選ぶ戦略が成功確率を最大化し、その最大値は 1/e であることが知られている。TAD の場合は直感的には、新規入力(湧き出し)が各時点において履歴 g に入っていくが、これをその時点の総残量の 1/e となるようにする(すなわちストックしている残量のうち 1/e を新規入力分となるように制御する)と、湧き出し部分の(直接の)エントロピー生成への寄与が最大になるということを意味する。

したがって、TAD の定常状態における p=1/e は、境界エントロピー流入を最大化する効率点であると同時に、最適停止理論における情報獲得の効率点とも対応している。これは 1/e が単なる組合せ論的な定数にとどまらず、「境界イベントの最適な採用戦略」を特徴づける普遍的な閾値であることを示唆している。

# 第6章 TAD の構造拡張と普遍的性質

ここまでの TAD 理論は、入力 G(t,T) と出力 f が同一単位で表され、減衰が割当関数  $\mu$  のみによって記述される前提であった。しかし、実際の実務や自然科学における以下のような系ではこのモデルでは対応が難しいと思われる。

- 教育・記憶:自然忘却効果
- 物理現象:摩耗・腐食による自然減衰
- 広告・マーケティング:広告費(入力)→売上(出力)における価値変換

これらを統一的に扱うため、本章では以下の2つの拡張を導入し、TAD 理論の適用範囲を拡張する。

- 補正項 γ(t,T):割当以外の要因による履歴分布の減衰を表現
- スケール変換 σ(t,T):入力(資源)と出力(成果)の異なる評価軸を接続する単位・価値変換

また、拡張された範囲において、普遍的に成り立つ性質について議論する。

# 6.1 補正項 $\gamma(t,T)$ とスケール変換 $\sigma(t,T)$ の導入

# 6.1.1 補正項 $\gamma(t,T)$ の定義と役割

- $\gamma(t,T)$  は  $\mu$  による割当とは無関係に g(t,T) が自然減衰する事象を表現する。
- $\gamma(t,T)$  は減衰機構のため、非負( $\gamma(t,T) \geq 0$ )とする。
- $\gamma(t,T)$  は内部の減衰機構のため、履歴分布 g(t,T) に対してのみ作用し、直接 f(t) には寄与しない。
- $\gamma(t,T) \equiv 0$  とおけば従来モデルを包含する。

### 6.1.2 スケール変換 $\sigma(t,T)$ の定義と役割

- $\sigma(t,T)$  は f(t) 出力時の単位・価値変換を担い、入力と出力の異なる評価軸を接続する。
- $\sigma(t,T)$  は f(t) 出力時に直接寄与する。
- $\sigma(t,T) \equiv 1$  とおけば従来モデルを包含する。

# 6.2 拡張 TAD の基本的な数理基盤

ここでは、拡張 TAD における基本的な数理基盤について述べる。以後の議論においては本節で展開した数理基盤をもとに展開する。

#### 6.2.1 発展方程式と出力表示

ここまでの結果を踏まえると、拡張された TAD の発展方程式は次のように書ける。

$$\frac{\partial g(t,T)}{\partial t} = -[\mu(t,T) + \gamma(t,T)] g(t,T) + G(t,T) \quad (t \ge T), \quad g(t,T) = 0 \quad (t < T) \tag{6.1}$$

$$f(t) = \int_{T_1}^t \sigma(t, T) \,\mu(t, T) \,g(t, T) \,dT \tag{6.2}$$

# 拡張 TAD における主要量の定義(まとめ)

- 履歴核 (履歴分布):  $q(t,T) \ge 0$  (時刻 T に投入された単位が、時刻 t にどれだけ有効か)
- 入力: $G(t,T) \ge 0$  (t=T で新規投入及び三角領域 t>T での再投入、t<T では  $G(t,T)\equiv 0$ )
- 割当係数:  $\mu(t,T) \geq 0$  (f(t)への割当/償却)
- 補正項: γ(t,T) > 0 (内部の自然減衰)
- スケール係数: $\sigma(t,T) > 0$  (単位・価値変換)

各分野への応用局面では、対象の前提や特性に応じてこれらの主要量の関数形を任意に仮定することで様々な 現象や事象のモデル化を行なうことができる。

### 拡張 TAD における派生量(集計/流量)

• 総残量: N(t) > 0 (時刻 t における履歴の総残量)

$$N(t) = \int_{T_1}^t g(t, T) dT$$

• 履歴密度: $p(t,T) \ge 0$  (時刻 t における総残量に占める履歴分布の密度)

$$p(t,T) \ = \ \frac{g(t,T)}{N(t)} \quad (N(t)>0)$$

 $p(t,T) \geq 0$ で  $\int_{T_1}^t p(t,T) \, dT = 1$  が成り立つ(点値として p < 1 を要請しない)。

#### 記号・単位の約束

- G(t) は「時刻 t の境界投入量」、G(T) は「境界条件の関数値」として同一記号を用いる(文脈で区別)。
- $\mu(t,T), \gamma(t,T), p(t,T)$  の次元は「1 /時間」、g(t,T) は「量/時間」、N(t) は「量」となる。
- $\sigma(t,T)$  の次元は 出力 f(t) と整合をとった次元となる。

#### 自己増殖・強化のモデル化

自然減衰とは逆に g(t,T) が自己増殖・強化されるケースも考えられる。これは入力 G によって実現されると考える。(例:疫学モデルにおける感染増殖、SNS の口コミ拡散等)

例えば、

$$G_{eff}(t,T) = G(t,T) + \gamma_{gain}(t,T)g(t,T) \qquad \gamma_{gain}(t,T) > 0$$

というモデル化が考えられる。第二項は g(t,T) のサイズに比例して自己増殖・強化されることを表し、第一項とあわせて実効的な入力  $G_{eff}(t,T)$  となる。この場合、発展方程式は  $\frac{\partial}{\partial t}g=-(\mu+\gamma-\gamma_{gain})g+G(t,T)$  と等価であり、 $\gamma$  の非負性  $(\gamma>0)$  を維持できる。 $^{*1}$ 

#### 6.2.2 発展方程式の解

#### 共通の前提条件

- **A1**(領域)観測区間の下端点  $T_1$  を定め、下三角領域  $\Omega = \{(t,T) \in \mathbb{R}^2 \mid T_1 \leq T \leq t\}$  を扱う。
- **A2** (入力の可積分性・非負) G(t,T) は下三角領域  $\Omega = \{(t,T) \mid T_1 \leq T \leq t < \infty\}$  において、局所可積分かつ因果性 G(t,T) = 0 for t < T を仮定する。
- **A3** (係数の有界性・非負)  $\mu, \gamma : \Omega \to [0, \infty)$  は可測で局所有界とする。
- A4 (湧き出し入力の流儀) G(t,T) は発展方程式内に体積入力 (湧き出し入力) として表現する。
- $\mathbf{A5}$  (内部式) g はほとんど至る所で

$$\frac{\partial}{\partial t}g(t,T) = -(\mu(t,T) + \gamma(t,T))\,g(t,T) + G(t,T)$$

を満たす (t 微分は t に関する絶対連続の意味)。

# 境界入力と体積入力の等価(分布の意味)

G(t,T) が対角湧き出しの場合、仮定 A1-A3 の下で、次の二つの定式化は分布の意味で同値である。

境界入力流儀 
$$\dfrac{\partial}{\partial t}g(t,T)=-(\mu+\gamma)g(t,T), \qquad g(T,T)=G(T)$$
 体積入力(湧き出し入力)流儀  $\dfrac{\partial}{\partial t}g(t,T)=-(\mu+\gamma)g(t,T)+G(T)\,\delta(t-T), \qquad g(T,T^-)=0$ 

ここで  $\delta(\cdot)$  は Dirac のデルタ分布、 $g(T,T^-)=\lim_{t\uparrow T}g(t,T)$  である。対象モデルの特性に応じて上記いずれかの流儀を選択する。

#### 特性解(存在・一意・非負)

仮定 A1-A5 の下で、 $T \in [T_1, \infty)$  を固定すると

$$g(t,T) = \int_T^t G(\tau,T) \, \exp \biggl[ - \int_\tau^t \left( \mu(s,T) + \gamma(s,T) \right) ds \biggr] \, d\tau$$

がほとんどいたるところで成り立つ。この表式で与えられる g(t,T) は一意であり、非負である。\*2 また、対角湧き出し  $G(\tau,T)=G(T)\delta(\tau-T)$  の場合は、

$$g(t,T) = G(T) \exp\left[-\int_{T}^{t} \left(\mu(s,T) + \gamma(s,T)\right) ds\right]$$
(6.3)

となる。

 $<sup>^{*1}</sup>$ なお、  $\left[(\mu+\gamma)-\gamma_{\rm gain}\right]$  が局所有界であれば解の存在・一意は保たれるが、負値域に入る場合には単調性や DC 制約の等号成立条件など一部の性質が変化し得る点に注意する。

<sup>\*2</sup> A5 を t に沿って解く常微分方程式に帰着し、湧き出し入力 G(t,T)(A4)のもと直ちに従う。 $\mu,\gamma\geq 0$  より指数は非増加なので  $g(t,T)\geq 0$  となる。

#### 6.2.3 ライプニッツ則

 $\phi(t,T)$  は  $[T,\infty)$  で絶対連続で  $\frac{\partial}{\partial t}\phi(t,T)$  は局所可積分、かつ支配収束性\* $^3$ を仮定すると、ほとんど全ての  $t\in [T_1,\infty)$  で

$$\frac{d}{dt} \int_{T_1}^t \phi(t,T) dT = \phi(t,t) + \int_{T_1}^t \frac{\partial}{\partial t} \phi(t,T) dT$$

特に本論文では、境界入力流儀の場合において  $\phi \in \{g, \mu g, \gamma g\}$  に対して本公式を用いる。体積入力(湧き出し入力)流儀の場合は  $\phi(t,t)$  は体積入力項に吸収されるため、明示的には現れないことに注意されたい。\*4

# 6.3 TAD の普遍的性質(エントロピー、DC 制約、会計恒等式)

#### 6.3.1 エントロピー進化

TAD では履歴密度とエントロピーが

$$p(t,T) = \frac{g(t,T)}{\int_{T_1}^t g(t,T') dT'}, \qquad S(t) = -\int_{T_1}^t p(t,T) \log p(t,T) dT$$

と定義される。 5章で定義したエントロピーの発展方程式 (5.13) は  $\mu(t,T)$   $\Rightarrow$   $\mu(t,T)+\gamma(t,T)$  と置き換えて、

$$\frac{dS(t)}{dt} = \operatorname{Cov}(\mu + \gamma, \log p) - \frac{1}{N(t)} \int_{T_{\star}}^{t} G(t, T) \log p(t, T) dT - \frac{G_{tot}(t)}{N(t)} S(t)$$
(6.4)

となる。ここで  $G_{\mathrm{tot}}(t):=\int_{T_1}^t G(t,T)\,dT$  と定義する。対角湧き出し  $G(t,T)=G(T)\delta(t-T)$  では、以下のようになる。

$$\frac{dS(t)}{dt} + p(t,t)S(t) = \operatorname{Cov}(\mu + \gamma, \log p) - p(t,t)\log p(t,t)$$
(6.5)

#### エントロピーを KPI にする発想

エントロピー S(t) は「現在の成果がどれだけ多様な過去に支えられているか」を表す混合度指標であり、形式的には物理学のエントロピーと同型である。ポイントは出力 f(t) や内部状態の総和 N(t) が同一であっても、エントロピー S(t) は一般に異なる値になる点である。S(t) はその時点の成果を構成する履歴 T 方向のポートフォリオ(多様性:質的側面)を評価する指標となりうる。

従って、この S(t) はそのまま各分野の実務において運用指標(KPI)として転用できうる。教育なら「記憶が一夜漬け依存か、多面的復習で安定化しているか」、マーケティングなら「売上が単発施策に集中していないか」、経済なら「成長が特定セクターに偏っていないか」といった具合である。

すなわちエントロピーは、TAD の枠組みを通じて物理学から逆輸入され、実務・社会科学の領域においても「成果を支える履歴の多様性」を測る普遍指標(本章で言う普遍的性質)となりえる。

本稿ではこれ以上深く立ち入らないが、今後の研究発展の方向性として高いポテンシャルがあると思われる。

<sup>\*3</sup> 任意の有界時間区間  $I=[t_0,t_1]$  に対しある  $h_I\in L^1([T_1,t_1])$  が存在して  $|\partial_t\phi(t,T)|\leq h_I(T)$  がほとんどいたるところで成り立つと仮定する。

 $<sup>^{*4}</sup>$  より具体的には、対角湧き出し入力  $G(t,T)=G(T)\delta(t-T)$  の場合には境界項 p(t,t)=G(t)/N(t) が現れ、一般の体積入力では p(t,t) は入力項に吸収される。

#### 6.3.2 応答関数の一般化と DC 制約 (Distributional Constraint 分配制約)

一般の TAD 発展方程式

$$\frac{\partial g(t,T)}{\partial t} = -\left[\mu(t,T) + \gamma(t,T)\right]g(t,T) + G(t,T) \quad (t \ge T), \quad g(t,T) = 0 \quad (t < T)$$

の一般解 g(t,T) は

$$g(t,T) = \int_{T}^{t} \exp\left[-\int_{s}^{t} \left(\mu(u,T) + \gamma(u,T)\right) du\right] G(s,T) ds$$

である。このとき、出力 f(t) は簡単のため  $\sigma = 1$  として

$$f(t) = \int_{T_1}^t \mu(t, T) g(t, T) dT = \int_{T_1}^t \mu(t, T) \left[ \int_{T}^t \exp\left[ -\int_{s}^t \left( \mu(u, T) + \gamma(u, T) \right) du \right] G(s, T) ds \right] dT$$

$$= \int_{T_1}^t \left[ \int_{T}^t \mu(t, T) \exp\left[ -\int_{s}^t \left( \mu(u, T) + \gamma(u, T) \right) du \right] G(s, T) ds \right] dT \quad (6.6)$$

となる。ここで応答関数 K(t|s,T) を

$$K(t|s,T) = \mu(t,T) \exp\left[-\int_{s}^{t} \left(\mu(u,T) + \gamma(u,T)\right) du\right]$$
(6.7)

と書くと、

$$f(t) = \int_{T_1}^t \int_T^t K(t|s,T) G(s,T) \, ds \, dT$$

となる。ここで、

$$S(t|s,T) = \exp\left[-\int_{0}^{t} \left(\mu(u,T) + \gamma(u,T)\right) du\right]$$

とすると、

$$K(t|s,T) = \mu(t,T)S(t|s,T)$$

であり、t, s, T が完全な独立変数であることから、' を t に関する微分として

$$S'(t|s,T) = -(\mu(t,T) + \gamma(t,T))S(t|s,T)$$

なので、 $\gamma(t,T) \geq 0$  の制約のもと

$$\int_{s}^{\infty} K(t|s,T) dt = \int_{s}^{\infty} \mu(t,T)S(t|s,T) dt$$

$$= \int_{s}^{\infty} \left(\mu(t,T) + \gamma(t,T)\right)S(t|s,T) dt - \int_{s}^{\infty} \gamma(t,T)S(t|s,T) dt$$

$$= -\int_{s}^{\infty} S'(t|s,T) dt - \int_{s}^{\infty} \gamma(t,T)S(t|s,T) dt$$

$$= 1 - S(\infty|s,T) - \int_{s}^{\infty} \gamma(t,T)S(t|s,T) dt \le 1$$
(6.8)

となる。対角湧き出し $G(t,T) = G(T)\delta(t-T)$ では、応答関数はK(t|T,T)となり、

$$\int_{T}^{\infty} K(t|T,T) dt = \int_{T}^{\infty} \mu(t,T) S(t|T,T) dt = \left[1 - S(\infty|T,T)\right] - \int_{T}^{\infty} \gamma(t,T) S(t|T,T) dt \le 1 \quad (6.9)$$

となる。 $^{*5}$  これらは入力 G(t,T) に対する応答関数 K(t|s,T) の制約条件(DC 制約)である。TAD 系からの出力は入力の累計を超えることはないことを表す構造ガード(構造制約)と言える。

#### 6.3.3 TAD の会計恒等式

以下のように観測量 N(t), f(t), L(t) を定義する。

$$N(t) = \int_{T_1}^{t} g(t, T) dT, \quad f(t) = \int_{T_1}^{t} \mu(t, T) g(t, T) dT, \quad L(t) = \int_{T_1}^{t} \gamma(t, T) g(t, T) dT$$
 (6.10)

- N(t):時刻 t 時点の内部履歴の総量
- *f*(*t*): 時刻 *t* 時点の系からの出力流量
- L(t): 時刻 t 時点の系内で減衰して消散した流量

(6.1) によって湧き出し項が明示されているので、ライプニッツの境界項は不要で

$$\begin{split} \frac{d}{dt}N(t) &= \frac{d}{dt} \int_{T_1}^t g(t,T) \, dT = \int_{T_1}^t \frac{\partial}{\partial t} g(t,T) \, dT \\ &= \int_{T_1}^t [-(\mu(t,T) + \gamma(t,T))g(t,T) + G(t,T)] dT \\ &= -\int_{T_1}^t \mu(t,T)g(t,T) dT - \int_{T_1}^t \gamma(t,T)g(t,T) dT + \int_{T_1}^t G(t,T) dT \\ &= \int_{T_1}^t G(t,T) dT - f(t) - L(t) \end{split}$$

つまり、会計恒等式とも言える普遍式

$$\frac{d}{dt}N(t) = \int_{T}^{t} G(t,T)dT - f(t) - L(t)$$

$$\tag{6.11}$$

が成り立つ。特に対角湧き出し $G(t,T) = G(T)\delta(t-T)$ なら、

$$\frac{d}{dt}N(t) = G(t) - f(t) - L(t) \tag{6.12}$$

となる。  $\frac{d}{dt}N(t)=0$  の定常状態では、「系への入力流量 G(t)=系からの出力流量 f(t)+系内の消散流量 L(t)」の釣り合いの状態になる(あるいは保存則が成り立つ)という直感的にも自然な帰結が得られる。

<sup>\*\*5</sup> 等号は  $\gamma\equiv 0$  かつ  $S(\infty|s,T)=0$ (つまり、 $\int_s^\infty \mu=\infty$ )のとき成立する。直感的には自然消散が無く、いつかは必ず全部割り当てで出ていくイメージである。

# 6.4 TAD 共通の応用事象(ヴィンテージ効果と線形成長帯)

# 6.4.1 ヴィンテージ効果

ある時刻  $T_1$  でスパイク状の入力  $G(T)=I_1\delta(T-T_1)$  があった場合、これに対する出力 f(t) がどうなるか考える。ここでは簡単のため、 $\sigma\equiv 1$  とする。

$$f(t) = \int_{T_1}^t \mu(t, T) g(t, T) dT$$

$$= \int_{T_1}^t \mu(t, T) I_1 \delta(T - T_1) \exp\left[-\int_T^t (\mu(u, T) + \gamma(u, T)) du\right] dT$$

$$= I_1 \mu(t, T_1) \exp\left[-\int_{T_1}^t (\mu(u, T_1) + \gamma(u, T_1)) du\right]$$

このとき、'をtに関する微分として

$$f'(t) = I_1 \exp\left[-\int_{T_1}^t \left(\mu(u, T_1) + \gamma(u, T_1)\right) du\right] \left[\mu'(t, T_1) - \mu(t, T_1) \{\mu(t, T_1) + \gamma(t, T_1)\}\right]$$
(6.13)

となるので、

$$f'(t^*) = 0 \Longrightarrow \frac{\mu'(t^*, T_1)}{\mu(t^*, T_1)} = \mu(t^*, T_1) + \gamma(t^*, T_1)$$

となる  $t = t^*$  で f(t) は極値をとる。ここで  $\gamma \equiv 0$  とすると、

$$\mu'(t^*, T_1) = \mu(t^*, T_1)^2$$
 f''(t\*) < 0  $\iff \mu''(t^*, T_1) - 2\mu(t^*, T_1)^3 < 0$ 

であれば、f(t) は  $t=t^*$  で局所極大値をとり、f(t) の形状は  $t=t^*$  を頂点とする山型となる。 例えば、 $\mu(t,T)=\eta(T)(t-T),\ \gamma\equiv 0$  のときは、 $\eta(T_1)>0$  として

$$\mu'(t^*, T_1) = \mu(t^*, T_1)^2 \implies \eta(T_1) = \eta(T_1)^2(t^* - T_1)^2$$

より、

$$t^* = \frac{1}{\sqrt{\eta(T_1)}} + T_1$$

となる。このとき、

$$\mu''(t^*, T_1) - 2\mu(t^*, T_1)^3 = 0 - 2\eta(T_1)^3(t^* - T_1)^3 = -2\eta(T_1)^3(\frac{1}{\sqrt{\eta(T_1)}})^3 = -2\eta(T_1)^{\frac{3}{2}} < 0$$

なので、確かに  $t=t^*$  で局所極大となる。この時の出力  $f(t^*)$  は

$$f(t^*) = I_1 \sqrt{\frac{\eta(T_1)}{e}}$$

となる。

これは時刻  $T_1$  におけるスパイク入力が、年齢( $t-T_1$ )を重ねるにつれて"効き方"が変わり、対応する f(t) が立ち上がって $\to$ どこか( $t=t^*$ )で最大になり $\to$ その後しぼむ(山型になる)ことを意味する。この時、山の頂点はスパイク入力時刻  $T_1$  から  $\frac{1}{\sqrt{\eta(T_1)}}$  だけ離れた位置にあり、山の高さは  $\sqrt{\eta(T_1)}$  に比例する。(山が高いほど裾野は狭くなり、山が低いほど裾野は広くなる。)

逆にスパイク入力時刻  $T_1$  を変動させることを考えると、 $T_1$  からの経過時間  $(t-T_1)$  が同じであっても、 $T_1$ 

の値に応じて f(t) の山の頂点の位置も高さも変動しうることを意味する。スパイク入力からの経過時間  $t-T_1$  とは別に、スパイク入力時点  $T_1$  の環境そのものに f(t) が影響を受けることを示唆しており、このような事象は一般に「ヴィンテージ効果」と呼ばれ、多くの分野で観測されている事象である。

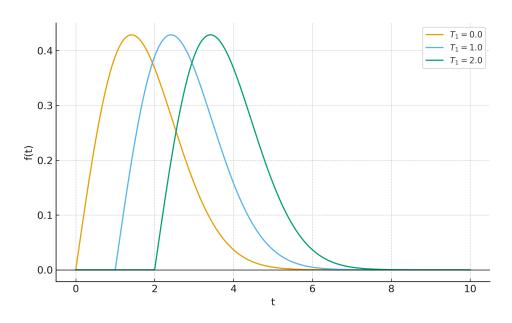


図 6.1 スパイク入力時刻  $T_1$  の違いによる出力 f(t) の山型変化(ヴィンテージ効果)

#### 6.4.2 線形成長帯

ここでは、簡単のため、 $\sigma = 1$ 、 $\mu$  及び  $\gamma$  は準定常 (時間並進不変)

$$\mu(t,T) = \mu(t-T), \qquad \gamma(t,T) = \gamma(t-T)$$

であるとする。また、対角湧き出し入力  $G(t,T)=G(T)\delta(t-T)$  を仮定する。ここで、減衰核 S(t-T) を

$$S(t-T) \equiv \exp\left(-\int_0^{t-T} \left(\mu(u) + \gamma(u)\right) du\right)$$

と定義する。これは、入力が時間経過とともに効力を失っていく度合を示す時間差依存の関数である。この時、

$$g(t,T) = G(T) \exp\left(-\int_0^{t-T} \left(\mu(u) + \gamma(u)\right) du\right) = G(T)S(t-T)$$

となる。このとき、(6.10)より、

$$f(t) + L(t) = \int_{T_1}^t (\mu(t, T) + \gamma(t, T))g(t, T)dT = \int_{T_1}^t (\mu(t - T) + \gamma(t - T))G(T)S(t - T) dT$$

ここで、 $\lim_{t\to\infty}\int_0^{t-T} \left(\mu(u)+\gamma(u)\right)du<\infty$ (正の有限値)になるとする。つまり、

$$S_{\infty} := \lim_{t \to \infty} S(t - T) = \exp\left(-\int_{0}^{\infty} \left(\mu(u) + \gamma(u)\right) du\right) \in (0, 1)$$

$$(6.14)$$

ここで退化ケース  $S_{\infty}=1$  を除く。とすると、再び ' を t に関する微分として

$$S'(t-T) = -(\mu(t-T) + \gamma(t-T)) \exp\left(-\int_0^{t-T} (\mu(u) + \gamma(u)) du\right) = -(\mu(t-T) + \gamma(t-T)) S(t-T)$$
 (6.15)

すると、 $\frac{dN}{dt}$  は TAD の会計恒等式 (6.12) 及び (6.15) を逆に用いて、

$$\frac{dN}{dt} = G(t) - (f(t) + L(t)) = G(t) - \int_{T_1}^t (\mu(t-T) + \gamma(t-T))G(T)S(t-T) dT$$

$$= G(t) + \int_{T_1}^t S'(t-T)G(T) dT = G(t) + \int_0^{t-T_1} \frac{dS(a)}{da} G(t-a) da$$

$$= G(t) + \left[ S(a)G(t-a) \right]_0^{t-T_1} - \int_0^{t-T_1} S(a) \frac{dG(t-a)}{da} da$$

$$= G(t) + \left[ S(t-T_1)G(T_1) - S(0)G(t) \right] - \int_0^{t-T_1} S(a) \frac{dG(t-a)}{da} da$$

$$= S(t-T_1)G(T_1) - \int_0^{t-T_1} S(a) \frac{dG(t-a)}{da} da$$
(6.16)

となる。

ここで、G は絶対連続で  $G(t)\to G(\infty)$   $(t\to\infty)$  かつ  $\frac{dG(t)}{dt}$  が有界で  $\lim_{t\to\infty}\frac{dG(t)}{dt}=0$  とし、  $\int_T^\infty |G'(u)|\,du<\infty$  (全変動有限:単調漸近や指数接近など多くの入力で自然な仮定)とする。

$$J(t) = \int_0^{t-T_1} S(a) \, \frac{dG(t-a)}{da} \, da$$

について評価する。任意の  $\varepsilon>0$  に対し、ある A>0 を取り  $a\geq A$  なら  $|S(a)-S_\infty|\leq \varepsilon$  とする。J(t) の積分区間を  $0< A< t-T_1$  となる A で前半と後半に分割する。前半は

$$\left| \int_0^A S(a) \, \frac{dG(t-a)}{da} \, da \right| = \left| \int_{t-A}^t S(t-u) \, G'(u) \, du \right| \le ||S||_{\infty} \int_{t-A}^t |G'(u)| \, du \xrightarrow[t \to \infty]{} 0$$

後半は

$$\int_{A}^{t-T_1} S(a) \frac{dG(t-a)}{da} da = -\int_{T_1}^{t-A} S(t-u) G'(u) du = -S_{\infty} \int_{T_1}^{t-A} G'(u) du - \int_{T_1}^{t-A} (S(t-u) - S_{\infty}) G'(u) du$$

となる。ここで第2項の絶対値は

$$\begin{split} |-\int_{T_1}^{t-A} (S(t-u)-S_{\infty})G'(u)\,du| &\leq \int_{T_1}^{t-A} |(S(t-u)-S_{\infty})|\,|G'(u)|\,du \\ &\leq \varepsilon \int_{T_1}^{t-A} |G'(u)|\,du = \varepsilon \int_{T_1}^{\infty} |G'(u)|\,du \;(A\, を固定して\,t \to \infty) \end{split}$$

であり、 $A \to \infty$  で  $\varepsilon \to 0$  より、第 2 項はゼロとなる。第 1 項は

$$-S_{\infty}[G(t-A)-G(T_1)] \to -S_{\infty}[G(\infty)-G(T_1)] \ (t \to \infty)$$

となるので、

$$J(t) = \int_0^{t-T_1} S(a) \frac{d}{da} G(t-a) da \longrightarrow -S_{\infty} (G(\infty) - G(T_1)) \quad (t \to \infty)$$

以上より、最終的に

$$\lim_{t \to \infty} \frac{dN}{dt} = \lim_{t \to \infty} \left[ S(t - T_1)G(T_1) - J(t) \right] = S_{\infty} G(T_1) + S_{\infty} \left( G(\infty) - G(T_1) \right) = S_{\infty} G(\infty) \tag{6.17}$$

が得られる。ここで、G は絶対連続で G'(t) は有界、 $\lim_{t\to\infty} G'(t)=0$  と仮定した。

従って  $N(t)=\left(S_{\infty}G(\infty)\right)t+Const+o(1)$ : 総残量(未償却ストック)は線形成長する。これは、 $\mu,\gamma$  の 関数形を限定せず、大域的性質  $\int_0^\infty \left(\mu(u)+\gamma(u)\right)du<\infty$  を課すだけで総残量が時間 t に対して線形に増大する(かつ、その傾きが S,G の最終値の積になる)という特筆すべき結果である。通常の減衰系では総残量は有限値に収束するのが自然だが、特定の条件下で発散ではなく線形成長が現れる点で特異的であると言える。このような事象を仮に「線形成長帯の発現」と呼ぶならば、多くの分野で観測されている事象である。以下に十分大きな t で通常の減衰系の N(t) の尾部と線形成長する場合の N(t) のイメージをグラフとして示す。

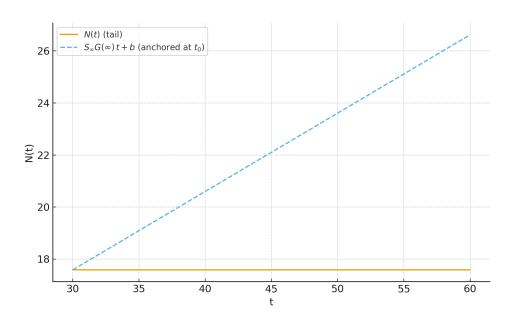


図 6.2 線形成長帯(尾部のみ):  $t \ge t_0$ (十分大きな t)における N(t) と、理論的傾き  $S_\infty G(\infty)$  をもつ線形漸近  $S_\infty G(\infty)$  t+b。直線は  $t_0$  で  $N(t_0)$  に一致するようにアンカーしている。

# 第7章 TADによる事象の再現(予測)・逆設計への応用

本章では、これまで定式化してきた TAD の枠組みが、事象の再現および逆設計の場面においてどのように活用できるかを議論する。TAD は、入力系列 G(t,T) と割当関数  $\mu(t,T)$  及び補正関数  $\gamma(t,T)$  によって内部状態 g(t,T) が構成され、

$$\frac{\partial g(t,T)}{\partial t} = -[\mu(t,T) + \gamma(t,T)] \, g(t,T) + G(t,T)$$

最終的に出力

$$f(t) = \int_{T_1}^t \sigma(t, T) \, \mu(t, T) \, g(t, T) \, dT$$

として観測されるというダイナミクスを持つ。ここで  $\sigma(t,T)$  は入力と出力間の単位変換やスケーリング係数である。

この構造は以下の点で意義を持つ。

- **因果律の保持**:g(t,T) は  $T \le t$  に対してのみ非ゼロであり、過去から現在への因果構造を反映する。
- 履歴構造の更新:  $\mu(t,T)$ 、 $\gamma(t,T)$  によって q(t,T) が逐次更新される。
- 履歴構造の保存:内部状態 q(t,T) が履歴全体を保持し、解析・可視化・設計の基盤となる。
- 入出力の結合:入力 G(t,T) と出力 f(t) の関係が g(t,T) を介して明示的に結合される。

# 7.1 再現(予測)への応用

再現(予測)問題では、入力系列  $\{G(t,T)\}$  に基づき、事象を再現し未来の出力  $\hat{f}(t)$  を推定することを目的とする。TAD の枠組みでは、推定された割当関数  $\hat{\mu}(t,T)$ 、補正項  $\hat{\gamma}(t,T)$  およびスケーリング係数  $\hat{\sigma}(t,T)$  を用いることで、

$$\frac{\partial g(t,T)}{\partial t} = -[\hat{\mu}(t,T) + \hat{\gamma}(t,T)] g(t,T) + G(t,T)$$

によって、g(t,T) を時刻 t まで発展させた後、

$$\hat{f}(t) = \int_{T_1}^t \hat{\sigma}(t, T) \,\hat{\mu}(t, T) \,g(t, T) \,dT$$

