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New theory to find the global optimum for
nonconvex optimization problems

Hisao Katoh

Abstract—This paper proposes a new theory for calculating
the global optimum of nonconvex optimization problem. Key idea
used in this paper is a combination of probability-one homotopy
method and von Neumann’s minimax theorem. Brouwer’s fixed
point theorem is used for the connection of these two theories.

Index Terms—nonconvex optimization, global optimum,
probability-one homotopy method, minimax theorem, fixed point
theorem

I. INTRODUCTION

Nonconvex optimization is still recognized as difficult prob-
lem to solve, while satisfactory results are obtained for convex
optimization theory, such as linear programming [1]- [3] and
linear matrix inequality [4], [5] used in automatic control
theory. Effective tool for general nonconvex optimization
problem may be only so-called Karush-Kuhn-Tucker (KKT)
condition [6], [7]. However, KKT condition is a necessary,
not necessary and sufficient, condition and may not be easy
to solve in general.

Of course, there are many studies in the field of nonconvex
optimization. A detailed survey in this field of research is
shown in e.g. [17]. As shown in [17], some studies use
hidden convexity or derive analytic solution to nonconvex
problems (e.g. [18], [19]). Also, many studies are devoted to
various types of gradient methods, which may converge to
local minimum ( [20] etc.).

The purpose of the present paper is to propose a new
approach for nonconvex optimization problem. For this pur-
pose, we use, as our key tool, a combination of homotopy
method and game theory, or more specifically a combination
of probability-one homotopy method [8] and von Neumann’s
minimax theorem [11].

In the field of probability-one homotopy method, many
results are obtained ( [9], [10]etc). To the present author’s
knowledge, the origin of probability-one homotopy method
may be [8]. In [8], a homotopy that converges from arbitrary
initial point to a fixed point of given continuous and bounded
mapping is proposed. By using such homotopy we can calcu-
late a fixed point.

On the other hand, von Neumann’s minimax theorem [11]
clarifies that, if a point called saddle point exists for some
function, that point is an optimal solution to a minimax
problem corresponding to that function. It is explained in e.g.
[13] that a saddle point of minimax problem shown by von
Neumann in [11] etc. can be recognized as a fixed point.
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Therefore, the probability-one homotopy method shown in
[8] and von Neumann’s minimax theorem [11] are connected
by the concept of fixed point.

Combining these two theories, the present author is led
to an idea that if nonconvex optimization problem can be
equivalently transformed to a minimax problem whose saddle
point always exists then we can calculate this saddle point
(i.e. a solution to the nonconvex optimization problem) by
using appropriate homotopy. The present paper shows that this
idea is successful in case that given nonconvex problem is
polynomial-type one. (The definition of ”polynomial-type” is
given later.)

As is well known, one of the most important nonconvex
problem in the field of control theory is bilinear matrix
inequality (BMI). In this note, we consider general nonconvex
problem as pre-stage of BMI.

In the next section, we start our argument by equivalently
transforming nonconvex optimization problem to the set of
quadratic inequalities. In Section 3, it is further transformed to
a two-person zero-sum game (or minimax problem). In Section
4, a continuous mapping is introduced and Brouwer’s fixed
point theorem is applied to it. By using that result, homotopy
that converges to the saddle point is proposed in Section 5. A
numerical example is studied in Section 6.

II. TRANSFORMATION OF NONCONVEX PROBLEM TO SQI

We consider a nonconvex optimization problem given as

fNC
1 (z1, . . . , zp1) → min (1)

subject to inequality constraints
fNC
2 (z1, . . . , zp1) ≤ 0

...
fNC
q1 (z1, . . . , zp1) ≤ 0

(2)

and equality constraints
fNC
q1+1(z1, . . . , zp1) = 0

...
fNC
q2 (z1, . . . , zp1) = 0

(3)

where q1 ≥ 2 and q2 ≥ q1 + 1.
This is general formulation of nonconvex problem given in

e.g. [15]. Throughout this note, fNC
1 , . . . , fNC

q2 are restricted
to real-polynomials in z1, . . . , zp1 . Such problem is called
polynomial-type nonconvex optimization problem in this note.
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In the followings, we equivalently transform (1)-(3) to the
set of quadratic inequalities (SQI). SQI is defined as the set
of inequalities of the form

f1(z1, . . . , zp) ≤ 0
...

