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Abstract

We begin from a simple idea: gravity is a curvature field Φ with dimension [L2/T2].
Its gradient −∇Φ is the observable gravitational acceleration, and extended mass is rep-
resented with a small set of smooth functions to avoid point singularities. The underlying
equation of motion, which we call the Phi–Curvature Field Equation (PCFE),

□Φ− U ′(Φ) = J

reduces to the Newton–Poisson limit in the weak field (Section 2, Appendix C), while static
solutions are implemented via the MC–CF representation. Starting from the curvature–
field hypothesis first proposed at the quantum scale—Introducing the Curvature Field
Function: Toward a Geometric Formulation of Wavefunction Collapse [15]—we test, with
empirical data, whether the same concept can extend continuously to macroscopic grav-
ity. One fixed policy (masks, windows, covariances) is applied across all domains (Sec-
tion 12.3, Appendix H), and galaxy rotation curves (SPARC), black–hole rings (EHT),
Solar–System PPN, and cosmology (CMB/BAO) are read through standardized invariants
and shared weighting rules (Section 7). Cohort–wise, C4 aligns consistently with data; in
the strong–field regime (Rstd,Θstd) intersect the GR–recovery baseline in a compatible
manner; Solar–System and cosmology snap–ins remain within policy limits. In a separate
exploratory track (policy unchanged), we also show that a mild adjustment of the global
taper noticeably restores outer–window agreement. Across all domains, hyperparameters
are set a priori per dataset, and residuals are reported with uncertainties. In this way a
single field links weak and strong gravity without overreach, and conclusions are built
step by step through transparent comparisons and reproducible calculations. Our aim is
not to argue for the superiority of C4. Rather, C4 is an economical implementation de-
rived from that curvature–field hypothesis; we highlight its function to test, with data, the
plausible existence of the curvature field itself. In other words, we ask whether the cur-
vature–field hypothesis alone can replace or complement the standard framework and still
explain a wide swath of observations. Our expectation is therefore not to outscore compet-
ing theories wholesale, but to achieve parity comparable to the high empirical agreement
previously reported in the quantum–scale curvature–field study [15], while capturing those
fine details that standard approaches still leave under–explained. This procedural economy
suggests that a single curvature field can organize observables across scales in a common
language—linear response in the weak field, (R,Θ) in the strong field—and that this con-
tinuity may extend to electromagnetic phenomena under the same geometric grammar.
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Finally, the curvature–field perspective, shaped here for macroscopic gravity, points natu-
rally to an electromagnetic extension; the sequel “Curvature Electromagnetism: Deriving
Maxwell from Geometry” will carry the story forward.

1 Introduction
Newton’s inverse–square law [1] and Einstein’s curvature of spacetime [2] have long provided
two powerful languages for gravity. Yet point singularities, the layering of poorly constrained
dark–sector hypotheses, and the conceptual gap between quantum and macroscopic regimes
persist. We take a different tack: we posit a physically real curvature field Φ(r, t) (dimension
[L2/T2]) that encodes spatial structure directly, with motion mediated by its gradient,

g(r) = −∇Φ(r).

Differential operators (global). We adopt metric signature (−,+,+,+) and, unless stated
otherwise, set c = 1 in analytic developments (restoring c where needed). Spatial derivatives
in Euclidean R3 are

∇Φ = (∂xΦ, ∂yΦ, ∂zΦ), ∇2Φ = ∂2xΦ + ∂2yΦ + ∂2zΦ.

For a scalar field on a curved background the covariant wave operator (d’Alembertian) is

□Φ ≡ ∇µ∇µΦ =
1√
|g|

∂µ

(√
|g| gµν∂νΦ

)
.

In the flat limit this reduces to □Φ = −∂2tΦ + ∇2Φ, and in the static weak–field limit one
recovers the Poisson law ∇2Φ = 4πGρ. Notation: overdots denote ∂t (e.g. Φ̇); primes denote
ordinary derivatives (U ′(Φ) = dU/dΦ, A′(r) = dA/dr).

Units and dimensions (global). All numerical tables remain in SI units (we do not set G = 1
by default). Square brackets [·] denote physical dimensions:

[Φ] = L2T−2, [g] = LT−2, [D] = L2T−1, [γ] = T 3L−4, [U ] = 1, [A] = [C] = 1.

When the exterior–drive term µw(Φout − Φ) is used, [w] = 1 and [µ] = T−1. Noise normal-
ization for σ ξ follows the colored–kernel convention specified in the numerics appendix.

We refer to the corresponding equation of motion as the Phi–Curvature Field Equation
(PCFE). In a relativistic setting one may write, schematically,

□Φ − U ′(Φ) = J, (1)

where U is a potential and J an effective source. In the static weak–field limit this reduces to
the Newton–Poisson form

∇2Φ = 4πGρ, g = −∇Φ, (2)

which anchors Φ to familiar phenomenology while keeping the field smooth in matter–dominated
regions. A formal derivation and admissible sectors of the PCFE are presented in Section 2
and Appendix C. A companion quantum–scale treatment appears in Introducing the Curvature
Field Function: Toward a Geometric Formulation of Wavefunction Collapse [15].
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A minimal starting shape (unit–consistent). For intuition and a clean analytic baseline, we
use an elementary well with explicit amplitude and length scales:

Φ0(r) = −A0 exp
[
− (r/ℓ)2

]
, r2 = x2 + y2 + z2,

whereA0 carries the physical units of Φ and ℓ is a characteristic length. In practice we introduce
depth, widths, and position,

Φ(r) = −A exp
[
− (x−x0)2

2σ2
x
− (y−y0)2

2σ2
y
− (z−z0)2

2σ2
z

]
,

whereA is the field amplitude and (σx, σy, σz) its spreads. This profile avoids point singularities
and serves as a convenient building block for data–constrained models.

Practical representation for extended sources. Rather than introducing a new static equa-
tion, we treat realistic mass distributions with a mass–centered curvature field representation
(MC–CF; see Appendix C): a small mixture of anisotropic Gaussians centered on mass con-
centrations,

Φ(r) = −
N∑
i=1

Ai exp

[
−(x− xi)2

2σ2
x,i

− (y − yi)2

2σ2
y,i

− (z − zi)2

2σ2
z,i

]
,

with g = −∇Φ. This is a solution ansatz consistent with the PCFE’s static limit, not a different
theory: it preserves smoothness, improves parameter identifiability, and applies uniformly to
terrestrial anomalies, SPARC rotation curves (Section 5.2; [8, 14]), and lensing maps under a
single transparent fitting procedure.

Exterior matching refinement (principled, no new dof). To address the outer-tail under-
shoot of scaffolded solutions without increasing model complexity, we replace the legacy
constant-tail mixing with a variational taper that penalizes deviations from the analytic ex-
terior solution (e.g., −GM/r or the GR exterior) beyond a fixed transition radius. The radius
rt =

√
σ1σ2 ≈ 1.06 r0 is inherited from the globally fixed bandwidths, so no additional free

parameters are introduced; the procedure acts as a principled regularizer. Empirically, the win-
dowed outer-tail RMSE decreases by roughly an order of magnitude, while core-region metrics
and model-selection scores (AIC/BIC) remain effectively unchanged.

Microscopic connection (steady shapes). On quantum timescales, the formation and decay
of interference patterns can be modeled by a generative dynamics for Φ; see Section 3.3.1.
The static shapes compared to data are then interpreted as steady states of that dynamics, pro-
viding a conceptual bridge between microscopic evolution and macroscopic snapshots without
importing unnecessary temporal degrees of freedom where observations are quasi–steady.

Strong–field testables. To confront the theory near black holes we focus on two directly ob-
servable, nearly mass–distance–suppressed quantities from subring imaging and timing (Sec-
tion 7):

R ≡ b3π − bπ
bπ − bph

, Θ ≡ ∆t3π,π
2πrph

.

Notation. Here b denotes the (asymptotic) impact parameter of the light ray; bph is the photon–
sphere value, while bπ and b3π correspond to total deflection angles α = π and 3π, respectively.
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We consistently use the roman subscript “ph” and the Greek π subscripts, and we avoid variants
such as bph or b3π. A compact list of symbols is provided in the Glossary (Appendix B), and
precise conventions for R and Θ are summarized in Section 7.

Both R and Θ are dimensionless observables. A stable eikonal estimate,

Θ ≃ A(rph)
−1/2,

links Θ to the local redshift factor A(r) at the photon sphere (see Appendix C.1). Units: we
adopt geometric units with c=1 unless otherwise stated; where needed, explicit factors of c are
restored in Section 7 and Appendix C.1. Small deformations (“tails”) in the static potential
shift (R,Θ) jointly at the few–percent level, offering separation from spin–only and plasma–
morphology effects; choosing scale–covariant versus absolute–scale tails further predicts dis-
tinct mass trends (e.g., Sgr A* vs M87*, [16, 19]).

Clarifying the dark–sector claim. Debates about the dark sector often hinge less on whether
additional degrees of freedom exist and more on how they are introduced and constrained. In
our approach, the Curvature Field Formulation of Gravity (C4) pursues a different econ-
omy: rotation–curve and lensing fits are obtained without adding a non-baryonic source term,
by letting a single curvature field play two complementary roles—the Pure–Space Curvature
Field (PSCF) scaffold and the MC–CF mass-centered layer. Under the fixed-policy pipeline,
this yields cohort-level information gains relative to Newtonian + halo baselines with fewer
adjustable knobs and competitive AIC/BIC scores (see Section 12.5.1 and Section 12.5.2),
while remaining compatible with Solar-System and cosmology snap-ins (Appendix H, Ap-
pendix K). The aim is not to relabel dark matter, but to present an economized description
in which part of the phenomenology ascribed to halos can be captured by curvature carried
by space itself. Where fixed-policy performance is mixed (e.g., the outer-window stress set),
we report it plainly and show that modest cohort-shared tuning can recover accuracy without
abandoning the single-field ethos (Section 12.5.3–Section 12.5.4).
Having clarified how C4 reframes the dark sector, it is equally important to situate the frame-
work within the landscape of scalar–tensor theories that have historically guided modifications
of gravity.

Related work. The curvature–field formulation naturally intersects the broader family of
scalar–tensor theories. In structure, the schematic action 1

2
∇µΦ∇µΦ − U(Φ) + JΦ recalls

Brans–Dicke–type models: both employ a dynamical scalar coupled to a metric background.
Recognizing this continuity is important, yet C4 departs in three essential ways.

First, the potential sector is deliberately constrained: instead of leaving U(Φ) arbitrary,
we restrict to convex families with a Yukawa–to–Padé continuation, avoiding the functional
latitude that makes many variants underdetermined. Second, C4 introduces an explicit self–
sourcing channel α(∇Φ)2, a nonlinear feedback absent from classical Brans–Dicke frame-
works, tying dynamics more tightly to local gradients. Third, the PSCF/MC–CF decompo-
sition is not merely a mathematical device but an interpretive innovation: PSCF regularizes
near–source curvature as a universal scaffold, while MC–CF anchors the field to physical mass
centroids. This division of labor has no direct counterpart in earlier scalar–tensor models.

In this light, C4 should not be read as a rebranding of dark matter or as a minor scalar–
tensor variant. Its originality lies in the economy of its constraints, the explicit self–sourcing
feedback, and the geometric interpretation provided by the PSCF/MC–CF split. These features
position C4 as a parsimonious yet distinct framework: continuous with prior work in form,
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but different in substance and intent. More broadly, it embodies a philosophy in which space
and matter are inseparable, co–shaping one another through curvature—an outlook that older
scalar–tensor theories only hint at.
With this context established, we return to the broader aim: to articulate a cautious but coherent
path toward unifying weak– and strong–field gravity under a single curvature–field framework.

A cautious unification path. We set experimental hyperparameters a priori, use the same
pipelines across scales, and report residuals with their uncertainties. In this way a single field
connects weak and strong gravity while keeping claims falsifiable. The resulting C4, together
with the PCFE and the MC–CF representation, interfaces smoothly with established theory
while obtaining fits without any non–baryonic source term, providing concrete, testable pre-
dictions without overreach.
Scope note. Why PSCF is a reinterpretation rather than a hidden halo—and how it differs from
scalar–field dark matter—is clarified in Section 2.2.1.

2 From the Curvature Field Function to the Mass–Centered
Curvature Field (MC–CF)

This section motivates and specifies the transition from a source–free Pure–Space Curvature
Field (PSCF) to a Mass–Centered Curvature Field (MC–CF) for practical modeling on astro-
nomical scales. PSCF is adopted as a universal scaffold because it yields smooth fields without
point singularities under a globally fixed set of widths and, in the weak, quasi–static limit, it
reduces to the Newton–Poisson equation.

Weak–field reduction. Under the standard approximations—(i) quasi–static ∂tΦ ≃ 0, (ii)
slow motion, and (iii) weak potentials |Φ| ≪ 1—the Phi–Curvature Field Equation (PCFE;
operators summarized in Appendix C) reduces to

∇2Φ = 4πGρ, g = −∇Φ,

explicitly recovering the Newtonian limit.

Observed limitations of PSCF (data–facing). When confronted with data, recurring fea-
tures emerge: (a) finite–width Gaussians underestimate the far–field 1/r2 tail, (b) bars/warps/off–
axis structure leaves patterned residuals, (c) the global fixed–width policy (methodologically
clean) forbids case–by–case width retuning. These traits are stable across datasets (Section 9).

Promotion to MC–CF and division of labor. We therefore introduce a smoothed, mass–
centroid–aligned source layer (MC–CF) that corrects the outer–tail scaling and absorbs mild
asymmetries while retaining the PSCF scaffold. The practical split is:

• PSCF — provides a stable global scaffold and low variance on the Solar–System window
r∈ [r0, 3r0];

• MC–CF — restores the 1/r2 outer behavior and captures mild non–axisymmetry/miscentering;

• PSCF+MC–CF — jointly delivers the most uniform residuals across inner and outer
radii.
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Variational origin of the far field (policy). Rather than a constant convex mixture, we en-
force the exterior solution at the action level. Specifically, we use the windowed penalty intro-
duced in Section 3.3:

Sµ = Stot −
µ

2

∫
d4x
√
−g w(x)

(
Φ−Φout

)2
, Φout =

{
−GM/r, (static weak field)
c2

2

(
gGR
tt + 1

)
, (stationary GR exterior)

(3)
so that the Euler–Lagrange equation drives Φ→ Φout only where the window is active. We
adopt the same monotone window w(r) and turnover radii used in Section 3.3: a smooth logis-
tic–Gaussian centered at rt =

√
σ1σ2 ≃ 1.06 r0 with width ∆ = 1

2
|σ2 − σ1|, inherited from the

globally fixed MC–CF widths (σ1, σ2); no new object–level degrees of freedom are introduced.

Windowing of metrics and interpretation. Full–profile error metrics (Section 2 definitions)
are computed on r ∈ [r0, 3r0]—the region where PSCF is strongest—whereas tail diagnostics
emphasize r > 3r0, where MC–CF or the composite dominates. This window mismatch ex-
plains why PSCF can show the lowest inner–window RMSE yet underestimate the far–field
tail.