を得ることができる。

従来の再現(予測)モデルでは、対象領域ごとに用意された個別の関数に特定の形を仮定することで再現(予測)を行うのに対し、TAD は共通の関数  $\hat{\mu}(t,T)$  や  $\hat{\gamma}(t,T)$  をより柔軟に推定できるため、多様な実務状況に対応可能である。また、内部状態 g(t,T) を可視化することで、どの入力がいつ出力に寄与したかを時系列的に解釈することも可能となる。

# 7.2 逆設計への応用

#### 7.2.1 制約付き最適化問題

逆設計の課題は、所与の入力系列  $\{G(t,T)\}$  から所望の目標出力  $f^*(t)$  を実現するために、どのような割当  $\mu(t,T)$ 、補正  $\gamma(t,T)$ 、スケーリング  $\sigma(t,T)$  を設計すべきかを解く問題である。TAD の枠組みでは、

$$\frac{\partial g(t,T)}{\partial t} = -[\mu(t,T) + \gamma(t,T)] g(t,T) + G(t,T)$$

$$f^*(t) = \int_{T_1}^t \sigma(t, T) \, \mu(t, T) \, g(t, T) \, dT$$

という制約条件の下で、割当  $\mu(t,T)$ 、補正  $\gamma(t,T)$  及び  $\sigma(t,T)$  を逆算することになる。

このとき、単に  $f^*(t)$  を再現(予測)するだけでなく、最適化の観点から目的関数を追加し、より合理的な設計を行うこともできる。一般には同一の  $f^*(t)$  を再現(予測)する  $\mu(t,T),\gamma(t,T),\sigma(t,T)$  は複数存在するため、目的関数の最適化条件を付加することで絞り込むと考えてもよい。目的関数の例としては以下が挙げられる。

• 累積出力の最大化:

$$J_1 = \int_{t_0}^{t_1} f(t) dt$$

● 出力分布のエントロピー最大化:

$$J_2 = -\int_{T_1}^t p(t,T) \log p(t,T) dT$$

ここで  $p(t,T) = \frac{g(t,T)}{\int_{T_c}^t g(t,T') dT'}$  は規格化された履歴密度である。

◆ その他の目的関数:コスト最小化、滑らかさの制御、リスク回避的制約など。

これらの目的関数を組み合わせることで、逆設計問題は「制約付き最適化問題」として定式化でき、次節で 述べる解析的アプローチ(変分法)や数値最適化手法によって解くことが可能となる。

また、逆設計を助ける補助的手法として「停止テスト」を実施する方法もある。停止テストとは、所与の期間において新規投入 G(t) を意図的に停止(または大幅に削減)し、その区間で観測される出力 f(t) の減衰のみを用いて、 $\mu$  の尾の型(指数/ベき/周期的等)を実験的に同定する手法である。停止テストで  $\mu$  の尾の型を絞り込み、その結果を事前情報として逆推定(逆設計)の探索候補をあらかじめ絞り込むことができる。

#### 7.2.2 変分法による目的関数最適化

# 拡張汎関数(一般形)の定義

対角湧き出し入力  $G(t,T) = G(T)\delta(t-T)$  とすると、TAD の発展方程式は

$$\frac{\partial}{\partial t}g(t,T) = -\left(\mu(t,T) + \gamma(t,T)\right)g(t,T) + G(T)\delta(t-T) \tag{7.1}$$

$$f(t) = \int_{T_1}^{t} \sigma(t, T) \,\mu(t, T) \,g(t, T) \,dT \tag{7.2}$$

となる。ここで

$$J[\sigma, \mu, \gamma, g, G] = \int_{t_0}^{t_1} \int_{T_1}^{t} L(\sigma, \mu, \gamma, g, G) dT dt$$

を目的汎関数として定義し、 $L(\sigma,\mu,\gamma,g,G)$  を TAD ラグランジアンと呼称することにする。この時、例えば  $L(\sigma,\mu,\gamma,g,G)=\sigma\,\mu\,g$  とすれば、

$$J[\sigma, \mu, g] = \int_{t_0}^{t_1} \int_{T_1}^{t} \sigma(t, T) \, \mu(t, T) \, g(t, T) \, dT \, dt = \int_{t_0}^{t_1} f(t) \, dt$$

となり、これは累積出力最大化を意味し、J を自由エネルギーや作用と考えれば、解析力学の変分原理と同型である。 $^{*1}$ 

また、 $\sigma, \mu, \gamma, g, G$  は十分な正則性(対角近傍の連続性等)を満たすと仮定し、拡張汎関数の一般形を

$$\mathcal{J}[\sigma,\mu,\gamma,g,G,\psi] = \int_{t_0}^{t_1} \int_{T_1}^{t} \left\{ L(\sigma(t,T),\mu(t,T),\gamma(t,T),g(t,T),G(T)) - \psi(t,T) \left[ \frac{\partial}{\partial t} g(t,T) + \mu(t,T)g(t,T) + \gamma(t,T)g(t,T) - G(T)\delta(t-T) \right] \right\} dT dt \qquad (7.3)$$

と定義(乗数場  $\psi(t,T)$ )する。\*2端点固定の境界条件として

$$g(t_0, T)$$
 固定,  $\psi(t_1, T) = 0$  (7.4)

を課すものとし、(7.17) において  $\sigma, \mu, \gamma, g, G, \psi$  に関する第一変分を取ることを考える。 $\sigma, \mu, \gamma, g, G$  に個別の拘束条件を課す場合は、それぞれに固有の乗数場を課した変分をとる必要があるが、ここでは個別の拘束条件はないものとする。

#### $\sigma$ に関する変分(停留条件)

$$\delta \mathcal{J}[\sigma] = \int_{t_0}^{t_1} \int_{T_1}^{t} \frac{\partial L}{\partial \sigma} \, \delta \sigma \, dT \, dt = 0$$

$$\Rightarrow \frac{\partial L}{\partial \sigma} = 0$$
(7.5)

となる。ここで、  $\frac{\partial L}{\partial \sigma}=0$  が  $\sigma$  について非自明な拘束条件となる場合は固有の乗数場を課した変分をとる必要がある。

# $\mu$ に関する変分(停留条件)

$$\delta \mathcal{J}[\mu] = \int_{t_0}^{t_1} \int_{T_1}^{t} \left\{ \frac{\partial L}{\partial \mu} - \psi(t, T) g(t, T) \right\} \delta \mu \, dT \, dt = 0$$

$$\Rightarrow \frac{\partial L}{\partial \mu} - \psi(t, T) g(t, T) = 0$$

 $<sup>^{*1}\</sup> J$  を作用と見れば、いわゆる最小作用の原理に相当する。

 $<sup>^{*2}</sup>$  変分法と随伴方程式(最適制御の古典的導出)は [14,36] を参照のこと。

上式変分は  $\mu \ge 0$  の片側制約の下での変分となるため、ほぼ至る所 g > 0 として

(i)  $\mu>0$  (活性集合) の内点では  $\delta\mu$  を正負どちらにも取り得るため、最適性には  $\frac{\partial L}{\partial\mu}=\psi g$  が必要となる。

(ii)  $\mu=0$  の境界(不活性集合)では  $\delta\mu\geq 0$  の変化のみ許されるため、最適性には  $\frac{\partial L}{\partial\mu}\geq \psi g$  が必要となる。 よって、 $g>0, \mu>0$  においては、以下が停留条件となる。

$$\frac{\partial L}{\partial \mu} = \psi g$$

#### γに関する変分(停留条件)

$$\delta \mathcal{J}[\gamma] = \int_{t_0}^{t_1} \int_{T_1}^{t} \left\{ \frac{\partial L}{\partial \gamma} - \psi(t, T) g(t, T) \right\} \delta \gamma \, dT \, dt = 0$$

$$\Rightarrow \frac{\partial L}{\partial \gamma} - \psi(t, T) g(t, T) = 0$$

上式変分は  $\gamma \geq 0$  の片側制約の下での変分となるため、ほぼ至る所 g>0 として

(i)  $\gamma>0$ (活性集合)の内点では  $\delta\gamma$  を正負どちらにも取り得るため、最適性には  $\frac{\partial L}{\partial\gamma}=\psi g$  が必要となる。

(ii)  $\gamma=0$  の境界(不活性集合)では  $\delta\gamma\geq 0$  の変化のみ許されるため、最適性には  $\frac{\partial L}{\partial\gamma}\geq \psi g$  が必要となる。よって、 $g>0, \gamma>0$  においては、以下が停留条件となる。

$$\frac{\partial L}{\partial \gamma} = \psi g$$

# q に関する変分(停留条件)

$$\begin{split} \delta \mathcal{J}[g] &= \int_{t_0}^{t_1} \int_{T_1}^t \Big\{ \frac{\partial L}{\partial g} \, \delta g - \psi(t,T) \, \frac{\partial}{\partial t} \delta g - \psi(t,T) \, \mu(t,T) \delta g - \psi(t,T) \, \gamma(t,T) \delta g \Big\} \, dT \, dt \\ &= \int_{t_0}^{t_1} \int_{T_1}^t \Big\{ \frac{\partial L}{\partial g} + \frac{\partial}{\partial t} \psi(t,T) \, - \psi(t,T) \, \mu(t,T) - \psi(t,T) \, \gamma(t,T) \Big\} \delta g \, dT \, dt = 0 \\ &\Rightarrow \quad \frac{\partial}{\partial t} \psi(t,T) = -\frac{\partial L}{\partial g} + \left( \mu(t,T) + \gamma(t,T) \right) \psi(t,T) \end{split}$$

但し、時間方向の部分積分により

$$\int_{t_0}^{t_1} \int_{T_1}^t \psi \, \frac{\partial}{\partial t} (\delta g) \, dT \, dt = \left[ \int_{T_1}^t \psi \, \delta g \, dT \right]_{t_0}^{t_1} - \int_{t_0}^{t_1} \int_{T_1}^t (\frac{\partial}{\partial t} \psi) \, \delta g \, dT \, dt$$

となり、境界項は(7.4)のもとで消えることを用いた。 $^{*3}$ 計算途中で現れる時間t方向の部分積分により得られる方程式で、随伴方程式と呼ばれる。

<sup>\*3</sup> 時間方向の部分積分と境界条件の整合(有界性・可積分性)に関する技術条件は [14] を参照のこと。

# Gに関する変分(停留条件)

$$\begin{split} \delta \mathcal{J}[G] &= \int_{t_0}^{t_1} \int_{T_1}^t \Big\{ \frac{\partial L}{\partial G} + \psi(t,T) \, \delta(t-T) \Big\} \delta G \, dT \, dt \\ &= \int_{T_1}^{t_1} \int_{t_0}^{t_1} \Big\{ \frac{\partial L}{\partial G} + \psi(t,T) \, \delta(t-T) \Big\} \delta G \, dt \, dT = \int_{T_1}^{t_1} \Big\{ \int_{t_0}^{t_1} \frac{\partial L}{\partial G} \, dt + \psi(T,T) \Big\} \delta G \, dT = 0 \\ &\Rightarrow \int_{t_0}^{t_1} \frac{\partial L}{\partial G} \, dt + \psi(T,T) = 0 \end{split}$$

二重積分の領域は  $\{(t,T)|t_0\leq t\leq t_1,T_1\leq T\leq t\}$  なので、途中、積分領域を張り替えた上で T と t の積分の順序の入れ替えを実施した。\*4

# $\psi$ に関する変分(停留条件)

$$\delta \mathcal{J}[\psi] = \int_{t_0}^{t_1} \int_{T_1}^{t} \left\{ -\left[ \frac{\partial}{\partial t} g(t, T) + \mu(t, T) g(t, T) + \gamma(t, T) g(t, T) - G(T) \delta(t - T) \right] \delta \psi \right\} dT dt = 0$$

$$\Rightarrow \frac{\partial}{\partial t} g(t, T) = -\left( \mu(t, T) + \gamma(t, T) \right) g(t, T) + G(T) \delta(t - T)$$

となり、TAD の発展方程式そのものとなるが、変分原理を適用する際の拘束条件という意味合いとなる。

#### 変分最適条件

以上の考察から、変分最適条件として以下が成り立つ。

$$\frac{\partial L}{\partial \sigma} = 0 \tag{7.6}$$

$$\frac{\partial L}{\partial \mu} = \psi(t, T)g(t, T) \tag{7.7}$$

$$\frac{\partial L}{\partial \gamma} = \psi(t, T)g(t, T) \tag{7.8}$$

$$\frac{\partial}{\partial t}\psi(t,T) = -\frac{\partial L}{\partial g} + \left(\mu(t,T) + \gamma(t,T)\right)\psi(t,T) \tag{7.9}$$

$$\int_{t_0}^{t_1} \frac{\partial L}{\partial G} dt + \psi(T, T) = 0 \tag{7.10}$$

$$\frac{\partial}{\partial t}g(t,T) = -\left(\mu(t,T) + \gamma(t,T)\right)g(t,T) + G(T)\delta(t-T) \tag{7.11}$$

# TAD ラグランジアン $L(\sigma, \mu, \gamma, g, G)$ に関する恒等式

ここで、乗数場  $\psi(t,T)$  による重み付き履歴総量

$$W(t) := \int_{T_1}^t \psi(t, T) g(t, T) dT$$

 $<sup>^{*4}</sup>$  t=T となる T は  $t_0 \leq T \leq t_1$  に存在することに注意する。

を定める。これは、履歴分布 g(t,T) に乗数場  $\psi(t,T)$  を掛け合わせて合計した時点 t における履歴分布(履歴在庫)の総量である。時間微分は湧き出し  $G(T)\delta(t-T)$  を明示しているのでライプニッツの境界項は吸収されるため

$$\frac{dW}{dt} = \int_{T_1}^t \frac{\partial}{\partial t} \psi(t, T) \cdot g(t, T) dT + \int_{T_1}^t \psi(t, T) \cdot \frac{\partial}{\partial t} g(t, T) dT 
= \int_{T_1}^t \left[ -\frac{\partial L}{\partial g} + (\mu(t, T) + \gamma(t, T)) \psi(t, T)) \right] g(t, T) dT 
+ \int_{T_1}^t \left[ \psi(t, T) \{ -(\mu(t, T) + \gamma(t, T)) g(t, T) + G(T) \delta(t - T) \} \right] dT 
= -\int_{T_1}^t g(t, T) \frac{\partial L}{\partial g} dT + \int_{T_1}^t \psi(t, T) G(T) \delta(t - T) dT 
= -\int_{T_1}^t g(t, T) \frac{\partial L}{\partial g} dT + \psi(t, t) G(t)$$
(7.12)

途中、TAD の変分最適条件 (7.9) 及び (7.11) を用いた。ゆえに、

$$\int_{T_1}^{t} g(t,T) \frac{\partial L}{\partial g} dT = \psi(t,t) G(t) - \frac{dW}{dt}$$
(7.13)

が得られる。これは任意の TAD ラグランジアン  $L(\sigma,\mu,\gamma,g,G)$  に対して成り立つ恒等式である。

# 7.2.3 目的関数が累積出力最大化の場合

ここでは、目的関数の具体的な例として累積出力最大化のケースを考える。TAD の発展方程式を再掲すると

$$\frac{\partial}{\partial t}g(t,T) = -\left(\mu(t,T) + \gamma(t,T)\right)g(t,T) + G(T)\delta(t-T) \tag{7.14}$$

$$f(t) = \int_{T_1}^t \sigma(t, T) \,\mu(t, T) \,g(t, T) \,dT \tag{7.15}$$

なので、累積出力最大化の目的汎関数は

$$\int_{t_0}^{t_1} f(t)dt = \int_{t_0}^{t_1} \int_{T_1}^{t} L(\sigma, \mu, g) dTdt$$

となる。従って、TAD ラグランジアンは

$$L(\sigma, \mu, g) = \sigma(t, T)\mu(t, T)g(t, T) \tag{7.16}$$

となる。この時、拡張汎関数は

$$\mathcal{J}[\sigma,\mu,g,\psi] = \int_{t_0}^{t_1} \int_{T_1}^{t} \left\{ \sigma(t,T) \,\mu(t,T) \,g(t,T) - \psi(t,T) \left[ \frac{\partial}{\partial t} g(t,T) + \mu(t,T) g(t,T) + \gamma(t,T) g(t,T) - G(T) \delta(t-T) \right] \right\} dT \,dt \qquad (7.17)$$

と定義される。

#### 变分最適条件

前節で導出した変分最適条件は $\sigma, \mu, g, \psi$ による変分のみとなり、以下のようになる。

$$\frac{\partial L}{\partial \sigma} = \mu g = 0 \tag{7.18}$$

$$\frac{\partial L}{\partial \mu} = \sigma(t, T)g(t, T) = \psi(t, T)g(t, T) \quad \Rightarrow \quad \sigma(t, T) = \psi(t, T) \tag{7.19}$$

$$\frac{\partial}{\partial t}\psi(t,T) = -\sigma(t,T)\mu(t,T) + \left(\mu(t,T) + \gamma(t,T)\right)\psi(t,T) \tag{7.20}$$

$$\frac{\partial}{\partial t}g(t,T) = -\left(\mu(t,T) + \gamma(t,T)\right)g(t,T) + G(T)\delta(t-T) \tag{7.21}$$

(7.18) は、 $\sigma$  の変分から導かれる最適性条件だが、今回の TAD ラグランジアンの形では  $\sigma$  に対する拘束を課さない(線形になっている)ため、変分最適条件としては無効とする。

(7.19) は、 $\mu$  の変分から導かれる最適性条件で、出力を生む  $\{\mu g>0\}$  の支配集合では  $\lceil \psi = \sigma$  の一致」が最適の必要条件であることを示している。

(7.20) は、g の変分から導かれる随伴方程式で、将来にわたって得られる出力の"割引合計値"に関する条件である。(後述)

(7.21) は、 $\psi$  の変分から導かれる TAD の発展方程式(制約としての状態方程式)であるが、実態としては変分原理を適用する際の制約条件という意味合いとなる。

# 随伴方程式における $\psi(t,T)$ の解釈

(7.20) を t から  $t_1$  に向けて解くと

$$\psi(t,T) = \int_{t}^{t_1} \sigma(s,T) \,\mu(s,T) \,\exp\left(-\int_{t}^{s} \left(\mu(u,T) + \gamma(u,T)\right) du\right) ds \tag{7.22}$$

を得る。すなわち  $\psi(t,T)$  は「時刻 t に履歴 (t,T) の在庫 g を 1 だけ増やしたとき、将来 s>t に得られる 限界出力  $\sigma\mu$  を、割当  $\mu$  と劣化  $\gamma$  による生存確率  $\exp(-\int_t^s (\mu+\gamma))$  で割り引いた総和」と解釈できる。割引が必要なのは、自然劣化  $\gamma$  により価値が時間で減ること、割当  $\mu$  により早く使うほど将来に残らず将来寄与が小さくなること、という二つの理由によるものである。

#### 正味の変分最適条件

(7.19)と (7.20) を組み合わせると、 $\mu > 0$  の領域では

$$\frac{\partial}{\partial t}\sigma(t,T) = -\sigma(t,T)\,\mu(t,T) + \big(\mu(t,T) + \gamma(t,T)\big)\sigma(t,T) = \gamma(t,T)\sigma(t,T) \tag{7.23}$$

$$\Rightarrow \quad \sigma(t,T) = \sigma(t_0,T) \, \exp\!\left(\int_{t_0}^t \gamma(s,T) \, ds\right) \tag{7.24}$$

となり、累積出力を最大化する目的関数においては、(7.11) と (7.23) が正味の変分最適条件となる。累積出力を最大化する目的関数においては、 $\sigma(t,T)$  は減衰  $\gamma(t,T)$  を相殺する方向に作用することが最適解となる。\*5 また特別なケースとして「 $\sigma$ が t 非依存  $\iff \gamma \equiv 0$ 」(スケール換算  $\sigma$  が t 非依存の場合は減衰  $\gamma$  はゼロが要請される)という強い制約条件も含意していることが分かる。

 $<sup>^{*5}</sup>$   $\gamma$  による減衰機構が残存すると、累積出力を最大化する目的を達成できないことから自然に理解できる。

# 累積出力最大化制約下における TAD ラグランジアンの恒等式

前節で定義した重み付き履歴総量

$$W(t) := \int_{T_1}^t \psi(t, T) g(t, T) dT$$

は、履歴分布 g(t,T) に割引カーネル  $\psi(t,T)$  を掛け合わせて合計した時点 t における履歴分布(履歴在庫)の割引後価値の総額\*6である。すなわち「履歴 T ごとの履歴分布(履歴在庫) g(t,T) が、将来 s>t に生む限界出力の割引合計」の全履歴にわたる総和である。

この時、累積出力最大化を目的関数とした場合の前節の TAD ラグランジアンの恒等式 (7.13) は、(7.19) より

$$W(t) := \int_{T_1}^t \psi(t,T) \, g(t,T) \, dT \Longrightarrow \ V(t) := \int_{T_1}^t \sigma(t,T) \, g(t,T) \, dT$$

と再定義の上、さらに  $\psi(t,t) = \sigma(t,t)$  となることから

$$\int_{T_t}^t \sigma(t,T)\mu(t,T)g(t,T)\,dT = \psi(t,t)\,G(t) - \frac{dW}{dt} \quad \Longrightarrow \quad f(t) = \sigma(t,t)\,G(t) - \frac{dV}{dt} \tag{7.25}$$

が得られる。これは次のような会計的解釈が可能である。

- $\sigma(t,t)G(t)$  (即時寄与) :時刻 t に対角で流入した全量 G(t) を、その場のスケール係数  $\sigma(t,t)$  で換算した直ちの出力寄与を表す。
- f(t) (現在の正味の出力):時刻 t における正味の(実際の)出力を表す。
- $\frac{d}{dt}V(t)$  (将来価値の取り崩し):割当  $\mu$  と劣化  $\gamma$  により、履歴分布(履歴在庫)の割引済み将来価値 V(t) が取り崩される、あるいはプールされる変化率を表す。 $^{*7}$

つまり、時刻 t において系に流入した入力流量(にスケール係数を乗算したもの=  $\sigma(t,t)G(t)$ )のうち、実際に出力流量に回った f(t) との差額分が将来の割当  $\mu$  や減衰  $\gamma$  による残量変化率  $\frac{dV}{dt}$ (正負どちらもありうる)と等しいというつり合いの式に他ならない。

# 7.3 準定常状態におけるラプラス解析

TAD は t と T という 2 つの時間をパラメータとする理論であるため、時間平行移動対称性(t-T のみに依存)が成り立つ準定常状態を考えるのは自然であり、その場合、多くのケースで畳み込みの形になることからラプラス解析による数理分析が有効であると考えられる。以降の議論では簡略化のため

$$\sigma \equiv 1$$

として展開し、入力 (湧き出し) も対角湧き出し

$$G(t,T) = G(T) \delta(t-T)$$

<sup>\*6</sup> 影の価格(shadow value)とも呼ばれ、制約をわずかに緩めたとき目的関数がどれだけ良くなるかという"限界価値"を指す。(ラグランジュ乗数=随伴変数  $\psi$  の解釈)

<sup>\*7</sup> 従って、いま出力する分だけ将来の寄与可能性が目減りするということになる。

で考える。系の発展方程式は

$$\frac{\partial g(t,T)}{\partial t} = - \left( \mu(t,T) + \gamma(t,T) \right) g(t,T) \; + \; G(T) \, \delta(t-T) \label{eq:delta_t}$$

となる。

#### 7.3.1 準定常状態の定義と一般系の設定

割当関数  $\mu(t,T)$  及び補正項  $\gamma(t,T)$  が相対時間 t-T のみの関数として表される状態、すなわち準定常状態とする。また、因果性 (K(t-T)=0 for t-T<0) および K の可積分性(最終値定理では sF(s) が虚軸上に極をもたない等)の通常仮定の下で成立する。

$$\mu(t,T) = \mu(t-T), \qquad \gamma(t,T) = \gamma(t-T) \tag{7.26}$$

これは  $\mu, \gamma$  について時間平行移動対称性が成り立ち、絶対時刻ではなく時間差のみに依存することを意味する。

#### 7.3.2 ラプラス空間での像方程式

#### 履歴構造の一般解

このとき、TAD の基本解は

$$g(t,T) = G(T) \exp \left[ -\int_{T}^{t} \left( \mu(s-T) + \gamma(s-T) \right) ds \right]$$

で与えられる。

# 出力式と変数変換

出力 f(t) は

$$f(t) = \int_{T_1}^t \mu(t-T) \, G(T) \, \exp \left[ -\int_T^t \left( \mu(s-T) + \gamma(s-T) \right) \, ds \right] \, dT$$

となる。指数部の積分について  $\tau = s - T$  とおくと

$$\int_T^t \mu(s-T) \, ds = \int_0^{t-T} \mu(\tau) \, d\tau, \qquad \int_T^t \gamma(s-T) \, ds = \int_0^{t-T} \gamma(\tau) \, d\tau$$

が成り立つ。

# 応答関数の導入

以上より、準定常状態かつ対角湧き出し入力の場合の応答関数を

$$K(t-T) := \mu(t-T) \exp\left[-\int_0^{t-T} \left(\mu(\tau) + \gamma(\tau)\right) d\tau\right]$$
(7.27)

と定義する。このとき、

$$f(t) = \int_{T_1}^t G(T) K(t - T) dT$$
 (7.28)

と書ける。

# 畳み込み形とラプラス変換

初期時刻を  $T_1=0$  とすると畳み込み

$$f(t) = \int_0^t G(T) K(t - T) dT$$

となり、畳み込み定理より

$$F(s) = G(s) K(s) \tag{7.29}$$

を得る。

# 7.3.3 最終値定理

ラプラス解析における最終値定理により

$$f(\infty) = \lim_{s \to 0} s F(s) = \lim_{s \to 0} s G(s) K(s)$$
 (7.30)

が成り立つ。すなわち長時間挙動は s=0 近傍の極構造(特に G(s) と K(s) の s=0 での挙動)から決定される。\*8

# 7.4 ラプラス解析による再現(予測)と逆設計の一般化

# 7.4.1 Debye 型の再現(予測)

簡単な例として、Debye 型の緩和関数(応答関数)について考える。一定割当  $\mu(t-T)=\lambda>0$  減衰なし  $\gamma\equiv 0$  に対して

$$K(t-T) = \lambda e^{-\lambda(t-T)}$$

より

$$K(s) = \frac{\lambda}{s + \lambda}$$

が直ちに従い、\*9

$$F(s) = G(s) \frac{\lambda}{s+\lambda} \tag{7.31}$$

となる。例えば、入力 G(t) を

$$G(t) = 1 + e^{-\alpha t} \ (\alpha > 0)$$

とすると、この入力のラプラス像は

$$G(s) = \frac{1}{s} + \frac{1}{s+\alpha}$$

であり、したがって

$$F(s) = \left(\frac{1}{s} + \frac{1}{s+\alpha}\right) \frac{\lambda}{s+\lambda} \tag{7.32}$$

<sup>\*8</sup> ラプラス変換の最終値定理(収束条件・右半平面の極配置の仮定を含む)に拠る。標準的導入は [34, 26] 参照のこと。

 $<sup>^{*9}</sup>$  Debye の極性分子モデルに基づく単一時定数の緩和。古典的導入は [7] 参照のこと。

が得られる。従って、部分分数分解を施してラプラス逆変換することでこの場合の入力 G(t) に対する出力 f(t) の具体的な表式も得られる。(当然ながら、結果は Debye 型緩和関数(応答関数)に一致する。)

また、K(s) の極が左半平面にあり、sF(s) が虚軸上に極を持たないとき、最終値定理より以下が得られる。

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s F(s) = \lim_{s \to 0} s G(s) \frac{\lambda}{s + \lambda}$$

上の例では  $sG(s) \rightarrow 1$  なので

$$\lim_{t \to \infty} f(t) = 1$$

#### 7.4.2 その他の緩和関数(応答関数)の再現(予測)と逆設計

準定常の下では常に

$$F(s) = G(s) K(s)$$

であるから、 $\{F(s),G(s),K(s)\}$  のうち任意の二つを与えれば

$$F(s) = G(s) K(s), \qquad G(s) = \frac{F(s)}{K(s)}, \qquad K(s) = \frac{F(s)}{G(s)}$$

により残り一つが像空間で一意に決まる。必要に応じて逆ラプラス変換を施すことで、時間領域の f(t) や G(t)、さらには K(t-T) を経由した  $\mu(t-T)$  を復元できる。準定常(時間並進対称):a=t-T において は、出力の像は常に

$$F(s) = G(s) K(s), \qquad K(a) = \mu(a) \exp\left[-\int_0^a \mu(\tau) d\tau\right], \quad K(s) = \mathcal{L}\{K\}(s)$$
 (7.33)

で結ばれる。この簡潔な関係は、既知の緩和則の再現(予測)、観測データからの逆設計、および入力整形の三位一体の枠組みを与える。

1. 既存緩和関数の厳密再現(予測) --任意の緩和関数  $S_{\star}(a)$  を与えれば

$$\mu(a) = -\frac{d}{da} \ln S_{\star}(a), \qquad K(a) = \mu(a) S_{\star}(a) = -S'_{\star}(a), \qquad K(s) = \mathcal{L}\{-S'_{\star}\}(s)$$

により、近似なしで TAD の割当  $\mu$  と核 K を構成できる。典型例として

Debye: 
$$S(a) = e^{-\lambda a} \Rightarrow \mu(a) = \lambda, K(s) = \frac{\lambda}{s+\lambda}$$

KWW: 
$$S(a) = \exp[-(a/\tau)^{\beta}] \Rightarrow \mu(a) = \frac{\beta}{\tau} \left(\frac{a}{\tau}\right)^{\beta-1}, K(a) = \mu(a)S(a) \quad (0 < \beta \le 1)$$

\*\* KWW [21, 51] の K(s) は初等関数には落ちないが、上式から直接に  $\mu$  と K(a) を与える。

2. **観測スペクトルからの緩和関数の逆設計** ——入力と出力の像 G(s), F(s) が測定から既知(周波数応答  $s=i\omega$  上でも可)であれば

$$K(s) = \frac{F(s)}{G(s)}, \qquad K(a) = \mathcal{L}^{-1}\left\{\frac{F}{G}\right\}(a), \qquad S(a) = 1 - \int_0^a K(u) \, du, \qquad \mu(a) = \frac{K(a)}{S(a)} \, \left(S > 0\right)$$

により因果・安定の条件の下、未知の緩和を一意に特定できる。\*10

 $<sup>^{*10}</sup>$  価値換算  $\sigma(t,T)$  を含める場合は、 $F=G*(\sigma\mu e^{-\int (\mu+\gamma)})$  となるが、 $\sigma(t,T)$  を既知(KPI 換算)とみなすと同定が一意化しや

3. 割当  $\mu$  から内部ダイナミクスを同定  $--\mu$  (したがって K と S) が定まれば、履歴分布は

$$g(t,T) = G(T) S(t-T) \qquad (t \ge T)$$

と解析的に復元できる。内部年齢分布等、観測の背後にある履歴ダイナミクスを直接評価できる。

4. **応答関数を固定した入力整形(制御)** ——設計上 K(s) を所与とするとき、所望の出力像 F(s) に対して入力 G(s) は

$$G(s) = \frac{F(s)}{K(s)}$$

を選べばよい。したがって TAD は「応答関数の下での線形フィルタ」として、入力設計に直接用いられる。

5. 長時間極限と最終値定理 --

$$\lim_{t\to\infty}f(t)=\lim_{s\to 0}s\,F(s)=\lim_{s\to 0}s\,G(s)\,K(s)$$

により像空間の s=0 近傍の極構造だけから判定できる。

以上により、準定常の仮定は、既存緩和の厳密再現・同定・制御を単一の枠組みに統合する。TAD が履歴構造を保持しつつ、既存の緩和関数(応答関数)を一般化する枠組みであることが分かる。

# 第Ⅲ部

TAD による既存理論の再構成と他分野応用

第 III 部では、TAD の普遍性を「既存理論との接続」と「新たな応用可能性」の両面から検証する。まず、物理学における線形応答理論や可逆過程、解析力学との対応、孤立系エントロピーの議論と照合し、TAD が既存の枠組みを自然に包含することを確認する。そのうえで、人口動態、記憶、広告キャンペーン、経済学といった社会現象モデルを再現し、TAD 的な見方によって新しい理解を引き出す。さらに、より実践的な応用として自然言語モデル (LLM:Transformer) への TAD 機構の応用を試みる。第 III 部の考察により、TAD は学際的に多様な分野をつなぎ、既存理論を再編・拡張する統合的枠組みであることが明らかになる。