fq(z1, . . . , zp) ≤ 0

(4)

where fi are all real-polynomials in z1, . . . , zp and the order
of all fi is less than or equal to 2, i.e. fi is given by

fi(z) = zTAiz + 2bTi z + ci (5)

for some constant Ai, bi, ci and z := [z1, . . . , zp]
T .

First, we use so-called γ-iterations. Namely (1) is replaced
by

fNC
1 (z1, . . . , zp1)− γ ≤ 0 (6)

where γ is iteratively prescribed constant.
Next, we make the order of all left-hand sides of (2),(3) and

(6) lower than or equal to 2 by introducing new unknowns.
By this, we obtain

fQ1 (z1, . . . , zp2)− γ ≤ 0

fQ2 (z1, . . . , zp2) ≤ 0
...

fQq1(z1, . . . , zp2) ≤ 0

fQq1+1(z1, . . . , zp2) = 0
...

fQq3(z1, . . . , zp2) = 0

(7)

where p2 ≥ p1, q3 ≥ q2 and the order of all fQi ’s are less
than or equal to 2. zp1+1, . . . , zp2 are new unknowns. This
transformation is always possible. See Appendix I.

The equations in (7) can be equivalently transformed to
inequalities by using an obvious neccessary and sufficient
relationship given by

α = 0 ⇔ α ≤ 0and − α ≤ 0 (8)

By using this, (7) is equivalent to

fQ1 (z1, . . . , zp2)− γ ≤ 0

fQ2 (z1, . . . , zp2) ≤ 0
...

fQq1(z1, . . . , zp2) ≤ 0

fQq1+1(z1, . . . , zp2) ≤ 0

−fQq1+1(z1, . . . , zp2) ≤ 0
...

fQq3(z1, . . . , zp2) ≤ 0

−fQq3(z1, . . . , zp2) ≤ 0

(9)

This is a SQI.

III. SQI AS GAME

In this section, we consider SQI from the viewpoint of game
theory. Namely, we equivalently transform a general SQI given
by (4) to a minimax problem.

For this purpose, first transform unknowns z1, . . . , zp to new
unknowns x1, . . . , xp+1 by

z1 = x1

xp+1

...
zp =

xp

xp+1

(10)

where
xp+1 ̸= 0 (11)

must be satisfied.
Define

f̂i(x1, . . . , xp+1) := x2p+1fi(
x1
xp+1

, . . . ,
xp
xp+1

) (i = 1, . . . , q)

Then (4) is equivalent to a set of quadratic homogeneous
inequalities given by

f̂1(x1, . . . , xp+1) ≤ 0
...

f̂q(x1, . . . , xp+1) ≤ 0

(12)

Obviously if fi is given by (5) then f̂i is given by

f̂i(x) = xT
[
Ai bi
bTi ci

]
x

where x := [x1, . . . , xp+1]
T .

Furthermore (11) is approximately equivalent to

f̂q+1(x1, . . . , xp+1) := −x2p+1 + ϵ ≤ 0 (13)

where ϵ is sufficiently small positive constant.
If (x1, . . . , xp+1) is a solution to (10) for given zi then

(αx1, . . . , αxp+1) is also solution for any scalar α ̸= 0. So
we use a constraint given by

x21 + · · ·+ x2p+1 = 1 (14)

(12) and (13) can be summarized as

F (x) ≤ 0 (15)

where

F (x) :=


f̂1(x) 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 f̂q+1(x)


It is straightforward to show that F can be always described

of the form

F (x) = [x1I, . . . , xp+1I]E

 x1I
...

xp+1I

+ E00
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for some (q + 1) × (q + 1) diagonal constant matrices Eij ,
where

E :=

 E11 . . . E1,p+1

...
. . .