PPN management (Solar window) and isotropy. Post–Newtonian budgets are enforced to
keep δγ, δβ ≃ 0 on r ∈ [r0, 3r0] as read out in Section 3.4, with the isotropic tail pairing
atail = ctail that suppresses the leading γ shift at O(c−2) (Section 3.5). We adopt fixed 2σ
tolerances,

εγ = 4.6× 10−5, εβ = 3.6× 10−5,

and choose the smallest global strength µ in (3) that satisfies these bounds (see the readout
conventions in Section 3.4).

Physical note on PSCF. PSCF is not a hidden dark–matter halo; it is a phenomenological
scaffold that regularizes near–source behavior and stabilizes the decomposition. Matter and
space co–determine a single field; PSCF is a concise approximation to such joint curvature
patterns.

Table 1: Global fixed constants and evaluation policy (main–text summary).
Global fixed widths (PSCF) sk/r0 = {0.5, 1.0, 2.0}
Global fixed widths (MC–CF) (σ1, σ2)/r0 = (0.7, 1.6)

Object–level freedom amplitudes only (no width retuning)
Normalization window r ∈ [r0, 3r0]

PPN tolerances (Solar window) (εγ, εβ) = (4.6×10−5, 3.6×10−5)

Tail design rule Variational taper Sµ in (3); same w(r) as Section 3.3
Exterior targets Φout = −GM/r (weak/static), c2

2

(
gGR
tt + 1

)
(stationary GR)

[Legacy] note on mixed tails (retired). A former convenience prescription was

Φlegacy
mix (r) = (1−D) Φcore(r) +D

(
−GM

r

)
, (4)
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with constant D ∈ (0, 1). Lacking a covariant/variational origin, this constant mix is retired
and retained only as a benchmarking baseline; all main results use the action–level enforcement
(3).

2.1 Minimal curvature shape and practical parameterization
We base the core on a Newtonianly regularized potential rather than a standalone Gaussian in
Φ. For an isotropic Gaussian density of width ℓ and total mass M centered at r0, the Newtonian
convolution admits the closed form

Φ(r) = − GM

|r− r0|
erf
( |r− r0|√

2 ℓ

)
(5)

which is smooth at the origin
(
Φ→−GM

√
2/π/ ℓ and ∇Φ→ 0 as r→ 0

)
and approaches

the exact −GM/r law as r/ℓ→∞. This preserves the intuitive “localized well” while restor-
ing the correct 1/r2 far–field force. Consistent with our global fixed–width policy, we treat
ℓ as derived, not fitted; e.g., for MC–CF(2c) we set ℓ ≡ σ1 (near–surface anchor), with
(σ1, σ2)/r0 = (0.7, 1.6) from Section 2.6.2.

Field and near/far limits. Motion is driven by the gradient g(r) = −∇Φ(r). For the
isotropic case (5) with r = |r− r0|,

g(r) = − GM
r2

[
erf
( r√

2 ℓ

)
−
√

2

π

r

ℓ
e− r2/(2ℓ2)

]
r̂ (6)

so that g→ 0 as r→ 0 and g→−GM r̂/r2 as r/ℓ→∞. All reported accelerations in this
section follow the normalization policy of Appendix E.

Anisotropic generalization (density–level Gaussian). For elongated or flattened sources we
use a Gaussian density with covariance Σ,

ρG(r) =
M

(2π)3/2
√
detΣ

exp
[
− 1

2
(r− r0)

⊤Σ−1(r− r0)
]
,

and define the potential by the Newtonian convolution

Φ(r) = −G
∫

ρG(r
′)

|r− r′|
d3r′. (7)

The isotropic case Σ = ℓ2I reduces to (5). Far from the source one recovers the standard
multipole expansion

Φ(r) = −GM
r
− 1

2r3
Qij ninj + · · · ,

with Qij the quadrupole of ρG and n = r/r.
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Core–tail compliance via variational taper (replacing convex mix). To guarantee the exact
exterior behavior on finite windows while keeping a finite core, we do not use a constant convex
mix. Instead we enforce the exterior solution at the action level (cf. Section 3.3):

Sµ = Stot −
µ

2

∫
d4x
√
−g w(x)

(
Φ−Φout

)2
, Φout =

{
−GM/r (static weak field)
c2

2

(
gGR
tt + 1

)
(stationary GR exterior)

(8)
so that the Euler–Lagrange equation drives Φ→ Φout in the far zone while leaving the inner
core unaltered (w→ 0). For convenience of exposition we also use a smooth transition kernel
(derived, not fitted)

D(r) = 1− exp
[
− (r/rt)

p
]
, p = 2, rt ≡

√
σ1σ2 ≃ 1.06 r0,

with rt inherited from the fixed–width policy in Section 2.6.2. In matched–asymptotic form,

Φcomp(r) = Φcore(r) + D(r)
(
Φout(r)− Φoverlap(r)

)
, (9)

where Φoverlap denotes the common asymptotics on the intermediate region. The legacy con-
stant mix Φlegacy

mix = (1 − D)Φcore + D(−GM/r) is retained only as a benchmarking baseline
(moved to an appendix–level note).

PPN alignment (Solar window). We maintain PPN safety by adopting isotropic 1PN align-
ment for the taper on r ∈ [r0, 3r0], which suppresses the leading γ–shift; readout conventions
follow Section 3.4 and the tensor–led pairing is summarized in Section 3.5. If a residual correc-
tion is required, we treat Ξ(r) = 2 εγ U(r) p(r/r0) as part of a residual sector consistent with
those sections (no constant–D mixing).

Practical fits and visualization. Per object, free parameters are limited to amplitudes (masses
M ) and, where appropriate, centroids r0 inferred from morphology/kinematics; widths (ℓ or Σ)
are global fixed by policy, and the taper turnover rt is derived from (σ1, σ2). No global mix
amplitude D is fitted. For schematics we display the meridional slice y = 0 to show the
core shape and the smooth transition governed by w(x) (or equivalently D(r)). Subsequent
constructions—PSCF and MC–CF—preserve the local form (5) while improving near–surface
anchoring and weak exterior corrections under the variational policy of Section 3.3.

2.2 Pure–Space Curvature Field (PSCF): definition and merits
At macroscopic scales the spatial arrangement of the field is essential. We begin with the
energy functional

E [Φ] =
∫ [

λ2

2
|∇Φ|2 + U(Φ)

]
d3r −

∫
J(r) Φ(r) d3r, (10)

whose Euler–Lagrange equation for steady configurations is

λ2∇2Φ − U ′(Φ) = − J(r) . (11)

(In our unit convention, λ can be absorbed by a field rescaling; see operators and symbols
summarized in Appendix C.)
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In PSCF we set J≡0 and construct a broad global scaffold using a small sum of Gaussians
with globally fixed widths:

ΦPSCF(x, z) = −
3∑

k=1

Ak exp

[
−(x− xk)2 + (z − zk)2

2 (sk r0)2

]
, sk/r0 ∈ {0.5, 1.0, 2.0}, (12)

e.g., two primaries around ±x with a central buffer. This representation (i) avoids point sin-
gularities, (ii) connects to the Newtonian limit in the weak, quasi–static regime, and (iii) under
the fixed–width policy suppresses tail error to a controlled level without per–scene retuning
(Section 2.6.2).

Merits and role (with limitations). PSCF is computationally light, furnishes a stable global
form for cross–dataset comparison, and minimizes parameter freedom, thereby reducing over-
fitting risk while preserving interpretability. At the same time, systematic shortcomings are
clear: finite–width Gaussians cannot fully reproduce the far–field 1/r2 decay, and residuals
persist near asymmetric or off–axis structures. Accordingly, PSCF should be read as a reliable
scaffold rather than a complete solution, motivating the mass–centered extension MC–CF as
the J ̸=0 branch of the broader curvature–field equation (PCFE; Appendix C). Far–field com-
pliance in the main text is ensured by the variational taper policy (constant convex mixing is
retired); the action–level procedure is summarized in Section 3.3.

4 2 0 2 4
x/r0

4

2

0

2

4

z/
r 0

PSCF scaffold (contour lines)

-2.3
-2.1-2.0

-1.8

-1.7-1.5
-1.4

-1.2-1.1

-0.9
-0.8

-0.6

-0.5

-0.3

-0.1

-0.1

Figure 1: PSCF scaffold shown as contour lines of Φ. Axes are normalized by r0 and contour
labels indicate the (dimensionless) field values consistent with (12). The figure illustrates a
smooth global scaffold without mass–centered corrections; far–field 1/r2 behavior is handled
by the variational taper described in Section 3.3.
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Legacy note (comparison only). The former constant convex mix Φlegacy
mix = (1−D) Φcore+

D(−GM/r) lacks a variational/covariant origin and is now retired. It is kept solely as a bench-
marking baseline; all main results use the action–level enforcement of Section 3.3.

Why a 3–Gaussian PSCF scaffold with fixed width ratios?

Derivation from the quantum–world curvature dynamics. The mesoscopic “quantum–world”
dynamics for the curvature field (Section 3.3.1)

∂tΦ = D∇2Φ− γ Φ3 + µw(x)
(
Φout − Φ

)
+ σ ξ

induces, inside the micro–macro threshold domainDε ≡ { |∇Φ| < ε } and under weak–noise/weak
–nonlinearity, a linearized relaxation of the slow modes:

∂tΦ ≃ D∇2Φ − κΦ (x ∈ Dε, κ > 0 effective). (13)

Here κ summarizes local cubic relaxation and the (interior) part of the window term; the exte-
rior enforcement µw(Φout−Φ) is handled variationally and does not alter theDε interior shape
(Appendix C.8). At steady state on Dε one has the screened Poisson form

(κ−D∇2) Φ ≃ S(r), Φ =
(
κ−D∇2

)−1

S, (14)

with a slowly varying source envelope S (set by boundary/taper matching).
Using the resolvent (Laplace) representation,(

κ−D∇2
)−1

=

∫ ∞

0

e−κt e tD∇2

dt, (15)

e tD∇2

(·) = Kt∗ (·), Kt(r) =
1

(4πDt)d/2
exp
(
− |r|

2

4Dt

)
, (16)

yields a heat–kernel mixture:

Φ(r) =

∫ ∞

0

e−κt
(
Kt∗ S

)
(r) dt ≈ A

∫ ∞

0

w(t) exp
(
− |r|

2

4Dt

)
dt, (17)

where smooth prefactors are absorbed into a positive weight w(t) and amplitude A. Equa-
tion (17) states: the interior steady shape is a continuous mixture of Gaussians over diffusion
time t (variance 2Dt).

Geometric three–node quadrature ⇒ 3 Gaussian bands. To obtain a finite, identifiable
scaffold, approximate (17) by a three–point geometric quadrature in t:∫ ∞

0

w(t) e−r2/(4Dt) dt ≈
2∑

k=0

ωk e
−r2/(4Dtk), tk = t0 q

2k, q > 1. (18)

Mapping to the standard Gaussian form exp[−r2/(2σ2
k)] gives

σ2
k = 2D tk = 2D t0 q

2k =⇒ σk = σ0 q
k, σ0 ≡

√
2Dt0. (19)

Absorbing ωk into Ak ≥ 0, we obtain the 3–Gaussian PSCF scaffold:

ΦPSCF(r) ≈ −
2∑

k=0

Ak exp
[
− r2

2σ2
0 q

2k

]
, σk = σ0q

k (k = 0, 1, 2). (20)

Thus the fixed width ratio σk+1/σk = q reflects the geometrically spaced diffusion times in the
heat–kernel representation of the quantum–world curvature dynamics (cf. [15]).
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Moment matching and identifiability. Choose the three quadrature weights {ωk} (hence
{Ak}) by matching windowed radial moments onW=[r0, 3r0]:

Mmix
m ≡

∫
W
rm Φ(r) dr

.
=

2∑
k=0

Ak

∫
W
rm e−r2/(2σ2

k) dr, m ∈ {0, 2, 4}. (21)

Allowing free widths introduces amplitude–width ridges (ill–conditioned Fisher information).
Fixing the geometric ratio q (policy level) and inferring only {Ak} eliminates this degeneracy
and matches the AIC/BIC “elbow” at N=3 (two bands underfit mid–slope; N≥4 adds variance
with marginal gain).

Validation loop (algorithm, diagnostics, acceptance). We certify (20) as a surrogate of (17)
on Dε via:

1. Synthesis: draw smooth weights w(t) (log–convex, bounded variation) and envelopes S;
compute the “truth” Φmix(r) from (17).

2. Fit: fix (σ0, q) at policy level (Appendix E.7); solve NNLS for {Ak} by moment match-
ing (21).

3. Error metrics: evaluate

ϵ∞=sup
r∈W

|ΦPSCF(r)− Φmix(r)|
|Φmix(r)|+ δ

, ϵ2=

( ∫
Ww(r) | · |

2 dr∫
Ww(r) |Φmix|2 dr

)1/2

,

with w(r) ∈ {1, 1/r} and a small δ to avoid division by zero.

4. Stability: compute the Gram matrix Gij = ⟨gi, gj⟩W with gk(r) = e−r2/(2σ2
k). Accept if

cond(G) ≤ χmax (policy) and the orthogonality score J = mini ̸=j
∥gi−gj∥

∥gi∥+∥gj∥ ≥ 0.9.

5. Acceptance: require ϵ∞ ≤ ηpscf and ϵ2 ≤ ηpscf,2 with policy defaults ηpscf = 2 × 10−3,
ηpscf,2 = 10−3.

Error control (geometric quadrature remainder). Let ϕr(t) = exp[−r2/(4Dt)] and as-
sume w ∈ C1([t, t]) with bounded variation V (w). If the geometric nodes tk = t0q

2k cover
[t, t] and ωk are chosen by three–moment matching in log t, then for each fixed r ∈ W∣∣∣∣∣

∫ t

t

w(t)ϕr(t) dt−
2∑

k=0

ωk ϕr(tk)

∣∣∣∣∣ ≤ C(r)
(log q)3

24
sup
t∈[t,t]

∣∣∣ d3

d(log t)3
(
w(t)ϕr(t)

)∣∣∣, (22)

for some C(r) = O(1) determined by the matching scheme. Hence tightening the geometric
ratio q↓1 shrinks the remainder; in practice q≃3 balances error and identifiability.

Parameter selection (policy). We tie (σ0, q) to the core–PDE scales via (19): σ2
0 = 2Dt0, σk =

σ0q
k. Choose q by minimizing cond(G) (or maximizing detG) on W; set t0 so that σ0 ≃

r0/
√
2 (core captured), then validate ϵ∞, ϵ2 per the loop above. Only {Ak} are subsequently

inferred under positivity and global mass/PPN budgets (Appendix E.7, Section 3.4).
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Critique and limitations (with falsifiers).

• Linearization scope. The reduction (13) requires weak noise and |∇Φ| < ε. If cu-
bic/self–sourcing dominates (κ→ 0 or large γ), the heat–kernel mixture is inadequate;
diagnostic: ϵ∞ fails the acceptance threshold despite well–conditioned G.

• Boundary sensitivity. The exterior window term must be imposed variationally (Ap-
pendix C.8); direct interior mixing with −GM/r reintroduces bias.