# 第8章 物理学の既存理論への接続

TAD は入力⇒蓄積⇒出力というメカニズムを持つ系をモデリングするのに適している。従って TAD は、同様のメカニズムを持つ物理学の既存理論に自然に接続できると考えられる。

# 8.1 線形応答理論への接続

# 8.1.1 線形応答理論とは

# 線形応答理論の概要

線形応答理論は、平衡状態にある系に微小な外場が加わったとき、その系の応答を一次近似(線形)で記述する理論である。主な対象は物理・統計力学であり、誘電率、磁化率、比熱、拡散係数など、多くの物理量の応答を統一的に説明する。[24,5]

# 応答関数の定義

外場 G(T) が系に印加されたとき、観測量 f(t) の変化は次式で表される:

$$f(t) = \int_{T_i}^{t} R(t - T) G(T) dT$$

ここで R(t-T) は応答関数であり、線形応答理論では因果律 R(t-T)=0 for T>t が前提となる。

# TAD 理論との接続への布石

TAD 理論においても出力 f(t) は履歴積分として

$$f(t) = \int_{T_t}^{t} \mu(t, T) g(t, T) dT$$

で表され、線形応答理論の構造と類似している。本章では議論を簡略化するため、スケール変換  $\sigma(t,T)\equiv 1$ 、補正項  $\gamma(t,T)\equiv 0$  とする。(線形応答理論の教科書的導出は [24])

#### 8.1.2 TAD 応答関数の導出

# 履歴構造の解

TAD の対角入力(湧き出し)の発展方程式:

$$\frac{\partial g(t,T)}{\partial t} = -\mu(t,T) g(t,T) + G(T)\delta(t-T)$$

その解は

$$g(t,T) = G(T) \exp \left[ -\int_{T}^{t} \mu(s,T) ds \right]$$

となる。

#### 応答関数の同定

TAD の出力式:

$$f(t) = \int_{T_1}^t \mu(t, T) G(T) \exp\left[-\int_T^t \mu(s, T) ds\right] dT$$

より、TAD における応答関数は一般に

$$R(t,T) = \mu(t,T) \exp\left[-\int_{T}^{t} \mu(s,T) ds\right]$$
(8.1)

という形になる。

#### 線形応答理論との一致

 $\mu(t,T)$  が時刻差 t-T のみの関数(例:定数または単純減衰)である場合、u=s-T の変数変換より、

$$R(t,T) = \mu(t-T) \exp \left[ -\int_0^{t-T} \mu(u) \, du \right]$$
 (8.2)

となるので、この R(t,T) も t-T のみの関数 R(t-T) となり、線形応答理論の応答関数と一致する。よって、TAD は線形範囲で既存の応答関数を自然に再現する。 $^{*1}$ 

# 線形応答理論との違い

線形応答理論における R(t-T) は固定的で、入力と出力の関係が単純畳み込み積分で表されるが、TAD では R(t,T) 相当の構造が時間依存・履歴依存で変化しうるため、設計次第で非線形フィードバック・履歴強化・多段応答をモデル化可能となる。

# 8.2 即時全量割当(完全可逆過程)の挙動

# 8.2.1 履歴密度 p(t,T) の $\delta$ 関数化

TAD 系が即時全量割当で駆動しているときは最新入力がその瞬間に全量消費されている状態である。 (この状態は  $\mu \to \infty$ ,  $G(t,T) = G(T)\delta(t-T)$  と同値である。) この時、履歴密度 p(t,T) は、因果律  $(p(t,T)=0 \ for\ T>t)$  及び正規化( $\int_{T_1}^t p(t,T)dT=1$ )の下で、任意の連続関数  $\varphi$  に対して以下のような 即時性(その瞬間の入力しか効かない)が成り立つ。

$$\int_{T_1}^t \varphi(T) \, p(t, T) \, dT = \varphi(t)$$

<sup>\*1</sup> 単一指数 (Debye) や KWW (stretched exponential) の核は TAD の  $K=\mu\exp(-\int\mu)$  で再現できる。[21, 51] 本小節では 簡単のため  $\gamma\equiv 0$  としている。一般には  $K=\mu\exp\left(-\int(\mu+\gamma)\right)$  である。

この時、分布の定義より  $p(t,T) = \delta(t-T)$  となる。このような p(t,T) として例えば、

$$p_{\tau}(t,T) = \frac{1}{\tau}e^{-\frac{t-T}{\tau}}$$

に対し、 $p(t,T) = \lim_{\tau \to +0} p_{\tau}(t,T)$  とすると、

$$\int_{T_1}^t p(t,T) dT = \lim_{\tau \to +0} \int_{T_1}^t p_\tau(t,T) dT = \lim_{\tau \to +0} \left[ e^{-\frac{t-T}{\tau}} \right]_{T_1}^t = \lim_{\tau \to +0} \left( 1 - e^{-\frac{t-T_1}{\tau}} \right) = 1$$

が成り立ち、

$$\int_{T_1}^t \varphi(T) \, p(t,T) \, dT = \lim_{\tau \to +0} \int_{T_1}^t \varphi(T) \, p_\tau(t,T) \, dT = \lim_{\tau \to +0} \int_{T_1}^t \varphi(T) \, \frac{1}{\tau} e^{-\frac{t-T}{\tau}} \, dT$$
$$= \lim_{\tau \to +0} \int_0^{\frac{t-T_1}{\tau}} \varphi(t-\tau u) \, e^{-u} \, du = \varphi(t) \int_0^\infty e^{-u} \, du = \varphi(t)$$

となるので、

$$p(t,T) = \lim_{\tau \to +0} p_{\tau}(t,T) = \lim_{\tau \to +0} \frac{1}{\tau} e^{-\frac{t-T}{\tau}} = \delta(t-T)$$
(8.3)

となる。\*2

# 8.2.2 $p(t,T) = \delta(t-T)$ におけるエントロピー変化

第5章で定義したエントロピーは(5.7)より、

$$S(t) = -\int_{T_{c}}^{t} p(t,T) \log p(t,T) dT$$
 (8.4)

ここで、 $p(t,T) = \delta(t-T)$  は点集中の分布であるため、正則化核  $p_{\tau}(t,T)$  を導入して議論を進める:

$$p_{\tau}(t,T) = \frac{1}{\tau} \phi\left(\frac{t-T}{\tau}\right) \quad (T \le t), \qquad \int_{0}^{\infty} \phi(u) \, du = 1 \tag{8.5}$$

ここで  $\tau > 0$  は分布の幅を表す小パラメータである。このとき、

$$p_{\tau}(t,T) \xrightarrow[\tau \to +0]{} \delta(t-T)$$

となる。\*3 \*4

$$\int_{T_1}^t \psi(T) \, p_\tau(t,T) \, dT = \int_0^{(t-T_1)/\tau} \phi(u) \, \psi(t-\tau u) \, du \xrightarrow[\tau \to +0]{} \int_0^\infty \phi(u) \, \psi(t) \, du = \psi(t)$$

<sup>\*2</sup> 途中積分計算においては、 $\frac{t-T}{\tau}=u$  の変数変換を実施した。また、本節全般に渡って優収束定理の成立を仮定した。(優収束定理 [39] と近似恒等核(approximate identity)の標準構成 [39, 45] に拠る。)  $^{*3}p_{\tau}(t,T):=\frac{1}{\tau}\phi(\frac{t-T}{\tau}) \quad (T\leq t) \text{ とおくと、任意の連続有界関数 } \psi \text{ に対し}$ 

よって  $p_{\tau}(t,T) \Rightarrow \delta(t-T)$  (分布の意味) である。  $^{*4}$  分布の極限を取る際の可積分性・支配収束の扱いは  $[39,\,45]$  を参照のこと。

変数変換  $u = (t - T)/\tau$  により

$$S_{\tau}(t) = -\int_{T_1}^{t} p_{\tau}(t, T) \log p_{\tau}(t, T) dT = -\int_{0}^{\frac{t-T_1}{\tau}} \frac{1}{\tau} \phi(u) \log \left[ \frac{1}{\tau} \phi(u) \right] \tau du$$
 (8.6)

$$= -\left(\int_{0}^{\frac{t-T_{1}}{\tau}} \phi(u) \log \phi(u) du - \log \tau \int_{0}^{\frac{t-T_{1}}{\tau}} \phi(u) du\right)$$
(8.7)

よって、

$$S(t) = \lim_{\tau \to +0} S_{\tau}(t) = -\int_{0}^{\infty} \phi(u) \log \phi(u) du + \lim_{\tau \to +0} \log \tau \int_{0}^{\infty} \phi(u) du$$
 (8.8)

$$= -\int_0^\infty \phi(u) \log \phi(u) du + \lim_{\tau \to +0} \log \tau$$
 (8.9)

右辺はtに依存せず、したがって

$$\frac{dS(t)}{dt} = 0\tag{8.10}$$

となる。このときエントロピーの値自体は  $S(t)=\lim_{\tau\to+0}\log\tau-\int\phi\log\phi=-\infty$  に発散するが、その時間微分は常に 0 である。これは、履歴密度が時間とともに形を変えずに対角線上を平行移動するだけであり、広がり(情報の混合)が生じないためである。

まとめると、即時全量割当の場合は履歴密度 p(t,T) は  $\delta$  関数化して  $p(t,T)=\delta(t-T)$  となる。このとき、エントロピー S(t) の時間変化は  $\frac{d}{dt}S(t)=0$  となり、完全可逆過程となる。また、ここでの議論では  $\gamma$  に対する制約はないことに注意する。

# **8.2.3** f(t) と G(t) の関係

TAD の発展方程式

$$\frac{\partial g(t,T)}{\partial t} = -\left[\mu(t,T) + \gamma(t,T)\right]g(t,T) + G(t,T) \quad (t \ge T)$$

$$f(t) = \int_{T_t}^t \sigma(t,T)\,\mu(t,T)\,g(t,T)\,dT$$

において、対角湧き出し  $G(t,T) = G(T)\delta(t-T)$  とし、割当として以下を仮定する。

$$\mu_{\tau}(t,T) = \frac{1}{\tau} > 0$$

この時、TAD の一般解は

$$g(t,T) = G(T) \exp\left(-\int_T^t \left(\mu(s,T) + \gamma(s,T)\right) ds\right) = G(T) \exp\left(-\frac{t-T}{\tau}\right) \exp\left(-\int_T^t \gamma(s,T) ds\right)$$

となる。すると系の出力  $f_{\tau}(t)$  は、(8.3) を用いて

$$f_{\tau}(t) = \int_{T_1}^t \sigma(t, T) \mu_{\tau}(t - T) g(t, T) dT = \int_{T_1}^t \sigma(t, T) G(T) \frac{1}{\tau} e^{-\frac{t - T}{\tau}} \exp\left(-\int_T^t \gamma(s, T) ds\right) dT$$

$$\rightarrow \int_{T_1}^t \sigma(t, T) G(T) \delta(t - T) \exp\left(-\int_T^t \gamma(s, T) ds\right) dT \quad (7.5)$$

$$= \sigma(t, t) G(t)$$

$$(8.11)$$

ここで、(8.11) における  $\tau$  は系が入力に反応(出力)するまでの遅延スケールを表していることが分かる。  $\tau \to +0$  の極限では、遅延スケールがゼロ、同時に割当  $\mu \to \infty$  を意味する。これは即時全量割当つまり完全可逆過程に相当する。さらにこの時、散逸  $\gamma(t,T)$  の効果が失われていることが分かる。これは散逸機構が有限の時間幅のもとで効果を発揮することから、直感的にも理解できる帰結である。TAD 系が減衰機構  $\gamma$  を内在させていたとしても即時全量割当(完全可逆過程=履歴分布の幅がゼロ)のもとではその効果が縮退しており、不可逆性が回復すると(履歴分布に有限の幅が出ると)減衰効果が回復するという解釈ができる。

#### 8.2.4 TAD の変分最適条件からのアプローチ

前節で導出した  $f(t) = \sigma(t,t)G(t)$  は、第7章で導出した累積出力最大化制約下における f(t) の会計恒等式

$$f(t) = \sigma(t, t) G(t) - \frac{dV}{dt}$$
  $V(t) := \int_{T_t}^t \psi(t, T) g(t, T) dT$  (8.12)

からも導出することができる。前節と同様に

$$\mu(t,T) = \frac{1}{\tau} > 0$$

を仮定すると、

$$g(t,T) = G(T) \exp\left(-\frac{t-T}{\tau}\right) \exp\left(-\int_{T}^{t} \gamma(s,T) ds\right)$$

なので、

$$\begin{split} |V(t)| &= |\int_{T_1}^t \psi(t,T) \, g(t,T) \, dT| = |\int_{T_1}^t \psi(t,T) G(T) \exp\left(-\frac{t-T}{\tau}\right) \exp\left(-\int_T^t \gamma(s,T) \, ds\right) \, dT| \\ &\leq \sup_{T \in [T_1,t]} |\psi(t,T) G(T)| \int_0^{t-T_1} e^{-a/\tau} \, e^{-\int_{t-a}^t \gamma(s,t-a) \, ds} \, da \\ &\leq M \int_0^{t-T_1} e^{-a/\tau} \, da = M \, \tau (1 - e^{-\frac{t-T_1}{\tau}}) \xrightarrow[\tau \to +0]{} 0, \qquad M := \sup_{T \in [T_1,t]} |\psi(t,T) G(T)| \end{split}$$

より、完全可逆極限(即時全量割当)では

$$V(t) = \int_{T_1}^t \psi(t, T) g(t, T) dT \longrightarrow 0, \qquad \frac{dV}{dt} \longrightarrow 0$$

となる。よって、(7.25) から

$$f(t) = \sigma(t, t) G(t)$$

となる。すなわち、完全可逆極限において、TAD の変分最適条件からも  $f(t) = \sigma(t,t) G(t)$  が示された。

V(t) は「履歴 T ごとの履歴分布(履歴在庫) g(t,T) が、将来に生む限界出力の割引合計」の全履歴にわたる総和なので、即時全量割当(完全可逆)の極限が持続している間は、

- 入力を全量出力にあてるので、割当  $\mu$  が将来に生む限界出力 V(t) への寄与はない。
- 入力を瞬間的に出力にあてるので、減衰 $\gamma$ が将来に生む限界出力V(t)への寄与はない。

ということからも自然で整合性のある帰結である。

# 8.3 解析力学との形式的対応(TAD-EL/Noether 同型)

本節では、即時全量割当(完全可逆極限)において  $f(t)=\sigma(t,t)G(t)$  が制約付き変分原理から得られることを示し、その書式が解析力学の形式(Euler–Lagrange 方程式)に対応することを述べる。以降、対角上のスケール換算係数を  $\sigma_{\Delta}(t):=\sigma(t,t)$  と書く。

# 8.3.1 出力の一般形と恒等分解

スケール変換後の出力 f(t) 及びスケール変換前の出力 h(t) は

$$f(t) = \int_{T_1}^t \sigma(t, T) \, \mu(t, T) \, g(t, T) \, dT, \qquad h(t) := \int_{T_1}^t \mu(t, T) \, g(t, T) \, dT.$$

で与えられる。対角値  $\sigma_{\Delta}(t) := \sigma(t,t)$  を用いると恒等的に

$$f(t) = \underbrace{\sigma_{\Delta}(t) h(t)}_{\text{урвійшіц}} + \underbrace{\int_{T_1}^t \left[\sigma(t, T) - \sigma_{\Delta}(t)\right] \mu(t, T) g(t, T) dT}_{=:R_{\sigma}(t)}$$
(8.13)

となる。ここで  $R_{\sigma}(t)$  は残差(非対角寄与)である。このとき、即時全量割当(完全可逆極限)では、

$$\mu(t,T)g(t,T) \to G(T)\delta(t-T)$$

なので、

$$R_{\sigma}(t) \rightarrow \left[\sigma(t,t) - \sigma_{\Delta}(t)\right]G(t) = 0$$

となるので、

$$f(t) = \sigma_{\Delta}(t) h(t) + R_{\sigma}(t) \longrightarrow \sigma_{\Delta}(t) h(t)$$
(8.14)

となる。つまり、即時全量割当(完全可逆極限)では

$$f(t) = \int_{T_1}^t \sigma(t, T) \,\mu(t, T) \,g(t, T) \,dT \to \sigma_{\Delta}(t) \,h(t) \tag{8.15}$$

のように f(t) は  $\sigma_{\Delta}(t)$  と h(t) の積に恒等分解できる。

# 8.3.2 制約付き変分原理

即時全量割当(対角集中)のもとで、(スケール換算なしの)対角出力流量は

$$h(t) := \int_{T_1}^t \mu(t, T) g(t, T) dT = \int_{T_1}^t G(T) \delta(t - T) dT = G(t)$$

のように縮退する。この拘束のもとで、(スケール換算なしの)累積出力量

$$q(t) := \int_{t_0}^t h(\tau) d\tau \quad \Rightarrow \quad \dot{q}(t) = h(t) = G(t)$$

を導入する。この拘束  $\dot{q}(t)=G(t)$  をラグランジュ乗数  $\psi_{\Delta}(t)$  で課した作用量  $L_{\Delta}(q,\dot{q},t)$  を $^{*5}$ 

$$L_{\Delta}(q,\dot{q},t) = \sigma_{\Delta}(t)\,\dot{q}(t) - \psi_{\Delta}(t)\,(\dot{q}(t) - G(t)) \tag{8.16}$$

と置く。q は絶対連続、 $\psi_{\Delta}, \sigma_{\Delta}, G$  は局所可積分(十分な正則性)とする。

ここで拘束条件( $\dot{q}(t)=G(t)$ )つきで出力  $\sigma_{\Delta}(t)\,\dot{q}(t)$  の時間積分(累積出力)の停留値を求める変分問題を考える。第一変分をゼロとする必要条件(ラグランジュ乗数法)から\*6

$$\frac{\partial L_{\Delta}}{\partial \psi_{\Delta}} = 0 \ \Rightarrow \ \dot{q}(t) = G(t)$$

(拘束の復元)が得られる。従って、即時全量割当(完全可逆極限)における時刻 tの出力は(8.15)より、

$$f(t) = \sigma_{\Delta}(t) h(t) = \sigma_{\Delta}(t) \dot{q}(t) = \sigma_{\Delta}(t) G(t) = \sigma(t, t) G(t)$$
(8.17)

すなわち、前節で導出した  $f(t)=\sigma(t,t)G(t)$  は即時全量割当(完全可逆)極限における拘束付き変分原理からも一貫して導かれる。

# 8.3.3 解析力学との形式的対応

#### 古典 Euler-Lagrange 方程式との形式的対応

一方、(8.16) に対する  $\dot{q}(t)$  に関する変分(停留条件)より

$$\frac{\partial L_{\Delta}}{\partial \dot{q}(t)} = 0 \implies \sigma_{\Delta}(t) - \psi_{\Delta}(t) = 0 \tag{8.18}$$

が得られる。ここで、

$$q(t) := 累積出力量 = \int_{t_0}^t h(\tau) d\tau, \qquad \dot{q}(t) := 対角出力流量 = h(t) = G(t)$$
 (8.19)

をそれぞれ一般化座標・速度とみなすと、(8.18) より、

$$\frac{d}{dt} \left( \frac{\partial L_{\Delta}}{\partial \dot{q}} \right) - \frac{\partial L_{\Delta}}{\partial q} = \frac{d}{dt} \left( \sigma_{\Delta}(t) - \psi_{\Delta}(t) \right) = 0 \tag{8.20}$$

となり、解析力学の Euler–Lagrange 方程式そのものとなる。これは拘束条件( $\dot{q}(t)=G(t)$ )つきの出力  $\sigma_{\Delta}(t)\,\dot{q}(t)$  の時間積分(累積出力)の停留値を求める変分問題と、一般化座標・速度の設定 (8.19) のもとで古典 Euler–Lagrange 方程式 (8.20) を解くことに形式的な対応関係があることを示している。

# ネーター(Noether)の定理と保存量

(8.18) は、q が循環座標であること( $L_{\Delta}$  が q に依存しない)ことから導かれる q に共役な一般化運動量 p(t) が保存されること(いわゆるネーター(Noether)の定理)を表している。再び書き下すと

$$p(t) := \frac{\partial L_{\Delta}}{\partial \dot{q}}(t) = \sigma_{\Delta}(t) - \psi_{\Delta}(t) = 0, \qquad \dot{p}(t) = 0$$
(8.21)

 $<sup>^{*5}</sup>$ 解析力学でいう「作用量」と一致する次元をもつとは限らないが、それに類する物理量と考えればよい。

 $<sup>^{*6}</sup>$  拘束条件をラグランジュ乗数で導入する標準形の導出は [14] を参照のこと。

である。すなわち **スケール変換**  $\sigma_{\Delta}$  と **随伴(割引による評価)**  $\psi_{\Delta}$  のギャップ p が時間を通じて一定(ゼロ保存)であることを表している。\*<sup>7</sup>

これは直感的には即時全量割当(完全可逆極限)における TAD の動力学が

「q(累積出力量)の平行移動対称性:累積カウントの始点の取り方によらないこと」  $= \lceil \frac{L_{\Delta}}{\partial \dot{q}} \ ($ 単位出力 $\dot{q}$  あたりの作用量)が時間に対して不変であること」

を課すこと(対称性が保存量を生むこと)を表している。\*8

# 8.4 スケール変換 $\sigma$ の摂理的意味と新たな知見

本節では、スケール変換係数  $\sigma(t,T)$  について考える。 $\sigma(t,T)$  は TAD 系の内と外を繋ぐスケール変換を表すが、その摂理的な意味と新たな知見について考察する。

#### 8.4.1 不可逆過程の普遍恒等式

第7章の結果より、累積出力最大化を目的関数として

$$f(t) = \sigma_{\Delta}(t)G(t) - \frac{d}{dt}V(t), \qquad V(t) := \int_{T_1}^t \psi(t,T) g(t,T) dT$$
 (8.22)

が成り立つ。また、前節と同様に

$$\sigma_{\Delta}(t) := \sigma(t, t), \qquad h(t) := \int_{T_1}^t \mu(t, T) g(t, T) dT$$
 (8.23)

と定義する。さらに、(8.13) より

$$f(t) = \underbrace{\sigma_{\Delta}(t) h(t)}_{\text{対角評価}} + R_{\sigma}(t) \tag{8.24}$$

$$R_{\sigma}(t) := \int_{T_1}^t \left[ \sigma(t, T) - \sigma_{\Delta}(t) \right] \mu(t, T) g(t, T) dT$$
(8.25)

が恒等的に成り立つ。(8.22)及び(8.24)より、

$$\frac{d}{dt}V(t) = \sigma_{\Delta}(t)(G(t) - h(t)) - R_{\sigma}(t)$$
(8.26)

が得られる。これは即時全量割当(完全可逆極限)を前提としない不可逆過程における恒等式と言えるものである。

<sup>\*7</sup> 本節では  $\dot{q}$  を独立な「制御」として扱い,停留条件  $\partial L_{\Delta}/\partial \dot{q}=0$  から  $\sigma_{\Delta}(t)-\psi_{\Delta}(t)=0$  を直に得る(すなわち  $p(t):=\sigma_{\Delta}-\psi_{\Delta}\equiv0$ )。この導出には終端条件は不要である。一方,古典的 Euler–Lagrange の立場(q を変数として変分)では  $\frac{d}{dt}(\partial L_{\Delta}/\partial \dot{q})-\partial L_{\Delta}/\partial q=\dot{p}=0$  より  $p={\rm const}$  までが一般形であり,自然境界(自由終端)を仮定すると境界項  $[p\,\delta q]_{t_0}^{t_1}=0$  から  $p\equiv0$  が決まる。両者は  $p\equiv0$  に帰着する点で整合的である。

<sup>\*8</sup> 剛体の角度  $\theta$  に対し  $L(\dot{\theta})$  が回転対称をもつと角運動量  $p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}$  が保存されるのと同様である。物理法則が「始点の取り方によらない」対称性をもつことは活字以上に強い制約(その代償としての保存則の存在)となる例示でもある。

#### 8.4.2 即時全量割当(完全可逆極限)における $\sigma$ の挙動

即時全量割当(完全可逆極限=対角集中): $\mu g \Rightarrow G\delta$  により、(8.23)(8.25) から  $R_{\sigma}(t) \rightarrow 0$ ,  $G(t) - h(t) \rightarrow 0$  となるから、(8.26) より  $\frac{d}{dt}V(t) \rightarrow 0$  となる。 ゆえに (8.22) より

$$f(t) \longrightarrow \sigma_{\Delta}(t) G(t) = \sigma(t, t) G(t)$$
 (8.27)

となり、即時全量割当(完全可逆極限)という強い制約により、 $f(t) = \sigma(t,t) G(t)$ という既知の事実となる。

# 8.4.3 スケール換算係数 $\sigma_{\Delta}(t) := \sigma(t,t)$ の時間依存性

即時全量割当(完全可逆極限)において、 $\sigma_{\Delta}(t) := \sigma(t,t)$  は一般には時間 t 依存となるが、これはもともとのスケール換算係数  $\sigma(t,T)$  の t,T 依存性によって大きく挙動が変わる。

- $\sigma(t,T)$  が t または T に陽に依存する場合:これは TAD 系から見た外部環境の現在(t)や過去(T)の状態によって TAD 系からの出力に対する感受性が変動する場合に相当する。結果的に即時全量割当(完全可逆極限)の対角集中により T は  $T\to t$  に縮退し、対角スケール変換係数は  $\sigma(t,t)=\sigma_{\Delta}(t)$  となり t に依存する。
- $\sigma(t,T)$  が t-T (年齢) のみに依存する場合: これは TAD 系から見た外部環境の時系列的な状態変化 の影響は受けず、TAD 系に対する入力時刻 T と出力時刻 t の時間差 t-T のみに依存する場合に相当する。結果的に即時全量割当(完全可逆極限)の対角集中により T が縮退し、対角スケール変換係数は  $\sigma(t-t)=\sigma(0)$ (定数)となる。

#### 8.4.4 ニュートン方程式との形式的対応

 $\sigma(t,T)$  に対して準定常状態を仮定すると、 $\sigma(t,T)=\sigma(t-T)$ (年齢依存)となる。この時、 $\sigma(t,t)$  の t 依存性は消失して  $\sigma(t-T)\to\sigma(t-t)=\sigma(0)$  となり定数となる。すなわち  $f(t)=\sigma(0)$  G(t) となる。この時、F(t)=G(t) 及び a(t)=f(t) と同定すれば  $a(t)=\sigma(0)$  F(t) を得る。ニュートンの運動方程式 G(t)=f(t) [16, 25]

$$F(t) = ma(t)$$

と比較すると、

$$\sigma(0) = \frac{1}{m} \tag{8.28}$$

が得られる。従って、TAD は即時全量割当(完全可逆極限)において古典力学との形式的な対応関係があると考えられる。この結果より、 $\sigma(0)$  は TAD の可逆過程における入力 G(t): 外力 F(t) を出力 f(t): 加速度 a(t) に変換する際の単位変換及びスケール変換を担っていると解釈することができる。 [16] これは TAD 系の内部と外部を  $\sigma$  が繋いでいることを意味しており、 $\sigma$  が摂理的にも大きな意味を持っていることを示唆している。

# 8.4.5 $f(t) = \sigma(t, t) G(t)$ に関する新たな知見

(8.26) において、  $\frac{d}{dt}V(t)=0$  (但し、 $V(t)\equiv 0$  である必要はない)が実現される時、(8.22) より

$$f(t) = \sigma_{\Delta}(t) G(t) = \sigma(t, t) G(t)$$

が成り立つ。この時、

$$R_{\sigma}(t) = \sigma_{\Delta}(t) (G(t) - h(t)) \tag{8.29}$$

となる。h(t) はスケール変換前の出力を表しているため、上式は在庫価値(履歴価値)V(t) が定常になる時は対角でのスケール変換後の入出力の差  $\sigma_{\Delta}(t) \big( G(t) - h(t) \big)$  と出力の非対角寄与  $R_{\sigma}(t)$  がバランスしている時であり、この時  $f(t) = \sigma_{\Delta}(t) \, G(t) = \sigma(t,t) \, G(t)$  が成り立つことを意味する。これはつまり、即時全量割当(完全可逆過程)を仮定せずとも  $f(t) = \sigma_{\Delta}(t) \, G(t) = \sigma(t,t) \, G(t)$  が成り立ち得ることを表す。特に  $\sigma(t,T)$  が準定常の場合は  $f(t) = \sigma(t,t) \, G(t) = \sigma(0) \, G(t)$  となり、入力 G(t) に対する出力 f(t) が線形応答することを表す。これは制御工学的に  $\sigma(t,T)$  をうまく設計することで入力 G(t) に対する出力 f(t) を線形に制御できる可能性を持つことを示唆している。

#### 8.4.6 対角湧き出し前提における入出力関係と世界の分類

#### L- $\psi$ ゲージという考え方

第 7 章において展開したように、対角湧き出しにおける任意の目的関数(TAD ラグランジアン)  $L(\sigma,\mu,\gamma,g,G)$  は

$$\frac{\partial}{\partial t}g(t,T) = -\big(\mu(t,T) + \gamma(t,T)\big)g(t,T) + G(T)\delta(t-T)$$

および随伴の定義

$$\frac{\partial}{\partial t}\psi(t,T) = -\frac{\partial L}{\partial q} + \left(\mu(t,T) + \gamma(t,T)\right)\psi(t,T), \qquad \psi(t_1,T) = 0$$

の下で、次の恒等式が普遍に成立する。

$$\underbrace{\int_{T_1}^t g \frac{\partial L}{\partial g} dT}_{:=M(t)} = \underbrace{\psi(t,t)}_{\text{対角割引} \, \text{为}-\hat{\text{A}}, \nu} \left( \text{影価格} \right) \underbrace{\frac{G(t)}{\text{注} \lambda}}_{\text{ᡶ} \lambda} - \frac{d}{dt} \underbrace{\left( \int_{T_1}^t \psi(t,T) \, g(t,T) \, dT \right)}_{=:W(t)}. \tag{8.30}$$

ここで M(t) は「目的ベースの有効限界出力」、W(t) は「履歴価値ストック」である。これは対象領域の目的 関数 L を選ぶと、それに対応する  $\psi$  が決まり、それらのペア  $L-\psi$  によらず恒等的に成り立つという意味で  $L-\psi$  ゲージと呼ぶべきものである。

#### TAD 世界分解(一般ゲージ)

(8.30) に基づくと、任意の目的関数 L 及び対応する  $\psi$  に対して

- $W(t)\equiv 0$  は履歴構造が存在しない完全可逆系に対応し、 $M(t)=\psi(t,t)G(t)$  は全て対角集中した即時全量割当の極限である。このうち  $\psi$  が時間平行移動不変(準定常)であれば  $\psi(t,t)=\psi(0)$  となり、比例則  $M(t)=\psi(0)G(t)$  が成立する。
- $W(t)\equiv C\neq 0$  は定常的に履歴価値を保持する不可逆系(対角と非対角がバランスした状態)を表す。 このとき  $\dot{W}=0$  の下で  $M(t)=\psi(t,t)G(t)$  が成立し、さらに  $\psi$  が準定常なら  $M(t)=\psi(0)G(t)$  となる。ここに散逸項  $\gamma>0$  が存在すれば、系は持続的な入出力流を伴う非平衡定常(NESS)となる。
- W(t) が時間に依存する場合( $\dot{W}\neq 0$ )、定常から外れた一般の非平衡過程となり、 $M(t)=\psi(0)G(t)$  も  $M(t)=\psi(t,t)G(t)$  も成立しない。

となることが分かる。すなわち、目的関数 L の形を限定しない一般形としたままで、W の挙動と  $\psi$  の(準) 定常性で次の五類型に分類できることが分かる。