...
Ep+1,1 . . . Ep+1,p+1


and I is the (q+1)× (q+1) identity matrix. In the following
arguments, without loss of generality, let Eij = Eji, ∀i, ∀j be
satisfied.

(15) is equivalent to

λmax(F (x)) ≤ 0 (16)

Combining (14) and (16), the SQI (4) is equivalent to a
minimization problem given by

J = min
xT x=1

λmax(F (x)) (17)

and the optimum value of J is negative.
Furthermore, this is equivalent to a minimax problem given

by
J = min

xT x=1
max
yT y=1

ϕ(x, y) (18)

where ϕ(x, y) := yTF (x)y and y = [y1, . . . , yq+1]
T ∈ Rq+1.

Considering from the viewpoint of two-person zero-sum
game by two players x and y, the minimax problem J is the
optimal strategy for the minimizer x. On the other hand, the
optimal strategy for the maximizer y is the maximin problem
given by

J ′ = max
yT y=1

min
xT x=1

ϕ(x, y)

In general J ≤ J ′ holds [11], [12].
On the two-person zero-sum game, the following theorem

by von Neumann is a classical result.
Theorem 1 [11], [12]: Assume that a saddle point (x0, y0),

i.e. a point that satisfies

h(x0, y) ≤ h(x0, y0) ≤ h(x, y0), ∀x ∈ X, ∀y ∈ Y (19)

exists for h : X × Y → R, where X and Y are nonempty
subsets of Rn and Rm and n and m are arbitrary integers.
Then

min
x∈X

max
y∈Y

h(x, y) = h(x0, y0) = max
y∈Y

min
x∈X

h(x, y) (20)

From Theorem 1, if a saddle point exists then that saddle
point is an optimal solution to corresponding minimax prob-
lem.

Next we derive a condition that the saddle point for ϕ must
satisfy.

The expression of ϕ by the power of y is the definition of
ϕ itself.

The expression of ϕ by the power of x can be easily
calculated as

ϕ(x, y) = xTG(y)x+ ḡ(y) (21)

where

G(y) :=

 yTE11y . . . yTE1,p+1y
...

. . .
...

yTEp+1,1y . . . yTEp+1,p+1y

 (22)

ḡ(y) := yTE00y (23)

Since Eij = Eji, ∀i, j is satisfied, G(y) is symmetric. Now
we obtain the following theorem.

Theorem 2: (x, y) is a saddle point of ϕ if and only if

{λI − F (x)}y = 0 (24)
yT y − 1 = 0 (25)

λI − F (x) ≥ 0 (26)
{ρI −G(y)}x = 0 (27)

xTx− 1 = 0 (28)
ρI −G(y) ≤ 0 (29)

Proof: If x is fixed then the necessary and sufficient condi-
tion for y to maximize ϕ is (24)-(26), i.e. y is an eigenvector
with respect to the largest eigenvalue of F (x). If y is fixed then
the necessary and sufficient condition for x to minimize ϕ is
(27)-(29), i.e. x is an eigenvector with respect to the smallest
eigenvalue of G(y). Q.E.D.

We have two comments on f̂q+1. (a) Under the constraints
(13) and (14), |zi| <

√
(1− ϵ)/ϵ is always satisfied. Namely

f̂q+1 has a property that makes the searching region of solution
bounded. Therefore, even in case that the optimal solution is
infinity (e.g. fi’s are all first-order polynomial), the method
proposed in this paper provides large but bounded solution.
(b) In some cases, xp+1 = 0 cannot be the optimal solution to
J . In such case, f̂p+1 can be removed from F (x). See Section
6 for such example.