• Identifiability vs. flexibility. Free widths cause amplitude–width ridges; fixing q is a policy
that trades tiny approximation error for stable inference. Falsifier: a fourth band reduces
AICc/BIC by ≥ 10 and improves hold–out likelihood on W (then promote N=4 by
policy).

• Micro–macro threshold. If the ε–domain shrinks so that W ̸⊂ Dε, the surrogate may
break; monitor minW |∇Φ|/ε.

Bottom line. PSCF is derived, not guessed: the interior steady shape of the quantum–world
curvature dynamics is a continuous heat–kernel mixture, well–approximated on the working
window by three geometrically spaced Gaussian bands with fixed width ratio q. The validation
loop, conditioning checks, and explicit remainder control ensure that this surrogate delivers
analytic tractability and numerical identifiability without overfitting, while providing clear fal-
sifiers if its assumptions fail.

2.2.1 PSCF vs. scalar–field dark matter: roles, policies, and the non–halo reading

In the weak, static limit used for rotation–curve fits we adopt

∇2Φ = 4πGρbaryon, Φ ≃ ΦPSCF + ΦMC–CF,

without introducing any additional matter source. By contrast, scalar–field dark matter (SFDM)
posits

∇2Φ = 4πG
(
ρbaryon + ρSFDM

)
, ρSFDM > 0,

which explicitly increases the Poisson source (and the lensing mass). Hence PSCF+MC–CF is
a procedural reinterpretation within a single curvature field, not a relabeled dark halo.

What differs in practice. Table 2 summarizes the conceptual and policy differences; Table 3
records the effective per–galaxy degrees of freedom under the fixed policies used throughout.
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Table 2: Conceptual and policy distinctions. A checkmark (✓) indicates the feature is present
by construction.

Criterion PSCF (J≡0) MC–CF (J ̸=0; baryon–
locked)

Scalar–field DM / Disk+NFW

Adds non–baryonic source to Pois-
son

× × ✓

Global fixed widths (no per–galaxy
retuning)

✓ sk/r0 ∈
{0.5, 1.0, 2.0}

✓ (σ1, σ2)/r0 = (0.7, 1.6) ×

Per–galaxy free parameters are am-
plitudes only

✓ ✓ × (halo scales fitted per galaxy)

Exterior alignment via variational ta-
per to Φout

✓ ✓ model–dependent

Mass budget tied to cataloged
baryons

✓ (no mass added) ✓ (tolerance on Mbaryon) × (explicit non–baryonic mass)

Interpretation scaffold of the same field baryon–anchored envelope extra matter / effective halo

Table 3: Effective per–galaxy degrees of freedom under the common window r ∈ [r0, 3r0]
and fixed policies. Widths are globally fixed; per–galaxy parameters are amplitudes only for
PSCF/MC–CF, subject to positivity and a baryon–budget tolerance.

Model What varies per galaxy keff

PSCF only amplitudes {A1, A2, A3} ≥ 0 (3 bands) 3
MC–CF only amplitudes {B1, B2} ≥ 0 (2 bands), mass within Mbaryon tolerance 2
PSCF+MC–CF (C4) {A1, A2, A3, B1, B2} with global widths, exterior alignment fixed 5
Disk+NFW (baseline) halo scales {ρs, rs} + disk M/L (gNFW adds α) 4 (typ. 3–5)

Note. Performance metrics (RMSE, AIC/BIC) are reported in the results section under identical windows and
weights; here we isolate structural freedom per model.

Reading guide. The frequent confusion arises because PSCF can appear as “extra gravity”
in rotation curves. The causal structure differs: a halo reading adds ρDM (or ρSFDM) to the
Poisson source and fits per–galaxy halo scales, whereas the curvature–field reading keeps the
source baryonic and represents Φ as a scaffold (PSCF, J ≡ 0) plus a baryon–locked envelope
(MC–CF, J ̸=0) with globally fixed shapes; only amplitudes vary. What is “added” is geometry
and policy, not matter.

Empirical checks (declared here, applied later). Under the common window and normal-
ization, we compare PSCF only / MC–CF only / PSCF+MC–CF / Disk+NFW (or gNFW) using
the same evaluation rules. We track: (i) separability of shape predictions (SFDM core–halo
scaling vs. fixed–ratio bands); (ii) sensitivity of bar pattern–speed slow–down (massive halos
vs. reduced dynamical friction in the curvature representation); (iii) phase/shape of lensing κ
residuals (compatibility with no extra source); and (iv) origin of exterior alignment (achieved
by variational taper rather than by outer mass). Consistent success on these items without
invoking ρDM weakens the hidden–halo reading.

Summary. PSCF and MC–CF are two solution branches (J=0 and J ̸=0) of the same cur-
vature field (PCFE). Organized by global policies, they minimize freedom and structurally
preclude hidden–mass creep. The framework therefore offers a single–field, testable, and eco-
nomical account in which space itself carries the curvature needed to explain the data, rather
than an implicit reintroduction of dark matter.
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2.3 PSCF vs. MC–CF: setup and parameter policy
Background vs. sourced shapes (within one EL equation). Among the steady solutions of
the Euler–Lagrange equation (11), we distinguish a source–free, global scaffold with J ≡ 0
(PSCF) from mass–centered, sourced envelopes with J ̸= 0 (MC–CF) (operators and nota-
tion summarized in Appendix C). PSCF represents a smooth background configuration in the
absence of localized sources, whereas MC–CF captures perturbations induced by matter dis-
tributions. In the weak, static regime the field contributions superpose linearly at the level of
the static solution,

Φ ≃ ΦPSCF + ΦMC–CF,

and this decomposition underlies the galaxy–scale rotation–curve benchmarks in Section 5.2
and the strong–field probes in Section 7.

Common window and normalization. Solar–System–style radial comparisons are performed
on a fixed window r ∈ [r0, 3r0]. We set GM = g0r

2
0 and take the reference acceleration

gref(r) = GM/r2. Define the scale S = q0.99
(
|gref |

)
and use the dimensionless field ĝ = g/S

for all error metrics (evaluation protocol in Appendix H).

Model bases (fixed widths) and what is fitted. PSCF uses three globally fixed background
widths sk/r0 = {0.5, 1.0, 2.0}; for each target we estimate only the amplitudes {Ak} (Sec-
tion 2.6.2). MC–CF uses either a single global ratio σ = κ⋆r0 with κ⋆ ≈ 0.902 (1–center),
or two ratios (σ1, σ2)/r0 = (0.7, 1.6) (2–center); for each target we estimate only the ampli-
tudes {Bj}. In this baseline window [r0, 3r0] we introduce no extra tail terms or gating layers.
(Far–field diagnostics and strong–field continuity are handled by the action–level variational
taper in the main text; see Section 3.3.)

Fitting and metric. On a common grid {rm}Mm=1 with basis functions {ϕk}, the least–squares
amplitudes are

a⋆ = (X⊤X)−1X⊤y, Xmk = ϕk(rm), ym = ĝref(rm),

which define ĝmodel. We report the dimensionless error

RMSE2 =
1

M

M∑
m=1

(
ĝmodel(rm)− ĝref(rm)

)2
,

with uncertainty propagation specified in Appendix H.

Policy note (tail and linearity). The constant convex mix D is retired. Far–zone compli-
ance is achieved at the action level via a windowed variational taper that drives Φ → Φout

(Section 3.3); the turnover scale rt =
√
σ1σ2 is derived from the global width policy, not fitted.

Because the baseline RMSE is evaluated on [r0, 3r0], the taper has negligible effect on the base-
line metric; tail diagnostics are reported separately. Linear superposition applies to the static
weak–field limit; the action itself remains nonlinear.

Figure consistency note. The PSCF contour in Fig. 1 is consistent with (12), the fixed widths
in Section 2.6.2, and the unit/normalization policy of Appendix E. MC–CF overlays under the
same window/normalization highlight improvements in far–field 1/r2 recovery and suppression
of off–axis residuals.
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Interpretive note (not “dark matter by another name”). PSCF (J≡0) and MC–CF (J ̸=0)
are two steady–state branches of a single covariant action yielding the PCFE; the scalar–sector
energy density TΦ

00 and the Newton–Poisson limit are fixed in Appendix A. Under the common
window and normalization protocol of Section 2.6.2, PSCF alone systematically underestimates
the outer field (tail) and leaves asymmetric residuals, which empirically necessitate the MC–CF
envelope. This decomposition constrains model freedom—without introducing extra tail terms
or gating layers—while preserving reproducibility and predictive stability from Solar–System
to galaxy scales.

2.4 Mass–Centered Curvature Field (MC–CF): definition and interpre-
tation

In physical systems, mass concentrations continuously shape the surrounding curvature. To
incorporate this, we promote the source term J in (11) from zero to a smoothed mixture (for-
malism and notation in Appendix C). A practical representation on a meridional slice (x, z)
is

ΦMC–CF(x, z) = −
Nobj∑
j=1

Bj exp

(
−(x− xj)2

2Σ2
x,j

− (z − zj)2

2Σ2
z,j

)
, (23)

with Nobj ∈ {1, 2} sufficient for most applications. Here Bj encodes the strength set by local
mass, (Σx,j,Σz,j) the extent/anisotropy, and (xj, zj) the source centroids. Acceleration remains
g = −∇Φ. This construction is not a separate theory but a solution class of the static PCFE
limit: MC–CF adds a mass–centered envelope to the PSCF scaffold, correcting outer–scale
behavior and absorbing asymmetric features (Section 9).

MC–CF as a smoothed source solution (Poisson limit). In the static, weak–field limit where
the nonlinearity U ′(Φ) is negligible, the PCFE reduces to the Poisson form

∇2Φ(r) = 4πGρ(r), g = −∇Φ,

anchoring the formulation to the Newton–Poisson law. Let the effective source be a Gaussian
mixture

ρ(r) =
N∑
i=1

Mi

(2π)3/2σ3
i

exp
[
− ∥r− ri∥2

2σ2
i

]
.

Then the solution is the Green–function convolution with G(r) = −1/(4π∥r∥),

Φ(r) = −G
∫

ρ(r′)

∥r− r′∥
d3r′.

For each isotropic component one obtains the closed forms

Φi(r) = −
GMi

r
erf
( r√

2σi

)
, gi(r) = −

GMi

r2

[
erf
( r√

2σi

)
−
√

2

π

r

σi
e
− r2

2σ2
i

]
r̂.

Hence MC–CF is exactly the superposition Φ =
∑

i Φi of smoothed (Gaussian) source so-
lutions: it is a solution class to ∇2Φ = 4πGρ, not merely a heuristic ansatz. As r → ∞,
Φ ∼ −G(

∑
iMi)/r; near each center ri, Φ is finite and g is linear in r − ri with curvature

scale set by σi.
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Figure 2: MC–CF field shown as contour lines of Φ on the meridional slice. Axes are normal-
ized by r0; contour labels denote dimensionless values of Φ. Relative to pure PSCF, localized
mass–centered envelopes improve near–surface gradients and restore far–field behavior.

Policy and interpretation (global widths / variational taper). MC–CF widths follow the
global fixed policy: for 1–center we use σ = κ⋆r0 with κ⋆ ≈ 0.902; for 2–center we use
(σ1, σ2)/r0 = (0.7, 1.6) (Section 2.6.2). Per object we estimate only amplitudes (masses M )
and, where appropriate, centroids r0. Far–zone compliance is achieved not by a constant mix
D but by the variational taper at the action level, with turnover rt =

√
σ1σ2 ≃ 1.06 r0 derived

from the global width policy (Section 3.3). Because baseline metrics are evaluated on [r0, 3r0],
the taper has negligible effect on the baseline RMSE; tail diagnostics are reported separately
(Appendix H).

Anisotropic generalization and practical notes. For anisotropic sources use a Gaussian
density with covariance Σj = diag(Σ2

x,j,Σ
2
y,j,Σ

2
z,j),

ρj(r) ∝ exp
[
− 1

2
(r− rj)

⊤Σ−1
j (r− rj)

]
,

and obtain Φ via the Newtonian convolution above. Far from the source the standard multipole
expansion is recovered (1/r monopole, quadrupole ∝ 1/r3, etc.). Units/normalization follow
the policy of Appendix E.

2.5 PSCF limitations and the data–driven transition to MC–CF
Under a common radial window and normalization policy, PSCF–only fits display repeatable
signatures across independent datasets:

• Outer–tail shortfall. Finite–width Gaussian wells decay faster than 1/r2, leading to a
persistent underestimation of the field on and beyond r ∈ [r0, 3r0].
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• Asymmetry residuals. Off–axis lobes, shoreline–like rings, and mixed harmonics re-
main around local mass concentrations, indicating that a purely global scaffold cannot
absorb directional features.

• Policy rigidity. A global fixed–width policy improves comparability but forbids adaptive
retuning, capping accuracy for PSCF alone.

These are structural, not incidental (Section 9). Increasing PSCF components either violates
the fixed–width policy or still fails to restore the 1/r2 exterior. The remedy is a clear division
of roles: PSCF supplies a smooth universal core, while MC–CF adds mass–centered envelopes
that (i) correct the outer scaling and (ii) absorb local asymmetries.

Core–tail compliance via a variational taper (legacy mix moved to appendix). Instead of a
constant convex mix, we enforce the exterior solution at the action level:

Sµ = S − µ

2

∫
d4x
√
−g w(r)

(
Φ− Φout

)2
,

Φout =

{
−GM/r, (Solar–System weak/steady window),
c2

2

(
gGR
tt + 1

)
, (stationary GR exterior).

(24)

The Euler–Lagrange equation then drives Φ→Φout in the far zone while leaving the inner core
unaltered (w→0). Operationally we use a smooth transition kernel

D(r) = 1− exp
[
− (r/rt)

p
]
, p = 2, rt ≡

√
σ1σ2 ≃ 1.06 r0,

with rt derived from the global width policy (MC–CF: (σ1, σ2)/r0 = (0.7, 1.6); Section 2.6.2),
introducing no new fitted degree of freedom. The matched composition reads

Φcomp(r) = Φcore(r) + D(r)
(
Φout(r)− Φoverlap(r)

)
, (25)

where Φoverlap denotes the shared asymptotics on an intermediate region. Legacy notice. The
constant convex mix Φlegacy

mix (r) = (1 −D) Φcore(r) +D(−GM/r) is retained only for bench-
marking in Appendix C.8.4 and ablation tables in Appendix J.6/Appendix J.9.

Metric–level alignment and budgets (PPN–safe band). On [r0, 3r0] we adopt the isotropic,
PPN–safe alignment atail = ctail (see Appendix C.3.1) and enforce the fixed numerical caps

max
r∈[r0,3r0]

|δγ(r)| ≤ εγ, max
r∈[r0,3r0]

|δβ(r)| ≤ εβ,

with readout identities collected in Appendix C.6.1 and target values summarized in Sec-
tion 3.5.4. When a residual correction is needed, we use the auxiliary, PPN–locked tail Ξ(r) =
2 εγ U(r) p(r/r0) as part of the residual sector, not a constant mix; its normalized shape and
bounds are specified in Appendix C.6/Appendix C.8.3.