- 1.  $W \equiv 0$  完全可逆,  $\psi$  準定常:  $M(t) = \psi(0) G(t)$  (LTI 比例;  $\psi$  版オーム則)
- $2.~W\equiv 0$  完全可逆, $\psi$  非準定常:  $M(t)=\psi(t,t)\,G(t)$ (時間駆動の比例則)
- 3.  $W \equiv C \neq 0$  不可逆定常,  $\psi$  準定常:  $M(t) = \psi(0) G(t)$  (定常在庫でも比例持続)
- 4.  $W \equiv C \neq 0$  不可逆定常、 $\psi$  非準定常:  $M(t) = \psi(t,t) G(t)$  (状態依存・媒質時間変動)
- 5. 上記以外( $\dot{W} \neq 0$ ) 不可逆非定常系:  $M(t) = \psi(t,t)G(t) \dot{W}(t)$ (一般非平衡;比例崩壞)

#### TAD 世界分解(累積出力最大化ゲージ)

目的関数を  $L = \sigma \mu g$  (累積出力) に特化すると

$$\frac{\partial L}{\partial g} = \sigma \mu, \qquad M(t) = \int_{T_1}^t g \, \frac{\partial L}{\partial g} \, dT = \int_{T_1}^t \sigma \mu g \, dT = f(t)$$

となり、最適性より  $\psi \equiv \sigma$  が得られるので、

$$\underbrace{f(t)}_{=\int \sigma \mu g \, dT} = \sigma(t, t) \, G(t) - \frac{d}{dt} \underbrace{\left(\int_{T_1}^t \sigma(t, T) \, g(t, T) \, dT\right)}_{=:V(t)}. \tag{8.31}$$

となる。累積出力最大化ゲージは特に物理学ではよく現れる。このとき五世界分類(一般ゲージ)は  $W \to V$ 、  $\psi \to \sigma$ 、  $M(t) \to f(t)$  の対応関係により、以下のようになる。

| 区分  | <b>条件 (</b> V, σ <b>)</b>            | 入出力関係                                   | 物理的対応/特徴                                    | 代表例                              |
|-----|--------------------------------------|-----------------------------------------|---------------------------------------------|----------------------------------|
| (1) | $V\equiv 0,\sigma$ 準定常               | $f(t) = \sigma(0) G(t)$                 | 完全可逆、即時全量割当。時<br>刻平行移動不変な媒質。                | ニュートン方程式、ハ<br>ミルトン系              |
| (2) | $V\equiv 0,\sigma$ 非準定常              | $f(t) = \sigma(t, t) G(t)$              | 可逆だが非自律。外部プロト<br>コルにより係数が時変。                | パラメトリック駆動<br>系、可変弾性体、可変<br>屈折率媒質 |
| (3) | $V\equiv C(\neq 0),\sigma$<br>準定常    | $f(t) = \sigma(0) G(t)$                 | 不可逆だが定常。線形応答領域(準静的比例)。散逸があれば NESS。          | オームの法則、フーリ<br>エ・フィックの法則、<br>粘性流動 |
| (4) | $V \equiv C(\neq 0), \sigma$<br>非準定常 | $f(t) = \sigma(t, t) G(t)$              | 不可逆・定常、係数が時間・<br>状態に依存。非準定常<br>NESS。        | サーミスタ、触媒劣<br>化、粘弾性劣化、学習<br>率変化系  |
| (5) | $V$ 非定数 $(\dot{V} \neq 0)$           | $f(t) = \sigma(t, t) G(t) - \dot{V}(t)$ | 不可逆・非定常。エネルギー<br>/価値が蓄積・放出を繰返す<br>一般の非平衡過程。 | 緩和過程、履歴型応<br>答、非線形応答系            |

表 8.1 対角湧き出し前提における V と  $\sigma$  に基づく世界の分類

世界の分類:上表により、TAD の統一枠組みの下で V と  $\sigma$  の性質に応じて五つの世界に整然と区別されることが分かる。特に (3)(4) 世界は散逸を伴う線形応答域としてオーム的比例関係を示し、 $\sigma$  が準定常か否かによって、通常の線形応答と状態依存型(非準定常 NESS)とに分かれる。

備考: $\sigma$  が準定常とは  $\sigma(t,T)=\sigma(t-T)$  が成り立つ場合を指し、このとき  $\sigma(t,t)=\sigma(0)$  が得られる。一方、非準定常の場合  $\sigma(t,T)$  は明示的に t に依存し、時間変動や状態依存を持つ媒質を表す。この場合も  $f(t)=\sigma(t,t)G(t)$  は厳密に成立するが、比例係数 は時間により変化する。

# 8.5 孤立系におけるエントロピー増大則の並行性

TAD 系において、時刻  $t=t_0$  まで時間発展した履歴分布  $g(t_0,T_0)>0$   $(T_0\leq t_0)$  が存在するとする。今、時刻  $t=t_0$  で入力も出力もない孤立系になったとする。

$$\mu\equiv 0 \Rightarrow f(t)\equiv 0$$
 (出力なし), 
$$G\equiv 0 \quad (入力なし),$$
  $\gamma(t,T)>0 \quad (減衰機構あり)$ 

を仮定すれば、時刻  $t > t_0$  における TAD の時間発展式は

$$\frac{\partial g(t,T)}{\partial t} = -\gamma(t,T) g(t,T)$$

で与えられる。この時、境界入力が存在しない (p(t,t)=0) ため、エントロピー時間発展式は次の形となる。

$$\frac{dS(t)}{dt} = \text{Cov}(\gamma(t, T), \log p(t, T))$$
(8.32)

初期分布  $g(t_0,T_0)>0$  が存在するため、上式は非ゼロで時間発展(非自明な時間発展)する。

# 8.5.1 $\gamma(t,T)$ に関する仮定

履歴密度 p(t,T)>0 に対し、 $\gamma(t,T)=\Gamma(p(t,T))$  とする.ただし  $\Gamma:(0,1]\to\mathbb{R}$  は単調非減少関数と仮定する.この仮定は減衰機構  $\gamma(t,T)$  が p(t,T) が高い部分を優先して減衰させる(より秩序ある部分から優先して減衰させる)ことを意味する。

# 8.5.2 孤立系のエントロピー増大則との対応

この仮定のもとで、時刻 t を固定して記号を簡略化して Z:=p(t,T) を確率変数とみなし、Z' を Z と同分布の独立なコピーとする。 $\Gamma$  も  $\log$  も (0,1] 上で単調非減少なので,単調関数の共分散非負性:Chebyshev 型不等式 [10] より、任意の実現に対して

$$(\Gamma(Z) - \Gamma(Z')) (\log Z - \log Z') \ge 0$$

が成立する。両辺の期待値をとると

$$0 \le \mathbb{E}[(\Gamma(Z) - \Gamma(Z'))(\log Z - \log Z')]$$

展開して整理すると、Z' と Z が独立なコピーであることに注意すると

$$\mathbb{E}[\Gamma(Z)\log Z] = \mathbb{E}[\Gamma(Z')\log Z'] \qquad \mathbb{E}[\Gamma(Z)\log Z'] = \mathbb{E}[\Gamma(Z')\log Z]$$

なので、

$$0 \leq \mathbb{E}[\Gamma(Z)\log Z] - \mathbb{E}[\Gamma(Z)\log Z'] - \mathbb{E}[\Gamma(Z')\log Z] + \mathbb{E}[\Gamma(Z')\log Z']$$
$$= 2 \mathbb{E}[\Gamma(Z)\log Z] - 2 \mathbb{E}[\Gamma(Z)] \mathbb{E}[\log Z]$$
$$= 2 \operatorname{Cov}(\Gamma(Z), \log Z)$$

したがって、 $\Gamma(Z), \log Z$  を元  $(Z \to p(t,T), \Gamma(Z) \to \Gamma(p(t,T)) \to \gamma(t,T))$  に戻して

$$\operatorname{Cov}(\gamma(t,T), \log p(t,T)) \ge 0. \quad \Rightarrow \quad \frac{dS(t)}{dt} \ge 0$$

が成立する。

これは、 $\gamma(t,T)$  が履歴密度 p(t,T) の高い部分(つまり秩序だった成分)と正の相関をもつように構成されているならば、すなわち「秩序を優先的に壊す」ような性質を持っていると仮定するならば、エントロピーが増大することを示す。

これはすなわち、熱力学における孤立系のエントロピー増大則との形式的な並行性を示唆している。\*9

# 8.6 物理分野におけるヴィンテージ効果と線形成長帯

本節では詳細な検証は行なわないが、第6章で普遍的性質として取り上げたヴィンテージ効果と線形成長帯は、物理分野においても存在し、TADの枠組みで整合的に説明可能であると想定される。代表的な現象としては

- 磁気粘性(一定磁場保持):[18, 27] 一定磁場印加下で磁化が緩慢に(対数時間依存で)ドリフトする現象で、TAD では年齢 a=t-T 依存の減衰  $\gamma(a)$  と  $S(a)=\exp\left(-\int_0^a (\mu+\gamma)\right)$  を用い、核  $K(a)=\mu(a)S(a)$  によって履歴寄与の減衰(ヴィンテージ)を表現しうる。
- 磁化の線形成長帯:磁場 G(t) を入力とみなして一定レートで変化させると、過渡後に磁化 M(t) がほぼ一定勾配で増加する区間が現れる。TAD の畳み込み応答  $(K*\dot{G})(t)$  の下で、K が可積分であれば  $(K*\dot{G})(t) \to {\rm const}$  となり、線形成長帯が発現しうる。

があるが、本節は現象論的な示唆を与えるものであり、当該系に固有の物性や核の選択、パラメータ推定、およびデータ適合性の検証は今後の課題である。

<sup>\*9</sup> 本稿では熱力学におけるエントロピー増大則そのものを主張している訳ではなく、あくまで形式的なアナロジーとして提起している点に注意されたい。

# 8.7 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)

| (1) 見出し                | (2) 仮定 $(\mu, \gamma, \sigma, G(t,T))$                                    | (3) 直感的理由(短                         | (4) 既存理論との対比                                        | (5) TAD の優位性                                             |
|------------------------|---------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------|----------------------------------------------------------|
|                        |                                                                           | 文)                                  |                                                     |                                                          |
| 線形応答理論への               | $\mu(t,T) = \mu(t-T), \ \gamma \equiv 0,$                                 | "年齢" $a = t - T$ の                  | 線形応答の応答関数                                           | R を履歴依存・時変へ                                              |
| 接続(畳み込み核               | $\sigma \equiv 1$ ,                                                       | みで減衰が決まる微                           | R(a) =                                              | 拡張可。 $g(t,T)$ で寄与                                        |
| の再現)                   | $G(t,T) = G(T)\delta(t-T)$                                                | 小摂動の仮定                              | $\mu(a) \exp\left(-\int_0^a \mu\right) \mathcal{E}$ | の可視化が可能                                                  |
|                        |                                                                           |                                     | 再現                                                  |                                                          |
| 可逆極限(即時全               | $\mu_{\tau}(t,T) = \frac{1}{\tau} \rightarrow \infty, \ \gamma \equiv 0,$ | 遅延スケール $	au 	o 0$                   | 古典力学の $F=ma$                                        | 不可逆度を τ で連続制                                             |
| 量割当                    | $\sigma(t,t) = \frac{1}{m}$ (写像議論),                                       | で入力が瞬時に全量                           | と形式同型( $a = \sigma F$ )                             | 御。対角集中の可逆極                                               |
| $\Rightarrow p(t,T) =$ | $G(T)\delta$                                                              | 出力へ割当                               |                                                     | 限と通常 TAD を単一枠                                            |
| $\delta(t-T)$ )        |                                                                           |                                     |                                                     | で接続                                                      |
| 孤立系のエントロ               | $\mu \equiv 0, \ G \equiv 0,$                                             | "秩序(高 p)を優                          | 熱力学的孤立系の                                            | $\frac{dS}{dt} = \operatorname{Cov}(\gamma, \log p) \ge$ |
| ピー増大との並行               | $\gamma(t,T) = \Gamma(p(t,T))$ (単調                                        | 先して壊す"減衰で                           | $dS/dt \ge 0$ と形式的に                                 | 0 を条件付きで導出。境                                             |
| 性                      | 非減少), $\sigma \equiv 1$                                                   | 混合が進む                               | 並行                                                  | 界項の扱いが明瞭                                                 |
| 磁気粘性(ヴィン               | $\mu(a)$ , $\gamma(a)$ を年齢 $a = t - T$                                    | 古い履歴ほど寄与が                           | 経験的な対数時間依存                                          | g(t,T) で年代別寄与を                                           |
| テージ効果)                 | の関数とし、 $K(a) =$                                                           | 弱まり、緩慢ドリフ                           | の記述を核 $K(a)$ で機                                     | 分解。モード混合・時変                                              |
|                        | $\mu(a) \exp\left(-\int_0^a (\mu + \gamma)\right)$ , G                    | トが出る                                | 械的に再現                                               | パラメータ同定に直結                                               |
|                        | は一定磁場印加                                                                   |                                     |                                                     |                                                          |
| 磁化の線形成長帯               | K 可積分,入力 $G(t)$ をレー                                                       | 過渡後は                                | 過渡応答→準定常の線                                          | 入力プロファイルと核                                               |
|                        | ト一定 ( $\dot{G} \approx { m const}$ ), $\gamma$ は                          | $(K * \dot{G})(t) \to \text{const}$ | 形帯の経験則                                              | の積で"帯"の生起条件                                              |
|                        | 系に応じ選択                                                                    | で勾配一定帯が現れ                           |                                                     | を解析・設計可能化                                                |
|                        |                                                                           | る                                   |                                                     |                                                          |

# 第9章 人口動態モデルへの応用

本章では、TAD(Time Allocation Dynamics)理論を用いて人口動態の数理モデルを再構成する。従来の人口モデル(コーホートモデル、ロジスティックモデルなど)は、出生率・死亡率といった要因をパラメトリックに設定し、年齢階層ごとの人口推移を記述してきた。これらのモデルは実務的な予測には有効である一方で、人口の履歴構造や動態の連続的変化を直接的に表現することは難しかった。

TAD 理論では、出生・死亡といった人口フローを入庫(出生)・蓄積(生存)・出庫(死亡)として捉え、履歴分布 g(t,T) を明示的にモデル化することで、以下を可能とする:

- 年齢分布や世代構成の連続的推定
- 戦争・災害・政策介入といった短期・長期イベントの影響の構造的評価
- 死亡率・出生率の変動シナリオを組み込んだ柔軟な人口予測

本章ではまず、TAD 構造に基づく人口モデルの基礎定式化を示し、続く節でその可視化、死亡率構造設計、 従来モデルとの整合性、および新たな予測・拡張の視点を論じる。

# 9.1 TAD 構造による人口モデル

#### 9.1.1 モデル化の基本概念

TAD を人口モデルに適用する際の基本的な対応関係は以下の通りである。

- ullet 出生:ある時刻 T に生まれた人口を G(T) とする
- **生存**:時刻 t > T において生存している人数を履歴分布 q(t,T) で表す
- 死亡:蓄積人口から死亡により減少する人数を割当関数  $\mu(t,T)$  により制御する

#### 9.1.2 基本方程式

本章では、人口動態を TAD のメカニズムで検討するにあたり、

- 入力と出力の間にスケーリングは不要であるため  $\sigma \equiv 1$
- 割当  $\mu$  以外の減衰機構は不要であるため  $\gamma \equiv 0$
- 時刻 T の出生が後の時刻 t>T で更新されることはない(因果律)ので対角湧き出し  $G(t,T)=G(T)\delta(t-T)$

として議論を進める。G(T) は出生「レート」(人/年)、 $G(T)\delta(t-T)$  は時点 T における瞬時流入の「量」(人)として解釈する。

TAD 理論の基本方程式を人口モデルに適用すると、

$$\frac{\partial g(t,T)}{\partial t} = -\mu(t,T)\,g(t,T) + G(T)\delta(t-T)$$

となる。この微分方程式の解は次式で与えられる:

$$g(t,T) = G(T) \exp \left[ -\int_T^t \mu(s,T) \, ds \right]$$

#### 9.1.3 死亡数と総人口

死亡数 f(t) を

$$f(t) = \int_{T_1}^t \mu(t, T) g(t, T) dT$$

総人口(生存者数) N(t) を

$$N(t) = \int_{T_1}^t g(t, T) dT$$

として表す。出生率・死亡率のシナリオを G(T),  $\mu(t,T)$  に反映させることで、短期・長期の人口動態を一貫して記述できる。

# 9.2 在庫的解釈と履歴の可視化

#### 9.2.1 在庫的解釈の導入

人口動態モデルを TAD 構造で扱う際は、人口の生存状態は「在庫」として解釈し、第 I 部で展開した在庫管理(在庫鮮度)モデルとのアナロジーで考えると分かりやすい。

• 入庫(出生):新たに生まれた人口が在庫に加わる

● 蓄積(生存):在庫として維持される人口

● 出庫(死亡):在庫から取り出される(死亡する)人口

この視点により、人口動態の解析は在庫管理モデルと等価に表現でき、以下の利点がある。

- 生存人口の総量変化と世代別構成を同時に追跡可能
- 政策介入(出生率改善・医療向上)の効果を在庫の「補充率」や「減耗率」で定量評価可能
- 非定常イベント (災害・パンデミック) の影響を履歴構造に直接反映可能

#### 9.2.2 履歴分布の可視化

履歴分布 g(t,T) は、時刻 T に出生した世代が時刻 t でどれだけ生存しているかを表す。これを t-T 平面上で可視化することで、次のような解析が可能となる。

● 各世代の人口減衰曲線(ライフテーブル)を連続関数として表現

- 同一時刻における世代間比較(若年・中年・高齢層の比率変化)
- 歴史的イベント(戦争・パンデミック)の影響を特定世代における急激な減少として可視化

履歴分布 g(t,T) の定義式は

$$g(t,T) = G(T) \exp \left[ -\int_{T}^{t} \mu(s,T) ds \right]$$

であり、これを t-T 平面で評価することで、出生年次を横軸・評価時点を縦軸とした人口ヒートマップが得られる。

総人口 N(t) は

$$N(t) = \int_{T_1}^t g(t, T) dT$$

と書け、在庫的解釈ではこれが残存総在庫として機能する。

#### 9.2.3 死亡率構造の設計と予測

#### **基本式**

履歴分布 g(t,T) の発展方程式は次式で定義される:

$$\frac{\partial g(t,T)}{\partial t} = -\mu(t,T)g(t,T) + G(T)\delta(t-T) \tag{9.1}$$

ここで  $\mu(t,T)$  は時間 t における、出生時刻 T の世代の死亡率を表す。この関数形を設計することで寿命分布や死亡リスクの時間変化をモデル化する。

#### 死亡率構造の具体例

死亡率構造設計において考慮すべき要素としては以下がある。

● 年齢依存性: t-T (経過年数)に依存する形

● 時期依存性: t 自体に依存する形(医療技術・環境要因の変化)

● **政策・イベント依存性**: 災害・パンデミック・戦争など特異イベントによる短期的変化

# 9.3 既存モデルとの整合性と拡張

#### 9.3.1 指数減衰モデルの再現と TAD による拡張可能性

単純な指数減衰モデルは、死亡率  $\lambda>0$ 、出生率  $G(T)=G_0$  を一定として、総人口(生存人口)N(t) は以下のように表される。N(0)=0(時刻 t=0 で総人口ゼロ)とする。 $^{*1}$ 

$$N(t) = \int_0^t G_0 e^{-\lambda(t-T)} dT = \frac{G_0}{\lambda} (1 - e^{-\lambda t})$$
 (9.2)

対応する TAD モデルの設定を

 $<sup>^{*1}</sup>$  実務では、既存人口があるので g(0,T) の初期分布か  $T_1<0$  の過去履歴を与えるケースが多い。

• 割当関数: $\mu(t,T) = \lambda$  (定数)

• 入力関数:  $G(T) = G_0$  (一定出生率)\*2

• 初期時刻: $T_1 = 0$ 

とすれば、履歴分布 g(t,T) は

$$g(t,T) = G_0 \exp\left[-\int_T^t \lambda \, ds\right] = G_0 \exp\left[-\lambda(t-T)\right]$$

となるので、総人口(生存人口)は

$$N(t) = \int_0^t g(t, T) dT = \int_0^t G_0 \exp[-\lambda(t - T)] dT = \frac{G_0}{\lambda} (1 - e^{-\lambda t})$$
(9.3)

となり、指数減衰モデルの N(t) が再現される。長時間極限  $t\to\infty$  では  $N(\infty)=\frac{G_0}{\lambda}$  となり、飽和状態となる。また、 $\mu(t,T)$  にイベント補正項や年齢依存性を加えることで、パンデミック・政策介入の影響を含む非定常モデルに拡張可能である。

#### 9.3.2 Gompertz 型モデルの再現と TAD による拡張可能性

Gompertz モデル [Makeham1860, 17] の人口動態への応用は古くから知られている。は高齢期に死亡率が指数的に増加する寿命モデルであり、総人口は以下のように表される。N(0)=0(時刻 t=0 で総人口ゼロ)とする。

$$N(t) = \int_0^t G_0 \exp\left[-\frac{a}{b} \left(e^{b(t-T)} - 1\right)\right] dT \tag{9.4}$$

対応する TAD モデルの設定を

- $\mu(t,T) = a e^{b(t-T)}$
- $G(T) = G_0$  (一定出生率)
- 初期時刻  $T_1 = 0$

とすれば、履歴分布 g(t,T) は

$$g(t,T) = G_0 \exp \left[ -\int_T^t a \, e^{b(s-T)} \, ds \right] = G_0 \exp \left[ -\frac{a}{b} \left( e^{b(t-T)} - 1 \right) \right]$$

となるので、総人口(生存人口)は

$$N(t) = \int_0^t g(t, T) dT = \int_0^t G_0 \exp\left[-\frac{a}{b} \left(e^{b(t-T)} - 1\right)\right] dT$$
 (9.5)

となり、Gompertz 型モデルの N(t) が再現される。 $b\to 0$  の極限では指数減衰モデルに帰着し、パラメータ a,b を時間依存化すれば医療進歩や社会要因の影響を組み込める。

 $<sup>^{*2}</sup>$  本章では G(T) を外生で捉えているが、例えば「女性年齢別出生率×女性人口」のように内生で捉えるモデルも当然ありえる。

### 9.3.3 Weibull 型モデルの再現と TAD による拡張可能性

Weibull モデル [50] は寿命分布の幅を柔軟に表現できるモデルで、総人口は以下のように表される。 N(0)=0 (時刻 t=0 で総人口ゼロ) とする。

$$N(t) = \int_0^t G_0 \exp\left[-(\lambda(t-T))^k\right] dT \tag{9.6}$$

対応する TAD モデルの設定を

- $\mu(t,T) = k \lambda^k (t-T)^{k-1}$
- $G(T) = G_0$  (一定出生率)
- 初期時刻  $T_1 = 0$

とすれば、履歴分布 g(t,T) は

$$g(t,T) = G_0 \exp\left[-\int_T^t k \,\lambda^k (s-T)^{k-1} \,ds\right] = G_0 \exp\left[-(\lambda(t-T))^k\right]$$

となるので、総人口(生存人口)は

$$N(t) = \int_0^t g(t, T) dT = \int_0^t G_0 \exp[-(\lambda(t - T))^k] dT$$
 (9.7)

となり、Weibull モデルの N(t) が再現される。k=1 で指数減衰モデルを再現でき、k>1 で加齢に伴う死亡率増加を、k<1 で幼児死亡リスクなどを表現可能である。また、 $\lambda$  を時間依存化して環境変化を取り込むことも可能である。

# 9.3.4 SIR モデルの TAD による再構成

本節では、新型コロナ禍で広く用いられた SIR モデルが、TAD (Time-Allocation Dynamics)の枠組みから自然に導かれることを示す。TAD は「感染年齢」の線形ダイナミクス(履歴分布)と、集団相互作用が作る非線形な湧き出し(発生項)を分離して記述するため、SIR の本質を保ったまま、世代時間・割当・緩和関数の観点で構造を透視化できる。とくに、回復(除去)効果を一定とすればデバイ型核に還元され、標準の SIR 方程式が直ちに再現される。また、緩和関数を一般化すればコール=コールや KWW 型の非指数緩和へ無理なく拡張でき、観測された入出力の像比から未知の緩和関数・割当率を同定する逆設計にも道が開ける。すなわち SIR は TAD の特別例であり、TAD は古典疫学モデルを履歴と周波数(ラプラス)という統一言語で再解釈・拡張するための基盤を与える。

#### 履歴分布と基本式

各状態  $X \in \{S, I, R\}$  に対して、発生(入力)時刻 T と観測時刻 t に依存する履歴分布  $g_X(t, T)$  を定義する。 TAD では、状態 X の系内流出割当・補正を二分し、時間発展を

$$\frac{\partial g_X(t,T)}{\partial t} = -\left(\mu_X(t,T) + \gamma_X(t,T)\right)g_X(t,T), \qquad t \ge T \tag{9.8}$$

で与える。ここで  $\mu_X$  は「他状態への割当(遷移)」、 $\gamma_X$  は「同状態からの消尽(離脱)」を表す。新規感染は「感染年齢 t-T=0 の境界から流入」する事象であり、境界条件 g(t,t)=G(t) はこの写像をそのまま表現するため、系への新規流入は  $\delta$  項ではなく、境界条件 t=T により与えるモデルとする。\* $^3$ 

各総量は

$$X(t) = \int_{T_1}^t g_X(t, T) dT$$

ライプニッツ則より

$$\frac{dX(t)}{dt} = \underbrace{g_X(t,t)}_{\text{\tiny fRFQ (\$fRight)}} - \int_{T_1}^t \left(\mu_X(t,T) + \gamma_X(t,T)\right) g_X(t,T) dT \tag{*}$$

# S/I/R の境界条件と割当・補正の設定

# ■ S (感受性者:未感染者)

新規流入は無い(出生等はモデル外)ので

$$g_S(t,t) = 0,$$
  $\gamma_S(t,T) \equiv 0,$   $\mu_S(t,T) = \beta(t) I(t)$ 

したがって

$$\frac{dS(t)}{dt} = -\int_{T_1}^t \mu_S(t, T) \, g_S(t, T) \, dT = -\beta(t) \, I(t) \underbrace{\int_{T_1}^t g_S(t, T) \, dT}_{S(t)} = -\beta(t) \, S(t) \, I(t)$$
(9.9)

#### ■ I (感染者)

新規感染が境界項として流入:

$$g_I(t,t) = G_I(t), \qquad G_I(t) = \beta(t) S(t) I(t)$$

感染者在庫の流出は「回復・死亡」による消尽のみとし

$$\mu_I(t,T) \equiv 0, \qquad \gamma_I(t,T) = \gamma(t,T)$$

よって

$$\frac{dI(t)}{dt} = \underbrace{g_I(t,t)}_{=\beta(t)S(t)I(t)} - \int_{T_1}^t \gamma(t,T) g_I(t,T) dT$$
(9.10)

標準 SIR では  $\gamma(t,T) \equiv \gamma$  として

$$\frac{dI(t)}{dt} = \beta(t)S(t)I(t) - \gamma \underbrace{\int_{T_1}^t g_I(t,T) dT}_{=I(t)} = \beta(t)S(t)I(t) - \gamma I(t)$$
(9.11)

#### ■ R (回復者)

回復者への新規流入は「感染者からの消尽(回復・死亡)」に等しい:

$$g_R(t,t) = G_R(t), \qquad G_R(t) = \int_{T_t}^t \gamma_I(t,T) g_I(t,T) dT$$

 $<sup>^{*3}</sup>$  人口動態モデルでは  $\delta$  項で与え、SIR モデルでは境界値で与えていることになるが、どちらも等価な記法である。

回復者からの流出は無いとし

$$\mu_R(t,T) \equiv 0, \qquad \gamma_R(t,T) \equiv 0$$

したがって

$$\frac{dR(t)}{dt} = \underbrace{g_R(t,t)}_{=\int_{T_1}^t \gamma(t,T) g_I(t,T) dT} - \int_{T_1}^t 0 \cdot g_R(t,T) dT = \int_{T_1}^t \gamma(t,T) g_I(t,T) dT. \tag{9.12}$$

標準 SIR では  $\gamma(t,T) \equiv \gamma$  より  $dR/dt = \gamma I(t)$  となる。

#### 標準 SIR への一致

以上の設定のもと、

$$\beta(t) \equiv \beta, \qquad \gamma(t, T) \equiv \gamma$$

と特殊化すれば、

$$\frac{dS}{dt} = -\beta SI, \qquad \frac{dI}{dt} = \beta SI - \gamma I, \qquad \frac{dR}{dt} = \gamma I \tag{9.13}$$

が厳密に再現される。すなわち、標準 SIR は TAD の特殊ケースである。

# 概念的関係(集計 SIR vs. ミクロ TAD)

標準 SIR は、TAD の履歴変数 T を集約して潰した世界の動力学を、「 $\beta$ , $\gamma$  が定数」「回復率が感染後経過時間に依らない」等の仮定の下で記述する集計モデルである。これに対し TAD は、感染時刻 T の履歴を保持した

$$\frac{\partial g_X(t,T)}{\partial t} = -(\mu_X + \gamma_X)g_X, \qquad g_X(t,t) = G_X(t)$$
(9.14)

という**ミクロな動力学**を与え、集計量 X(t) は T に関する積分で得る。ゆえに標準 SIR は、TAD における T-履歴の集約極限として位置づけられる。

# 今後の方向性:割当・補正項設計による分析とシミュレーション

疫学特性や政策介入を  $\mu, \gamma$  に反映させることで、過去事例の事後分析と将来シナリオ・シミュレーションが 同一枠組みで可能になる。例:

- 定数回復率(標準 SIR): $\gamma_I(t,T) \equiv \gamma$ 、 $\mu_I \equiv 0$
- **感染後経過時間依存** (Weibull 型):  $\gamma_I(\tau) = k\lambda(\lambda\tau)^{k-1}$  ( $\tau = t T$ )
- 隔離・治療の段階効果: $\gamma_I(\tau) = \gamma_0 + \gamma_1 \mathbf{1} \{ \tau > \tau^* \}$
- 季節性・NPI の接触率変動: $\mu_S(t,T) = \beta(t)I(t)$ 、 $\beta(t) = \beta_0 \left(1 + \varepsilon \cos \frac{2\pi t}{\text{year}}\right)$
- 医療逼迫の影響: $\gamma_I(t,T) = \gamma_0 \phi(H(t))$ (病床占有率 H(t) に依存、 $\phi' < 0$ )

このように  $\mu, \gamma$  の関数形を設計・同定することで、政策評価・感度分析・最適化へ拡張でき、標準 SIR では難しかった感染者数予測(ピーク後の感染者減衰カーブが鈍化する現象等)を再現できる可能性がある。

# 9.3.5 人口動態におけるヴィンテージ効果と線形成長帯

本節では実証的検証は扱わないが、第6章で普遍的性質として取り上げたヴィンテージ効果と線形成長帯は、人口動態の標準的現象とも整合的に説明可能であることを記しておく。代表例として:

• 年齢依存割当とヴィンテージ効果:出生や入国などの流入をレート G(t) とし、年齢 a=t-T に依存する死亡・離脱割当(ハザード)  $\mu(a)$  を仮定する。 $S(a)=\exp\left(-\int_0^a \mu(s)\,ds\right)$  とおくと、時点 t における死亡・離脱フロー f(t) は

$$f(t) = \int_0^{t-T_1} \underbrace{\mu(a) S(a)}_{K(a)} G(t-a) da$$

と表せる(K(a) は履歴寄与の核)。K(a) が a とともに減衰することで、古い履歴ほど寄与が小さくなる=ヴィンテージ効果が現れる。例えば Gompertz—Makeham 型  $\mu(a)=A+Be^{ca}$  を用いれば、 $K(a)=\mu(a)\,e^{-\int_0^a\mu}\in L^1$ (可積分)で履歴の希薄化(古い世代ほど寄与が減衰(ヴィンテージ効果))が明示できる。

• 政策操作による線形成長帯: 政策ドライバ X(t) (例:年間純移民枠、出生支援強度)を一定レートで変化  $(\dot{X}(t)=\alpha)$  させ、その変化が流入に比例して効くとする  $(G(t)=\dot{X}(t)=\alpha)$ 。ここで  $S'(a)=-\mu(a)S(a)$  を用いると

$$\int_0^\infty \mu(a) \, da < \infty \implies \int_0^\infty K(a) \, da = \int_0^\infty \mu(a) S(a) \, da = -\int_0^\infty S'(a) \, da = 1 - S(\infty) < 1$$