IV. CONTINUOUS MAPPING AND FIXED POINT

In the followings, we propose a method to calculate the
saddle point that satisfies (23)-(28). For this purpose, first we
consider

{λI − (1− θ)F1 − θF (x)}η + (1− θ)f0 = 0 (30)
ηT η − 1 = 0 (31)

λI − (1− θ)F1 − θF (x) ≥ 0 (32)
{ρI − (1− θ)G1 − θG(y)}x+ (1− θ)g0 = 0 (33)

xTx− 1 = 0 (34)
ρI − (1− θ)G1 − θG(y) ≤ 0 (35)

where θ ∈ [0, 1) is a constant and f0, F1, g0, G1 are arbitrary
constant vectors and matrices of appropriate dimensions that
satisfy g0 ̸= 0, G1 = GT

1 , F1 is a diagonal matrix and

f0 = [f01, . . . , f0,q+1]
T , f0i ̸= 0, ∀i. (36)

(In the followings, we assume f0,q+1 > 0.)
Obviously, by setting θ = 1 and replacing η by y, (30)-(35)

becomes the saddle point (24)-(29).
In the followings, we show that, at arbitrarily fixed θ ∈

[0, 1), (30)-(32) can be recognized as a mapping from x to
η (or η′ defined later) and (33)-(35) can be recognized as a
mapping from y (or y′ defined later) to x.

First, consider (30)-(32). Let θ ∈ (0, 1) and x be fixed. Then
it is straightforward to show that (31) is equivalent to

ψ1(λ) = 1 (37)
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where

ψ1(λ) := (1− θ)2fT0 {λI − (1− θ)F1 − θF (x)}−2f0

= (1− θ)2
q+1∑
i=1

f20i

{λI − (1− θ)f̂1i − θf̂i(x)}2

and f̂1i is (i, i)th-element of F1. Since f0i(i = 1, . . . , q + 1)
satisfies (36), there exists unique λ such that (37) and

λ > max{(1−θ)f̂11+θf̂1(x), . . . , (1−θ)f̂1,q+1+θf̂q+1(x)}

are satisfied. For this λ, {λI − (1− θ)F1 − θF (x)}−1 exists.
Using such λ, η is uniquely determined as

η = −(1− θ){λI − (1− θ)F1 − θF (x)}−1f0 (38)

Clearly as x continuously moves, η given by (38) also contin-
uously moves.

Since f0,q+1 > 0 as assumed earlier, from (38) obviously
ηq+1 always satisfies

ηq+1 < 0 (39)

So ηq+1 is always uniquely determined by

ηq+1 = −
√
1− η′T η′ (40)

where η′ := [η1, . . . , ηq]
T . Of course η′ always satisfies η′ ∈

Bq(:= {x ∈ Rn : xTx ≤ 1}).
Thus (30)-(32) can be recognized as a continuous mapping

from x to η′ (and ηq+1 is uniquely determined by (40)).
Next consider (33)-(35). Let θ ∈ (0, 1) be fixed. Also, let

y′ = [y1, . . . , yq] ∈ Bq be given and let yp+1 be determined
by yq+1 = −

√
1− y′T y′. Furthermore rewrite G(y) as G(y′).

Next, define

ψ2(ρ) := (1− θ)2gT0 {ρI − (1− θ)G1 − θG(y′)}−2g0 (41)

Now we consider the case that degeneration at the smallest
eigenvalue of (1−θ)G1+θG(y

′) (the situation that the smallest
eigenvalue of (1− θ)G1+ θG(y

′) is not the pole of ψ2) takes
place in (41). Let U be an orthogonal matrix that satisfy

(1− θ)G1 + θG(y′) = UT

 λ1 0
. . .

0 λp+1

U
(1− θ)g0 = UT

 β1
...

βp+1


(42)

where λ1 ≤ λ2 ≤ · · · ≤ λp+1.
Let the multiplicity of λ1 be r, i.e. λ1 = · · · = λr < λr+1 ≤

· · · ≤ λp+1 and define β̂ := [β1, . . . , βr]
T .

Then we have the following lemma.
Lemma : For almost all g0, the Lebesgue measure of the set

{y′ ∈ Bq : β̂ = 0} is zero.
Proof : Consider the space {(y′, g0) : y′ ∈ Bq, g0 ∈ Rp+1}.