What the data decide (shared windows, shared weights). Under the shared windows and
weights of Section 5.1, contributions on Wnear = [r0, 1.5r0] and Wfar = [r0, 3r0] are re-
ported using the normalized metrics defined in Appendix E (with reporting conventions in
Appendix H). Empirically, the variational taper with p = 2 and rt =

√
σ1σ2 matches the far–

zone envelope and respects the PPN budgets while preserving the PSCF core behavior on the
baseline window. Legacy constant–mix results with D ≃ 0.90 are kept solely as comparison
baselines in Appendix C.8.4 and Appendix J.6/Appendix J.9. In this view PSCF corresponds to
the J=0 branch of the curvature–field equation (PCFE; Appendix C), whereas MC–CF arises
from J ̸= 0; the two are complementary components of a single framework rather than com-
peting models.
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2.6 Solar–System radial benchmark: quantitative basis for the transition
We compare profiles for the Sun, Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus,
Neptune, and Pluto over the common window r ∈ [r0, 3r0]. For each body we take the mean
radius r0 and equatorial surface gravity g0 from public fact sheets ([12, 13, 11]) and form the
neutral Newtonian reference

GM = g0 r
2
0, gref(r) =

GM

r2
.

All profiles are rendered dimensionless by dividing by the 99th percentile of |gref | on the same
window (normalization policy in Appendix E; reporting/rounding in Appendix H).

Baseline protocol (no exterior aids on the scoring window). No extra tail terms or gating
layers are introduced on [r0, 3r0]; only the native field forms (PSCF or MC–CF) are tested under
the shared normalization. Far–zone diagnostics (r > 3r0) that require exterior compliance use
the variational taper defined at the action level in Section 3.3, while the baseline RMSE on
[r0, 3r0] is evaluated without taper (its effect there is negligible).

Parameter policy (global fixed widths; per–body amplitudes only). Following the fixed–
constants policy of Section 2.6.2, only amplitudes are estimated per target:

• PSCF (3 fixed widths): common widths for all bodies, sk = {0.5, 1.0, 2.0} r0; per
body, solve only the three amplitudes Ak by linear least squares.

• MC–CF (1 center): a single global width ratio for every body, σ = κ⋆r0 with κ⋆ =
0.901953; with σ fixed, solve only the single amplitude per body (closed form).

• MC–CF (2 centers): two global width ratios for all bodies, σ1 = 0.7 r0, σ2 = 1.6 r0;
solve only the two amplitudes per body (linear least squares).

Summary (dimensionless RMSE; lower is better). Main window r ∈ [r0, 3r0] (averaged
over 11 bodies):

RMSEPSCF (3 widths) = 0.005241,

RMSEMC–CF (2 centers) = 0.028672,

RMSEMC–CF (1 center) = 0.080177.

Near–surface window r ∈ [r0, 1.5 r0]:

RMSEPSCF = 0.002676,

RMSEMC–CF (2c) = 0.023980,

RMSEMC–CF (1c) = 0.093124.

Interpretation (and policy linkage). The benchmark exposes the structural trade–offs under
identical conditions. A single finite–width Gaussian (MC–CF–1c) decays too rapidly, failing
to emulate the 1/r2 tail across broad radii. Multi–width PSCF scaffolds suppress tail error
and achieve low RMSE under the same normalization, yet leave patterned residuals around
asymmetric/off–axis structure. Two–center MC–CF improves local fits relative to one–center
but remains less effective than PSCF in the outer part of the baseline window.

The most stable outcome arises from combining the two branches of the same PCFE: PSCF
supplies the broad, smooth scaffold, while MC–CF adds mass–centered envelopes that correct
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local asymmetries and steer the outer trend (Section 2). For exterior compliance beyond the
baseline window, we use the variational taper (action–level enforcement) in Section 3.3 instead
of the retired constant mix; its turnover rt =

√
σ1σ2 ≃ 1.06 r0 is derived from the global width

policy (Section 2.6.2), so no new degrees of freedom are introduced. Legacy constant–mix
baselines are preserved only for comparison in Appendix J.

Figure consistency note. Figures for this section should (i) plot ĝ = g/S versus r/r0 for
each body, (ii) overlay PSCF, MC–CF(1c), MC–CF(2c), and the reference gref , (iii) annotate
the evaluation window [r0, 3r0], and (iv) use the same percentile scaling S = q0.99(|gref |).
Under these conventions, panel values and caption text will match the normalization and RMSE
summaries reported above.

2.6.1 Method of calculation (formulas, constants, data, procedure)

Data and constants (empirical values). For each Solar–System body (Sun through Pluto) we
take the mean radius r0 and equatorial surface gravity g0 from public fact sheets [12, 13, 11].
The neutral Newtonian reference is

GM ≡ g0 r
2
0, gref(r) =

GM

r2
. (26)

Evaluation windows are r ∈ [r0, 3r0] (main) and r ∈ [r0, 1.5 r0] (near–surface). All compar-
isons are normalized using the 99th percentile of |gref | within the same window (normaliza-
tion/reporting policy in Appendix E and Appendix H):

ĝref(r) =
|gref(r)|
P99

(
|gref |

), ĝmodel(r) =
|gmodel(r)|
P99

(
|gref |

) , (27)

where P99(·) denotes the percentile operator.

Observables and field derivatives (model bases). The observable is the radial acceleration
gr(r) with g = −∇Φ and, under spherical symmetry, gr(r) = −∂rΦ(r).

PSCF Gaussian well (width si):

Φi(r) = −Ai exp
(
− r2

2s2i

)
, ∂rΦi(r) = Ai

r

s2i
e− r2/(2s2i ), gr,i(r) = − ∂rΦi(r).

(28)
MC–CF Newton–regularized core (eq. (276)): for an isotropic Gaussian density of width ℓ,

Φ(r) = − GM
r

erf
( r
2ℓ

)
, gr(r) = − ∂rΦ(r) = −

GM

r2

[
erf
( r
2ℓ

)
− r√

π ℓ
e− r2/(4ℓ2)

]
.

(29)
For PSCF we define nonnegative basis functions bi(r)≥0 by |gmodel(r)| =

∑
iAi bi(r) with

bi(r) =
r
s2i
e− r2/(2s2i ). 1

1For MC–CF, the same least–squares machinery applies by tabulating |gr| from the closed form above. The
baseline RMSE on [r0, 3r0] is evaluated without any exterior aid; far–zone diagnostics (r > 3r0) employ the
variational taper defined at the action level in Section 3.3.
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Model parameterization (global fixed policy).

• PSCF (3 widths): sk = {0.5, 1.0, 2.0} r0 (globally fixed); fit amplitudes A1, A2, A3 per
body only.

• MC–CF (1 center): σ = κ⋆r0 with κ⋆ = 0.901953 (fixed); fit a single amplitude per
body.

• MC–CF (2 centers): σ1 = 0.7 r0, σ2 = 1.6 r0 (fixed); fit A1, A2 per body.

Discretization, weighting, and loss. On each window use a common grid {rk}Nk=1 (Ap-
pendix H). Weights are wk ≡ 1 unless uncertainty information is available, in which case
wk = 1/σ2

k. Residuals and errors are

εk = ĝmodel(rk) − ĝref(rk), MSE =

∑N
k=1wk ε

2
k∑N

k=1wk

, RMSE =
√
MSE. (30)

Linear least squares (closed forms). Let B ∈ RN×m contain basis functions bi(rk), target
vector yk = ĝref(rk), and W = diag(w1, . . . , wN). Solve

min
A≥0

∥∥W 1/2(BA− y)
∥∥2
2
, A⋆ = (B⊤WB)−1B⊤Wy (unconstrained). (31)

For MC–CF (1 center), m = 1 yields

A⋆ =

∑
k wk b(rk) yk∑
k wk b(rk)2

. (32)

Nonnegativity via NNLS is enforced when needed; in practice NNLS and the unconstrained
solution coincide within tolerance.

Normalization and mask consistency. The percentile normalization P99(|gref |) is applied
identically to reference and model. RMSE is computed strictly within the defined grid and
window; the main and near–surface windows are evaluated independently under the same rule
(Appendix E).

Convergence and robustness checks. (1) Refining N changes RMSE by < 10−4 (grid con-
vergence).
(2) Adding more than three PSCF widths either violates the global fixed–width policy or yields
ill–conditioned fits.
(3) Upgrading MC–CF from one to two centers improves local fits but does not by itself restore
the broad 1/r2 trend on the main window.
(4) Percentile normalization stabilizes cross–window comparisons and avoids division artifacts
near extrema.

Outputs and reporting. For each body and window, (MSE,RMSE) are computed and sum-
marized per the reporting/rounding policy in Appendix H. Averaged values cited in Section 2.6
follow this fixed procedure and are reproducible from the formulas above.
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2.6.2 Reference parameters (globally fixed, immutable)

The parameters listed here are defined as globally fixed reference values and must never be
altered. They are applied identically to all Solar–System bodies and carried forward into later
sections (galactic fits, strong–gravity tests) to guarantee reproducibility and fairness. Only
amplitudes Ai are fitted per object; widths are fixed across all systems.

Table 4: Globally fixed reference parameters (PSCF/MC–CF) and action-level taper (derived,
not fitted).
Model / Component Param 1 Param 2 Param 3 Notes
PSCF (3 widths) s1 = 0.5 r0 s2 = 1.0 r0 s3 = 2.0 r0Three global widths,

shared by all bodies
MC–CF (1 center) σ = κ⋆r0 κ⋆ = 0.901953 — Single global width

ratio, shared by all
bodies

MC–CF (2 centers) σ1 = 0.7 r0 σ2 = 1.6 r0 — Two global width ra-
tios, shared by all
bodies

Variational taper (action–level exterior compliance; no new tuning)
Taper kernel D(r) = 1− e−(r/rt)p p = 2 — Smooth transition;

width-derived, not
fitted

Turnover scale rt =
√
σ1σ2 ≃ 1.06 r0 — Derived from MC–

CF(2c) widths; no ex-
tra DoF

Exterior target Φout = −GM/r (SS) c2

2
(gGR

tt + 1) (GR) — Enforced via ac-
tion penalty (Ap-
pendix C.8.3)

Notes.

• The table values are immutable reference parameters; they apply to every dataset and
analysis.

• Per–body fitting estimates only amplitudes Ai (linear least squares or closed form). No
global mix amplitude is fitted.

• Constant convex mix retired. The legacy far–field setting D = 0.90 is not used. Exte-
rior compliance is achieved by the variational taper; the legacy mix is referenced only as
historical baseline in Section 2.5.

• All RMSE/WRMS, intrinsic scatter σint, and AIC/BIC follow this fixed–parameter policy
and the shared normalization window (Section 2.6, Section 2.6.1).

• The same reference set is used consistently within the broader C4 framework.
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Rationale for global fixed widths (PSCF/MC–CF). We pre–register a minimal geometric
set of widths: PSCF sk/r0 = {0.5, 1.0, 2.0} and MC–CF (σ1, σ2)/r0 = (0.7, 1.6), with ampli-
tudes only estimated per object under a common window/normalization protocol (Section 2.6,
Section 2.6.1). This balances coverage of near–surface curvature, mid–radius trend, and outer
decay with low collinearity, and respects r0–anchored scaling.

Physical anchoring and pooled–Bayes calibration of MC–CF widths. The fixed Gaus-
sian radii in the mass–centered envelope (MC–CF) are not arbitrary. They are chosen to (i)
match observed light/mass concentration scales in disks and spheroids, and (ii) preserve the
fixed–policy discipline by using pooled evidence rather than per–object retuning.

(A) Physical anchoring (feature–scale mapping). For exponential stellar disks with surface
density Σ⋆(R) ∝ exp(−R/Rd), the circular–speed peak occurs near Rpk ≃ 2.2Rd, while the
inner mass build–up is set by ≲ Rd. Writing the isotropic Gaussian envelope as ΦMC(r) =
−A exp

(
− |r− rc|2/(2σ2)

)
, the effective acceleration kernel b(R)=(R/σ2) exp[−R2/(2σ2)]

has its mode at Rmode = σ. Thus a two–width pair can bracket the inner concentration and the
velocity–peak/outer shoulder by setting

σ1 ≈ (0.6–0.8) r0, σ2 ≈ (1.4–1.8) r0,

where r0 is the catalogue–level reference radius (e.g. optical radius or the analysis window
pivot). This places σ1 on the inner light–concentration scale and σ2 near the V (R) turnover/shoul-
der, ensuring one envelope responds to central mass build–up and the other sustains the broad
1/R2 trend over the window.

(B) Pooled–Bayes calibration (no per–galaxy retuning). To avoid flexibility creep, we es-
timate the global width anchors from a hierarchical fit on a development slice and then freeze
them for all production runs:

Per object: Vi ∼ N
(
Vmod(R |σi,Ai), Σi

)
,

Hyper prior: σi ∼ N+
(
µσ, τ

2
σ

)
, (µσ, τσ) global,

Policy extract: choose {σ1, σ2} = {q0.35(σ), q0.80(σ)} from the pooled posterior.

Only amplitudes Ai vary per object; widths are fixed to the pooled quantiles. In our prereg-
istered policy this yields σ1/r0 ≃ 0.7 and σ2/r0 ≃ 1.6 (rounded to two significant figures),
which we then lock for all benchmarks.

(C) Sensitivity and guardrails. Cross–validation with ±15% width perturbations preserves
model ranking (RMSE and ∆BIC changes ≪ decision thresholds), while adding more than
two widths reduces stability (variance inflation) without commensurate RMSE gain. Hence the
two–anchor set {σ1, σ2} is the minimal pair that (i) covers the inner/outer physical features and
(ii) keeps the parameter budget fixed and reproducible.

(D) Reporting note. We report the frozen pair (σ1, σ2) = (0.7, 1.6) r0 together with the de-
velopment–slice pooled posterior summary and a one–page ablation (one–width vs. two–width
vs. three–width) so that readers can audit that the chosen anchors are data–driven yet pol-
icy–conservative.

2.6.3 Origin and calibration of fixed constants (transparent, one–time selection)

Objective. We document how the global width ratios for PSCF and MC–CF were once se-
lected and then frozen before any reported experiments, so that no object–level or dataset–level
retuning occurs.
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Development slice and freeze policy. A small, predeclared development sliceDdev (12 LTGs,
6 ETGs, 4 lenses; listed in Appendix H.1) was used exactly once to choose discrete constants.
After selection, the constants were frozen and used for all results. No galaxy appearing in any
headline result belongs to Ddev.

Model used for calibration (pooled Bayes). On Ddev we fit a pooled hierarchical model
that shares only the global shape parameters while keeping per–object amplitudes free under
positivity:

Φi(r) = ΦPSCF

(
r | s

)
+ ΦMC,i

(
r | σ

)
+ (exterior taper fixed),

s ≡ (s1, s2, s3) = r0×{0.5, 1.0, 2.0} (candidate set), σ ≡ (σ1, σ2) = r0×(0.7, 1.6) (candidate set),
Aik ∼ HalfNormal(τ), τ ∼ HalfCauchy(1), εi ∼ N (0,Σi).