このとき

$$f(t) = \int_0^{t-T_1} K(a) \, \dot{X}(t-a) \, da = \alpha \int_0^{t-T_1} K(a) \, da$$

であり、TAD の会計恒等式より

$$\frac{dN}{dt} = G(t) - f(t) = \alpha - \alpha \int_0^{t-T_1} K(a) \, da \longrightarrow \alpha \left(1 - \int_0^\infty K(a) \, da\right) = \alpha S(\infty) \qquad (t \to \infty)$$

したがって過渡の後は

$$N(t) = (\alpha S(\infty)) t + \text{const} + o(1)$$

すなわち N(t) は直線的(線形成長帯)に振る舞う。

 $\mu(a)$  は具体的な人口指標(高齢人口、生産年齢人口、出生数、卒業・就業・退職フロー等)や生存・離脱構造に応じて整合化する必要がある。当該パラメータの推定とデータ適合性の検証は今後の課題とする。

#### McKendrick-von Foerster と TAD の関係

TAD の発展方程式において、年齢 a=t-T に対し、n(t,a):=g(t,t-a) とおけば、適切な座標変換のもと

$$\frac{\partial}{\partial t}n(t,a) + \frac{\partial}{\partial a}n(t,a) = -\mu(t,t-a)n(t,a), \qquad n(t,0) = G(t)$$

となり、TAD は年齢構造人口 PDE(McKendrick-von Foerster)[28, 13, 20] に一致する。年齢構造人口 PDE では、流速項  $\frac{\partial}{\partial a}n(t,a)$  があるが、これは人口を構成する全員が等しく年齢(a=t-T)を 1 年ずつ更

新していくことを表現している。TAD の枠組みでは、T をラベルとして表現するため、流速項にあたる項はない。また TAD では、g(t,T) と  $\mu(t,T)$  の二変数動力学に統合し、非定常イベント・政策介入を同一の数理で扱える点に本質的な新規性がある。

# 9.4 TAD による新たな予言と拡張的視点

従来の人口動態モデルは、

- 死亡率・出生率をパラメトリックに固定し、
- 平衡または準定常状態を前提とすることが多かった。

一方、TAD 理論は、履歴構造 g(t,T) と割当関数  $\mu(t,T)$  や補正項  $\gamma(t,T)$  を明示的に扱うことで、非定常的・イベント駆動型の動態を予言可能である。特に、既存モデルでは表現困難であった以下のような特徴を自然に記述・予言することができる:

- 短期的外乱(戦争・災害・政策)の長期影響
- 戦時中の出生率低下と戦後の出生率急増
- 世代間メモリ効果(出生履歴間の相互作用)
   ⇒補正項 γ(t,T) による履歴の強化(例:ベビーブーム波及)や抑制(例:資源制約・経済的負担)
- パンデミック時の死亡率急上昇とその後の回復

# 9.5 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)

| (1) 見出し           | (2) 仮定 $(\mu, \gamma, \sigma, G(t,T))$                     | (3) 直感的理由(短                         | (4) 既存理論との対比                                      | (5) TAD の優位性               |
|-------------------|------------------------------------------------------------|-------------------------------------|---------------------------------------------------|----------------------------|
|                   |                                                            | 文)                                  |                                                   |                            |
| TAD 人口モデル         | $\sigma \equiv 1, \ \gamma \equiv 0,$                      | 出生は対角から流                            | 連続時間コーホート                                         | g(t,T) で世代別に可視             |
| の基礎(対角出           | $G(t,T) = G(T)\delta(t-T),$                                | 入, 生存は在庫, 死                         | (ライフテーブル) と                                       | 化/イベントや政策を                 |
| 生・在庫解釈)           | $\frac{\partial g}{\partial t} = -\mu(t, T)g + G(T)\delta$ | 亡は割当で流出とい                           | 整合                                                | $\mu$ , $G$ に直結して一貫記       |
|                   | $\partial t$                                               | う素朴な写像                              |                                                   | 述                          |
| 指数減衰(定数ハ          | $\mu(t,T) = \lambda$ (定数), $\gamma \equiv 0$ ,             | 死亡率が時間・年齢                           | $N(t) = \frac{G_0}{\lambda} (1 - e^{-\lambda t})$ | 非定常化( $\lambda(t)$ )や世代    |
| ザード)              | $\sigma \equiv 1$ , $G(T) = G_0$ (一定出                      | に依らず一定という                           | を厳密再現                                             | 依存( $\lambda(T)$ )への拡張     |
|                   | 生)                                                         | 最小仮定                                |                                                   | が容易                        |
| Gompertz 型(加      | $\mu(t,T) = a e^{b(t-T)}, \ \gamma \equiv 0,$              | 高齢期にハザードが                           | $g(t,T) = G_0 \exp[-$                             | $b \rightarrow 0$ で指数型に連続  |
| 齢で指数的に死亡          | $\sigma \equiv 1, \ G(T) = G_0$                            | 指数的に上がる経験                           | $\left[\frac{a}{b}(e^{b(t-T)}-1)\right],$         | / a,b の時変化で医療              |
| 率上昇)              |                                                            | 則を素直に表現                             | $N(t) = \int g  dT $ と一致                          | 進歩などを取り込める                 |
| Weibull 型(柔軟      | $\mu(t,T) = k \lambda^k (t-T)^{k-1},$                      | 年齢とともに上が                            | g(t,T) =                                          | 幼児死亡(k<1)~高齢               |
| な寿命分布)            | $\gamma \equiv 0, \ \sigma \equiv 1, \ G(T) = G_0$         | る/下がるハザード                           | $G_0 \exp \left[-(\lambda(t-T))^k\right]$         | 期増加(k>1)まで連続               |
|                   |                                                            | を一式で表現                              | と一致 (k=1 で指数)                                     | 表現/時変 λ も可                 |
| 死亡率構造の設計          | $\mu(t,T) = \mu_a(t-T) +$                                  | 加齢・医療進歩・災                           | 従来はモデルごとに別                                        | 設計→同定→シナリオ                 |
| (年齢・時期・イ          | $\mu_t(t) + \mu_{\text{evt}}(t, T), \ \gamma \equiv 0,$    | 害等の要因を加法/                           | 建て/ここでは一つの                                        | の一貫パイプライン/                 |
| ベント依存)            | $\sigma\equiv 1,~G$ は出生シナリオ                                | 混合で設計                               | μ 設計問題に統合                                         | 感度分析・介入評価に直                |
|                   |                                                            |                                     |                                                   | 結                          |
| SIR の TAD 再構      | $g_S,g_I,g_R$ 各在庫; $g_S$ は                                 | 感染生成は境界流                            | $eta, \gamma$ 定数で標準 SIR                           | 波形形成のどの世代が                 |
| 成(感染年齢の在          | $\mu_S = \beta(t) I(t)$ で流出, $g_I$ は                       | 入、回復・除去は在                           | に一致/感染年齢依存                                        | 効いたかを分解可能/                 |
| 庫化)               | 境界 $g_I(t,t)$ = $\beta SI$ で流入・                            | 庫消尽という分離が                           | で一般化                                              | 政策のタイミング評価                 |
|                   | $\gamma_I$ で消尽, $g_R$ は境界に                                 | 自然                                  |                                                   | に強い                        |
|                   | $\int \gamma_I g_I$                                        |                                     |                                                   |                            |
| ヴィンテージ効果          | $\mu(a)$ を年齢関数,                                            | 古い世代ほど寄与が                           | 在庫理論の核畳み込み                                        | K(a) の形で世代寄与を              |
| (核                | $S(a) = \exp(-\int_0^a \mu),$                              | 薄まる"記憶の衰                            | と同型/                                              | 直接制御・同定/災害等                |
| $K(a)=\mu(a)S(a)$ | f(t) =                                                     | え"を人口に移植                            | Gompertz-Makeham                                  | の痕跡を抽出                     |
|                   | $\int_0^{t-T_1} K(a) G(t-a) da$                            |                                     | 等と整合                                              |                            |
| 政策操作と線形成          | 政策ドライバ $X(t)$ を一定                                          | 過渡後は                                | 経験的な直線増加期を                                        | 帯の勾配= $\alpha S(\infty)$ を |
| 長帯(準定常勾           | レート( $\dot{X}=lpha$ )で操作,                                  | $(K * \dot{X})(t) \to \text{const}$ | 核と入力で解析的に説                                        | 理論的に決定/設計逆                 |
| 配)                | $G(t) = \dot{X}(t),$                                       | で $dN/dt$ が一定に                      | 明                                                 | 算が可能                       |
|                   | $\int_0^\infty K(a)  da < 1$                               |                                     |                                                   |                            |
| McKendrick-von    | n(t,a) = g(t,t-a) と置換,                                     | 年齢構造 PDE と同                         | 古典 PDE の一般式を                                      | 非定常イベントや政策                 |
| Foerster への写      | $\partial_t n + \partial_a n = -\mu(t, t-a) n,$            | 型に落ちることを明                           | TAD の二変数動力学                                       | も $g,\mu,G$ に集約/同一         |
| 像                 | n(t,0) = G(t)                                              | 示                                   | へ組み込み                                             | 枠で取り扱い可能                   |

# 第10章 教育・記憶モデルへの応用

TAD (Traced Allocation Dynamics) 理論は、入力時刻と観測時刻の二変数に依存する内部状態 g(t,T) を基礎として、系内の動的変化を統一的に記述する枠組みである。教育・記憶モデルにおいても、記憶の保持・忘却は入力時刻に依存する動態を持つため、TAD で自然に記述できると考えられる。

本章では、出力(他状態への割当)を考えないため  $\mu \equiv 0$ 、スケーリングは  $\sigma \equiv 1$  とし、忘却は補正  $\gamma(t,T)$  により表す。既存モデルとしてのエビングハウスの忘却曲線を、TAD の G(t,T)(入力)と  $\gamma(t,T)$ (忘却補正)の選び方として再構成する。 [9,52]

最後に今後の研究の方向性として、TAD による復習計画最適化のためのモデル設定を行なう。

# 10.1 TAD によるエビングハウスの忘却曲線の再構成

#### 10.1.1 TAD でのモデル設定

- $\mu \equiv 0$ ,  $\sigma \equiv 1$
- 学習による入力は対角湧き出し流入:

$$G(t,T) = G(T) \delta(t-T)$$

• 忘却補正は相対時間のみの関数: $\gamma(t,T) = \gamma(t-T)$ 

# 10.1.2 記憶残存量 g(t,T) と最終値

TAD の基本式

$$\frac{\partial g(t,T)}{\partial t} = -\gamma(t,T)\,g(t,T) + G(t,T)\,\left(t \geq T\right), \quad g(t,T) = 0\,\left(t < T\right)$$

に対して、一般解は

$$g(t,T) = G(T) \exp\left(-\int_{T}^{t} \gamma(s-T) ds\right)$$

単純指数  $(\gamma(t-T) = \lambda)$  の場合

$$g(t,T) = G(T) e^{-\lambda(t-T)} \to 0 \ (t \to \infty)$$

$$\tag{10.1}$$

準指数  $(\gamma(t-T) = a(t-T)^{b-1})$  の場合

$$g(t,T) = G(T) \exp\left(-\frac{a}{b}(t-T)^b\right) \to 0 \ (t \to \infty)$$
(10.2)

となり、いずれもエビングハウスの忘却曲線が再現され、無限時間後は完全忘却となる。[31]

#### 定性的解釈

一方、準指数型

単純指数型は、忘却率  $\gamma=\lambda$  が一定であるため、「記憶強度が時間に比例して指数的に減衰する」という最も単純なモデルである。これは個々の記憶痕跡が独立かつ等確率で消失する場合に対応し、物理学で言えば放射性崩壊や一階緩和に相当する。すなわち、外的刺激や内部干渉の影響を平均化した**定常的環境**を仮定している。

$$\gamma(a) = a (t - T)^{b-1}, \qquad 0 < b < 1$$

は、忘却率が経過時間とともに減少する形であり、初期には急速に忘却が進むが、後期には緩やかに飽和する。これはエビングハウス曲線が示す「初期急降下・後期緩減」パターンを自然に再現する。TAD 的に言えば、 $\gamma$ が定数でなく**履歴時間** a=t-T **の関数として緩和する**ことで、履歴依存的な減衰("記憶の慣性")を表している。両者の対比を要約すると:

- 単純指数: 忘却率が一定 → 記憶の喪失はマルコフ的、過去に依らない「瞬時独立過程」
- 準指数: 忘却率が時間とともに低下 → 記憶の喪失は非マルコフ的、履歴をもつ「緩和過程」

このように TAD の立場では、指数型は「完全可逆に近い一階緩和の極限」、準指数型は「履歴に支えられた 非可逆的緩和」の一形態として区別される。前者は外界の恒常的刺激が続くような均質環境、後者は学習の文 脈や内部結合の影響が残る不均質環境に対応する。

# 10.2 教育・記憶モデルにおけるヴィンテージ効果と線形成長帯

本節では実証的検証は扱わないが、第6章で普遍的性質として取り上げたヴィンテージ効果と線形成長帯は、記憶・教育モデルにおいても整合的に説明可能であることを記しておく。ここでは出力に相当するフローは仮定せず、ストック変数のみで議論する。

• 記憶保持とヴィンテージ効果:学習イベントの対角湧き出し(対角流入)は引き続き  $G(t,T)=G(T)\,\delta(t-T)$  とし、年齢 a=t-T に依存する忘却減衰  $\gamma(a)$  を仮定する。知識保持関数を

$$S(a) = \exp\left(-\int_0^a \gamma(s) \, ds\right) = \exp\left(-\int_0^{t-T} \gamma(s) \, ds\right)$$

とおき、'をt(またはa)に関する微分とすると、

$$S'(a) = -\gamma(a)S(a)$$

このとき、知識ストック(総記憶残量)は

$$N(t) = \int_{T_t}^t S(t - T) G(T) dT$$

で与えられる。時点  $T_1$  の単位(スパイク)学習入力  $G(T)=G_1\delta(T-T_1)$  が N(t) に与える寄与は

$$N(t) = \int_{T_1}^{t} S(t - T) G_1 \delta(T - T_1) dT = G_1 S(t - T_1)$$
(10.3)

よって、

$$N'(t) = G_1 S'(t - T_1) = -G_1 \gamma(t - T_1) S(t - T_1) \le 0$$

となり、N(t) は単調減少(単発の学習の総記憶残量は単調減少)となる。また、(10.3) の N(t) を  $T_1$  の関数でもあるとみなすと、

$$\frac{\partial}{\partial T_1} N(t, T_1) = -G_1 S'(t - T_1) = G_1 \gamma(t - T_1) S(t - T_1) \ge 0$$
(10.4)

が得られる。これは  $t>T_1$  において、学習が新しいほど( $T_1$  が大きいほど)年齢  $a=t-T_1$  が小さく 忘却が進んでいないため、 $N(t,T_1)$  への寄与は単調増加することを意味する。

まとめると、N'(t) が  $T_1$  に依存することから、履歴の古さに応じて寄与が逓減するという意味でヴィンテージ効果が成立する。すなわち、古い学習イベントほど残存寄与が小さいため、学習履歴に応じた非対称性=ヴィンテージ効果が自然に導かれる。

• 教育投入による線形成長帯: さらに、対角学習入力の強度を一定レート  $G(T) = G_0$  とすると、

$$N(t) = G_0 \int_0^t S(a) da \Longrightarrow \frac{dN(t)}{dt} = G_0 S(t) \to G_0 \exp\left(-\int_0^\infty \gamma(s) ds\right) = G_0 S(\infty) < \infty \quad (t \to \infty)$$
(10.5)

すなわち  $0 < S(\infty) < \infty$ (累積忘却が正値有限、永続成分あり)であれば、N(t) は直線的(線形成長帯)に振る舞う。

 $\gamma(a)$  は対象(短期記憶、長期記憶、技能定着など)に応じて整合化する必要があり、当該パラメータの推定とデータ適合性の検証は今後の課題とする。

#### 10.3 今後の研究の方向性:TAD による復習計画最適化モデル

複数ある学習対象(1つ1つの英単語等)をiでラベリングし、初回学習以降で複数回復習を繰り返したとき、復習コストの制約下で期末時点(テスト実施日に相当)の総記憶量を最大にする学習計画を考える。これは TAD 理論でモデル化できると思われる。

#### 10.3.1 モデル設定

- 記憶対象に離散ラベル i を付し、初期記憶時刻  $T_i$  (昇順):  $T_1 < T_2 < T_3 < \cdots$
- 忘却率:

$$\gamma(t, T_i) = \gamma_i(t - T_i), \quad t \ge T_i$$

- 復習効果:  $G(t,T_i)$
- 復習コスト:

$$C(t,T_i) = C_i(t-T_i)$$

学習期間 [t<sub>0</sub>, t<sub>f</sub>] における総コスト制約:

$$\sum_{i} \int_{t_0}^{t_f} C_i(t - T_i) \mathbf{1}_{\{\text{ \"{q}} \exists \text{ \r{g}} \not\equiv \text{\'{m}}\}} dt \leq B$$

# 10.3.2 最適化問題

終了時点の総保持量

$$J = \sum_{i} g(t_f, T_i) \tag{10.6}$$

を最大化するように、各  $G(t,T_i)$ (復習時刻・回数・強度・間隔)を設計する。動学制約は

$$\frac{\partial g(t, T_i)}{\partial t} = -\gamma_i(t - T_i) g(t, T_i) + G(t, T_i) \quad (t \ge T_i)$$
(10.7)

# 10.3.3 意義

TAD の履歴構造とコスト制約を統合した「最適復習スケジューリング問題」として定式化でき、 $\gamma_i$  と  $C_i$  の形に応じて最適な復習配分が理論的に導出可能となる。実証データに基づく同定と組み合わせれば、教育実践への応用が期待できる。制約条件の形によっては復習間隔や強度の設計において、既存の経験則(例:間隔反復法等)とは異なる非自明な最適解が現れる可能性がある。これは実証的な教育実践に大きな示唆を与えるだろう。

# 10.4 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)

| Т                                                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T                                                                                                                                                                                                                                                           | 1                                         |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| (2) 仮定 $(\mu, \gamma, \sigma, G(t,T))$            | (3) 直感的理由(短                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4) 既存理論との対比                                                                                                                                                                                                                                                | (5) TAD の優位性                              |
|                                                   | 文)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             |                                           |
| $\mu \equiv 0, \ \sigma \equiv 1,$                | 学習はその瞬間に在                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | エビングハウスの現象                                                                                                                                                                                                                                                  | 入力(学習)と忘却を分                               |
| $G(t,T) = G(T)\delta(t-T),$                       | 庫へ, 忘却は"年齢"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 論を動学方程式に埋め                                                                                                                                                                                                                                                  | 離同定 $ / g(t,T) $ で学習                      |
| $\gamma(t,T) = \gamma(t-T)$                       | 依存の減衰で進む                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 込む位置づけ                                                                                                                                                                                                                                                      | ビンテージ別寄与を可                                |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             | 視化                                        |
| $\mu \equiv 0, \ \gamma(a) = \lambda \ (定数),$     | 忘却速度が一定なら                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g(t,T) =                                                                                                                                                                                                                                                    | λ の時変化・個別差(項                              |
| $\sigma \equiv 1$ , $G(t,T)$ 任意(対角)               | 残存は指数で減衰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $G(T)e^{-\lambda(t-T)}$ に一致                                                                                                                                                                                                                                 | 目別 $\lambda_i$ )を素直に拡張                    |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             | 可能                                        |
| $\mu \equiv 0, \ \gamma(a) = a_0 a^{b-1}$         | 初期急減・長期尾を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g(t,T) =                                                                                                                                                                                                                                                    | 早期急落+ロングテー                                |
| $a = t - T$ , $\sigma \equiv 1$ , $G(t, T)$       | 一式で表現したい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $G(T)\exp[-(a_0/b)a^b]$                                                                                                                                                                                                                                     | ルを再現/混合・時変化                               |
| 対角                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (KWW 型)                                                                                                                                                                                                                                                     | で多様な記憶型に適合                                |
| g(t,T) =                                          | "いつ学んだか"で                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 従来の学習曲線(単時                                                                                                                                                                                                                                                  | イベント(集中学習・中                               |
| $G(T) \exp[-\int_T^t \gamma(s-T) ds],$            | 残存が違うことを面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 系列)よりコホート構                                                                                                                                                                                                                                                  | 断)の痕跡を世代別に局                               |
| $N(t) = \int g  dT$                               | で示す                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 造が明瞭                                                                                                                                                                                                                                                        | 在化して解析可能                                  |
| $S(a) = \exp[-\int_0^a \gamma],$                  | 古い学習ほど忘却が                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 経験則「直近学習が有                                                                                                                                                                                                                                                  | 寄与の年齢勾配 $\partial N/\partial T$           |
| $N(t) = \int S(t-T) G(T) dT$                      | 進み寄与が小さい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 利」を連続時間で厳密                                                                                                                                                                                                                                                  | が正で可解釈/復習優                                |
| 単発入力で                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 化                                                                                                                                                                                                                                                           | 先順位づけに直結                                  |
| $N(t) = G_1 S(t - T_1)$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             |                                           |
| $G(T) = G_0$ (一定投入),                              | 長期にわたる恒常学                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $N'(t) = G_0 S(t) \rightarrow$                                                                                                                                                                                                                              | 勾配が $S(\infty)$ で理論決                      |
| $\int_0^\infty \gamma < \infty \ (0 < S(\infty))$ | 習は一定勾配で記憶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $G_0S(\infty)$ (準定常勾配)                                                                                                                                                                                                                                      | 定/介入(γ 低減)効果                              |
|                                                   | を蓄積                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                             | を勾配で評価                                    |
| 各項目 $i$ に対し $\mu \equiv 0$ ,                      | 限られたコストで期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 経験的な間隔反復法の                                                                                                                                                                                                                                                  | 目的 $J = \sum_i g(t_f, T_i)$               |
| $\gamma_i(a)$ 与件,制御 $G(t,T_i)$ ,                  | 末記憶を最大化する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 最適制御版(動学制約                                                                                                                                                                                                                                                  | を直接最大化/個別難                                |
| 費用 $C_i(a)$ ,総予算                                  | 復習配分問題                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | つき)                                                                                                                                                                                                                                                         | 度・費用を内生化して設                               |
| $\sum_{i} \int C_{i} 1_{\text{gg}} \leq B$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             | 計可能                                       |
|                                                   | $\mu \equiv 0, \ \sigma \equiv 1,$ $G(t,T) = G(T)\delta(t-T),$ $\gamma(t,T) = \gamma(t-T)$ $\mu \equiv 0, \ \gamma(a) = \lambda \ (定数),$ $\sigma \equiv 1, \ G(t,T) \ \text{任意} \ (対角)$ $\mu \equiv 0, \ \gamma(a) = a_0 \ a^{b-1}$ $(a = t-T), \ \sigma \equiv 1, \ G(t,T)$ 対角 $g(t,T) = G(T) \exp[-\int_T^t \gamma(s-T) \ ds],$ $N(t) = \int g \ dT$ $S(a) = \exp[-\int_0^a \gamma],$ $N(t) = \int S(t-T) \ G(T) \ dT,$ 単発入力で $N(t) = G_1 S(t-T_1)$ $G(T) = G_0 \ (-定投入),$ $\int_0^\infty \gamma < \infty \ (0 < S(\infty))$ 各項目 $i \ c$ 対し $\mu \equiv 0,$ $\gamma_i(a) \ 5 \phi, \ \text{制御} \ G(t,T_i),$ 費用 $G_i(a), \ $ 総予算 | $\chi$ ) $\chi$ 0 $\chi$ 1 $\chi$ 2 $\chi$ 2 $\chi$ 3 $\chi$ 4 $\chi$ 5 $\chi$ 5 $\chi$ 6 $\chi$ 6 $\chi$ 7 $\chi$ 7 $\chi$ 7 $\chi$ 9 | $\chi$ ) $\psi\equiv 0,\ \sigma\equiv 1,$ |

# 第11章 マーケティング(広告効果)への応用

本章では、TAD 理論を用いた広告効果モデルの定式化について述べる。一般に広告のようなマーケティング活動は時系列的な活動となり、成果(売上)も遅れてあらわれるのが普通である。まさに TAD によるモデル化が適している領域と言える。ここでは単一の広告施策を対象とし、TAD のフルスペック版( $\sigma(t,T)$ 、 $\mu(t,T)$ 、 $\gamma(t,T)$ 、G(t,T) をすべて考慮した形)で構築する。

# 11.1 広告効果モデル

# 11.1.1 モデリングの基本方針

広告出稿は時刻Tにおいて瞬間的に行われると仮定し、その入力は次式で表す:

$$G(t,T) = G(T) \delta(t-T)$$

ここで、G(T) は時刻 T における単一の広告施策に対する出稿強度を表す連続関数とする。この設定により、連続時間モデルにおいても、G(T) の関数形を適切に選ぶことで、出稿の時間的な幅を自然に表現できる。例えば G(T) をガウス関数や矩形関数とすれば、広告が一定期間にわたって時系列的な強度をもって露出する現象をモデル化できる。

# 11.1.2 内部状態と出力の定義

内部状態 q(t,T) の発展は、TAD の一般形に従って以下で表される:

$$\frac{\partial g(t,T)}{\partial t} = -\left[\mu(t,T) + \gamma(t,T)\right]g(t,T) + G(T)\,\delta(t-T)$$

ここで、

•  $\mu(t,T)$ : 出力化に伴う割当率(広告効果が外部化される割合)

• γ(t,T): 自然減衰率 (広告効果が時間とともに自然に減少する速度)

G(T):時刻 T における出稿強度

右辺第 1 項は内部状態の減衰を、右辺第 2 項は広告出稿による瞬間的な入力を表す。広告効果として外部に現れる出力 f(t) は、内部状態の加重積分として定義する:

$$f(t) = \int_0^t \sigma(t, T) \, \mu(t, T) \, g(t, T) \, dT$$

ここで  $\sigma(t,T)$  は、t 時点での T 由来の効果に対するスケーリング(重み付け)係数であり、広告効果の変換

係数(例:広告効果を売上に換算するスケール係数)を表す。また、簡略化のため T の積分の下端  $T_1=0$  とする。

以上のような考え方は、広告コスト(入力 G)を「投資」とみなし、時間的に償却されるように売上効果に割り当てていくという考え方にもとづくものであり、売上効果を把握できた時点で  $\mu$  によって内部状態(広告投資履歴)g(t,T) が減却され、 $\sigma$  によって売上(出力 f)にレバレッジされると考える。また同時に、内部状態 g(t,T) は  $\gamma$  によって(売上効果を出さずに)時間とともに自然減少すると考える。

# 11.1.3 内部状態 g(t,T) と出力 f(t) の一般解

広告効果の減衰を表すパラメータ  $\mu(t,T)$  および  $\gamma(t,T)$  は、次のように t-T の関数(すなわち準定常)として与える:

$$\mu(t,T) = \mu(t-T), \quad \gamma(t,T) = \gamma(t-T) \tag{11.1}$$

この設定は、同一の経過時間に対しては同一の減衰特性を持つという時不変性の仮定である。(11.1) の仮定のもと、g(t,T) の発展方程式は次式で与えられる:

$$\frac{\partial g(t,T)}{\partial t} = -\left[\mu(t-T) + \gamma(t-T)\right]g(t,T) + G(T)\,\delta(t-T)$$

この一般解 (Green 関数解) は

$$g(t,T) = \begin{cases} 0, & t < T, \\ G(T) \exp\left(-\int_0^{t-T} \left[\mu(\tau) + \gamma(\tau)\right] d\tau\right), & t \ge T \end{cases}$$

となり、出力関数 f(t) は  $t \ge T$  の領域のみを積分対象として

$$f(t) = \int_0^t \sigma(t - T) \,\mu(t - T) \,G(T) \exp\left(-\int_0^{t - T} \left[\mu(\tau) + \gamma(\tau)\right] d\tau\right) dT$$

となる。

#### 11.1.4 ラプラス像と最終値

#### ラプラス像

 $\tau := t - T$  とおくと、f(t) の表式は積分区間が変わることに注意して

$$f(t) = \int_0^t h(\tau) G(t - \tau) d\tau, \qquad h(\tau) := \sigma(\tau) \mu(\tau) \exp\left(-\int_0^\tau [\mu(u) + \gamma(u)] du\right)$$

したがってラプラス変換(tに関して)で

$$F(s) = H(s) G(s)$$
  $H(s) := \mathcal{L}\{h(\tau)\}(s)$  (11.2)

この「畳み込み構造」はマーケティング研究でいう「広告応答関数」に対応する。

# 最終値

sF(s) の極が右半平面上に無い(原点の単純極のみ)ときは

$$f(\infty) = \lim_{s \to 0} sF(s) = \lim_{s \to 0} sH(s)G(s) \tag{11.3}$$

この最終値は実務的には ROI 評価や LTV 推定に直結する。

#### 11.1.5 既存モデルの再現

# モデルの前提

TAD の各関数について、以下のような仮定を置く。

$$\mu(\tau) \equiv \mu_0, \qquad \gamma(\tau) \equiv \lambda, \qquad \sigma(\tau) \equiv 1, \qquad G(T) \equiv G_0$$

これは

- $\mu(\tau) \equiv \mu_0$ : 売上効果が認められたとき、内部状態 g(t,T) が一定率  $\mu_0$  で減却
- $\gamma(\tau) \equiv \lambda$ : 売上効果とは無関係に、内部状態 g(t,T) が一定率  $\lambda$  で減衰
- $\sigma(\tau) \equiv 1$ : 売上に対するレバレッジは等倍
- $G(T) \equiv G_0$ : 出稿強度は定常入力  $G_0$

という仮定である。

# Adstock モデルの再現

この仮定において、出力 f(t) は (11.1.3) より、

$$f(t) = \int_0^t \mu_0 G_0 \exp\left[-(\mu_0 + \lambda)(t - T)\right] dT = \frac{\mu_0 G_0}{\mu_0 + \lambda} \left(1 - e^{-(\mu_0 + \lambda)t}\right)$$
(11.4)

となる。 $t \to \infty$  で

$$f(\infty) = G_0 \, \frac{\mu_0}{\mu_0 + \lambda}$$

となり、さらに  $\lambda \equiv 0$  (広告効果の自然減衰なし) なら

$$f(t) = G_0 (1 - e^{-\mu_0 t}) \Longrightarrow f(\infty) = G_0$$

となる。これはいわゆる標準 Adstock モデルの結果と一致する。[4,42] 出稿時点 T から長時間経過した時刻 t では減衰核  $\exp\left[-\mu_0(t-T)\right]$  が急速に減衰し、 $\mu_0$  による償却が実質的に消失する。また、定常出稿流量  $G_0$  が終端出力流量  $f(\infty)$  と均衡する。

# 11.1.6 広告効果モデルにおけるヴィンテージ効果と線形成長帯

本節では実証的検証は扱わないが、第6章で普遍的性質として取り上げたヴィンテージ効果と線形成長帯は、広告効果モデル(アドストック)においても整合的に説明可能であることを記しておく。ここでは出力 f(t) について議論する。

• 広告効果のヴィンテージ効果:広告接触の対角流入をレート G(t) とし、年齢 a=t-T に依存する反応割当  $\mu(a)$  と忘却減衰  $\gamma(a)$  を仮定する。

$$S(a) = \exp\left(-\int_0^a \{\mu(s) + \gamma(s)\} \, ds\right) = \exp\left(-\int_0^{t-T} \{\mu(s) + \gamma(s)\} \, ds\right)$$

とおくと、広告入力(広告出稿)に対する出力フロー(広告効果)は

$$f(t) = \int_0^{t-T_1} \mu(a) S(a) G(t-a) da = \int_{T_1}^t \mu(t-T) S(t-T) G(T) dT$$

で与えられる。時点  $T_1$  の単位スパイク投下  $G(T)=G_1\delta(T-T_1)$  を想定すると、以降は第6章の内容と全く同様の議論となる。すなわち、時刻  $T_1$  における単位スパイク投下による広告効果 f(t) は遅れてピークを迎え、そのピーク位置と高さが  $T_1$  に依存するヴィンテージ効果が現れる。