Let y′ be fixed. It follows from (42) that the Lebesgue measure
of the set {g0 ∈ Rp+1 : β̂ = 0} is zero. Therefore the measure
of {(y′, g0) ∈ Bq × Rp+1 : β̂ = 0} is also zero, since the
measure of Bq is finite. Therefore the measure of {g0 ∈ Rp+1 :
the measure of y′ that satisfy β̂ = 0 is nonzero } must be zero.

(If it is nonzero then the measure of {(y′, g0) : β̂ = 0} must
be nonzero.) Q.E.D.

From this lemma, when g0 is arbitrarily set, with probability
one, {y′ ∈ Bq : β̂ = 0} is the set of measure zero. So, with
probability one, β̂ ̸= 0 is satisfied. Therefore, when y′ is given,
we can determine the unique solution x for (33)-(35) as

x = −(1− θ){ρI − (1− θ)G1 − θG(y′)}−1g0 (43)

where ρ is the unique solution to{
ψ2(ρ) = 1
ρI − (1− θ)G1 − θG(y′) < 0

(44)

Clearly as y′ continuously moves, x given by (43) also
continuously moves.

Thus (33)-(35) can be recognized as a continuous mapping
from y′ to x.

Now, we use Brouwer’s fixed point theorem given as
follows.

Theorem 3 [14]: For arbitrary n, any continuous mapping
from Bn to Bn has at least one fixed point.

Using this theorem, we obtain the following theorem.
Theorem 4: There always exist x, y, λ and ρ that satisfy

{λI − (1− θ)F1 − θF (x)}y + (1− θ)f0 = 0 (45)
yT y − 1 = 0 (46)

λI − (1− θ)F1 − θF (x) ≥ 0 (47)
{ρI − (1− θ)G1 − θG(y)}x+ (1− θ)g0 = 0 (48)

xTx− 1 = 0 (49)
ρI − (1− θ)G1 − θG(y) ≤ 0 (50)

for any fixed θ ∈ [0, 1).
Proof: Let θ ∈ [0, 1) be arbitrarily fixed. We consider (30)-

(35) again.
As shown above, (30)-(32) can be recognized as a contin-

uous mapping from x ∈ Rp+1 to η′ ∈ Bq . We denote this
mapping as η′ = Φ1(x).

Also, (33)-(35) can be recognized as a continuous mapping
from y′ ∈ Bq to x ∈ Rp+1. We denote this mapping as x =
Φ2(y

′).
Combining them, we have

η′ = Φ(y′) (51)

where Φ := Φ1◦Φ2. Since Φ1 and Φ2 are continuous mapping,
Φ is also continuous. So Φ is a continuous mapping from Bq

to Bq . Therefore, by using Brouwer’s fixed point theorem,
there exists η′ = y′ ∈ Bq that satisfy (51). Furthermore, from
yq+1 = −

√
1− y′T y′ and ηq+1 = −

√
1− η′T η′, y = η

follows. By putting y = η in (30)-(35), we obtain (45)-(50).
Q.E.D.

Summarizing our argument so far, (30)-(35) can be recog-
nized as a continuous mapping Φ from y′ ∈ Bq to η′ ∈ Bq for
any fixed θ ∈ (0, 1). A fixed point ( i.e. the point of η = y)
of Φ is given by (45)-(50) for any fixed θ ∈ (0, 1). By putting
θ = 1 in the fixed point (45)-(50), we obtain the saddle point
(24)-(29) of the minimax problem (18).
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V. USE OF HOMOTOPY

In this section, we aim to calculate the fixed point (45)-(50)
of Φ for some fixed θ ∈ [0, 1). This purpose can be achieved
a homotopy method proposed in [8]. That homotopy is given
by

(1− θ̂)(y′ − y′0) + θ̂{y′ − Φ(y′)} = 0 (52)

where θ̂ ∈ [0, 1] is the homotopy parameter and y′0 is a
constant vector.