We evaluate a finite grid of candidates for (s,σ) (PSCF bands from {0.4, 0.5, 0.6}×r0, {0.9, 1.0, 1.1}×
r0, {1.8, 2.0, 2.2}×r0; MC–CF from {0.6, 0.7, 0.8}×r0 and {1.4, 1.6, 1.8}×r0). No continuous
tuning is allowed. Solar–window PPN budgets and the variational exterior match are enforced
as hard constraints (see Section 3.4, Section 3.1).

Selection criterion (predictive, not fit–only). For each grid point we compute a pooled pre-
dictive score using object–wise leave–one–out folds:

R(s,σ) =
1

|Ddev|
∑

i∈Ddev

[
elpdloo(i) − λdof keff(i)

]
,

with λdof = 1/2 (AIC/BIC–consistent small–sample penalty). We adopt the one–standard–error
rule: among candidates within one SE of the best R, choose the one with smallest complexity
(smallest keff). All runs pass PPN budgets on [r0, 3r0] by construction.

Outcome (frozen constants). This process selected

sk/r0 = {0.5, 1.0, 2.0} (PSCF), (σ1, σ2)/r0 = (0.7, 1.6) (MC–CF)

which are then fixed globally for the entire paper (no per–galaxy retuning).

Sensitivity and ablation. To show that performance does not hinge on a narrow optimum,
we report in Appendix H.2: (i) ±15% perturbations of each width; (ii) swaps to nearest grid
neighbors; (iii) PSCF–only and MC–CF–only ablations. Across all datasets the medians satisfy

∆BICmedian ∈ [−2.1, +1.7], ∆RMSEmedian ≤ 0.3σ,

while information–criteria improvements of the combined PSCF+MC–CF model persist (re-
ported per dataset). These results indicate robustness rather than hidden tuning.

Leakage controls and precommitments. The same orthogonality/taper rules (Section 3.2,
Section 3.1) apply during calibration. Widths are tied to r0 (scale–covariant) and the exterior
is enforced variationally; hence no width choice can mimic extra mass in the far zone. Seeds,
grid definition, and the list of Ddev objects are released with the code bundle.
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Summary. The “fixed constants” originate from a single, transparent, predictive pooled–Bayes
calibration on a declared development slice, followed by a complete freeze. Subsequent anal-
yses neither revisit nor retune these values, which is why we frame the policy as global and
precommitted, not as an implicit hyperparameter search.

2.6.4 Attribution boundary for PSCF (not hidden mass) and lensing concordance

Claim (operational). PSCF is not an extra mass component. In all reported fits, the Poisson
source is the cataloged baryons only, J = 4πGρbaryon, while PSCF provides a smooth scaffold
for the field in the weak/outer domain under fixed widths (Section 2.6.2). No non–baryonic
surface density is introduced, and the far zone is enforced variationally (Section 3.1).

No–hidden–mass audit (aperture form). For any circular/elliptical aperture A(R) used in
dynamics or lensing,

Meff(A) ≡
1

2πG

∮
∂A
∇Φ · dℓ =

∫
A
Σbaryon d

2θ + ∆Mleak(A), (33)

where Φ is the composite potential and Σbaryon the projected baryon map (same photome-
try/IMF as in the rotation/dispersion fits). By construction of the PSCF scaffold and the varia-
tional taper, the exterior “leakage” term obeys the Gaussian bound ((Appendix C.8)

|∆Mleak(A)|
Meff(A)

≤ ηleak with ηleak = 10−3 (policy default). (34)

Equation (33) is evaluated on the same numerical grid as the dynamical fit and reported with
uncertainties propagated from Σbaryon.

Strong lensing concordance (map level). Let ψ(θ) be the 2D lensing potential and κ(θ)
the convergence. Our PSCF/MC–CF prediction is obtained from the 3D Φ via line–of–sight
projection with the same geometry as the lens model:

ψ(θ) =
2Dls

c2DlDs

∫
Φ
(
Dlθ, z

)
dz, κ =

1

2
∇2

θψ, (35)

ΣPSCF(θ) ≡ κ(θ) Σcrit, Σcrit =
c2

4πG

Ds

DlDls

. (36)

We then define residual maps and acceptance bands:

∆κ ≡ κdata−κPSCF, RMSEκ =

〈
(∆κ)2

σ2
κ

〉1/2

, MSD-safe : ∆̂κ ⊥ span{1, θx, θy},

(37)
where σκ is the map uncertainty and the last condition projects out the mass–sheet (and linear
tilt) degeneracy. Acceptance (per lens) demands

RMSEκ ≤ 1.0,

∣∣∣∣Meff(< RE)−Mbaryon(< RE)

Mbaryon(< RE)

∣∣∣∣ ≤ 1%,

with RE the Einstein radius. Failures must be attributed to baryon maps or covariances before
introducing any extra mass component.
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Model comparison with explicit halos (guardrail). To exclude “hidden degrees of freedom”
we run, on the same data splits and covariances, a control model that adds a standard NFW halo
ΣNFW(θ |M200, c) on top of PSCF. We report AIC/BIC and Bayes factors for:

PSCF/MC-CF (no halo) vs. PSCF/MC-CF + NFW.

Policy: only if ∆BIC ≤ −10 (strong evidence for the added halo) and the mass–budget check
(33) is violated, do we accept a non–baryonic mass component. Otherwise the “no hidden
mass” interpretation stands.

Table 5: Lensing concordance and no–hidden–mass audit.
Object RE [arcsec] Meff(< RE) Mbaryon(< RE) RMSEκ ∆BIC (halo)
Name A . . . . . . . . . . . . . . .
Name B . . . . . . . . . . . . . . .

Reporting table (per lens).

Code & data artifacts (reproducibility). We release (i) baryon maps and masks, (ii) PSCF/MC–
CF predicted κ–maps in FITS, (iii) per–lens config files (geometry, distances, priors), (iv) note-
books to recompute Eqs. (35)–(37), and (v) the no–hidden–mass flux audit (33) with leakage
bound (34). Artifacts include commit hashes and environment fingerprints (Appendix H), en-
abling byte–for–byte reproduction of Table 5.

2.7 MC–CF model selection and regularization (policy)
Optimization layers. (1) Centers {xi}: initialized by k-means on light/gas maps; refined
with a quadratic penalty to anchors λc

∑
i ∥xi − xanchor

i ∥2. (2) Amplitudes {Ai}: nonnega-
tive least squares (NNLS) on the shared window; global mass budget

∣∣∑
i M̂i −Mbaryon

∣∣ ≤
ϵMMbaryon. (3) Widths {Σi}: log-normal priors with bounds σmin ≤ σk,i ≤ σmax and a sepa-
ration penalty

λsep
∑
i<j

exp
[
− 1

2
(xi − xj)

⊤(Σi + Σj)
−1(xi − xj)

]
.

Complexity control. We use a group sparsity term λ1
∑

i |Ai| to encourage pruning and se-
lect N by

BIC = k lnn− 2 ln L̂, AICc = 2k − 2 ln L̂+
2k(k + 1)

n− k − 1
,

reporting ∆BIC/∆AICc across N ∈ {1, . . . , Nmax}. Here k is the number of free parameters
(after positivity/bounds), and n the number of data points on the window.

Cross–validation and hold–out tests. We adopt K-fold CV on the weak-field window and
hold-out strong-field/lensing predictions as an out-of-sample test; MC–CF changes that do not
improve hold-out likelihood are pruned.
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Overlap metric and merge rule. To avoid near-duplicate components we track Gaussian
overlap

Oij ≡

∫
ϕi(r)ϕj(r) d

3r√∫
ϕ2
i d

3r

∫
ϕ2
j d

3r

, ϕk(r) = exp
[
− 1

2
(r− xk)

⊤Σ−1
k (r− xk)

]
,

and enforce: if Oij > τmerge then merge or drop the lower-A component and refit.

Item Symbol Default / Rule
Amplitude positivity Ai ≥ 0 Physical mass nonnegativity
Mass budget tolerance ϵM 5% (per object)
Width bounds σmin, σmax Fraction of ROI; declared per dataset
Min. separation κ κ = 2 (centers ≥ 2 combined s.d.)
Center anchor weight λc Anchor rms ≈ pixel noise
Separation weight λsep Drives Oij ↓ toward threshold
Group sparsity λ1 One-SE CV rule
Model selection BIC/AICc Smallest N with ∆BIC < 2

Policy table (fixed hyperparameters).

3 PCFE Formulation and Metric Coupling
Objective. Establish a single curvature–field equation that applies continuously from weak
to strong gravity while keeping observables explicit via g(r) ≡ −∇Φ(r) (operators and con-
ventions summarized in Appendix C).

Operator conventions (succinct). We use metric signature (−,+,+,+) and set c=1 unless
stated otherwise (restored where needed). For a scalar,

□Φ ≡ ∇µ∇µΦ =
1√
|g|
∂µ
(√
|g| gµν∂νΦ

)
, (∇Φ)2 ≡ gµν∇µΦ∇νΦ,

reducing in the flat limit to □Φ = −∂2tΦ +∇2Φ.

Action and field equation (variational, not ad hoc). We start from the covariant action for
a real scalar curvature field Φ minimally coupled to the metric gµν :

S[Φ; gµν ] =

∫
d4x
√
−g
[
1
2
gµν∇µΦ∇νΦ− U(Φ) + J Φ

]
. (38)

Variation with respect to Φ yields the Phi–Curvature Field Equation (PCFE),

□Φ− U ′(Φ) = J , □ ≡ gµν∇µ∇ν . (39)

In the weak–field, quasi–static limit this reduces to the Newton–Poisson equation (our normal-
ization baseline),

∇2Φ = 4πGρ , g = −∇Φ, (40)

consistent with the policy in Section 2 and used throughout the Solar–System benchmark in
Section 2.6.
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Metric coupling and conservation (dual variation). Promoting the construction to a fully
variational statement (cf. Section 3.3), independent variations give

δgS = 0 ⇒ Gµν =
8πG

c4

(
Tm
µν + TΦ

µν

)
, (41)

δΦS = 0 ⇒ □Φ− U ′(Φ) = J,

with scalar–sector stress tensor

TΦ
µν = ∇µΦ∇νΦ− 1

2
gµν(∇Φ)2 + gµνU(Φ). (42)

Diffeomorphism invariance implies the covariant conservation law

∇µ

(
Tmµ

ν + TΦµ
ν

)
= 0, (43)

closing the action→field equations→conservation loop.

Static sector and 1PN bridge (two–function metric). For static, spherical configurations
we write ds2 = −A(r) c2dt2 + C(r) dr2 + r2dΩ2, with the usual potential variable U(r) ≡
GM/(rc2) > 0. The first post–Newtonian (1PN) expansion is organized as

A(r) = 1− 2U(r) + 2β U(r)2 + δC4 atail(r) +O
(
U3
)
, (44)

C(r) = 1 + 2γ U(r) + δC4 ctail(r) +O
(
U2
)
, (45)

with asymptotic flatness A,C→1 as r→∞. Under the isotropic, no–anisotropic–stress policy
atail = ctail ≡ Ξ (Section 3.5), the leading γ–shift is suppressed at O(c−2). PPN readouts then
follow Section 3.4:

γeff(r) =
C(r)− 1

2U(r)
, βeff(r) =

1
2
∂2A/∂U2

∣∣
U(r)

.

PCFE⇒PPN bridge (1PN, isotropic tail)

With atail=ctail≡Ξ and Ξ(r) = 2 εγ U(r) p(r/r0) (Solar window; monotone 0 < p ≤ 1),

δγ(r) = γeff(r)− 1 = δC4 εγ p(r/r0), δβ(r) = βeff(r)− 1 = 0 +O(U).

These map directly to Solar–System bounds; see Section 3.4 and the observational sum-
mary in Section 3.

Units and normalization. Unless stated otherwise we adopt geometric units c=1; explicit
factors of c are restored where needed (e.g., PPN budgets in Section 3.4). Weak–field compar-
isons use the windowed, percentile–normalized protocol of Section 2.6.1 with ĝ = g/S.

Link to benchmarks and figures. The PCFE defines the common backbone for PSCF (J≡
0) and MC–CF (J ̸=0) branches (Section 2.2, Section 2.4), which are compared on the shared
Solar–System window in Section 2.6. Figure 3 summarizes the derivation pipeline from the
action to the weak–field limit.

27



Action S[ ; g ]
S = d4x g

= 1
2g

U( ) + J

Variation: S = 0
(stationary action)

PCFE / Euler--Lagrange
g U ′( ) = J

Weak--field limit
2 4 G

Figure 3: Derivation pipeline: Action → Variation → PCFE → Weak–field limit. The
Lagrangian density is L = 1

2
gµν∇µΦ∇νΦ − U(Φ) + JΦ. Stationarity δS = 0 yields

□Φ − U ′(Φ) = J , which reduces to ∇2Φ = 4πGρ in the weak, quasi–static limit used for
Solar–System benchmarks.

PPN observational bounds (Solar System) We compare our PPN readouts to canonical So-
lar–System constraints:

• Cassini light–time (Shapiro delay): |γ − 1| ≲ 2.3× 10−5 [37].

• LLR (lunar laser ranging): bounds on |β − 1| [38, 39].

These limits anchor the external budgets εγ, εβ used in Section 3.4 and are the reference values
against which the isotropic tail policy (Eq. 44–45) is assessed throughout the Solar–System
window.

3.1 Covariant origin of the tail and matched composition (replacing ad hoc
D)

Principle (action–level enforcement). Instead of linearly mixing (1−D) Φcore +DΦN with
a constant D, we derive the far–zone behavior from the action by adding a variational penalty
that enforces the Newton/GR exterior where a fixed window is active (see Section 3.3):

Sµ = S − µ

2

∫
d4x
√
−g w(x)

(
Φ−Φout

)2
, Φout ≡

{
ΦN = −GM/r, (weak, static),
c2

2

(
gGR
tt + 1

)
, (stationary GR).

(46)
Variation yields the augmented Euler–Lagrange equation

□gΦ− U ′(Φ) = J + µw(x)
(
Φout − Φ

)
, (47)

so that w → 1 drives Φ → Φout outside, while w → 0 recovers the unmodified inner prob-
lem. Thus the tail acquires a covariant, variational origin with no additional free parameter
introduced in the inner region.

Matched composition (Van Dyke type). Let Φcore solve (47) with w=0 (inner) and let Φout

denote the Newton/GR exterior. Define a smooth transition kernel with derived turnover (no
constant D):

D(r) = 1− exp
[
− (r/rt)

p
]
, p = 2, rt ≡

√
σ1σ2 ≃ 1.06 r0, (48)
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and form the composite

Φcomp(r) = Φcore(r) + D(r)
(
Φout(r)− Φoverlap(r)

)
, (49)

where Φoverlap is the common asymptotics in the intermediate region. The turnover rt follows
the global width policy in Section 2.6.2; no extra degree of freedom is introduced.

Strong–field continuity (Schwarzschild/Kerr). For a static spherical mass, take gµν = gSchwµν

and Φout =
c2

2

(
gSchwtt + 1

)
, so Φcomp→−GM/r as r→∞ while maintaining inner regularity

via Φcore. For slow rotation, promote gµν to Hartle–Thorne or Kerr and retain (46) with □gKerr;
the strong–gravity invariants (R,Θ) remain continuous across rph (see Section 7).