• 広告投下による線形成長帯:広告接触の投下レートを一定  $G(t) = \alpha$  とすると、第6章の結果より、

$$\frac{dN}{dt} = G(t) - f(t) - L(t) \Longrightarrow \lim_{t \to \infty} \frac{dN}{dt} = S_{\infty} G(T_1) = \alpha S(\infty)$$

したがって  $0 < S(\infty) < \infty$ (累積の反応+忘却が正値有限)であれば

$$N(t) = (\alpha S(\infty)) t + \text{const} + o(1)$$

となり、広告履歴残量 N(t) も直線的(線形成長帯)に振る舞う。

 $\mu(a)$  と  $\gamma(a)$  は対象(短期の想起、長期のブランド資産、カテゴリ学習など)に応じて整合化する必要がある。 当該パラメータの推定とデータ適合性の検証は今後の課題とする。

# 11.2 TAD による新たなモデル設計の可能性

TAD による出力 f(t) の式 (11.1.3) から、 $\mu, \gamma, \sigma$  を広告施策の特性や外部環境に応じて適切に設定することによって、出稿入力 G(T) に対する出力 f(t) を予測・シミュレーションすることができる。

あるいは逆に出稿入力 G(T) 及び出力 f(t) の実測値から、TAD の  $\mu, \gamma, \sigma$  を逆推定することができる。(この場合は別の目的関数の最適化(例 期末までの累積売上最大化等)も補助的に追加してもよい。)

また、最終的に  $f(\infty)$  (最終的な出力の振舞い) を評価したいケースでは、最終値定理を用いてラプラス像 空間での極の性質を評価する方が見通しが良い場合がある。

#### 11.2.1 減衰核がべき尾減衰のケース

 $\mu(t,T)$  は t-T=a だけに依存し、 $\mu(t,T)=\mu(a)$  として以下の仮定を置く。

$$\mu(a) = \frac{\alpha - 1}{a + \tau} \ (\alpha > 1, \tau > 0), \qquad \gamma \equiv 0, \qquad \sigma \equiv 1$$
 (11.5)

これは出稿 G(T) からの経過時間 t-T=a が長いほど出力(売上) f(t) への期待効果が薄くなる、または償却率が低くなる(残価が残る)という仮定を置いたものと考えられる。この場合、f(t) は (11.1.3) にこれらを

直接代入し、 $T \rightarrow a$ の変数変換を施して計算すると、

$$f(t) = \int_0^t \frac{(\alpha - 1)\tau^{(\alpha - 1)}}{(a + \tau)^{\alpha}} G(t - a) da$$
(11.6)

が得られる。入力  $G(t) \equiv G_0$  (定常入力) の場合、

$$f(t) = G_0 \int_0^t \frac{(\alpha - 1)\tau^{(\alpha - 1)}}{(a + \tau)^{\alpha}} da = G_0 \left( 1 - \left( \frac{\tau}{t + \tau} \right)^{\alpha - 1} \right) \to G_0(t \to \infty)$$

$$\tag{11.7}$$

となり、標準 Adstock モデルと同様に定常出稿流量  $G_0$  が終端出力流量  $f(\infty)$  と均衡する。この時、残存核 S(a) は

$$S(a) = \exp\left[-\int_0^a \mu(u)du\right] = \left(\frac{\tau}{a+\tau}\right)^{\alpha-1}$$

減衰核 K(a) は

$$K(a) = \mu(a)S(a) = \frac{(\alpha - 1)\tau^{(\alpha - 1)}}{(a + \tau)^{\alpha}}$$

である。この結果の解釈と考察は以下の通りである。

- ロングテール(長期残存):S(a) はべき乗的減衰のため、指数減衰(標準 Adstock)に比べると少数が長く残存して  $\mu(a)$  による償却が効き続ける。標準 Adstock(指数型)に比べ古い出稿の影響が長く残る。これは「少数の長期効果が効き続ける」現象に対応している。[46, 11]
- パルス応答の直観: 単発出稿  $G(T) = \delta(T)$  なら  $f(t) = K(t) = \frac{(\alpha-1)\tau^{(\alpha-1)}}{(t+\tau)^{\alpha}}$  となる。初期は  $K(0) = (\alpha-1)/\tau$  と大きく立ち上がり(瞬間的インパクト)、その後  $a^{-\alpha}$  で尾を引く。
- パラメータの役割:
  - $-\tau$ (**鮮度スケール**):立ち上がり幅を決める。 $K(0)=(\alpha-1)/\tau$  なので  $\tau$  が小さいほど初期インパクトが鋭い。
  - $-\alpha$  (**尾の重さ**): 大きいほど尾は速く減衰(短期偏重)、小さいほど尾が重く長期寄与が増える。半減期は

$$S(a_{1/2}) = \frac{1}{2} \implies a_{1/2} = \tau (2^{1/(\alpha - 1)} - 1)$$

で、 $\alpha\downarrow 1$  に近づくほど半減期は発散的に長くなる。

- 整合性(単位質量):  $\int_0^\infty K(a)\,da=1$  が成り立ち、定常入力  $G_0$  に対して  $f(\infty)=G_0$  で均衡(質量保存)するため、標準 Adstock と同じ整合性を保つ。
- 標準 Adstock との対比: $\mu$  が一定の標準 Adstock と比較して本モデルは  $\mu(a) \propto 1/(a+\tau)$  で時とともに償却率が低下するため、「古い露出ほど生き残りにくいが、生き残ったものはさらに生き残りやすい」という 長期選別の直観に合う。
- 実務での運用:短期施策(プロモーション)優位なら  $\alpha$  大(短尾)・ $\tau$  小が整合し、ブランディング寄与を重視するなら  $\alpha$  小(重尾)を許容する運用が適していると考えられる。

# 11.2.2 複数媒体同時実行効果の推定

本モデルを複数媒体に拡張する場合、媒体  $m_1, m_2, \ldots, m_k$  に対して

$$f(t) = \sum_{m} \int_{T_1}^{t} \sigma_m(t, T) \,\mu_m(t, T) \,g_m(t, T) \,dT + \sum_{m \neq n} \int_{T_1}^{t} \sigma_{mn}(t, T) \,\mu_{mn}(t, T) \,g_{mn}(t, T) \,dT \qquad (11.8)$$

のように、媒体間相互作用項( $m \neq n$  の項)を追加することで、同時出稿による相乗効果やカニバリゼーション効果をモデル化できる。[32]

この場合、相互作用パラメータ  $\sigma_{mn}(\tau)$ ,  $\mu_{mn}(\tau)$ ,  $\gamma_{mn}(\tau)$  を推定すれば、例えばテレビとオンライン広告を同時に実施した場合の効果増幅(または減衰)の度合いを定量化できる。実務上も、媒体横断的なキャンペーン設計や広告予算の最適配分に直結するため、今後の研究の重要な方向性となる。

# 11.3 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)

| (1) 見出し      | (2) 仮定 $(\mu, \gamma, \sigma, G(t,T))$                   | (3) 直感的理由(短                      | (4) 既存理論との対比                                                      | (5) TAD の優位性                                             |
|--------------|----------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|
|              |                                                          | 文)                               |                                                                   |                                                          |
| TAD 広告効果の    | $\frac{\partial g}{\partial t} = -(\mu(t, T) +$          | 投下(投資)を在庫                        | MMM/Adstock は特                                                    | 履歴 $g(t,T)$ の可視化で                                        |
| 一般形(フルス      | $\gamma(t,T)g + G(T)\delta(t-T),$                        | 化し, 償却 (µ) と自                    | 定核・定係数の特殊例                                                        | "いつの出稿が効いた                                               |
| ペック)         | f(t) =                                                   | 然減衰( $\gamma$ )を分離               |                                                                   | か"を直読/設計~同定                                              |
|              | $\int_0^t \sigma(t,T)\mu(t,T)g(t,T)dT$                   |                                  |                                                                   | ~評価を一枠で実装                                                |
| 準定常仮定と畳み     | $\mu(t,T) = \mu(\tau),$                                  | 同じ経過時間なら同                        | LTI アドストック核の                                                      | $h(\tau) = \sigma \mu e^{-\int_0^{\tau} (\mu + \gamma)}$ |
| 込み核          | $\gamma(t,T) = \gamma(\tau),$                            | じ減衰=時不変性で                        | 一般化(時変も拡張し                                                        | を核として $f = h * G$                                        |
|              | $\sigma(t,T) = \sigma(\tau) \ (\tau = t - T)$            | 簡潔化                              | やすい)                                                              | に落ちる                                                     |
| ラプラス像と最終     | F(s) = H(s)G(s),                                         | 畳み込みは像空間で                        | 従来は時系列回帰で長                                                        | 像空間でロングラン効                                               |
| 値(ROI/LTV)   | $f(\infty) = \lim_{s \to 0} sF(s) \ (\mathcal{Z})$       | 積/終局効果は極の                        | 期効果推定                                                             | 率を解析的評価/媒体                                               |
|              | 定条件下)                                                    | 性質で即算                            |                                                                   | 設計や予算最適化に直                                               |
|              |                                                          |                                  |                                                                   | 結                                                        |
| 標準 Adstock の | $\mu(\tau) \equiv \mu_0, \ \gamma(\tau) \equiv \lambda,$ | 償却と自然減衰が一                        | f(t) =                                                            | $\mu_0,\lambda$ の分離解釈/時変                                 |
| 再現(指数核)      | $\sigma \equiv 1, \ G(T) \equiv G_0$                     | 定レートという最小                        | $\frac{\mu_0 G_0}{\mu_0 + \lambda} (1 - e^{-(\mu_0 + \lambda)t})$ | 化・セグメント別への拡                                              |
|              |                                                          | モデル                              | を厳密再現                                                             | 張が容易                                                     |
| べき尾アドストッ     | $\mu(a) = \frac{\alpha - 1}{a + \tau} \ (\alpha > 1),$   | 一部の効果が長く残                        | Koyck 指数の短記憶に                                                     | 定常出稿で $f(\infty) = G_0$                                  |
| ク(ロングテー      | $\gamma \equiv 0, \ \sigma \equiv 1$                     | る(遅い償却)を表                        | 対し長記憶をカバー                                                         | は保ちつつ、残存の尾を                                              |
| ル)           |                                                          | 現                                |                                                                   | 実装/中長期施策の効                                               |
|              |                                                          |                                  |                                                                   | 果測定に有利                                                   |
| ヴィンテージ効果     | $S(a) = \exp[-\int_0^a (\mu + \gamma)],$                 | 古い露出ほど寄与が                        | コホートを潰す回帰に                                                        | 投入年別の寄与を分解                                               |
| (核 $K(a) =$  | f(t) =                                                   | 逓減(ピーク時期も                        | 比べ波形の世代分解が                                                        | して示せる/キャン                                                |
| $\mu(a)S(a)$ | $\int \mu(a)S(a)G(t-a)da$                                | ビンテージ依存)                         | 可能                                                                | ペーンの"熟成"と陳腐                                              |
|              |                                                          |                                  |                                                                   | 化を可視化                                                    |
| 線形成長帯(準定     | $G(t) = \alpha - \mathbb{Z},$                            | 過渡後は                             | 経験的な売上の直線増                                                        | 帯の勾配= $\alpha(1-\int K)$                                 |
| 常勾配)         | $\int_0^\infty K(a)  da < 1 (吸収あり)$                      | $(K * \dot{X}) \to \text{const}$ | 加期の説明                                                             | を理論決定/ターゲッ                                               |
|              |                                                          | 同様に dN/dt が一                     |                                                                   | ト勾配から逆設計が可                                               |
|              |                                                          | 定化                               |                                                                   | 能                                                        |
| 複数媒体の相互作     | $f(t) = \sum_{m} \int \sigma_{m} \mu_{m} g_{m} dT +$     | 同時出稿の増幅・カ                        | MMM の交差項を履歴                                                       | 媒体×ビンテージの相                                               |
| 用(シナジー/競     | $\sum_{m \neq n} \int \sigma_{mn} \mu_{mn} g_{mn} dT$    | ニバリを明示の項で                        | 解像度で拡張                                                            | 互作用を分離推定/横                                               |
| 合)           | , ,                                                      | 表現                               |                                                                   | 断予算配分の設計精度                                               |
|              |                                                          |                                  |                                                                   | を向上                                                      |

# 第12章 経済理論への応用

経済のスローな(長期的な)蓄積・緩和の標準例に Solow モデル

$$\frac{d}{dt}K(t) = I(t) - \delta K(t)$$

がある。[43] 投資 I が資本 K を増やし、減耗  $\delta$  がそれを削るという単純・普遍の会計が核となっている。本章の目的は、同じ会計を TAD の年齢構造(履歴)に持ち上げ、Solow モデルをその特別な場合として含みつつ、TAD 流の設計(年齢依存の転換・減耗)から新しい知見を得ることである。 $^{*1}$ 

# 12.1 標準 Solow モデル

中核式は

$$\frac{d}{dt}K(t) = I(t) - \delta K(t), \quad \delta > 0 \tag{12.1}$$

一般解は積分因子より

$$K(t) = e^{-\delta t} \left( K(0) + \int_0^t e^{\delta s} I(s) \, ds \right) \tag{12.2}$$

定常投資  $I(t) \equiv I_0$  では

$$K(t) = \frac{I_0}{\delta} (1 - e^{-\delta t}) \rightarrow K^* = \frac{I_0}{\delta}$$
 (12.3)

と収束する。[43]I は「流入」、 $\delta K$  は「自然消散」を意味する。

# 12.2 TAD における設定と一般解

対応する TAD モデルとして以下を想定する。

- 年齢 t-T: 投資時刻 T から現在時刻 t までの経過時間
- 資本履歴密度 g(t,T): 投資時刻 T でラベリングされた資本履歴密度
- 資本投入 G(T): 時刻 T における投入資本
- 資本転換因子  $\mu(t-T)$ : 年齢 t-T 時点における内部資本が外部転換される率
- 自然消散  $\gamma(t-T)$  :年齢 t-T 時点における内部資本が自然消散される率

資本投入G(T)は対角生成されるものとする。

$$\frac{\partial}{\partial t}g(t,T) = -\left(\mu(t-T) + \gamma(t-T)\right)g(t,T) + G(T)\,\delta(t-T) \tag{12.4} \label{eq:2.4}$$

 $<sup>^{*1}</sup>$  資本の「ヴィンテージ」や固定係数/代替の議論は古典的に蓄積がある [19]。本章では TAD の年齢構造として統一的に扱う。

このとき、以下のように観測量 N(t), f(t), L(t) を定義する。(TAD の一般式において、 $T_1 = 0$  とする。)

$$N(t) = \int_0^t g(t, T) dT, \quad f(t) = \int_0^t \mu(t - T) g(t, T) dT, \quad L(t) = \int_0^t \gamma(t - T) g(t, T) dT$$
 (12.5)

● N(t):総内部資本量

• f(t):内部資本が外部転換された量

L(t):内部資本が自然消散した量

この時、一般解は

$$g(t,T) = G(T) \exp\left(-\int_{0}^{t-T} (\mu(u) + \gamma(u)) du\right) \quad (t \ge T)$$
 (12.6)

となる。

# **12.3** 標準 Solow モデルの TAD による再現

以下の仮定

$$\mu(t-T) \equiv 0, \qquad \gamma(t-T) \equiv \delta > 0, \qquad G(T) \equiv I(T)$$
 (12.7)

を置くと、  $f\equiv 0,\; L(t)=\delta N(t)$  であり、第6章で導出した対角湧き出し入力の場合の TAD の会計恒等式 (6.12)

$$\frac{d}{dt}N(t) = G(t) - f(t) - L(t)$$

にこれらを代入すると

$$\frac{d}{dt}N(t) = I(t) - \delta N(t) \tag{12.8}$$

N(t) を資本 K(t) と同一視すれば (12.1) に一致し、解 (12.2)・定常 (12.3) もそのまま再現される。 [43] すなわち、TAD における  $\gamma$  で減耗率(この例では  $\gamma \equiv \delta$ )を、 $\mu$ (この例では  $\mu \equiv 0$ )で転換率を表現することで経済成長効果を定式化できる。

# 12.4 経済学におけるヴィンテージ効果と線形成長帯

# 12.4.1 経済学におけるヴィンテージ効果

資本のスパイク投入  $G(T)=I_0\delta(T-T_0)$  に対する資本サービス(外部転換されたサービス) f(t) は

$$f(t) = \int_0^t \mu(t, T) g(t, T) dT$$

$$= \int_0^t \mu(t, T) I_0 \delta(T - T_0) \exp\left[-\int_T^t (\mu(u, T) + \gamma(u, T)) du\right] dT$$

$$= I_0 \mu(t, T_0) \exp\left[-\int_{T_0}^t (\mu(u, T_0) + \gamma(u, T_0)) du\right]$$
(12.9)

以降は第6章と同じ議論によって、資本投下に対するヴィンテージ効果が確認される。すなわち、時刻  $T_1$  における単位スパイク投入による資本転換 f(t) は遅れてピークを迎え、そのピーク位置と高さが  $T_1$  に依存するヴィンテージ効果が現れる。これは経験則では観測されているものの標準 Solow モデルでは導出できない結果である。[19,44]

# 12.4.2 経済学における線形成長帯

a=t-T とし、  $\int_0^\infty \left(\mu(a)+\gamma(a)\right)da<\infty$  を仮定すると、第6章の線形成長帯が資本投下の文脈でそのまま再現される。すなわち、

$$S(a) \equiv \exp\left(-\int_0^a (\mu(u) + \gamma(u)) du\right)$$

とすると、定常投資  $I_0$  のもとで

$$\lim_{t \to \infty} \frac{dN}{dt} = S(\infty) I_0 \tag{12.10}$$

となる。これは実務的には「外部転換されずに眠る資本」が線形成長し続けることを意味する。マクロ経済の 視点では、設備の余剰や使われない資本ストック(=眠る資本)が投資効率や資本の非効率性に直結すること を意味し、減耗率  $\gamma$  の低減や転換率  $\mu$  の改善が長期成長にどう寄与するかを示唆する。これは標準モデルの 指数収束像とは対照的である。[43]

# 12.5 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)

| (1) 見出し                                                    | (2) 仮定 $(\mu, \gamma, \sigma, G(t,T))$                                                         | (3) 直感的理由(短<br>文)                 | (4) 既存理論との対比                                                            | (5) TAD の優位性                                                     |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|
| TAD 資本モデル<br>の一般形(対角投                                      | $\frac{\partial g}{\partial t} = -(\mu(t-T) + \gamma(t-T))g + G(T)\delta(t-T),$                | 投資を"在庫化"<br>し、転換(稼働化)             | 在来の資本蓄積方程式を年齢構造へ持ち上げ                                                    | イベントや政策を $\mu, \gamma, G$ に直接マッピン                                |
| 資・年齢依存転<br>換/減耗)                                           | $\sigma \equiv 1 \; ; \; N = \int g  dT, \; f = $ $\int \mu g  dT, \; L = \int \gamma g  dT$   | と自然消散を分離して記述                      |                                                                         | グ/コホート別の寄与<br>を可視化                                               |
| 標準 Solow の TAD 再現 $(\mu \equiv 0, \ \gamma \equiv \delta)$ | $\mu(t-T) \equiv 0,$ $\gamma(t-T) \equiv \delta > 0,$ $G(T) \equiv I(T), \ \sigma \equiv 1$    | 稼働化は考えず、減<br>耗のみで内部資本が<br>削れる最小写像 | $\dot{N} = I - \delta N$ が $\dot{K} = I - \delta K$ に一致 $($ 解・定常も同一 $)$ | Solow を厳密に内包し<br>つつ, $\mu$ , $\gamma$ を時変・年<br>齢依存に拡張可能          |
| 一般解(Green 関数)                                              | $g(t,T) = G(T) \exp \left[ - \int_0^{t-T} (\mu(u) + \gamma(u)) du \right]$                     | 各ヴィンテージが合<br>成ハザードで生残す<br>るという解釈  | Solow の積分因子解の<br>年齢構造版                                                  | 任意の時間依存・ショッ<br>クを解析的に扱える基<br>盤を提供                                |
| ヴィンテージ効果<br>(資本サービスの<br>ハンプ)                               | $\mu, \gamma$ を年齢/時期依存で設計;スパイク $G(T) = I_0 \delta(T - T_0)$                                    | 投下後しばらくして<br>稼働化がピーク化<br>(遅延ピーク)  | 標準 Solow 単体では単<br>発投資でのハンプは出<br>にくい                                     | どの投資年次がいつ効<br>いたかを $f(t)$ の形で分<br>解・同定可能                         |
| 線形成長帯(眠る<br>資本の直線増加)                                       | 定常投資 $I_0$ , $\int_0^\infty (\mu + \gamma) da < \infty,$ $S(a) = e^{-\int_0^a (\mu + \gamma)}$ | 吸収が不十分だと未<br>転換資本が一定勾配<br>で積み上がる  | Solow の指数収束像と<br>対照的(バックログが<br>線形成長)                                    | 勾配 $\lim_{t \to \infty} \dot{N} = S(\infty)I_0$ で非効率を定量化/政策評価に直結 |
| 設計視点:年齢依<br>存の転換/減耗で<br>産業差を表現                             | $\mu(a)$ (稼働化カーブ), $\gamma(a)$<br>(老朽化/陳腐化), $G(T)$ (投<br>資プロファイル)                             | 産業や技術で"立上がり/寿命"が異なる現実に合わせる        | 古典的ヴィンテージ/<br>プッティークレイの統<br>合的再表現                                       | 同一枠で比較・最適化<br>(μ,γ の目標設計,<br>ショックの波及測定) が<br>可能                  |

# 第 13 章 自然言語モデル (LLM:Transformer) への応用

Transformer におけるアテンション機構は時系列トークンを入力とし、機構内部で自然言語処理を施した上で次の単語の予測を出力する形をとるため、TAD がモデル化の対象とする入力⇒蓄積⇒出力の機構と類似している。[48] この章ではアテンション機構の性能向上や言語モデルとしての質的向上の観点で TAD 機構の応用を試みる。

# 13.1 TAD に基づくメモリ管理層の定式化(基本構造)

TAD モデルを応用して、言語モデルにおける履歴トークンの「有効記憶」を管理する枠組みを構築する。離散的なトークン入力を時刻  $T_i$  に受け取り、その初期強度を  $G(T_i)$  とする。これに対して、TAD のダイナミクス式を次のように定める:

$$\frac{\partial g(t, T_i)}{\partial t} = -\gamma(t, T_i) g(t, T_i) + G(T_i) \delta(t - T_i)$$
(13.1)

ここで  $g(t,T_i)$  は時刻 t におけるトークン  $T_i$  の「有効記憶強度」を表す。

# 13.2 減衰率の構造

減衰率  $\gamma(t,T_i)$  は、単なる時間依存の自然減衰成分と、アテンション機構による参照強化成分から構成される:

$$\gamma(t, T_i) := \gamma_{min} + \max\{0, \, \alpha \, \gamma_0(t - T_i) - (1 - \alpha) \, \gamma_{\text{attn}}(t, T_i)\}, \qquad \alpha \in [0, 1], \qquad \gamma_{min} > 0 \tag{13.2}$$

安定性のため、 $\gamma(t,T_i)$  は非負、 $\int_0^\infty \gamma_0(a)\,da=\infty$ 、 $\gamma_{\rm attn}$  は時間平均で上界をもつと仮定する。また、 $\gamma(t,T_i)$ が 0 に張り付きになることを防止するため、 $\gamma_{min}$  を導入する。

- $\gamma_0(t-T_i)$ : トークンが入力されてからの時間差  $(t-T_i)$  に依存する自然減衰項
- $\bullet$   $\gamma_{\mathrm{attn}}(t,T_i)$ : 直前のアテンション寄与度に基づく補正項

である。

# 13.3 アテンション補正項の定義

アテンション補正項  $\gamma_{\text{attn}}(t, T_i)$  は、Transformer における通常のスコアに基づいて次のように与える:[48] \*1

$$\gamma_{\text{attn}}(t, T_i) = \beta \operatorname{softmax}\left(\frac{q_t \cdot k_{T_i}}{\sqrt{d_k}}\right)$$
(13.3)

ただし、

- $q_t$  はクエリベクトル (時刻 t のトークンに対応)
- $\bullet$   $k_{T_i}$  はキー(履歴トークン  $T_i$  に対応)
- $d_k$  はキー次元のスケーリング定数
- β > 0 はハイパーパラメータ

式 (13.2) に従い、参照頻度が高い(アテンション重みが大きい)トークンは  $\gamma(t,T_i)$  が低下し、より長く保持される。(第 2 項の符号をマイナスにしているのはこのためである。)つまり、(13.2) はトークンの入力時点  $T_i$  からの経過時間に伴なって記憶が薄れ、より多くの参照を獲得したトークンは文脈上重要であると推定されるため記憶が保持される、という自然なメカニズムを表現したものになっている。 $\alpha$  は記憶減衰と記憶維持のどちらを重視するかを外生的に与えるハイパーパラメータである。

# 13.4 一般解

式 (13.1) の一般解は、 $t \ge T_i$  に対して次のように表される:

$$g(t,T_i) = G(T_i) \exp\left(-\int_{T_i}^t \gamma(s,T_i) \, ds\right)$$
(13.4)

これはトークン入力時刻  $T_i$  において  $g(T_i,T_i)=G(T_i)$  から始まり、その後は減衰率  $\gamma(s,T_i)$  に従って指数的に減少する。

#### 13.5 規格化と候補集合の選別

有効記憶を規格化することで、確率的な「生き残り重み」 $p(t,T_i)$  を定義する:\*2

$$p(t, T_i) = \frac{g(t, T_i)}{\sum_{j: T_i < t} g(t, T_j)}$$
(13.5)

この  $p(t,T_i)$  がハイパーパラメータ  $\varepsilon$  を超える場合のみ、トークン  $T_i$  を候補集合  $S_t$  に残す:

$$S_t = \left\{ T_i \mid p(t, T_i) > \varepsilon \right\} \tag{13.6}$$

ここで  $\varepsilon$  は記憶のしきい値を制御するハイパーパラメータである。 $*^3$ 

<sup>\*1</sup> 実装時はマルチヘッドアテンションの平均または最大で集約する。

 $<sup>^{*2}</sup>$  これは softmax 類似の正規化だが、ダイナミクス由来である。 $\gamma_{min}>0$  かつ  $\sum_j g(t,T_j)>0$  なら、新規入力がなければ、 $p(t,T_i)\to 0 (t\to\infty)$  となる。記憶保持は"必要なときだけ延命"し、いずれ整理されるということである。

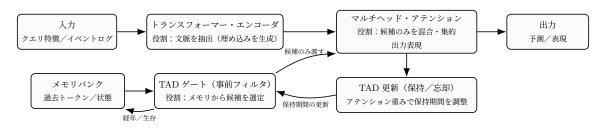
 $<sup>^{*3}</sup>$  実装上は微分可能性のため、連続緩和(Top-k softmax 等)を用いる。

# 13.6 アテンションへの接続

候補集合  $S_t$  のみを用いて、通常の Transformer のアテンション計算を実施する:

$$Attn(q_t, V) = \sum_{T_i \in S_t} softmax \left(\frac{q_t \cdot k_{T_i}}{\sqrt{d_k}}\right) v_{T_i}$$
(13.7)

ここで  $v_{T_i}$  は値ベクトルであり、これはあくまでアテンション層のタスクである。TAD 層は事前フィルタリング機構として機能し、アテンション計算の安定性と効率を高める。[38, 6] この事前選別により注意計算は概ね  $O(L|S_t|d)$  となり、 $|S_t| \ll L$  では実効的に線形化する。(L は入力系列長、d は特徴次元である。)



**役割分担:** エンコーダ=文脈を理解/ TAD ゲート=候補を選ぶ/アテンション=候補を混合/ TAD 更新=保持・忘却を管理。

図 13.1 TAD ゲートとトランスフォーマー注意機構の機能的つながり(概念図)

# 13.7 従来型 Attention との比較

従来の Transformer では、全トークンが一様にアテンション計算に投入されるため、長文入力時には不要なトークンがノイズとして残り、文脈保持の一貫性や計算効率に制約があった。これらに対する改善研究は継続的に行われている。[2,53] 本手法では、TAD ダイナミクスに基づいて履歴トークンの「生き残り重み」を動的に更新し、事前に選別を行うことで、

- 長文入力時の安定性の向上\*4
- 文脈の一貫性の保持
- 計算効率の改善
- 意味的に重要なトークンの強調

といった質的な向上が期待できる。TAD は時間構造と自然減衰を組み込む点で従来とは異なるアプローチでこれらを実現しようとするものである。

 $<sup>^{*4}</sup>$  長距離への誘導には、位置バイアスの設計 [37,41] も有効である。TAD はこれらと直交する"記憶の生存"側の設計である。

# 13.8 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)

|               | 1                                                                                                   |             |                    |                                |
|---------------|-----------------------------------------------------------------------------------------------------|-------------|--------------------|--------------------------------|
| (1) 見出し       | (2) 仮定 $(\mu, \gamma, \sigma, G(t,T))$                                                              | (3) 直感的理由(短 | (4) 既存理論との対比       | (5) TAD の優位性                   |
|               |                                                                                                     | 文)          |                    |                                |
| TAD メモリ管理     | $\mu \equiv 0, \ \sigma \equiv 1,$                                                                  | トークン入力を"在   | 従来は全トークンを等         | 履歴 $g(t,T_i)$ を顕在化             |
| 層(基本構造)       | $G(t,T_i) = G(T_i)\delta(t-T_i),$                                                                   | 庫化"し、時間とと   | 価に注意計算へ投入          | し,学習イベント別の残                    |
|               | $\frac{\partial g}{\partial t} = -\gamma(t, T_i)g + G(T_i)\delta$                                   | もに忘却で減衰     |                    | 存を制御                           |
| 減衰率の構造(自      | $\gamma(t,T_i) =$                                                                                   | 参照の多い記憶は保   | 標準 Attention は"使   | 安定性を保ちつつ"使え                    |
| 然減衰+参照強       | $\gamma_{min} + \max\{0, \alpha \gamma_0(t-T_i) - 1\}$                                              | 持,参照の少ない記   | われた回数"が記憶寿         | ば延命"を素朴に実装/                    |
| 化)            | $(1-\alpha)\gamma_{\rm attn}(t,T_i)\},$                                                             | 憶は自然に消える    | 命に反映されない           | チューニングは $\alpha, \gamma_{min}$ |
|               | $\alpha \in [0,1], \gamma_{min} > 0$                                                                |             |                    | で簡潔                            |
| アテンション補正      | $\gamma_{\mathrm{attn}}(t,T_i) =$                                                                   | 大きい注意重みほど   | 既存は注意重み → 集        | 注意→保持期間への写                     |
| の実装(softmax   | $\beta \operatorname{softmax}\left(\frac{q_t \cdot k_{T_i}}{\sqrt{d_{l_i}}}\right), \ \beta \geq 0$ | 忘却率を下げる(負   | 約のみ/保持期間へは         | 像を明示化し、注意の                     |
| 由来)           | V **k                                                                                               | の補正)        | 非連結                | "因果的持越し"を導入                    |
| 一般解と規格化・      | $g(t,T_i) =$                                                                                        | "生き残り重み"で   | 従来は Top-k/閾値を      | 履歴と注意を掛け合わ                     |
| 候補選別          | $G(T_i) \exp[-\int_{T_i}^t \gamma(s, T_i) ds],$                                                     | 重要トークンのみ残   | 局所スコアに直結           | せた選別で意味的に堅                     |
|               | $p(t,T_i) = \frac{g(t,T_i)}{\sum_i g(t,T_i)},$                                                      | す           |                    | いサブセット化                        |
|               | $S_t = \{ T_i \mid p(t, T_i) > \varepsilon \}$                                                      |             |                    |                                |
| アテンションへの      | $Attn(q_t, V) =$                                                                                    | 候補集合に絞って注   | Longformer/BigBird | TAD は"記憶の生存"                   |
| 接続と計算量        | $\sum_{T_i \in S_t} \operatorname{softmax}(\cdot) v_{T_i},$                                         | 意を計算し安定化・   | 等は構造的疎化が中心         | で疎化するためタスク                     |
|               | $ S_t  \ll L$ を狙う                                                                                   | 高速化         |                    | 適応的/計算は概ね                      |
|               |                                                                                                     |             |                    | $O(L S_t d)$                   |
| 安定性条件とハイ      | $\gamma_{min} > 0,$                                                                                 | ゼロ減衰への張り付   | 従来は学習則側での正         | ダイナミクス側で安定                     |
| パ設計           | $\int_0^\infty \gamma_0(a)da = \infty, \ \gamma_{\text{attn}} \ \text{if}$                          | きや暴走を防ぐ設計   | 則化が中心              | 性を規格化でき,長文・                    |
|               | 時間平均で上界                                                                                             |             |                    | 長期対話で破綻しにく                     |
|               |                                                                                                     |             |                    | ₹\                             |
| 従来型 Attention | TAD 層=前段フィルタ,                                                                                       | "覚えるか捨てるか"  | 純粋 Attention は一段   | 長文での一貫性・効率・                    |
| との比較 (概念)     | Attention =混合集約(本                                                                                   | を機構として分業    | で両役割を兼務            | 意味強調を同時に狙え                     |
|               | 体)                                                                                                  |             |                    | る設計分離                          |
|               |                                                                                                     |             |                    |                                |