(52) is equivalent to

(1− θ̂)(y′ − y′0) + θ̂(y′ − η′) = 0 (53)
yT y − 1 = 0 (54)

{λI − (1− θ)F1 − θF (x)}η + (1− θ)f0 = 0 (55)
ηT η − 1 = 0 (56)

λI − (1− θ)F1 − θF (x) ≥ 0 (57)
{ρI − (1− θ)G1 − θG(y)}x+ (1− θ)g0 = 0 (58)

xTx− 1 = 0 (59)
ρI − (1− θ)G1 − θG(y) ≤ 0 (60)

It should be noted that θ and θ̂ are different. In (53)-(60),
θ is a constant θ0 in (0, 1) and θ̂ is the homotopy parameter
that moves from θ̂ = 0 to θ̂ = 1.

In this homotopy, the initial values y0, x0, η0, ρ0, λ0 of vari-
ables y, x, η, ρ, λ are set or calculated as follows. The initial
value of y′ is y′0, which is arbitrarily set as an interior point of
Bq . The initial value of yq+1 is set as yq+1 = −

√
1− y′T y′.

ρ0 is determined by (58)-(60), and x0 is determined by ρ0 and
(58). λ0 is determined by (55)-(57), and η0 is determined by
λ0 and (55).

As explained above, y′0 is an interior point of Bq , i.e.
y′T0 y

′
0 < 1. Also, (53) is y′ = (1− θ̂)y′0+ θ̂η′ and η′T η′ ≤ 1 is

satisfied. Therefore, y′ satisfies y′T y′ < 1 for any θ̂ ∈ [0, 1).
So, throughout θ̂ ∈ [0, 1), yq+1 ̸= 0. Therefore, since the
initial value of yq+1 is negative, throughout θ̂ ∈ [0, 1), yq+1

is negative, i.e. yq+1 = −
√
1− y′T y′.

It is guaranteed in [8] that tracking the homotopy path (53)-
(60) reaches θ̂ = 1 with probability one. When this path-
tracking reaches θ̂ = 1, we obtain x, y, λ and ρ that satisfy

{λI − (1− θ)F1 − θF (x)}y + (1− θ)f0 = 0 (61)
yT y − 1 = 0 (62)

λI − (1− θ)F1 − θF (x) ≥ 0 (63)
{ρI − (1− θ)G1 − θG(y)}x+ (1− θ)g0 = 0 (64)

xTx− 1 = 0 (65)
ρI − (1− θ)G1 − θG(y) ≤ 0 (66)

for some fixed θ = θ0 ∈ (0, 1). (61)-(66) is identical with
(45)-(50).

Next we consider (61)-(66) as a homotopy in which θ is not
constant but the homotopy parameter that moves from θ = θ0
to θ = 1, and aim to obtain the saddle point (24)-(29).

After all, the whole calculation algorithm proposed in this
paper is the following algorithm given by Steps 1 to 3. We call
this algorithm Saddle-Point Homotopy Algorithm (SPHA).
Also, we call (53)-(60) and (61)-(66) First-Stage Path-Tracking
(FSPT) and Second-Stage Path-Tracking (SSPT), respectively.

Step 1: Execute the FSPT from θ̂ = 0 to θ̂ = 1, where θ is
a fixed value θ0 ∈ (0, 1).

Step 2: After the FSPT reaches θ̂ = 1, excecute the SSPT
from θ = θ0 to θ = 1.

Step 3: If the SSPT in Step 2 reaches θ = 1, the saddle
point (24)-(29) is obtained. If the SSPT in Step 2 does not
reach θ = 1, change the value of θ0 closer to 1 and repeat
Step 1 and Step 2 again.

When we execute FSPT and SSPT, how to deal with in-
equalities (57) and (60) (or (63) and (66)) can be chosen from
the following two types. (We explain about FSPT. Explanation
for SSPT is similar.)

Type A: We track the path constructed by (53)-(56), (58) and
(59) only. Along this tracking, we continue to check whether
(57) and (60) are satisfied or not. When we detect that (57) or
(60) is not satisfied, we stop the path-tracking temporarily, and
return to θ̂ for which (57) and (60) are satisfied, and return to
the path-tracking again with smaller increment of θ̂.