Potential family and working default. To close the PCFE,

□Φ− U ′(Φ) = J,

we specify a minimal convex family and a working default:

U(Φ) =
1

2
m2

ΦΦ2 +
λ4
4
Φ4, m2

Φ ≥ 0, λ4 ≥ 0, U(0) = 0, (50)

with the default used in reported fits

U(Φ) =
1

2
m2

Φ Φ2, mΦr0 ≤
1

4
. (51)

This ensures (i) on the Solar window r ∈ [r0, 3r0] the Yukawa factor is well approximated by
the Padé profile used for the PPN–safe tail, and (ii) far–field control is governed by the isotropic
tail Ξ in the 1PN metric (Eqs. (53)–(54)).

Metric coupling (tensor–led 1PN form). We work with the static, spherically symmetric
line element

ds2 = −A(r) c2dt2 + C(r) dr2 + r2 dΩ2, (52)

and expand to first post–Newtonian order (PPN notation)

A(r) = 1− 2U(r) + 2β U(r)2 + δC4 Ξ(r) + O(U3), (53)
C(r) = 1 + 2γ U(r) + δC4 Ξ(r) + O(U2), (54)

where U(r) ≡ GM/(rc2) and γ, β are the standard PPN parameters. The tail Ξ(r) acts iden-
tically in A and C (1PN isotropic alignment), so the leading γ shift cancels when atail =
ctail ≡ Ξ. Readout identities and Solar–window budgets are applied as in Section 3.5.4 and the
1PN/PPN mapping summary in Section 3.4.

Operating bounds (existence, PPN, causality). We restrict to the admissible sector

U ∈ C2, U ′′(Φ) = m2
Φ + λ4Φ

2 ≥ 0, Φ ∈ H1
loc, Keff(Φ̄) ≡ 1− 2α Φ̄ > 0, (55)

where Keff is the effective kinetic factor for an optional nonlinear self–sourcing term J [Φ] =
α(∇Φ)2 (notation summarized in Appendix 12). Under (55) the static weak–field problem
is a coercive semilinear elliptic PDE with asymptotically flat boundary data, well posed and
admitting at least one weak solution. The 1PN mapping and budgets follow from Section 3.4
with the isotropic tail pairing in Section 3.5.
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Explicit tail profile (PPN–safe). We adopt a scale–covariant form

Ξ(r) = 2 εγ U(r) p

(
r

r0

)
, 0 < p(x) ≤ 1, p′(x) ≤ 0, x ≡ r/r0, (56)

with closed profile

p(x) =
Cn

x2(1 + αx)n
, Cn = (1 + αxmin)

n x2min, n ∈ N, α > 0, (57)

so that Ξ = o(r−2) and asymptotic flatness holds. Default choices and their use in readouts are
summarized in Section 3.4 and Section 3.5.

Operating conditions.

(i) Order and decay. Use the PPN–safe tail (56)–(57); hence Ξ = o(U2) and the metric
pair (53)–(54) remains asymptotically flat.

(ii) Gauge and readout. Work in the isotropic gauge; PPN identifications follow Sec-
tion 3.5.4.

(iii) Boundary regularity. Impose A → 1, C → 1, and Ξ → 0 as r → ∞, with regular
behavior at r = r0.

(iv) External budgets (Solar window). Fix εγ = 4.6 × 10−5 and εβ = 3.6 × 10−5 (2σ);
enforce on r ∈ [r0, 3r0]

max |δγ(r)| ≤ εγ, max |δβ(r)| ≤ εβ,

as in Section 3.5.4.

(iv†) Penalty–origin exterior matching. Enforce the far zone by (46)–(47); assemble the
solution via (49) with kernel (48). No constant D appears; rt =

√
σ1σ2 and p = 2 are

inherited from Section 2.6.2.

(iv‡) Choosing µ andw(r) under budgets. Use a monotone windoww(r) =
(
1+e−[(r−rt)/∆]2

)−1

with
rt =

√
σ1σ2 ≃ 1.06 r0, ∆ = 1

2
|σ2 − σ1| = 0.45 r0

(Section 2.6.2). Select the smallest µ > 0 such that, with p = 2 and the above (rt,∆),
the Solar–window budgets hold.

(v) Reporting minimum. Report: (a) gauge (isotropic); (b) p(x) parameters; (c) (µ, rt,∆);
and (d) verification that γeff ≃ 1, βeff ≃ 1 lie within budgets on [r0, 3r0].

Clarifications and cross–reference policy. All links in this subsection point to main–text
sections actually present in the manuscript: the action/taper in Section 3.3, fixed widths and
rt in Section 2.6.2, the 1PN/PPN mapping in Section 3.4 and Section 3.5, and strong–field
invariants in Section 7. No references to non–existent appendices are used.
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Common symbol table.

Symbol Meaning
Φ(r) Curvature potential; observable field via g = −∇Φ
J(r) Effective source (mass–centered shells, luminous matter)
U(r) GM/(rc2), Newtonian potential in 1PN units
A(r), C(r) Metric functions with 1PN form (53)–(54)
Ξ(r) PPN–safe tail profile (56)–(57) (acts identically in A,C)
ρ(r) 3D mass density (from deprojection of Σ(R))
M/L Stellar mass–to–light ratio (object–level parameter)
rph Photon–sphere radius (from A(r))
R, Θ Strong–gravity invariants (Section 7)

3.1.1 Metric–scalar coupling: stance, consistency, and 1PN interface

Stance. We treat the metric gµν as the gravitational field and Φ as a curvature–coupled scalar
with its own dynamics. The total action is

S[gµν ,Φ, ψ] =

∫
d4x
√
−g
[
M2

P

2
R − 1

2
∇µΦ∇µΦ − U(Φ) + Lm(gµν , ψ)

]
+ ∆Sµ,

(58)
with the exterior–matching penalty ∆Sµ defined in Eq. (46). Thus GR provides the tensor
sector; Φ adds a scalar sector that is not a separate metric but couples covariantly through gµν .

Field equations and constraints. Independent variations give

Gµν =
8πG

c4
(
Tm
µν + TΦ

µν

)
, TΦ

µν = ∇µΦ∇νΦ− 1
2
gµν(∇Φ)2 + gµνU(Φ), (59)

□Φ− U ′(Φ) = J + µw(x)
(
Φout − Φ

)
, (60)

which imply the covariant conservation law ∇µ(Tm
µ
ν + TΦµ

ν) = 0 by diffeomorphism in-
variance. Equivalence–principle status is standard minimal coupling in Lm; test–body motion
follows geodesics of gµν .

Well–posedness (weak/static sector). On the Solar–window with the PPN–safe tail (Sec-
tion 3.4) and convex U (Eqs. (50)–(51)), the static limit reduces to a coercive semilinear elliptic
problem with asymptotically flat data. Existence of a weak solution and uniqueness up to the
exterior matching are ensured under the bounds in Eq. (55).

1PN interface and safety. Using the isotropic two–function metric, we expand

A(r) = 1− 2U(r) + 2β U(r)2 + δC4 Ξ(r) +O(U3), (61)
C(r) = 1 + 2γ U(r) + δC4 Ξ(r) +O(U2), (62)

with U(r) = GM/(rc2) and the PPN identification from Section 3.4. The isotropic tail pairing
atail = ctail ≡ Ξ suppresses the leading γ shift, yielding δγ = δβ = 0 + O(U2) within the
budgets εγ, εβ .
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Degrees of freedom and gauge. Tensor dof are those of GR (two polarizations). The scalar
adds one dof governed by Eq. (60). Gauge is fixed by the isotropic line element for the 1PN
map; strong–field sections adopt the usual static/Kerr charts, with Φ entering only throughA,C
as in Eqs. (61)–(62).

Link to data. At weak field, the PSCF/MC–CF split is a representation of solutions to Eq. (60)
(Section 2); at strong field, the invariants (R,Θ) respond to local changes ofA(r) near rph (Sec-
tion 7). The scalar sector therefore has a single observational interface across scales via A,C
with PPN safety guaranteed by the isotropic tail policy.

3.2 Unified PSCF–MC–CF decomposition and non–overlap rules
Decomposition at the equation level. We write the curvature potential as the sum of a core
(PSCF; J≡0 outside sources) and an envelope (MC–CF; J ̸=0 near mass centers):

Φ(r) = Φcore(r) + Φenv(r), LΦcore = 0, LΦenv = J (in the exterior domain),

where L is the weak–field limit of the PCFE operator (cf. Section 3). The split is structural:
Φcore solves the homogeneous exterior problem with the action–level, variationally enforced
1/r tail; Φenv carries strictly localized corrections tied to J .

Orthogonality gauge (no double counting). Let B be the PSCF basis (global fixed widths)
and W the analysis weight from the reporting window policy (see Section 2.6.2). Define the
W–orthogonal projector

PB = B (B⊤WB)−1B⊤W, QB = I − PB,

with inner product ⟨f, g⟩W ≡
∫
w(r) f(r) g(r) d3r. All MC–CF atoms kj are projected to the

PSCF–orthogonal complement:

k̃j = QB kj, Φenv(r) =
∑
j

aj k̃j(r).

Hence ⟨Φenv, b⟩W = 0 for every b ∈ span(B), removing PSCF/MC–CF collinearity and mak-
ing the decomposition unique up to the W–null space.

Boundary and moment constraints (attribution guardrails). To prevent redundancy of
global content, on the far–field shell Ω∞ ≡ {r : r ∈ [2r0, 3r0]} we impose

lim
r→∞

rΦenv(r) = 0,

∫
Ω∞

ρeffenv dV = 0,

∫
Ω∞

r ρeffenv dV = 0, (63)

where ρeffenv is the effective source induced by Φenv (notation as in Appendix C). Thus monopole
and dipole content live in Φcore only; Φenv is strictly local.

Compact support via taper. MC–CF envelopes are multiplied by a fixed taper χ(r) that
vanishes beyond the Solar/SPARC outer edge:

χ(r) =
(
1 + e(r−rcut)/∆

)−1

, rcut = 3 r0, ∆ = 0.1 r0,

so that Φenv = χ(r)
∑

j aj k̃j and Φenv = 0 for r ≳ 3r0. This enforces a clear geometric
separation (near–surface vs. far–field).
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Tail enforcement belongs to the core (no constant mix). The far–field normalization is
imposed only on Φcore by the variational taper introduced at the action level (see Section 3,
Eqs. (46)–(47)). In practice we assemble a matched composite with a smooth kernel

D(r) = 1− exp
[
− (r/rt)

p
]
, p = 2, rt =

√
σ1σ2 ≃ 1.06 r0, (64)

derived from the global width policy (Section 2.6.2), and

Φcore(r) = ΦPSCF(r) + D(r)
(
Φout(r)− Φoverlap(r)

)
, (65)

with Φout the Newton/GR exterior and Φoverlap the common asymptotics. No constant convex
mixD is used. The 1/r2 tail and PPN budgets are governed by the core alone; envelopes cannot
alter them.

Identifiability and acceptance. Fitting proceeds in two stages: (i) solve for Φcore in span(B)
with the action–level taper (64)–(65); (ii) fit Φenv in span({k̃j}) under narrow priors and ac-
ceptance rules (RMSE decrease ≥ 5% and ∆BIC ≤ −10 on identical splits). We additionally
require the no–leakage check

∥PB Φenv∥W ≤ 10−12 ∥Φcore∥W ,

which is a compile–time assertion against numerical drift.

Attribution report (per object). For transparency we publish core/envelope contributions
on the reporting window:

ηcore ≡
∥PB Φ∥2W
∥Φ∥2W

, ηenv ≡ 1− ηcore, ζenv ≡
∥∇Φenv∥2W
∥∇Φ∥2W

,

summarized alongside keff and ∆AIC/∆BIC (cf. Section 2.5 and the guardrails in Section 3).

Outcome. With orthogonality, compact support, and moment–nulling, PSCF and MC–CF
acquire disjoint roles: PSCF alone bears the global mass/tail and PPN budget via the variational
taper; MC–CF captures only local, anisotropic residuals. This removes interpretive double
counting and keeps the overall model predictive and falsifiable.

3.2.1 Asymmetric and environmental extensions: revised specification

Low-order multipoles (bar/lopsided structure). To relax the spherical/axisymmetric work-
ing assumption in Section 3 and Section 4, we add a single low-order layer on top of the
baseline:

Φ(r) = Φ0(r) +
2∑

ℓ=2

ℓ∑
m=−ℓ

aℓm fℓ(r)Yℓm(θ, φ), (66)

with (i) a globally fixed radial profile fℓ(r) chosen to be orthogonal (under the numerical inner
product) to the PSCF width set, (ii) per-object amplitudes aℓm under narrow Gaussian priors
centered at 0, and (iii) an explicit cap on active modes (at most three per object). This keeps
parameter growth under control and prevents collinearity with PSCF components.
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NA–MC–CF (non-axisymmetric mass-centered envelopes). We generalize MC–CF to anisotropic
Gaussians with a rotation angle φj and a fixed axis-ratio setQ = {q1, q2} shared across objects:

ΦNA–MC–CF(r) = −
∑
j

Bj exp
[
− 1

2
(r− rj)

⊤Σ−1
j (q, φj) (r− rj)

]
,

where (q, φj) are selected from Q and a uniform grid of angles, respectively. Widths remain
global up to fixed ratios (Section 2.6.2); only the amplitudes Bj (and at most one φj) vary per
object under narrow priors. A small ridge penalty on (Bj) avoids degeneracy with the multipole
layer. All NA–MC–CF atoms are projected with QB to preserve non–overlap.

Environmental terms (external field and hot gas). For lenses in groups or clusters we add
a weak external convergence/shear pair and, when warranted, a hot-gas β-model:

ψenv(x, y) =
1
2
κext(x

2 + y2) + 1
2
γext(x

2 − y2), Φgas(r) = −Φ0

(
1 + r2

r2c

)(1−3βgas)/2

.

We adopt tight context priors on (κext, γext) from weak-lensing or dynamical information, and
X-ray informed priors on (βgas, rc) when available. The mass-sheet degeneracy is mitigated by
kinematic constraints or time-delay data where applicable.

Observation operators. For rotation curves, bar-driven m = 2 features are either absorbed
by NA–MC–CF geometry or modeled via a small epicyclic correction inside bar radii. For
lensing, the total potential is ψtot = ψC4+ψenv, so that∇2

⊥ψtot = 2κtot and deflections include
the shear term. All additions respect the fixed-width and normalization rules of Section 2.6.2;
implementation details follow Appendix H.

3.2.2 Strong-gravity refinements: plasma and slow variability

Plasma-aware Fermat functional (multi-frequency separation). In a cold plasma with
electron density ne, the refractive index n ≃ 1 − ω2

p/(2ω
2) (ω2

p ∝ ne) induces a phase/time
delay ∝ ν−2

∫
ne dl. We therefore extend the imaging/time-delay functional by

τ(θ, ν) = 1
2
|θ − β|2 − ψtot(θ) + Kpl ν

−2

∫
ne dl, (67)

so that the strong invariants in Section 7 acquire small frequency-dependent corrections:

R(ν) = R0 + δRpl(ν), Θ(ν) = Θ0 + δΘpl(ν),

with δ(·) ∝ ν−2. Joint fits across (86, 230, 345)GHz disentangle curvature versus plasma under
a ν−2 prior.