# 第Ⅳ部

TAD 理論による新しい知見と予言及び総括

IV 部では、これまで展開してきた TAD 理論の数理構造と多分野応用を総合し、そこから導かれる新しい知見と予言を提示する。在庫鮮度モデルから出発した TAD の枠組みは、履歴構造 g(t,T) を基軸とすることで、人口動態、教育・記憶、経済、物理、さらには大規模言語モデルに至るまで、多様な現象を統一的に記述できることを示した。この普遍性は、既存理論の再現にとどまらず、それらの理論が本来内包していたが顕在化されていなかった構造的特徴を明らかにし、さらには新たな予言を導く可能性を持つ。IV 部の前半では、TAD が既存理論に与える新しい洞察と新たな原理の導出を整理し、後半では全体を総括して TAD 理論の位置づけと今後の展望を示す。これにより、TAD が単なる一モデルにとどまらず、時間を通じた割当と履歴の力学を普遍的に描く基盤理論として成立し得ることを明確にしたい。

# 第14章 既存理論の再解釈と統一・新たな原理の導出

本章では、TAD の「既存理論の再解釈と統一」の題材として「ロジスティック成長モデル」を、「新たな原理の導出」の題材として「教育・記憶モデルにおける Kovacs 効果」を取り上げる。

# 14.1 ロジスティック成長モデルの TAD による再解釈と統一

ロジスティックモデルは、人口が環境収容力 K によって制約される成長を表すモデルで、総人口は以下のように表される。但し、N(0)>0 とする。[49,35,30]

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) \tag{14.1}$$

rN は指数的な自然増加(出生が死亡を上回る)を表し、 $\left(1-\frac{N}{K}\right)$  は K に近づくにつれて成長が鈍化する効果を表している。対応する TAD モデルの設定を

- $\gamma \equiv 0, \sigma \equiv 1$  自然減衰や移民の想定なし、スケール係数の設定不要
- $\mu(t,T)=d+cN(t)$  死亡率としての割当関数を人口依存型に設定
- $G(t,T) = bN(T)\delta(t-T)$  出生率は時点の人口に比例する対角入力と仮定
- 初期時刻  $T_1=0$

とすれば、履歴分布 g(t,T) は

$$g(t,T) = bN(T) \exp \left[ -\int_{T}^{t} (d+cN(s)) ds \right]$$

となるので、総人口(生存人口)は

$$N(t) = \int_0^t g(t, T) dT = \int_0^t bN(T) \exp\left[-\int_T^t \left(d + cN(s)\right) ds\right] dT$$

となる。ここで、第6章で導出した TAD の会計恒等式 (6.12) より、

$$\frac{d}{dt}N(t) = G(t) - f(t) = bN(t) - \int_0^t \mu(t, T)g(t, T) dT 
= bN(t) - (d + cN(t)) \int_0^t bN(T) \exp\left[-\int_T^t (d + cN(s)) ds\right] dT 
= bN(t) - (d + cN(t))N(t) = (b - d)N(t) - cN^2(t)$$
(14.2)

となり、r=b-d、 $c=\frac{r}{K}$  とすれば、ロジスティックモデルの N(t) が再現される。  $[22,\,30]$ 

$$r = b - d, \quad c = \frac{r}{K} \quad \Rightarrow \quad \frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$
 (14.3)

c>0 で人口増加に伴い死亡率が増加して飽和挙動を再現し、c=0(環境収容力  $K\to\infty$ :無限資源環境の極限)では指数関数的変化(増加/減少)に帰着する。また、環境収容力 K を時間依存とすれば、動的ロジスティックモデルに拡張可能である。[15]

#### 14.1.1 新しい知見

#### 内生パラメータへの分解と自然な解釈

TAD による再構成の特徴は、r や K を単なる外生パラメータではなく、

- 出生率 b、
- 基礎死亡率 d、
- 密度依存係数 c

という内生的な要素に分解できる点にある。これにより以下のような自然な解釈と知見が得られる:

- 成長率 r は「出生と基礎死亡の差」(純増加率)として直接解釈可能であり、政策介入や医療改善が r に与える効果を分離評価できる。
- 収容力 K は c によって決まり、密度依存効果(資源制約・競合)が緩和されれば K が拡大することを示す。
- 従来のロジスティック曲線が「外生パラメータで与えられる経験式」にとどまっていたのに対し、TAD は履歴 T (コホート) 構造に基づくミクロな力学から同じ曲線を再導出できる。[28, 13, 20]
- さらに b,d,c,G に T 依存や年齢 t-T 依存を持たせることで、内生パラメータ設定による新たなロジスティック曲線のモデルを構築することができる。これにより、従来では説明できなかった人口動態ダイナミクスを数理的に説明できる可能性がある。例えば、出生率 G(t,T) が同世代の人口に依存する仮定(婚姻率が上昇する等)を置くと、ベビーブームのエコー効果を説明できる可能性がある。[40]

# 履歴分布 g(t,T) がもたらす TAD 固有の洞察

ロジスティック再現は N(t) の軌道に着目する従来枠組みでも記述できるが、TAD は履歴分布 g(t,T) を明示的に与える点で質的に異なる知見を導く。例えば、流出(死亡)f(t) は

$$f(t) = \int_0^t \mu(t, T) g(t, T) dT = (d + cN(t)) \int_0^t g(t, T) dT$$

となるので、履歴分布 g(t,T) をヒートマップ上で可視化すれば、どの履歴 T がどの程度 f(t) に寄与しているかが一目瞭然となり、特定の履歴区間(例:戦争期、ベビーブーム期等)由来として分解できる。このような分解ができると、f(t) を履歴毎に可視化でき、政策タイミングを評価できる。従来の N ベース(履歴を潰して集約するモデル)では到達不可能な因果分解であると言える。

# 14.1.2 まとめ

このように、ロジスティック成長は TAD の枠組みの中で、入力 G と割当  $\mu$  を明示的に設定することで自然に再現される。TAD による再構成は、従来モデルを包含するとともに、成長パラメータの内生分解や履歴別寄与の分解といった新しい視点を提供する。 $^{*1}$ この枠組みは人口動態に限らず、生態系や感染症流行モデルなど、資源制約を伴う他分野にも一般化可能である。

表 14.1 従来のロジスティックモデルと TAD による再構成の比較

| 観点       | 従来のロジスティックモデル                                    | TAD による再構成                      |
|----------|--------------------------------------------------|---------------------------------|
| 基礎方程式    | $\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$ | $\frac{dN}{dt} = (b-d)N - cN^2$ |
| 主要パラメータ  | r: 成長率(外生的に与える)                                  | b: 出生率 (入力 G に対応)               |
|          | K: 環境収容力(外生的に与える)                                | d: 基礎死亡率                        |
|          |                                                  | c: 密度依存係数(割当 μ に対応)             |
| パラメータの関係 | r,K は独立に設定                                       | r = b - d,  K = r/c             |
|          |                                                  | (出生・死亡・密度効果から決定)                |
| モデルの位置づけ | 経験的に当てはめる外生パラメー                                  | TAD の入力 $G$ と割当 $\mu$ の特殊ケース    |
|          | タモデル                                             | ミクロ力学(コホート構造)から再導出              |
|          |                                                  | 可能                              |
| 拡張可能性    | 時間依存パラメータを直接導入                                   | b,d,c,G を年齢・時間依存に設定可能           |
|          |                                                  | ⇒ 動的ロジスティックモデル、世代交              |
|          |                                                  | 替・エコー効果の説明に対応                   |
| 解釈性      | r, K の背後要因は不明確                                   | 出生・死亡・密度依存効果に分解でき、政             |
|          |                                                  | 策介入や環境変化との直接的対応が可能              |

 $<sup>^{*1}</sup>$  TAD による再構成は、McKendrick—von Foerster 方程式の特殊解釈にも対応する。

# 14.2 教育・記憶モデルの TAD による新たな原理の導出

従来、記憶保持の研究では忘却曲線としてエビングハウスの指数減衰モデルが知られている [Rubin1999, 8]。近年は二重指数やべき尾による緩和核が提案されてきたが [52,1]、いずれも基本的には単調減衰を前提としている。一方、物理学・高分子の分野では、非単調な緩和現象として Kovacs 効果(いわゆる Kovacs ハンプ)が古典的に観測されている [23,12,47,33,29,3]。

本節では TAD の枠組みを応用し、教育・記憶実験においても Kovacs プロトコルに相当する入力スケジュールを設計すれば、記憶保持率に一時的な「過剰回復」(ハンプ)が現れることを予言する。

#### 14.2.1 教育版 Kovacs プロトコル

年齢を a:=t-T とおく。スケール変換は恒等( $\sigma\equiv 1$ )、割当は無し( $\mu\equiv 0$ )、 $\gamma(t,T)$  は準定常  $\gamma(t,T)=\gamma(t-T)=\gamma(a)$  を仮定する。入力 G(t,T) は対角湧き出し入力  $G(t,T)=G(T)\delta(t-T)$  とし、「集中学習  $\to$  休止  $\to$  軽い復習」に対応させる。具体的には

$$G(T) = \begin{cases} G_h, & 0 \le T < t_1 \quad (集中学習) \\ 0, & t_1 \le T < t_w \quad (休止期間) \\ G_c, & T \ge t_w \quad (軽い復習 + 環境切替) \end{cases}$$
 (14.4)

とし、 $G_h \gg G_c$  を仮定する。TAD の発展方程式は  $T_1 = 0$  として、

$$\frac{\partial}{\partial t}g(t,T) = -\gamma(t,T)g(t,T) + G(T)\delta(t-T) \tag{14.5}$$

一般解は

$$g(t,T) = G(T) \exp\left[-\int_{T}^{t} \gamma(u-T) du\right] = G(T) \exp\left[-\int_{0}^{a} \gamma(s) ds\right]$$
(14.6)

$$S(a) = \exp\left[-\int_0^a \gamma(s) \, ds\right] \Longrightarrow S'(a) = -\gamma(a)S(a) \tag{14.7}$$

とおくと、総記憶量 N(t) は

$$N(t) = \int_0^t g(t, T)dT = \int_0^t G(T)S(t - T) dT$$
 (14.8)

となる。

#### 有効減衰率のモデル設定

Kovacs 効果の最小モデルとして、系が複数の減衰モード(速いモード、遅いモードなど)を持つと仮定する。それぞれのモードは指数レート  $\lambda_i$  で独立に減衰する。時刻 a:=t-T における全体の瞬間的減衰率は、その時点で生き残っている成分比率に応じた加重平均で表されると考えるのが自然である。すなわち有効減衰率は

$$\gamma(a) = \frac{\sum_{i=1}^{m} w_i \lambda_i e^{-\lambda_i a}}{\sum_{i=1}^{m} w_i e^{-\lambda_i a}}, \qquad w_i > 0, \ \sum_{i=1}^{m} w_i = 1, \ \lambda_i > 0$$
(14.9)

この仮定は、速いモードが初期に急速に減衰して寄与を失い、遅いモードが後期に支配的になるという物理 的直観、また教育・経済など他分野における「短期成分と長期成分の混合」解釈とも一致する。 有効減衰率から忘却核(生存関数)は

$$S(a) = \exp\left(-\int_{0}^{a} \gamma(s) \, ds\right) = \exp\left(-\int_{0}^{a} \frac{\sum_{i=1}^{m} w_{i} \lambda_{i} e^{-\lambda_{i} s}}{\sum_{i=1}^{m} w_{i} e^{-\lambda_{i} s}} \, ds\right)$$

$$= \exp\left(-\int_{0}^{a} \frac{-\left(\sum_{i=1}^{m} w_{i} e^{-\lambda_{i} s}\right)'}{\sum_{i=1}^{m} w_{i} e^{-\lambda_{i} s}} \, ds\right) = \exp\left(\int_{0}^{a} \left(\log\left(\sum_{i=1}^{m} w_{i} e^{-\lambda_{i} s}\right)\right)' \, ds\right)$$

$$= \exp\left(\left[\log\left(\sum_{i=1}^{m} w_{i} e^{-\lambda_{i} s}\right)\right]_{0}^{a}\right) = \exp\left(\log\left(\sum_{i=1}^{m} w_{i} e^{-\lambda_{i} a}\right) - \log\left(\sum_{i=1}^{m} w_{i}\right)\right)$$

$$= \exp\left(\log\left(\sum_{i=1}^{m} w_{i} e^{-\lambda_{i} a}\right)\right) = \sum_{i=1}^{m} w_{i} e^{-\lambda_{i} a}$$

$$(14.10)$$

となる。途中、 $\log(\sum_{i=1}^m w_i) = \log 1 = 0$  を用いた。このとき、

$$\gamma(a) = \frac{\sum_{i} w_{i} \lambda_{i} e^{-\lambda_{i} a}}{\sum_{i} w_{i} e^{-\lambda_{i} a}} = -\frac{S'(a)}{S(a)}$$

となり、たしかに (14.7) が成り立つことが分かる。また、境界値として

$$\gamma(0) = \sum_{i} w_i \,\lambda_i, \qquad \lim_{a \to \infty} \gamma(a) = \min\{\lambda_i : w_i > 0\}$$
(14.11)

が成り立つ(最遅モードに支配される)。特に単一指数  $S(a)=e^{-\lambda a}$  では  $\gamma(a)\equiv\lambda$  に退化する。

#### 単一指数 vs 多時間尺度

もし  $S(a)=e^{-\lambda a}$  の単一指数型であれば、N(t) は単調減衰し、復習後も平衡に単調に収束する。しかし、複数の時間スケールを持つ場合には、復習直後に一部のモードが過剰に寄与し、一時的に平衡水準を上回る「記憶のハンプ」が生じうる。これは Kovacs 効果の教育版である。

# 14.2.2 教育 Kovacs 効果の条件

TAD の表記により次が導かれる。忘却核  $S(a) = \sum_i w_i e^{-\lambda_i a}$  を持つ記憶モデルに対し、上記プロトコル後の偏差

$$D(t) = N(t) - N_{\rm eq}$$

を考える。ここで  $N_{
m eq}=\lim_{t o\infty}N(t)$  は長時間後の保持水準である。このとき、(14.8) 及び (14.10) から

$$D(t) = N(t) - N_{\text{eq}} = \int_0^t G(T)S(t-T) dT - N_{\text{eq}} = \sum_{i=1}^m \int_0^t G(T)w_i e^{-\lambda_i (t-T)} dT - N_{\text{eq}}$$
(14.12)

となる。ここで、ライプニッツ則より、

$$\frac{d}{dt}D(t) = \frac{d}{dt}N(t) = \sum_{i=1}^{m} \left[ w_i G(t) + \int_0^t \frac{\partial}{\partial t} \left( G(T) w_i e^{-\lambda_i (t-T)} \right) dT \right]$$

$$= \sum_{i=1}^{m} w_i \left[ G(t) - \lambda_i \int_0^t G(T) e^{-\lambda_i (t-T)} dT \right] \tag{14.13}$$

となる。\*2

 $<sup>^{*2}</sup>$  湧き出し項を含む (14.5) 及び一般解 (14.6) から  $\dfrac{d}{dt}N(t)$  を直接計算、または TAD の会計恒等式からも同様の表式が得られる。

### 14.2.3 2成分(二重指数)の場合

ここでは簡単のため、m=2 つまり二重指数の場合に D(t) が局所極大をとりうるかを考える。忘却核は

$$S(a) = w_1 e^{-\lambda_1 a} + w_2 e^{-\lambda_2 a}, \qquad w_i > 0, \ w_1 + w_2 = 1, \ 0 < \lambda_1 < \lambda_2$$
(14.14)

で与えられ、プロトコル  $G(T)=G_h$   $(0\leq T< t_1),\ 0\ (t_1\leq T< t_w),\ G_c\ (T\geq t_w)\ u:=t-t_w\geq 0$  とおくと、(14.13) は ' を t に関する微分を表すとして

$$D'(t_{w} + u) = w_{1}G(t) - w_{1}\lambda_{1} \int_{0}^{t} G(T)e^{-\lambda_{1}(t-T)}dT + w_{2}G(t) - w_{2}\lambda_{2} \int_{0}^{t} G(T)e^{-\lambda_{2}(t-T)}dT$$

$$= (w_{1} + w_{2})G_{c} - w_{1}\lambda_{1} \int_{0}^{t_{1}} G_{h}e^{-\lambda_{1}(t-T)}dT - w_{1}\lambda_{1} \int_{t_{w}}^{t} G_{c}e^{-\lambda_{1}(t-T)}dT$$

$$- w_{2}\lambda_{2} \int_{0}^{t_{1}} G_{h}e^{-\lambda_{2}(t-T)}dT - w_{2}\lambda_{2} \int_{t_{w}}^{t} G_{c}e^{-\lambda_{2}(t-T)}dT$$

$$= (w_{1} + w_{2})G_{c} - w_{1}G_{h} \left[e^{-\lambda_{1}(t-T)}\right]_{0}^{t_{1}} - w_{2}G_{h} \left[e^{-\lambda_{2}(t-T)}\right]_{0}^{t_{1}}$$

$$- w_{1}G_{c} \left[e^{-\lambda_{1}(t-T)}\right]_{t_{w}}^{t} - w_{2}G_{c} \left[e^{-\lambda_{2}(t-T)}\right]_{t_{w}}^{t}$$

$$= (w_{1} + w_{2})G_{c} - w_{1}G_{c} \left[1 - e^{-\lambda_{1}(t-t_{w})}\right] - w_{2}G_{c} \left[1 - e^{-\lambda_{2}(t-t_{w})}\right]$$

$$- w_{1}G_{h}e^{-\lambda_{1}(t-t_{w})}e^{-\lambda_{1}(t_{w}-t_{1})}(1 - e^{-\lambda_{1}t_{1}}) - w_{2}G_{h}e^{-\lambda_{2}(t-t_{w})}e^{-\lambda_{2}(t_{w}-t_{1})}(1 - e^{-\lambda_{2}t_{1}})$$

$$= w_{1}G_{c}e^{-\lambda_{1}(t-t_{w})}e^{-\lambda_{1}(t_{w}-t_{1})}(1 - e^{-\lambda_{1}t_{1}}) - w_{2}G_{h}e^{-\lambda_{2}(t-t_{w})}e^{-\lambda_{2}(t_{w}-t_{1})}(1 - e^{-\lambda_{2}t_{1}})$$

$$= w_{1}G_{h}e^{-\lambda_{1}(t-t_{w})}e^{-\lambda_{1}(t_{w}-t_{1})}(1 - e^{-\lambda_{1}t_{1}}) - w_{2}G_{h}e^{-\lambda_{2}(t-t_{w})}e^{-\lambda_{2}(t_{w}-t_{1})}(1 - e^{-\lambda_{2}t_{1}})$$

$$= w_{1}e^{-\lambda_{1}(t-t_{w})}(G_{c} - G_{h}e^{-\lambda_{1}(t_{w}-t_{1})}(1 - e^{-\lambda_{1}t_{1}}))$$

$$+ w_{2}e^{-\lambda_{2}(t-t_{w})}(G_{c} - G_{h}e^{-\lambda_{2}(t_{w}-t_{1})}(1 - e^{-\lambda_{2}t_{1}}))$$

$$= w_{1}c_{1}e^{-\lambda_{1}u} + w_{2}c_{2}e^{-\lambda_{2}u}$$

$$(14.15)$$

但し、

$$c_i := G_c - G_h e^{-\lambda_i (t_w - t_1)} \left( 1 - e^{-\lambda_i t_1} \right)$$
(14.16)

とした。 $G_h \gg G_c > 0$  のもとで、十分長い休止  $(t_w - t_1)$  で高速モード  $(\lambda_2)$  では

$$c_2 \approx G_c > 0$$

遅いモード  $(\lambda_1)$  は残存して、与えられた  $G_h$  に対して

$$c_1 = G_c - G_h e^{-\lambda_1(t_w - t_1)} (1 - e^{-\lambda_1 t_1}) < 0$$

を実現できる。(そうなるように  $\lambda_1$  を選べる。)つまり、休止  $t_w-t_1$  が長いほど高速成分は消え、低速成分の "負寄与"を作りやすい。このとき係数  $w_1c_1$  と  $w_2c_2$  は符号が逆である。方程式  $D'(t_w+u)=0$  は

$$w_1 c_1 e^{-\lambda_1 u} + w_2 c_2 e^{-\lambda_2 u} = 0 \iff e^{-(\lambda_2 - \lambda_1)u} = \frac{-w_1 c_1}{w_2 c_2} \ (>0)$$

を与える。u について解けば

$$u^* = \frac{1}{\lambda_2 - \lambda_1} \log \left( \frac{w_2 c_2}{-w_1 c_1} \right)$$

初期傾き  $D'(t_w)=w_1c_1+w_2c_2$  を正に選ぶ( $t_w$  を十分大きく取れば達成可能)と、 $\frac{w_2c_2}{-w_1c_1}>1$  となり、 $u^*>0$  が一意に存在する。

極大性は二階微分で判定できる。零点では $w_2c_2e^{-\lambda_2u^*}=-w_1c_1e^{-\lambda_1u^*}$ を用いて

$$D''(t_w + u^*) = -w_1 \lambda_1 c_1 e^{-\lambda_1 u^*} - w_2 \lambda_2 c_2 e^{-\lambda_2 u^*} = (\lambda_2 - \lambda_1) w_1 c_1 e^{-\lambda_1 u^*} < 0$$

 $(\lambda_2>\lambda_1$  かつ  $c_1<0)$ 。よって  $t^*=t_w+u^*$  は一意の局所極大である。これはすなわち、2 成分(二重指数) の場合はうまく  $G_h,G_c,t_w$  等のパラメータを設定することによりハンプ現象(教育 Kovacs 効果)が出現することを意味する。

#### 14.2.4 3 成分以上の場合

3 成分以上の系であっても、同様の考察により  $D'(t_w+u^*)=0$  かつ  $D''(t_w+u^*)<0$  となる  $u^*$  が存在すること、すなわち  $D(t_w+u)$  が局所極大となる  $u=u^*$  が存在することが予想される。本稿では詳細な証明は行なわないが、直感的なイメージは以下の通りである。

- $\frac{d}{dt}D(t)$  は「 $t_w$  以降の新しい入力の寄与: $\sum_i w_i G(t) = \sum_i w_i G_c$ 」と「過去に入った分の減衰:  $\sum_i w_i \lambda_i \int_0^t G(T) e^{-\lambda_i (t-T)} dT$ 」のバランスで決まる。
- t が小さいときは、まだ過去の積分項(第二項)が小さいので、新しい入力の寄与(第一項)が勝って  $\frac{d}{dt}D(t)>0$  となる。
- 時間が経つと、積分区間 [0,t] に蓄積された寄与が効いてきて、第二項 (減衰項) がだんだん大きくなる。
- ある時刻  $t=t^*$  でプラス寄与とマイナス寄与が釣り合って  $\frac{d}{dt}D(t)=0$  となる。

ポイントは  $[0,t_1]$  の集中学習後に  $[t_1,t_w]$  の学習休止期間があるため、この期間内で大きな減衰率  $\lambda$  をもつ高速モードは急速に減衰して実質的な寄与がなくなり、逆に小さな減衰率  $\lambda$  をもつ低速モードは寄与が残り続けるというメカニズムである。(この状況を作り出すために学習の休止期間が設定される。)結果的に  $t_w$  以後は小さな減衰率  $\lambda$  をもつ低速モードの寄与が支配的になる。

#### 14.2.5 数値シミュレーション結果

実際に 2 成分系( $\lambda_1,\lambda_2,w_1,w_2$ )での学習入力 G(T) を (14.4) のプロトコルに従って (14.12) 式の  $D(t)=N(t)-N_{\rm eq}$  の数値シミュレーションを行なった結果は以下の通りである。

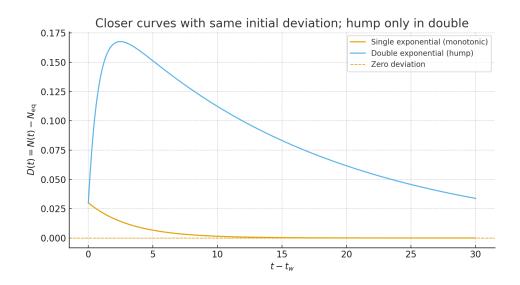


図 14.1 Kovacs ハンプの数値シミュレーション例。二重指数の緩和スペクトルではオーバーシュート(ハンプ)が現れるが、単一指数では単調減衰にとどまる。横軸は  $t-t_w$  軸のため、集中学習と休止は図の左側(表示外)に含まれる。

#### 具体的なパラメータ値

- 集中学習強度: $G_h=1.0$ 、軽い復習強度: $G_c=0.06$
- 集中学習終了時刻: $t_1=3.0$ 、待機終了(軽い復習/環境切替)の時刻: $t_w=10.0$
- 単一指数: $\lambda_s = 0.30$ 、二重指数: $(w_1, \lambda_1) = (0.65, 1.20), (w_2, \lambda_2) = (0.35, 0.06)$
- 整合のため、 $t=t_w$  で小インパルスを加えて、両モデルの直後偏差を同じ値 D(0)=0.03 に始点合わせ

ここまで見てきたように、教育・記憶過程において教育 Kovacs 効果とも呼べるハンプ現象が生じうることが明らかとなったが、その直感的な理解は以下の通りである。

学習対象を速く忘れる対象(大きな減衰率  $\lambda_{fast}$ )とゆっくり忘れる対象(小さな減衰率  $\lambda_{slow}$ )の 2 つに分けて考える。 TAD ではこれを履歴分布 g(t,T) に対する複数の減衰モードとして表現できる。速いモードの重み  $w_{fast}$  が大きい場合は初期には、速いモード( $\lambda_{fast}$ )の寄与が支配的で学習直後に一気に立ち上がるが、速いモードはすぐに減衰するため、短時間のうちに寄与が減少する。

一方で、学習後に「軽い復習」(弱い入力 G(T))を与えると、速いモードがすぐに反応して部分的に回復するが、速いモードはすぐに減衰するので、その寄与が落ちる頃には遅いモード( $\lambda_{slow}$ )の残存分布が支配的になる。

この「速いモードの立ち上がり  $\rightarrow$  減衰」と「遅いモードの緩やかな残存」の入れ替わりが N(t) の曲線に一時的なピーク(ハンプ)を作ると考えられる。「復習した直後はちょっとだけ記憶が良くなるものの、その後すぐ下がって、さらにその後に緩やかに残っていく」という挙動になる。

## 14.2.6 予言と位置づけ

以上より、教育における Kovacs 効果について次の予言が得られる:

- 集中学習 → 休止 → 軽復習のプロトコルを設定した場合、正答率や保持率に一時的な過剰回復(ハンプ)が出現する。
- ハンプの有無は忘却核のスペクトル幅に依存し、単一指数では決して出ない。
- ullet ハンプの時刻遅れや高さは、学習強度 G(T) や休止時間  $t_w$  により系統的に変化する。
- 学習対象に応じて、 $\lambda_i$  特性(記憶減衰の速さ)は外生的に与えられ、重み  $w_i$  は学習対象に応じて内生的に制御可能である。これらによってもハンプの時刻遅れや高さは変動する。 $^{*3}$

従来の教育・記憶モデルでは Kovacs 効果は議論されていないため、TAD による上記予言は記憶研究において、忘却曲線を単調減衰とみなす従来のパラダイムを超える新しい予言と言える。

 $<sup>^{*3}</sup>$  例えば、単純な英単語記憶のような学習は  $\lambda_i$  特性が速く、数学の証明のような学習は  $\lambda_i$  特性が遅いと考えられる。

## 14.3 TAD モデル対比表(仮定・直感・既存理論との対比・優位性)

| (1) 見出し        | (2) 仮定 $(\mu, \gamma, \sigma, G(t,T))$                      | (3) 直感的理由(短                                 | (4) 既存理論との対比   | (5) TAD の優位性                                                          |  |
|----------------|-------------------------------------------------------------|---------------------------------------------|----------------|-----------------------------------------------------------------------|--|
|                |                                                             | 文)                                          |                |                                                                       |  |
| ロジスティック成       | $\gamma \equiv 0, \ \sigma \equiv 1;$                       | 出生が在庫へ流入, $\dot{N} = rN(1 - \frac{N}{K})$ を |                | g(t,T) を通じてコホー                                                        |  |
| 長の TAD 再構成     | $\mu(t,T) = d + c N(t) $ (密度                                | 人口密度で流出率が $r=b-d, c=\frac{r}{K}$ と          |                | ト別寄与を分解 $/r,K$                                                        |  |
| (基本)           | 依存死亡);                                                      | 上がる    置けば厳密一致                              |                | を内生要素 b, d, c へ分                                                      |  |
|                | $G(t,T) = b N(T)\delta(t-T)$                                |                                             |                | 解できる                                                                  |  |
|                | (出生は対角比例)                                                   |                                             |                |                                                                       |  |
| パラメータ分解と       | r=b-d, K=r/c を明                                             | 成長は「出生 – 基礎                                 | 従来は外生 $r,K$ の経 | 政策(出生/医療/資源)                                                          |  |
| 解釈( $r, K$ の内生 | $ \vec{\pi}; G = bN \delta, \ \mu = d + cN$                 | 死亡」, 収容力は密                                  | 死亡」,収容力は密 験式   |                                                                       |  |
| 化)             |                                                             | 度依存で決まる                                     |                | 評価・設計可能                                                               |  |
| 動的ロジスティッ       | b,d,c を $t$ や $a=t-T$ 依存                                    | 資源や政策が時間/                                   | 標準は時不変係数が基     | 非定常ショック・コホー                                                           |  |
| ク(時間・年齢依       | に; $G,\mu$ を非定常設計                                           | 世代で変わる現実を一本                                 |                | ト効果を同一枠で扱え,                                                           |  |
| 存の拡張)          |                                                             | 反映                                          |                | エコー現象も再現可能                                                            |  |
| 履歴分布の可視化       | g(t,T) =                                                    | どの履歴が流出/成                                   | 集計 N 方程式のみで    | 戦争・ベビーブーム等の                                                           |  |
| と因果分解          | $bN(T)\exp[-\int_T^t (d+cN)];$                              | 長に効いたかを面で                                   | は出自分解が困難       | 履歴区間の寄与を可視                                                            |  |
|                | $f(t) = \int \mu g  dT$                                     | 把握                                          |                | 化し政策タイミングを                                                            |  |
|                |                                                             |                                             |                | 最適化                                                                   |  |
| 教育 Kovacs 効    | 教育: $\mu \equiv 0, \ \sigma \equiv 1$ ; $G(T)$              | 学習履歴を在庫化                                    | 従来の忘却曲線は単調     | 入力スケジュールで非                                                            |  |
| 果:入力プロトコ       | を「集中 → 休止 → 軽復習」                                            | し、忘却で減衰;軽                                   | 減衰が前提          | 単調ハンプを理論的に                                                            |  |
| ル              | に設定; $\gamma(a)$ は準定常                                       | 復習で一時回復                                     |                | 予言・制御                                                                 |  |
| 多時間尺度の忘却       | $S(a) = \sum_{i} w_i e^{-\lambda_i a}$ ;                    | 速い/遅いモードの                                   | 単一指数ではハンプは     | $w_i, \lambda_i$ と復習時刻でハ                                              |  |
| 核(ハンプの条        | $\gamma(a) = -S'(a)/S(a)$                                   | 入替で過剰回復が生                                   | 出現しない          | ンプの高さ/遅れを設計                                                           |  |
| 件)             |                                                             | じうる                                         |                | 可能                                                                    |  |
| 二重指数の解析        | m = 2, D'(t) =                                              | $D'(t_w) =$                                 | 従来は現象論的説明に     | $u^* = \frac{1}{\lambda_2 - \lambda_1} \log \frac{w_2 c_2}{-w_1 c_1}$ |  |
| (極大の存在)        | $ \sum_{i} w_{i} [G - \lambda_{i} G * e^{-\lambda_{i}}] ; $ | $w_1c_1 + w_2c_2 > 0,$                      | 留まる            | を与え、設計可能に                                                             |  |
|                | 休止で高速モードを殺し                                                 | のち $D'(t^*)=0$ で                            |                |                                                                       |  |
|                | $c_1 < 0, c_2 > 0$ を実現                                      | 局所極大                                        |                |                                                                       |  |
| 学際的統一:在        | 対角入力+核                                                      | 「入力→蓄積→出                                    | 分野ごとに別モデル      | 同一表記で再現・拡張・                                                           |  |
| 庫・核・会計恒等       | $K(a) = \mu(a)S(a)$ , 会計                                    | 力」の普遍構造で横                                   |                |                                                                       |  |
| 式              | $\dot{N} = G - f - L$                                       | 断説明                                         |                | 定・シミュレーションの                                                           |  |
|                |                                                             |                                             |                | 基盤化                                                                   |  |