Type B: We replace inequalities (57) and (60) by equalities

λI − (1− θ)F1 + θF (x)− V TV = 0 (67)

and
ρI − (1− θ)G1 − θG(y) +WTW = 0 (68)

where V and W are new unknowns that have the form of
upper-right matrices They use so-called Choresky factoriza-
tions (e.g. [16]).

Now we obtain the following theorem.
Theorem 5: By the SPHA, with probability one the saddle

point (24)-(29) is obtained.
Proof: First, it is guaranteed in [8] that the FSPT (53)-(60)

reaches θ̂ = 1 with probability one.
Next consider the SSPT. Path (61)-(66) is a plot of fixed

point as θ varies. This path may not be continuous between
θ = 0 and θ = 1, and may consist of more than two curves.
However, even if the path consists of more than two curves, it
follows from Theorem 4 that at least one such curve reaches
θ = 1. Therefore, by making the value of θ0 sufficiently close
to 1, the end of SSPT must reach the path that is connected
to the plane θ = 1. By executing the SSPT on that curve, we
can always reach θ = 1. Q.E.D.

After all, our result on nonconvex optimization problem is
as follows:

Theorem 6: By the SPHA corresponding to the nonconvex
optimization problem (1)-(3), with probability one the global
optimum of the nonconvex optimization problem (1)(3) is
obtained after γ iteration.

The calculation method proposed in this note can be used
for the problem of finding a numerical solution to the set of al-
gebraic equations and some problems in discrete mathematics.
See Appendices II and III for these topics.

VI. NUMERICAL EXAMPLES

In this section, we consider a numerical example of non-
convex optimization problem given by

J = (z − a1)
2 + a2 → min (69)
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in a nonconvex region

−z2 + 1 ≤ 0 (70)

Using z = x1/x2 and γ, (69) and (70) are equivalent to

x21 − a1x1x2 + (a21 + a2 − γ)x22 ≤ 0 (71)
−x21 + x22 ≤ 0 (72)

Obviously x2 = 0(z = ∞ or −∞) does not correspond to
the global optimum of this problem. So we can remove (13)
from F (x).

Therefore in this example

F (x1, x2) =

[
x21 − a1x1x2 + (a21 + a2 − γ)x22 0

0 −x21 + x22

]
(73)

and

E11 =

[
1 0
0 −1

]
, E12 = E21 =

[
−a1 0
0 0

]
,

E22 =

[
a21 + a2 − γ 0

0 1

]
. (74)

We use the Type A. For example we put

F1 =

[
3 0
0 3

]
, f0 =

[
−2
4

]
, G1 =

[
−7 0
0 −7

]
, g0 =

[
1
5

]
(75)

and a2 = 3.
We investigate two cases a1 = −2 and a1 = 0.5.
Case 1: a1 = −2. In this case, the problem has the global

minimum at z = −2 and a local minimum at z = 1. After
γ-iteration, the value of γ approaches a2(= 3).

First we execute the FSPT from θ̂ = 0 to θ̂ = 1 where
θ = 0.8 is fixed and γ = 3. As a result of this tracking, we
can confirm the path is continuous between the initial point

ξ1 = [0.61617,−0.78762, 1.53069,−0.74374, 0.66847,

−1.87280, 0.60000,−0.8000, 0.000]T (76)

and the final point

ξ1 = [0.61568,−0.78800, 1.52661,−0.74524, 0.66679,

−1.86777, 0.61575,−0.78794, 1.000]T . (77)

where ξ1 = [η1, η2, λ, x1, x2, ρ, y1, y2, θ̂]
T .

Next we execute the SSPT from θ = 0.8 to θ = 1. As a
result of this tracking, we can confirm the path is continuous
between the initial point

ξ2 = [0.61575,−0.78794, 1.52661,−0.74524,

0.66679,−1.86777, 0.800]T (78)

and the final point

ξ2 = [1.000, 7.0× 10−7,−2.6× 10−7,−0.89443

0.44721, 5.6× 10−7, 1.000]T . (79)

where ξ2 = [y1, y2, λ, x1, x2, ρ, θ]
T .