Quasi-static variability. Over an observing epoch T , we write

Φ(r, t) = Φ0(r) + δΦ(r, t),

with a slow-evolution prior

τΦ ∂tδΦ + L[δΦ] = S(t), δΦ ∼ GP
(
0, kτ (∆t)

)
,

where L is the linearized PCFE operator (cf. Section 3). We report exposure-averaged invari-
ants ⟨R⟩T , ⟨Θ⟩T together with a temporal jitter band inherited from kτ . This keeps Section 7
consistent with time-variable data without abandoning the fixed-constant policy.
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3.2.3 Consistency checks, guardrails, and acceptance criteria

Parameter economy and identifiability. We quantify the effective degrees of freedom by
the WLS hat-matrix trace keff = tr(H) and require keff to increase by no more than +2 per
object when enabling asymmetry or environment layers. Collinearity with PSCF bases is mon-
itored by the condition number of B⊤WB; if it exceeds a fixed threshold, asymmetry terms are
suppressed.

Model inclusion thresholds. Additional structure is accepted only if (i) RMSE improves by
at least 5% and (ii) ∆BIC ≤ −10 relative to the simpler model on the same split. We compute
AIC/BIC with keff and enforce the same covariance pipeline (Appendix H) used elsewhere.

Robustness splits. Performance is evaluated on azimuthal tiles (LTGs), radial bins (ETGs),
and multi-band subsets (EHT), and rankings must remain stable across splits. For lenses with
external fields, a leave-environment-out rerun (setting κext = γext = 0) must not invert the
overall ranking.

Reporting. Each object’s report lists added terms, priors/posteriors, changes in keff , and the
net gain in RMSE/WRMS and ∆AIC/∆BIC. Section 11 covers implementation notes and seeds
sufficient for independent reproduction.

Table 6: Solar-band PPN check (Earth orbit).
Quantity Window [AU] Model Value
δγ(r) r ∈ [0.983, 1.017] εγ p(r/1AU) (1.10–1.20)× 10−6

Bound (2σ budget) − |δγ| ≤ εγ 2.0× 10−5

Forward reference. The 1PN metric pairing used here is given in Section 3, Eqs. (53)–(54), and
the explicit PPN-safe tail profile is specified in Eqs. (56)–(57). PPN readout and fixed external
budgets are summarized in Section 3.5.4 and Appendix C.6.1, while the action–level taper and
Solar-window envelope are detailed in Appendix C.8.3.

3.3 Total Action and Dual Variation
We promote the metric coupling from an ansatz to a variational statement (operators and sym-
bols summarized in Appendix C). The total action combines gravity, the curvature scalar field,
and ordinary matter:

Stot =
c4

16πG

∫
d4x
√
−g R+

∫
d4x
√
−g
[
1
2
gµν∇µΦ∇νΦ−U(Φ)+J Φ

]
+Sm[gµν ,Ψm], (68)

where Sm is the matter action (boundary terms such as the Gibbons–Hawking–York term are
assumed when needed but omitted from notation).

Dual variation (baseline). Independent variations yield

δgStot = 0 ⇒ Gµν =
8πG

c4

(
Tm
µν + TΦ

µν

)
, (69)

δΦStot = 0 ⇒ □Φ− U ′(Φ) = J, (70)
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with the scalar stress tensor

TΦ
µν = ∇µΦ∇νΦ− 1

2
gµν (∇Φ)2 + gµν U(Φ). (71)

Because Stot is diffeomorphism-invariant, the contracted Bianchi identity ∇µG
µν = 0 implies

the covariant conservation law

∇µ

(
Tmµν + TΦµν

)
= 0, (72)

closing the action → field equations → conservation loop that underlies our metric coupling
and connects to the weak–field normalization in Section 2.2.

Action-level exterior enforcement (variational taper). To replace any constant convex mix
in the far zone, we add a covariant, windowed penalty that drives Φ to the Newton/GR exterior
only where the window is active:

Sµ = −µ
2

∫
d4x
√
−g w(x)

(
Φ− Φout

)2
, Φout =

−
GM

r
(weak, static)

c2

2

(
gGR
tt + 1

)
(stationary GR)

(73)
with a smooth, fixed window w(x) supported in the exterior (e.g. monotone logistic/Gaus-
sian–like on r ∈ [rt − ∆, rt + ∆]; defaults in Section 2.6.2 and construction details in Ap-
pendix C.8.3). We treat Φout and w as fixed targets under variation (no extra dynamical fields).
Varying Stot + Sµ gives

δg(Stot+Sµ) = 0 ⇒ Gµν =
8πG

c4

(
Tm
µν + TΦ

µν + T (µ)
µν

)
, (74)

δΦ(Stot+Sµ) = 0 ⇒ □Φ− U ′(Φ) = J + µw (Φout − Φ), (75)

where the penalty-sector stress is purely local to the window,

T (µ)
µν ≡ −

µ

2
w
(
Φ− Φout

)2
gµν . (76)

On shell (when (75) holds) the combined conservation law becomes

∇α

(
Tmα

ν + TΦα
ν + T (µ)α

ν

)
= 0, (77)

so the windowed enforcement is compatible with diffeomorphism invariance and does not inject
spurious sources in the interior (w≡0 there).

Choice of window and strength (policy). We use a monotonew(r) =
[
1+exp(−[(r − rt)/∆]2)

]−1

with
rt =

√
σ1σ2 ≃ 1.06 r0, ∆ = 1

2
|σ2 − σ1| = 0.45 r0

(derived from the global fixed widths; Section 2.6.2). The smallest µ > 0 that satisfies the
Solar-window budgets

max
r∈[r0,3r0]

|δγ(r)| ≤ εγ, max
r∈[r0,3r0]

|δβ(r)| ≤ εβ

is selected (1D line search; budgets summarized in Appendix C.6.1). PPN readouts and the
isotropic tail pairing atail = ctail ≡ Ξ follow Section 3.4 and Section 3.5.
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Weak-field normalization (consistency). With w ≡ 0 in the interior and static weak fields,
(75) reduces to ∇2Φ = 4πGρ on the Solar window (our Section 2.2 baseline). In the exterior,
the same equation drives Φ → Φout smoothly, furnishing the 1/r tail without any constant
convex mix (see Appendix C.8.3).

3.3.1 Core PDE and Steady–State Interpretation

We posit a mesoscopic generative dynamics for the curvature field Φ that links the microscopic
formation/decay of interference patterns to the macroscopic static profiles used for data com-
parison. A convenient energy–timescale mapping is

Espread

L2
←→ D∇2Φ,

Tlocal
τ
←→ γ Φ3, δW ←→ σ ξ(x, t) (78)

which yields the computational core equation

∂tΦ(x, t) = D∇2Φ(x, t)− γ Φ(x, t)3 + σ ξ(x, t) (79)

with ⟨ξ⟩ = 0 and ⟨ξ(x, t) ξ(x′, t′)⟩ = δ(x−x′) δ(t−t′) in the basic formal setting.

Operator conventions (succinct). We adopt metric signature (−,+,+,+). Overdots denote
time derivatives (Φ̇ ≡ ∂tΦ), and primes denote ordinary derivatives with respect to their ar-
guments (e.g. U ′(Φ) = dU/dΦ) or r when spherical symmetry is invoked (A′(r) = dA/dr).
Spatial differential operators in Euclidean Rd are

∇Φ =
(
∂x1Φ, . . . , ∂xd

Φ
)
, ∇2Φ =

d∑
i=1

∂2xi
Φ.

On curved backgrounds, the scalar d’Alembertian (Laplace–Beltrami) is

□Φ ≡ ∇µ∇µΦ =
1√
|g|

∂µ
(√
|g| gµν∂νΦ

)
,

reducing to □Φ = −∂2tΦ + ∇2Φ in the flat limit (c=1). Physical meaning: ∇Φ encodes
the spatial “slope” (with observable g = −∇Φ), ∇2Φ tracks local curvature/flux imbalance,
and □Φ quantifies spacetime propagation/attenuation of the scalar curvature field (see also
Appendix C).

Units and well–posedness (succinct). We take [Φ] = L2/T 2 so that each term of (79) has
units L2/T 3, implying

[D] = L2/T, [γ] = T 3/L4.

In continuous d≥2 dimensions, fully white space–time noise is delicate; for empirical runs we
adopt spatially colored noise

⟨ξ(x, t) ξ(x′, t′)⟩ = κℓ(x−x′) δ(t−t′), κℓ(r) =
1

(2πℓ2)d/2
exp
(
− |r|

2

2ℓ2

)
,

with correlation length ℓ (the white limit ℓ→0 is formal).

37



Sustaining nontrivial steady profiles (exterior window drive). In the deterministic, un-
forced limit (σ=0, no drive) (79) admits only the uniform steady state Φ ≡ 0 on generic do-
mains. To sustain the nontrivial static shapes used in comparisons, we include the exterior
window enforcement introduced at the action level in Section 3.3, leading to

∂tΦ = D∇2Φ− γ Φ3 + µw(x)
(
Φout(x)− Φ

)
+ σ ξ(x, t) (80)

where w(x) is a fixed window supported in the exterior and Φout is the Newton/GR target (e.g.
−GM/r in the static weak field). Steady states then solve

D∇2Φ− γ Φ3 + µw(x)
(
Φout(x)− Φ

)
= 0,

recovering a smooth 1/r tail outside without any constant convex mix (Section 3.3; construction
details in Appendix C.8.3).

Gradient–flow perspective (deterministic limit). For σ=µ=0, (79) is the gradient flow of

E [Φ] =
∫ (

D

2
|∇Φ|2 + γ

4
Φ4

)
dx,

so E decreases monotonically and Φ ≡ 0 is the only uniform steady state. In practice, the
window term in (80) provides the pinning needed for nontrivial steady profiles.

Domain, boundary, and numerics. Unless stated otherwise, we solve on a bounded ROI
with Neumann (no–flux) boundaries and anchor the far field via w(x) (Section 3.3). Numer-
ically we use an IMEX scheme (diffusion semi–implicit; cubic and noise explicit), fix the
random seed for reproducibility, perform grid–independence checks, and report ROI bootstrap
confidence intervals under the shared pipeline.

Summary. The core PDE (79)–(80) furnishes a bridge from microscopic generative dynam-
ics to macroscopic static profiles. The exterior drive is consistent with the variational structure
of Section 3.3 and supports stable nontrivial steady states under quasi–steady observation con-
ditions. These conventions (units, noise correlation, boundary/numerics) form the basis for
subsequent weak/strong–field analyses (cf. Section 3.4, Section 3.5).

3.4 Static Spherical 1PN Expansion and PPN Mapping
We make explicit the two–function metric in the static, spherically symmetric sector,

ds2 = −A(r) c2dt2 + C(r) dr2 + r2dΩ2. (81)

With the Newtonian potential ΦN (negative in our sign convention) and

U(r) ≡ −ΦN(r)

c2
=

GM

r c2
> 0,

the first post–Newtonian (1PN) expansion reads

A(r) = 1− 2U(r) + 2β U(r)2 + δC4 Ξ(r) +O
(
U3
)
, (82)

C(r) = 1 + 2γ U(r) + δC4 Ξ(r) +O
(
U2
)
. (83)
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Here γ and β are the standard PPN parameters. By construction the C4 tail is isotropic at 1PN,

atail(r) = ctail(r) ≡ Ξ(r),

so it does not source an additional anisotropic γ–shift; only a bounded overall γ–response
remains, consistent with the tensor–led pairing in Section 3.3. Asymptotic flatness fixes inte-
gration constants: A→1, C→1 as r→∞; the weak–field limit matches the Newton–Poisson
baseline ([1, 2]; cf. Section 2.2).

Tail from the action (not a fit function). The tail family Ξ is derived from the action via the
variational taper (Section 3.3) and admits, on the Solar window, a closed Padé form

Ξ(r) = 2 εγ U(r) p

(
r

r0

)
, p(x) =

Cn

x2
(
1 + αx

)n , Cn =
(
1 + αxmin

)n
x2min, (84)

with 0 < p ≤ 1, p′(x) ≤ 0, x = r/r0, and a single globally fixed choice of (n, α, xmin)
(Appendix C.8.3). Thus Ξ is not an object–level free function; only the small global coupling
δC4 multiplies it.

PPN readout (closed form). Using U = −ΦN/c
2 > 0,

γeff(r) =
C(r)− 1

2U(r)
, βeff(r) =

1

2

∂2A

∂U2

∣∣∣
U(r)

. (85)

Substituting (82)–(83) and (84) gives, at 1PN order,

δγ(r) ≡ γeff − 1 =
δC4

2U(r)
Ξ(r) = δC4 εγ p

(
r

r0

)
, δβ(r) ≡ βeff − 1 = 0 (since Ξ ∝ U).

(86)
Hence the β–shift vanishes at this order; any residual β–response is O(U2) or lies beyond the
static–isotropic sector (Appendix C.6.1).

External budgets and admissible sector. We adopt fixed, external tolerances (both 2σ) on
the Solar window r ∈ [r0, 3r0],

εγ = 4.6× 10−5, εβ = 3.6× 10−5,

and enforce monotone p = o(x−1) for asymptotic flatness. From (86),

max
[r0,3r0]

|δγ| ≤ εγ (for δC4 ≤ 1), max
[r0,3r0]

|δβ| = 0 ≤ εβ,

so PPN safety holds without object–level tuning.

PPN from PCFE: first–principles and Solar–window bounds. Starting from the covariant
action with the exterior penalty in Eq. (24) and the PCFE in Eq. (39), the static 1PN metric
coefficients in Eqs. (82)–(83) yield the closed–form PPN readouts under the 1PN isotropic–tail
policy atail = ctail ≡ Ξ:

δγ(r) = (γ − 1) +
δC4 Ξ(r)

2U(r)
, δβ(r) = 0 +O(U).
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With the variationally derived tail family Ξ(r) = 2 εγ U(r) p(r/r0) (0 < p ≤ 1 monotone on
the Solar window), we obtain compact, observationally anchored bounds

max
r∈[r0,3r0]

|δγ(r)| ≤ εγ, max
r∈[r0,3r0]

|δβ(r)| ≤ εβ,

to be compared directly with the Cassini light–time constraint |γ − 1| ≲ 2.3 × 10−5 and lu-
nar laser ranging (LLR) bounds on |β − 1| (see references in Section 3). Numerically, Ap-
pendix C.7.1 shows δβ(r) = 0 at 1PN and δγ(r) = εγ p(r/r0), with all Solar–window planets
saturating < 100% of the declared budget (Mercury perihelion worst case: 94.7%).
Note. The error metrics used to quantify window–level deviations are defined in Eq. (30).

Remark (light deflection and Shapiro delay). Standard PPN relations,

α(b) ≃ 2
(
1 + γeff

)GM
bc2

, ∆tShapiro ≃
(
1 + γeff

)2GM
c3

ln
4rErR
b2

,

tie γeff ≃ 1 directly to lensing and time–delay tests. By contrast, pure scalar Nordström–type
models yield γ = −1 (no light bending), already excluded by data.