# 第15章 全体総括と将来展望

## 15.1 全体総括

本論文では、Time Allocation Dynamics(TAD)を汎用的な履歴依存型入出力モデルとして定式化し、その理論構造と多様な応用可能性を示した。在庫鮮度モデルを出発点として、連続モデルへの移行により、割当関数  $\mu(t,T)$ 、減衰関数  $\gamma(t,T)$ 、スケール係数  $\sigma(t,T)$ 、入庫量 G(t,T) を基礎変数とする一般発展方程式を確立した。

さらに、 $\mu$  や  $\gamma$  の関数形を特定することで、既存の多様な理論(Adstock モデル、緩和関数、SIR モデル、記憶モデル、Solow モデルなど)を統一的に再現可能であることを示し、TAD が既存モデルを包含する包括的枠組みであることを明らかにした。また、エントロピー定式化やラプラス解析によって、非定常状態や因果律を保ったままの解析手法を提示し、理論的基盤を補強した。

実務応用としては、在庫管理、広告効果分析、人口動態予測、LLMへの応用など、履歴情報を活用する分野におけるモデリングと最適化の指針を示した。理論応用としては、記憶モデルや感染症モデルの高度化、線形応答理論や経済学動学モデルへの展開、TAD-Laplace解析といった方法論の開拓を位置づけた。

以下ではさらに4つの視点で深堀して総括してみたい。

#### 15.1.1 メカニズムの視点

まず、TAD 系を**ひとつの箱**として捉え、履歴ラベル T で識別された複数入力  $\{G(\cdot,T)\}$  が箱の内部で統合・蓄積され、自然減衰  $\gamma$  と割当・償却  $\mu$  を経て、スケーリング係数  $\sigma$  を通じて出力 f(t) に現れる――という枠組で TAD のメカニズムを考察してみたい。

- 入力(複数履歴):各ラベル T に対し G(t,T) を受け付ける(対角入力  $G(T)\delta(t-T)$  は特別例)
- 内部履歴分布:g(t,T) は「T に投入された在庫が、時刻 t にどれだけ箱内に残るか」を表す履歴分布
- 自然減衰と割当・償却: $\gamma(t,T)$  は自然減衰、 $\mu(t,T)$  は出力への割当・償却を規定
- **スケーリング**:  $\sigma(t,T)$  により単位変換や出力ゲイン(スケーリング)を与える
- 出力と総量:時刻 t の出力 f(t) と総内部履歴量 N(t) は以下の通り

$$f(t) = \int_{T_1}^t \sigma(t, T) \, \mu(t, T) \, g(t, T) \, dT, \qquad N(t) = \int_{T_1}^t g(t, T) \, dT$$

 $\gamma(t,T)$  は外部出力には寄与せず、 $\sigma$  は単位変換や出力ゲイン(スケーリング)の係数として用いる。(用途により  $\sigma\equiv 1$  としてもよい)

内部の時間発展は最小原理

$$\frac{\partial}{\partial t}g(t,T) = -(\mu(t,T) + \gamma(t,T))\,g(t,T) + G(t,T)$$

で与えられる。

要するに、TAD 箱は「履歴でラベリングされた入力を受け、内部で統合蓄積し、 $\gamma$  で自然減衰しつつ  $\mu$  で割当・償却し、 $\sigma$  で単位変換・スケールして出力する」機械であり、この箱の中では物理的実体・社会的主体・経済的主体が N 体系として相互作用していると捉えることができる。この N 体系の相互作用が瞬時に散逸なく行なわれるか否かで TAD 系が可逆的に振る舞うか不可逆的に振る舞うかが決まるが、物理の非平衡過程や社会現象の多くの系では、内部相互作用が複雑であるがゆえに不可逆に振る舞うのが一般的であり、TAD は可逆・不可逆双方の領域全体を統一的に記述する。

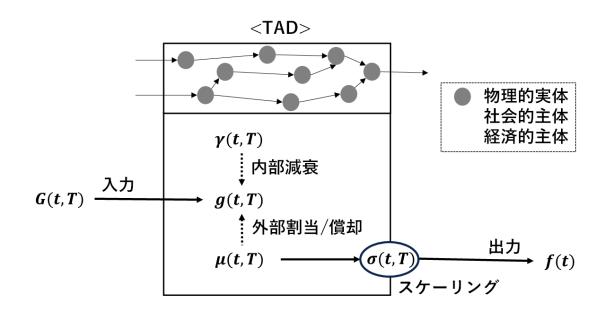


図 15.1 メカニズムの視点

## 15.1.2 t-T 平面上の可逆過程と不可逆過程という視点

次に、TAD は 2 つの変数 t,T が主役の動学理論であるため、t-T 平面を使って全体を俯瞰する視点で考察してみたい。まず、対角線 T=t 上で割当密度が  $p(t,T)=\delta(t-T)$ (即時全量割当=完全可逆過程)となり、他は 0 である極限像は、履歴をもたない可逆的ふるまいの抽象である。これは古典力学の可逆系やワルラス型一般均衡の静学像に対応する「その場決着」の極限であり、履歴 T に沿う滞留・散逸は現れない。

これに対して  $p(t,T) \neq \delta(t-T)$ (幅を持つ分布)は不可逆過程であり、対角線の下に広がる下三角領域全域において TAD は内部状態 g(t,T) の動力学を与える枠組となる。投入 G が履歴(年齢)方向に配分され、自然減衰と割当・償却を経て出力へ至る不可逆の過程を、単一の方程式と最小の仮定(非負・因果・DC 制約)で記述する点に本質がある。対角極限は特別解として内包され、可逆像と不可逆像が同一座標系で接続される。

この下三角領域には、物理の緩和・輸送、経済の資本・広告効果、人口動態のコホート、記憶の保持・忘却、

疫学の感染波、さらには LLM における注意とメモリの選別に至るまで、広範な不可逆現象が含まれる。TAD はそれらを横断して同一の記法・同一の検証手順(停止テスト等)・同一の実装単位(TAD レイヤ)で扱う統一的分析基盤を与える。対角の可逆像(その場決着)と、t 断面の集約像(指標化)とのあいだに広がるこの広大な三角領域を、理論・識別・実装の三位一体で照射すること——それが本研究の射程である。

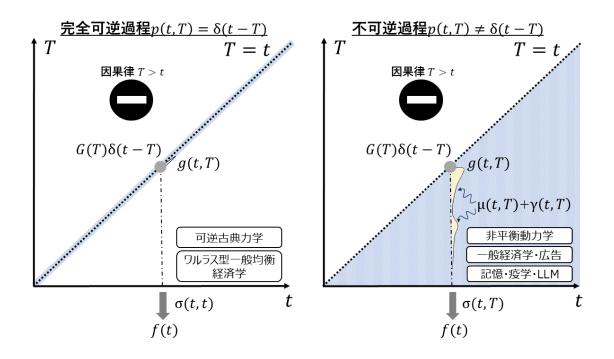


図 15.2 t-T 平面上の可逆過程と不可逆過程という視点

## 15.1.3 既存理論の再解釈と統一・新たな原理の導出の視点

さらに、前章でも展開した既存理論の再解釈と統一・新たな原理の導出という視点でも考察してみたい。従来の物理・経済・人口動態・記憶・広告効果・LLM等の多くの理論は、観測を再現するために核や緩和関数をあらかじめ仮置きし、その形状と時定数をデータに合わせて推定してきた。これはt 断面で履歴分布を集約した表現に相当し、現象論的な適合性は高い一方で、履歴Tに沿う生成・滞留・散逸の内在動力学をモデル外に置く傾向があった。たとえば、総内部履歴量

$$N(t) = \int_{T_1}^t g(t, T) dT$$

のような総和、あるいは重み付き平均による単一指標での表現である(核を仮置きする Adstock 型も、この t 断面集約の系譜に属する)。

TAD はこの構図を反転し、履歴 T のダイナミクスそのものを  $\mu$  や  $\gamma$  で直に記述する。すなわち、集約前の g(t,T) の地図そのものを一次元の最小原理で生成し、必要に応じて任意の集約量へと可逆に射影できる。基本は

$$\frac{\partial}{\partial t}g(t,T) = -(\mu(t,T) + \gamma(t,T))g(t,T) + G(t,T)$$
 
$$K(t|s,T) = \mu(t,T)S(t|s,T) \qquad S(t|s,T) = \exp[-\int_s^t \left(\mu(u,T) + \gamma(u,T)\right)du]$$

という最小原理であり、核 K は仮置きせずに内生生成されるため、従来の単一指数(Debye)、伸長指数 (KWW)、べき尾などの緩和関数を再現できるだけでなく、ヴィンテージ効果の構造的導出や、定常流入下での未償却ストックの線形成長帯  $(S_\infty>0)$  のように、従来枠組では導出が難しかった命題も同一骨格から得られる。すなわち TAD は、職人芸的な経験的フィッティングではなく生成原理に基づく枠組みであり、この構造こそが既存理論の再解釈と統一、さらには新たな予言を可能にしている。同時に TAD が適用可能な様々な分野における理論構築(研究)の質を高め、量を拡大し、速度を加速させることが期待される。

この転換には2つの意義がある。第一に、 $\mu,\gamma,\sigma$  を直接設計・推定することにより、再現可能な現象の量的な射程が大きく広がる(尾の型・混合・相互作用を一貫に扱える)。前章における「教育・記憶モデルの TAD による新たな原理の導出」がこれにあたる。第二に、履歴 T を直接扱うことにより、停止テスト等の実験的識別、政策・介入の時間配置設計、メモリ選別といった質的な洞察が得られ、観測適合の背後にある生成法則を同定可能な形で捉えることができる。前章における「ロジスティック成長モデルの TAD による再解釈と統一」がこれにあたる。すなわち、TAD は従来の核・緩和関数を包含しつつ、その奥にあるダイナミクスを一段深い解像度で記述する枠組であり、量と質の両面で理論の奥行きを拡張する。

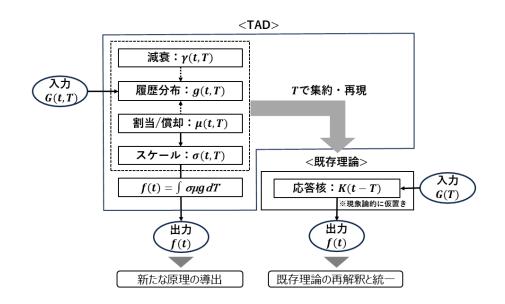


図 15.3 既存理論の再解釈と統一・新たな原理の導出の視点

#### 15.1.4 TAD 世界分解の視点

最後に、*TAD* 世界分解 の位置づけを明確にする。これまでの考察から明らかになったように、TAD の運動学的基礎方程式

$$\frac{\partial g}{\partial t} = -(\mu + \gamma)g + G(T)\delta(t - T)$$

を満たす任意の系は、目的関数  $L(\sigma,\mu,\gamma,g,G)$  の選択によって随伴場  $\psi(t,T)$  が定まり、そのペア  $(L,\psi)$  によりダイナミクスの全体構造が決定される。すなわち、TAD は「入力一履歴一出力」構造をもつあらゆる動

的現象を、目的関数 L の選択と随伴  $\psi$  の進化則のペアで統一的に記述することができる。

#### (1) 運動学的基礎と目的関数の役割:

物理現象に限らず、教育・記憶、経済・社会システム、情報処理など、入力一履歴一出力の因果構造をもつ任意の系は、TAD 発展方程式という運動学的な骨格に従う。このとき、系がどのような目的をもって進化するか(たとえば出力の最大化、エネルギー散逸の最小化等)は目的関数 L によって規定される。

### (2) 目的関数に依存しない恒等式:

目的関数 L がどのような形であっても、対応する随伴場  $\psi$  が存在し、両者の間には常に以下の普遍恒等式が成り立つ。

$$\int_{T_1}^t g \frac{\partial L}{\partial g} dT = \psi(t, t) G(t) - \frac{d}{dt} \int_{T_1}^t \psi(t, T) g(t, T) dT$$

これはいわば「TAD の第一原理」に相当し、全ての L と  $\psi$  の組に対して共変的に成り立つ。

#### (3) ユースケースごとの目的関数と世界分解:

各分野・応用領域において具体的な目的関数 L が与えられると、上式にその関数形を代入することにより、その系固有の恒等式が導かれる。このとき、履歴総量  $W(t) := \int \psi g \, dT$  および随伴  $\psi$  の挙動に応じて、系は可逆・不可逆、定常・非定常といった五つの世界(TAD 世界分解)のいずれかに分類される。

#### (4) 累積出力最大化ゲージと既存理論の包含:

特に目的関数を

$$L = \sigma \mu g$$

と選ぶと、随伴場は  $\psi = \sigma$  となり、 $(L, \psi)$  は**累積出力最大化ゲージ(**f- $\sigma$  **ゲージ)** に対応する。この ゲージは物理学・情報科学・経済学など多くの分野において自然に選択されており、TAD の恒等式は これら既存理論の基礎方程式(力学的保存則、応答関数、効用最大化条件など)を一貫した形式で包含 する。

#### (5) 普遍恒等式による統一的拡張可能性:

今後、各分野(自然科学、情報科学、社会科学等)で新たなユースケースに応じて目的関数 L が定義されたとしても、上記の普遍恒等式は依然として成立する。したがって、目的関数の選択に依らず、すべての TAD 系を同一の恒等的枠組みの中で解析・比較することができる。これは、TAD 理論が「履歴をもつ動的現象の統一記述原理」として今後の理論的・実務的研究に広く応用し得ることを示している。

以上のように、TAD世界分解は「目的関数と随伴のペア」に基づく普遍的な動力学の分類であり、累積出力最大化ゲージを特例として含む。この構造により、可逆から不可逆、定常から非定常に至るすべての履歴系のふるまいが、単一の恒等式とゲージ選択のもとで整理される。



図 15.4 TAD 世界分解の視点

ここまで述べてきた4つの視点を翻って考えてみると、本研究で示した「状態と割当の分離」および「二時間軸による動力学の記述」は、後から見れば単純で自然な構造である。しかし既存の理論はいずれも特定分野の内部で閉じており、FIFO・忘却曲線・感染率といったローカルな関数形に依拠してきたため、この一般化には至らなかった。TAD はその"当たり前に見えて思いつきにくい"視点を導入することで、複数分野を統一する普遍的な基盤理論へと展開可能である。従って、TAD により抽象化された機構(会計恒等式・ヴィンテージ・線形成長・エントロピー等)は分野に依らず立ち上がるため、ある分野では既知の現象が別の分野では未だ明示化されていない場合、TAD は翻訳としての価値(再記述)と新規性(未導入概念の逆輸入)を同時にもたらすことになる。あるいは、全分野を通して全く新しい現象がTAD のメカニズムで記述されたとき、それはそのまま分野横断の共通基礎理論になりうることになる。

## 15.2 将来展望

本論文で展開してきた TAD 理論の成果は、大きく三つの区分に整理できる。

- (1) **再解釈と統一**: 既存の理論や経験式を TAD の枠組みで再構成し、背後に潜む履歴構造を明示すること によって統一的に説明できるもの。(例:ロジスティック成長、緩和関数、エントロピーなど)
- (2) 新規原理導出:従来経験的に知られていたが、原理的説明が欠けていた現象に対して、TAD の数理的 枠組みから必然的に導出できるもの。(例: Kovacs ハンプ、ブルウィップ効果、臨界遅れなど)
- (3) 予言(番外編):まだ現実に観測されていないが、 $\mu$  や  $\gamma$  に基づき TAD が理論的に必然的と示す挙動。 将来の実証研究によって確認される可能性があるもの。(例:多峰性ハンプ、負のハンプなど)

以下の表は、これら三つの区分ごとに普遍的なテーマを縦軸に整理し、分野横断的な展開可能性を横軸に対 応づけたものである。

表 15.1 TAD による将来展望:再解釈と統一、新規原理導出、予言(番外編)の分野横断マトリクス

| <b>5</b> 0 | **>=         | 44-TM                                | 47 <b>*</b>                | +/L <del>-/-</del> =-         |                                      |                       |
|------------|--------------|--------------------------------------|----------------------------|-------------------------------|--------------------------------------|-----------------------|
| 区分         | 普遍テーマ        | 物理                                   | 経済                         | 教 育・記<br>憶                    | マーケティング                              | サプライ<br>チ ェ ー<br>ン・工学 |
| 再解釈と統一     | ヴィンテージ       | 材 料 寿<br>命・時 効<br>硬化                 | ヴ ィ ン<br>テージ資<br>本モデル      | 学 習 コホート                      | 広告接触<br>履歴                           | 在 庫 コホート              |
|            | 線形成長帯        | 生 体・材<br>料の線形<br>成長                  | 初<br>GDP<br>成<br>長         | 習得曲線の線形域                      | 販促短期<br>効果                           | 生産能力<br>のスケー<br>リング   |
|            | 緩和関数         | KWW,<br>多指数緩<br>和                    | 投資・金<br>利調整の<br>遅れ         | 忘却曲線<br>(二重指数<br>など)          | Adstock<br>残効                        | 制御系の<br>応答関数          |
|            | エントロピー       | 熱力学エ<br>ン ト ロ<br>ピー増大                | 不確実性の蓄積                    | 記憶痕跡の拡散                       | 情報効果の減衰                              | 在庫鮮度の劣化               |
| 新規原理導出     | ハンプ (Kovacs) | ガラス緩<br>和の Ko-<br>vacs 効果            | 金融ショ<br>ック後の<br>過剰反応       | 復習後の<br>記憶保持<br>のハンプ          | 広告休止<br>後の売上<br>ピーク                  | 需要変動<br>のブルウ<br>ィップ   |
|            | エコー          | 波動的緩和現象                              | ベ ビ ー<br>ブーム世<br>代交替       | リマイン<br>ド後の成<br>績回復           | 二次波及<br>(広告エ<br>コー)                  | 多層在庫<br>の反復発<br>注     |
|            | 臨界遅れ         | 相転移前<br>の Criti-<br>cal Slow-<br>ing | 金融危機<br>前の回復<br>遅れ         | 学習転換<br>点での停<br>滞             | 市場応答の遅れ                              | 生産システムの過<br>渡応答       |
|            | プラトー再加速      | 非線形緩<br>和の再活<br>性                    | 技術進歩<br>の停滞と<br>再加速        | 学習曲線<br>の プ ラ<br>ト ー →<br>再上昇 | 顧客応答<br>の停滞 →<br>再活性化                | 供給能力の再強化              |
| 予言(番外編)    | 多峰性ハンプ       | 多時間尺<br>度干渉に<br>よる2峰<br>以上の過<br>剰回復  | 二段リバ<br>ウンドの<br>物 価・需<br>要 | 複数モー<br>ド干渉で<br>複数ピー<br>ク     | 複数キャ<br>ンペーン<br>干渉によ<br>る 二 次<br>ピーク | 多層在庫<br>応答の複<br>峰化    |
|            | 負のハンプ(過剰抑制)  | 刺激直後<br>の一時的<br>アンダー<br>シュート         | 政策直後<br>の一時的<br>需要冷え<br>込み | 軽復習直 後の成績 ドロップ                | 価格改定<br>直後の売<br>上谷                   | 発注切替<br>直後の在<br>庫谷    |

本稿では理論面と一部の応用に焦点を当てたが、TAD の枠組みは「履歴が効く」多様な領域に拡張(社会実装)可能である。具体的には、(i)空調・蓄電池などの運用履歴を活用した省エネ制御、(ii)教育・医療での介入履歴に基づく最適スケジューリング、(iii)市場や文化現象におけるイベント残響の可視化と予測、等である。いずれも履歴分布 g(t,T) による寄与分解が中核となり、TAD は「過去の影響が現在にどう残るか」を設計可能にする。これらの検証は今後の課題とし、本稿の理論的含意の外延として位置づける。

#### 謝辞

本研究は、実務家として多忙な業務の合間に、分野横断の文献探索、着想の壁打ち、数式の検算を、大規模言語モデル(LLM)の支援を得て短期間に推進することができた。特に、関連領域の基礎概念の迅速な参照、証明スケッチの下書き、式体系の一貫性チェック、などで有益な助言を受けた。ここに深く感謝する。

ただし、本稿に含まれる記述・式・結論は最終的にすべて著者が独自に検証したものであり、誤りがあれば その責は全面的に著者が負う。

本研究は、LLM を「知の共創者」として位置づけ、人間の専門知と機械の探索・要約・生成能力を結合する新しい研究様式の実践でもある。LLM の積極的な活用は研究の量・質だけでなく実行速度にも驚くほどポジティブな影響があるため、これからの新しい研究手法としても活発な議論があるべきと考える。

#### 再現性に関する注記

本稿の数値実験(図14.1)を再現するコードと使用データを付録資料として公開する。

#### 倫理・透明性に関する注記

LLM の出力に依存する箇所は、出典確認・再計算・単位整合性の点検を著者が行い、参照すべき既存理論・ 史的初出については本文中または参考文献で明示した。

表 15.2 主要記号の早見表

| g(t,T)        | 履歴 $T$ に投入された内部状態の時点 $t$ での残存密度                             |
|---------------|-------------------------------------------------------------|
| G(t,T)        | 入力(対角入力は $G(T)\delta(t-T)$ )                                |
| $\mu(t,T)$    | 出力への割当・償却率                                                  |
| $\gamma(t,T)$ | 自然減衰率(出力にならず失われる分)                                          |
| $\sigma(t,T)$ | スケール係数(単位変換・ゲイン)                                            |
| f(t)          | 出力: $f(t) = \int \sigma \mu g dT$                           |
| N(t)          | 総内部量: $N(t) = \int g  dT$                                   |
| $S(\cdot)$    | 生存関数: $S(a) = \exp\left[-\int_0^a (\mu + \gamma) ds\right]$ |

- [1] John R. Anderson and Lael J. Schooler. The Adaptive Nature of Memory. In: *Psychological Review* 107.4 (2000), pp. 603–634. DOI: 10.1037/0033-295X.107.4.603.
- [2] Iz Beltagy, Matthew E. Peters, and Arman Cohan. "Longformer: The Long-Document Transformer". In: arXiv preprint arXiv:2004.05150. 2020.
- [3] Jean-Philippe Bouchaud. Weak Ergodicity Breaking and Aging in Disordered Systems. In: *Journal de Physique I* 2.9 (1992), pp. 1705–1713. DOI: 10.1051/jp1:1992238.
- [4] Simon Broadbent. One way TV advertisements work. In: *Journal of the Market Research Society* 21.3 (1979), pp. 139–166.
- [5] Piers Coleman. "Fluctuation-dissipation theorem and linear response theory". In: Introduction to Many-Body Physics. Cambridge University Press, 2015. Chap. 9. DOI: 10.1017/CB09781139020916.
   011.
- [6] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov. "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context". In: International Conference on Learning Representations (ICLR). 2019.
- [7] Peter Debye. Polar Molecules. Chemical Catalog Company, 1929.
- [8] Hermann Ebbinghaus. Über das Gedächtnis: Untersuchungen zur experimentellen Psychologie. English translation: Memory: A Contribution to Experimental Psychology (1913). Leipzig: Duncker & Humblot, 1885.
- [9] Hermann Ebbinghaus. Memory: A Contribution to Experimental Psychology. English translation by Henry A. Ruger and Clara E. Bussenius (of the 1885 German original). New York: Teachers College, Columbia University, 1913.
- [10] Martin Egozcue, Albert Prat, and Enrique Vázquez. On some covariance inequalities for monotonic and non-monotonic functions. In: Journal of Inequalities in Pure and Applied Mathematics (JIPAM) 10.4 (2009), pp. 1–13.
- [11] Peter S. Fader and Bruce G. S. Hardie. Probability Models for Customer-Base Analysis. In: *Journal of Interactive Marketing* 23.1 (2009), pp. 61–69. DOI: 10.1016/j.intmar.2008.11.003.
- [12] John D. Ferry. Viscoelastic Properties of Polymers. 3rd. New York: Wiley, 1980.
- [13] H. von Foerster. "Some Remarks on Changing Populations". In: The Kinetics of Cellular Proliferation. 1959, pp. 382–407.
- [14] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice Hall, 1963.

[15] Michael E. Gilpin and Francisco J. Ayala. Global Models of Growth and Competition. In: Proceedings of the National Academy of Sciences 70.12 (1973), pp. 3590–3593. DOI: 10.1073/pnas.70.12.3590.

- [16] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. 3rd. Addison-Wesley, 2001. ISBN: 978-0201657029.
- [17] Benjamin Gompertz. On the Nature of the Function Expressive of the Law of Human Mortality. In: Philosophical Transactions of the Royal Society of London 115 (1825), pp. 513–585.
- [18] A. Hahn and W. H. Fietz. On the magnetic viscosity of SmCo<sub>5</sub>. In: *Physics Letters A* 45.5 (1973), pp. 397–398. DOI: 10.1016/0375-9601(73)90890-6.
- [19] Leif Johansen. Substitution versus Fixed Production Coefficients in the Theory of Economic Growth. North-Holland, 1959.
- [20] Nathan Keyfitz and Hal Caswell. Applied Mathematical Demography. 3rd. New York: Springer, 2005.
- [21] R. Kohlrausch. Theorie des elektrischen Rückstandes in der Leidener Flasche. In: Annalen der Physik und Chemie 91 (1854), pp. 179–214. DOI: 10.1002/andp.18541670203.
- [22] Mark Kot. Elements of Mathematical Ecology. Cambridge: Cambridge University Press, 2001.
- [23] A. J. Kovacs. Transition vitreuse dans les polymères amorphes. Étude phénoménologique. In: Fortschritte der Hochpolymeren-Forschung 3 (1963), pp. 394–507. DOI: 10.1007/BF01806805.
- [24] Ryogo Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. In: *Journal of the Physical Society of Japan* 12 (1957), pp. 570–586. DOI: 10.1143/JPSJ.12.570.
- [25] L. D. Landau and E. M. Lifshitz. *Mechanics*. 3rd. Course of Theoretical Physics, Vol. 1. Butterworth-Heinemann, 1976. ISBN: 978-0750628969.
- [26] B. P. Lathi. Linear Systems and Signals, 3rd ed. Oxford University Press, 2018.
- [27] P. Maltoni, G. Giangrandi, F. Spizzo, et al. Time and temperature dependent magnetic viscosity experiments on ferrite nanoparticles. In: *Journal of Applied Physics* 133.16 (2023), p. 163902. DOI: 10.1063/5.0139615.
- [28] A. G. McKendrick. Applications of Mathematics to Medical Problems. In: Proceedings of the Edinburgh Mathematical Society 44 (1926), pp. 98–130. DOI: 10.1017/S0013091500002568.
- [29] C. T. Moynihan, A. J. Easteal, J. Wilder, and J. Tucker. Dependence of the Fictive Temperature of Glass on Cooling Rate. In: *Journal of Physical Chemistry* 78.26 (1976), pp. 2673–2677. DOI: 10.1021/j100562a006.
- [30] J. D. Murray. Mathematical Biology I: An Introduction. 3rd. Interdisciplinary Applied Mathematics. New York: Springer, 2002.
- [31] Jaap M. J. Murre and Joeri Dros. Replication and Analysis of Ebbinghaus' Forgetting Curve. In: PLOS ONE 10.7 (2015), e0120644. DOI: 10.1371/journal.pone.0120644.
- [32] Prasad A. Naik and Kalyan Raman. Understanding the Impact of Synergy in Multimedia Communications. In: Journal of Marketing Research 40.4 (2003), pp. 375–388. DOI: 10.1509/jmkr.40.4. 375.19386.

[33] O. S. Narayanaswamy. A Model of Structural Relaxation in Glass. In: Journal of the American Ceramic Society 54.10 (1971), pp. 491–498. DOI: 10.1111/j.1151-2916.1971.tb12186.x.

- [34] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals and Systems, 2nd ed. Prentice Hall, 1997.
- [35] Raymond Pearl and Lowell J. Reed. On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. In: *Proceedings of the National Academy of Sciences* 6.6 (1920), pp. 275–288. DOI: 10.1073/pnas.6.6.275.
- [36] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical Theory of Optimal Processes. Interscience, 1962.
- [37] Ofir Press, Noah A. Smith, and Mike Lewis. Train Short, Test Long: Attention with Linear Biases. arXiv:2108.12409. 2021.
- [38] Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. "Compressive Transformers for Long-Range Sequence Modelling". In: International Conference on Learning Representations (ICLR). 2019.
- [39] Walter Rudin. Real and Complex Analysis. 3rd ed. McGraw-Hill, 1987.
- [40] Norman B. Ryder. The Cohort as a Concept in the Study of Social Change. In: American Sociological Review 30.6 (1965), pp. 843–861. DOI: 10.2307/2090964.
- [41] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. "Self-Attention with Relative Position Representations". In: North American Chapter of the Association for Computational Linguistics (NAACL). 2018.
- [42] Julian L. Simon and Johan Arndt. The shape of the advertising response function. In: *Journal of Advertising Research* 20.4 (1980), pp. 11–28.
- [43] Robert M. Solow. A Contribution to the Theory of Economic Growth. In: Quarterly Journal of Economics 70.1 (1956), pp. 65–94. DOI: 10.2307/1884513.
- [44] Robert M. Solow, James Tobin, C. C. von Weizsäcker, and Menahem E. Yaari. Neoclassical Growth with Fixed Factor Proportions. In: Review of Economic Studies 33.2 (1966), pp. 79–115. DOI: 10. 2307/2296445.
- [45] Elias M. Stein and Rami Shakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press, 2005.
- [46] Gerard J. Tellis and David L. Weiss. Does TV advertising really affect sales? The role of measures, models, and data aggregation. In: Journal of Advertising Research 35.2 (1995), pp. 1–13.
- [47] Albert Q. Tool. Relation between Inelastic Deformability and Thermal Expansion of Glass in its Annealing Range. In: *Journal of the American Ceramic Society* 29.9 (1946), pp. 240–253. DOI: 10.1111/j.1151-2916.1946.tb11592.x.
- [48] Ashish Vaswani et al. "Attention is All You Need". In: Advances in Neural Information Processing Systems (NeurIPS). 2017, pp. 5998–6008.
- [49] Pierre-François Verhulst. Notice sur la loi que la population poursuit dans son accroissement. In: Correspondance Mathématique et Physique 10 (1838), pp. 113–121.

[50] Waloddi Weibull. A Statistical Distribution Function of Wide Applicability. In: Journal of Applied Mechanics 18.3 (1951), pp. 293–297.

- [51] G. Williams and D. C. Watts. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. In: *Transactions of the Faraday Society* 66.565 (1970), pp. 80–85. DOI: 10.1039/TF9706600080.
- [52] John T. Wixted. The Psychology and Neuroscience of Forgetting. In: *Annual Review of Psychology* 55 (2004), pp. 235–269. DOI: 10.1146/annurev.psych.55.090902.141555.
- [53] Manzil Zaheer et al. "Big Bird: Transformers for Longer Sequences". In: Advances in Neural Information Processing Systems (NeurIPS). 2020.