It follows from the final point (79) that

z =
x1
x2

=
−0.89443

0.44721
= −2.0000 (80)

This corresponds to the global minimum.

Case 2: a1 = 0.5. In this case, the problem has the global
minimum at z = 1 and a local minimum at z = −1. After
γ-iteration, the value of γ approaches (1−a1)2+a2(= 3.25).

First we execute the FSPT from θ̂ = 0 to θ̂ = 1 where
θ = 0.8 is fixed and γ = 3.25. As a result of this tracking, we
can confirm the path is continuous between the initial point

ξ1 = [0.31737,−0.94830, 1.74050,−0.56076, 0.82798,

−2.19328, 0.60000,−0.8000, 0.000]T (81)

and the final point

ξ1 = [0.44492,−0.89557, 1.49712, 0.70541, 0.70880,

−2.24718, 0.44415,−0.89515, 1.000]T . (82)

Next we execute the SSPT from θ = 0.8 to θ = 1. As a
result of this tracking, we can confirm the path is continuous
between the initial point

ξ2 = [0.44415,−0.89515, 1.49712, 0.70541,

0.70880,−2.24718, 0.800]T (83)

and the final point

ξ2 = [0.81650,−0.57735, 7.8× 10−8, 0.70711

0.70711, 2.6× 10−8, 1.000]T . (84)

It follows from the final point (84) that

z =
x1
x2

=
0.70711

0.70711
= 1.0000 (85)

This corresponds to the global minimum.

VII. CONCLUSIONS

In this paper, new numerical method for finding the global
optimum of polynomial-type nonconvex optimization prob-
lem has been proposed Our key tool is the combination
of probability-one homotopy method and minimax theorem.
By using our method, the global, not local, optimum of
polynomial-type nonconvex optimization problem can be cal-
culated after γ iteration with probability one.

In our problem formulation, fNC
i are restricted to be

polynomials. Removing this restriction is our future subject
of research.

The result on BMI is also our future subject.
The author declares no conflicts of interest associated with

this paper.
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APPENDIX A
TRANSFORMATION TO SQI

For example, we consider an inequality given by

z21 − 3z1z
2
2z3 ≤ 0, (86)

By introducing new unknowns z4 and z5 as

z4 := z22 (87)
z5 := z4z3(= z22z3) (88)

(86) becomes
z21 − 3z1z5 ≤ 0. (89)

and are equivalent to

z4 − z22 = 0 (90)
z5 − z4z3 = 0 (91)

After all, (86) is equivalent to (89)-(91) The order of left-
hand side of (89)-(91) are less than or equal to 2.

Similarily as this example, in any case, by replacing second-
order term by new unknown, (1)-(3) is always equivalently
transformable to (7).

APPENDIX B
SET OF ALGEBRAIC EQUATIONS

The problem of finding the numerical solution to a set
of algebraic equations (SAE) f1(z1, . . . , zn) = · · · =
fm(z1, . . . , zn) = 0 is equivalent to the problem of finding the
global minimum of minimization problem f21 + · · · + f2m →

min. The latter is a nonconvex minimization problem in
general. So the method proposed in this note can be applied
to it. (Also, it is easy to equivalently transform a given SAE
to a SQI by using the method shown in Section 2.)

APPENDIX C
PROBLEM IN DISCRETE MATHEMATICS

Here we consider prime factorization. Factorization of a
given odd number α is equivalent to

z1z2 = α (92)
zi = zi0 + 2zi1 + 22zi2 + · · ·+ 2nzin (93)
zij ∈ {0, 1} (94)

i = 1, 2; j = 0, . . . , n

where n is an integer that satisfy 2n ≤ α/3 < 2n+1.
Furthermore (94) is equivalent to

zij(zij − 1) = 0 (95)

Since 2n+1 ≤ (2/3)α < α is satisfied and zi is given by
(93), zi = α cannnot happen. So the possibility of (z1, z2) =
(1, α) or (α, 1) is automatically removed.

Clearly (92),(93) and (95) are the set of algebraic equation.
So we can use the method proposed in this note for finding
the numerical solution to it.