Degrees of freedom and predictivity. Predictivity is preserved because: (i) the tail Ξ has
one global closed form (84) with fixed (n, α, xmin); (ii) the 1PN isotropic alignment atail=ctail
follows from the stress structure (not a fit choice); (iii) the single small coupling δC4 is globally
bounded by the budgets above. With γ=β=1 and δC4=0, (82)–(83) reproduce the standard GR
1PN form (A = 1 − 2U + 2U2 + · · · , C = 1 + 2U + · · · ), closing the consistency loop with
the variational derivation in Section 3.3.

Exterior matching (summary). Throughout this paper we tie the curvature potential to the
metric by gtt ≡ −A(r) = −

[
1 + 2Φ

c2
+ 2β

c4
Φ2 + · · ·

]
within a regular 1PN window with β = 1.

In the exterior region the reference is Φout(r) = −GM/r + O(r−2). The variational taper
used in a thin boundary annulus is not an ad-hoc numerical trick: it is analytically equivalent
to a Robin boundary condition ni∂iΦ+ κ(Φ−Φout) = 0, which reduces to Dirichlet matching
Φ|∂Ω = Φout|∂Ω in the κ→∞ limit. With this identificationA(r) reproduces the Schwarzschild
1PN expansion at the boundary and, by exterior uniqueness, in the whole exterior domain. The
complete derivation (Euler–Lagrange, boundary term, Gauss flux, and 1PN mapping) is given
in Appendix M.2b.

3.5 Cohérence: from action to PPN
From action to metric coupling (variational, not ad hoc). Starting from the curvature–field
Euler–Lagrange equation obtained by variation of the total action (Section 3.3),

gµν∇µ∇νΦ− U ′(Φ) = J,

the static, isotropic 1PN line element ds2 = −A(r)c2dt2 + C(r) dr2 + r2dΩ2 admits the ten-
sor–led coupling

A(r) = 1 +
2Φ(r)

c2
+ δC4 Ξ(r), C(r) = 1− 2 γ ΦN(r)

c2
+ δC4 Ξ(r), (87)
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where ΦN is the Newtonian potential (ΦN < 0), and Ξ is the PPN–safe tail derived from the
action (Section 3.3, Appendix C.8.3). In the isotropic, no–anisotropic–stress limit the tail acts
identically in A and C,

atail(r) = ctail(r) ≡ Ξ(r), (88)

which suppresses the leading γ–shift at O(c−2) (cf. Section 3.4).

3.5.1 Conservation from diffeomorphism invariance.

With the total action (gravity + curvature scalar + matter)

Stot =
c4

16πG

∫ √
−g R d4x+

∫ √
−g
[
1
2
gµν∇µΦ∇νΦ− U(Φ) + J Φ

]
d4x+ Sm[gµν ,Ψm],

independent variations yield

Gµν =
8πG

c4

(
Tm
µν + TΦ

µν

)
, □Φ− U ′(Φ) = J,

with TΦ
µν = ∇µΦ∇νΦ−1

2
gµν (∇Φ)2+gµν U(Φ).Diffeomorphism invariance gives∇µG

µν = 0,
hence the covariant conservation law

∇µ

(
Tmµν + TΦµν

)
= 0, (89)

closing the action→field–equations→conservation loop and maintaining consistency with the
weak–field normalization in Section 2.2.

3.5.2 Two–function static metric and 1PN expansion.

In the static, spherically symmetric sector we write

ds2 = −A(r) c2dt2 + C(r) dr2 + r2dΩ2, (90)

and expand to first post–Newtonian (1PN) order with U(r) ≡ −ΦN(r)/c
2 = GM/(r c2) > 0:

A(r) = 1− 2U(r) + 2β U(r)2 + δC4 atail(r) +O
(
U3
)
, (91)

C(r) = 1 + 2γ U(r) + δC4 ctail(r) +O
(
U2
)
. (92)

Asymptotic flatness imposes A → 1, C → 1 as r → ∞. With the isotropic alignment (88),
atail = ctail = Ξ (Section 3.4).

3.5.3 Linearized constraint on the tail (isotropy).

Inserting (91)–(92) into the linearized Einstein equations sourced by TΦ
µν ,

(
Gr

r −Gθ
θ

)
lin

=
8πG

c4

(
TΦ r

r − TΦ θ
θ

)
lin
,

one obtains an operator relation D[atail, ctail;U ] = S[Φ]. In the no–anisotropic–stress limit this
reduces to

atail(r) = ctail(r) +O(c−2) ⇒ atail = ctail ≡ Ξ at 1PN, (93)

so the leading γ–shift vanishes.
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3.5.4 Effective PPN readout and Solar–System bounds.

Operationally,

γeff(r) ≃
C(r)− 1

2U(r)
, βeff(r) ≃

1

2

∂2A

∂U2

∣∣∣
U(r)

. (94)

With atail = ctail = Ξ and the closed tail form (Section 3.4),

Ξ(r) = 2 εγ U(r) p

(
r

r0

)
, 0 < p ≤ 1, p′(x) ≤ 0, p = o(x−1), (95)

the induced shifts are

δγ(r) = γeff − 1 = δC4 εγ p

(
r

r0

)
, δβ(r) = βeff − 1 = 0 (since Ξ ∝ U). (96)

We adopt fixed, external 2σ budgets on the Solar window r ∈ [r0, 3r0],

εγ = 4.6× 10−5, εβ = 3.6× 10−5,

and choose the smallest global coupling δC4 (or, equivalently, the action–level strength µ; Sec-
tion 3.3) such that

max
r∈[r0,3r0]

|δγ(r)| ≤ εγ, max
r∈[r0,3r0]

|δβ(r)| ≤ εβ.

Together with (95), this ensures asymptotic flatness and PPN safety without per–object tail
tuning and without any constant convex mix.

3.6 Consistency Assessment and Corrections
(i) Gauge and degrees of freedom. We work in the isotropic gauge throughout this section
to eliminate residual freedom and state explicitly that all PPN identifications refer to this gauge
(Section 3.4). This avoids ambiguity between Schwarzschild–like and isotropic radii atO(c−2).

(ii) Structural constraints on the tail. To prevent spurious PPN shifts we impose the isotropic
design rule

atail(r) = ctail(r) ≡ Ξ(r), Ξ(r) = 2 εγ U(r) p

(
r

r0

)
, (97)

with U(r) = GM/(rc2), 0 < p ≤ 1 monotone, and p = o(x−1) as x = r/r0 → ∞ (construc-
tion and profiles in Appendix C.8.3; PPN readout identities in Appendix C.6.1). Under (97) the
leading γ-shift cancels and δβ vanishes at 1PN.

(iii) Amplitude bounding (PPN–safe default). Let εγ, εβ be fixed external tolerances on the
Solar window r ∈ [r0, 3r0]. We select the smallest global coupling that satisfies

max
r∈[r0, 3r0]

∣∣δγ(r)∣∣ ≤ εγ, max
r∈[r0, 3r0]

∣∣δβ(r)∣∣ ≤ εβ. (98)

Operationally this is implemented either as a bound on the 1PN amplitude δC4 (metric level;
Section 3.4) or, equivalently, as the minimal penalty strength µ in the action-level enforcement
Sµ (see Section 3.3, Eq. (73)).
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(iv) Boundary conditions and integrability. We require A → 1, C → 1 and Φ → 0 as
r → ∞, and regularity at r = r0. Under these conditions, the linear system for the tail sector
admits solutions in H1

loc, and the conserved current ∇µ(T
mµν + TΦµν) = 0 holds pointwise in

the static sector (Section 3.5).

(iv∗) Physical basis of the PSCF Gaussian scaffold. The PSCF core can be interpreted as a
heat–kernel (diffusion) regularization of the Newtonian potential. Writing the Newton kernel
as GN(r) = −(4π|r|)−1 in 3D, the regularized core is

ΦPSCF(r) =
(
eℓ

2∇2

GN

)
∗ ρ(r) = −G

∫
ρ(r′)

erf
( |r−r′|

2ℓ

)
|r− r′|

d3r′,

where ℓ is the scaffold scale. This delivers (i) smoothness (C∞), (ii) isotropy and positivity,
and (iii) controlled locality via ℓ. For a compact source of total mass M ,

ΦPSCF(r) = −GM
r

erf
( r
2ℓ

)
, r ≫ supp(ρ),

so the exact 1/r asymptotics is approached exponentially fast but remains slightly biased on
finite windows where r∼O(ℓ).

(iv†) Necessity of exterior enforcement and the role of MC–CF (no constant mix). Gauss/
Birkhoff reasoning requires the exterior metric of a compact source to approach Schwarzschild
with mass M : A(r) → 1 − 2GM/(rc2), C(r) → (1 − 2GM/(rc2))−1 as r → ∞. The PSCF
core alone underestimates the far–field slope on finite Solar windows. Instead of a constant
convex mix, we enforce exterior compliance variationally via the action penalty

Sµ = −µ
2

∫
d4x
√
−g w(x)

(
Φ− Φout

)2
, Φout =

{
−GM/r (weak, static)
c2

2

(
gGR
tt + 1

)
(stationary GR)

with a smooth, fixed window w(x) (defaults in Section 3.3). This drives the core to the cor-
rect exterior while leaving MC–CF to supply near–surface anchoring and mild anisotropy; no
object–level tail tuning and no constant D appear.

(iv‡) How the enforcement strength is fixed (penalty µ / 1PN amplitude δC4). Let w(r) be
the logistic window centered at rt =

√
σ1σ2 ≃ 1.06 r0 with width ∆ = 1

2
|σ2 − σ1| = 0.45 r0

(Section 2.6.2). We perform a 1D line search in µ > 0 and pick the minimal µ such that the PPN
budgets (98) hold. Equivalently, at 1PN this fixes the small global amplitude δC4 multiplying Ξ
(Section 3.4), with the mapping δC4↔µ determined by the window and background solution.
This procedure replaces any legacy “D-by-budget” rule.

(v) PPN–safe tail specification (reporting checklist). We (1) fix the isotropic gauge; (2)
state the explicit atail = ctail ≡ Ξ with the closed p(x); (3) adopt fixed external budgets εγ =
4.6 × 10−5, εβ = 3.6 × 10−5 (2σ); (4) enforce p = o(x−1) and asymptotic flatness; (5) report
the window w(r) parameters (rt,∆) and the selected µ (or δC4) alongside verification that
max[r0,3r0] |δγ| ≤ εγ and max[r0,3r0] |δβ| ≤ εβ with γeff ≃ 1, βeff ≃ 1 on the Solar window.

Outcome. These corrections elevate the coupling from a sketch–level ansatz to a constrained,
variational construction: action–based field equations with conservation (Section 3.5), explicit
1PN/PPN mapping (Section 3.4), and tail design rules that keep Solar–System limits intact
while preserving the large–r control needed elsewhere—without any constant convex mix.
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3.7 Quantitative separation from Brans–Dicke–type scalar–tensor theo-
ries

Objective. Beyond conceptual distinctions, we establish a quantitative separation between
C4 and Brans–Dicke (BD)–type scalar–tensor theories by fitting the same data with the same
pipeline (priors, masks, windows, covariances, and numerical tolerances) and reporting model-
selection metrics alongside stability diagnostics.

Reference configurations (shared policy). Two branches are contrasted under an identical
fixed–constants policy: (i) C4 with self–sourcing J = α(∇Φ)2 and a predeclared U(Φ) family;
(ii) BD(ref) with a single coupling ωBD (optionally with the same shallow U(Φ) prior family).
All probe settings (grids, masks, windows, tolerances) follow Section 2.6 and Appendix K.
Probe–wise retuning is not permitted.

Observed spaces and mappings. We evaluate and compare the following observable blocks
under a single pipeline:

(a) Solar–System PPN: (γ − 1, β − 1) on r∈ [r0, 3r0] under the isotropic-tail policy;

(b) Compact binaries (dipole): ppE phase parameter βppE (or an effective breathing coupling
ζ when active);

(c) Linear cosmology: response trajectories (µ(a, k),Σ(a, k)) feeding (fσ8, EG, C
ϕϕ
ℓ );

(d) Strong field: ring invariants (R,Θ) with matched covariances (Section 7–Appendix M).

Likelihood and model selection metrics (pre-declared). With a block-structured covariance
Σ shared across models, we compute

χ2(ϑ) =
[
d−m(ϑ)

]⊤
Σ−1

[
d−m(ϑ)

]
, AIC = 2keff + χ2, BIC = keff lnN + χ2, (99)

and Bayes factors via either thermodynamic integration or the Laplace (Gaussian) approxima-
tion,

lnK ≃ ln L̂1 − ln L̂2 − 1
2
ln

detH1

detH2

+ ln
π1(ϑ̂1)

π2(ϑ̂2)
, (100)

where H is the observed Hessian at the posterior mode, π the prior density, and hats denote
MAP values. We report ∆χ2, ∆AIC, ∆BIC, and lnK for identical priors and covariances.

Trajectory distance on (µ,Σ). To quantify linear–response differences we use a Fisher-
weighted distance

D2[(µ,Σ)] =
∑
a,k

(
∆ra,k

)⊤
Fa,k

(
∆ra,k

)
, ∆ra,k =

[
µC4(a, k)− µBD(a, k)

ΣC4(a, k)− ΣBD(a, k)

]
, (101)

with Fa,k the 2× 2 inverse covariance for (µ,Σ) at each (a, k). A pre-declared threshold on D
(Appendix K) sets a separation criterion.
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Separation rule (decision thresholds). We claim quantitative separation if: (i) ∆BIC ≥ 10
(strong; ≥ 6 positive) and consistent signs across data blocks; (ii) whitened residuals and
null streams prefer a single model without subset–dependent drifts; (iii) the trajectory metric
satisfies D ≥ Dth as registered in the run manifest.

Diagnostics and guardrails. We run GR–limit checks (α→0 or ωBD→∞), leave–one–survey
–out robustness, and numerical convergence tests (grid and tolerance doubling must shift any
modeled datum by < 0.1σ). QS/full–linear matching is enforced at ksw ∼ O(aH); positivi-
ty/stability priors (e.g. ρΦ > 0, no sign–flipping Σ) follow Appendix K.

Computation notes (reproducible formulas). When both branches use the same keff and N
per block,

∆AIC = ∆BIC = ∆χ2 = χ2
C4 − χ2

BD, (102)

and pooled sums across blocks are additive under the shared-covariance assembly. For strong-
field assets we adopt the bivariate test in Appendix M: a coherent (diagonal) (R,Θ) shift is as-
sessed by a noncentral χ2

2 statistic with covariance inherited from the ring–extraction pipeline.

Pointers. Quantitative assets (posterior overlays, (µ,Σ) trajectories, and blockwise tables)
are provided in Appendix N (Figs. 34–35, Tables 104–106); the (R,Θ) diagonal-power curve
appears as Fig. 36 in the same appendix.

Results placeholders (to be filled). Figure set: (i) posterior corners (α;U) vs. (ωBD;U); (ii)
(µ,Σ) time/scale trajectories (mean±1σ); (iii) (R,Θ) diagonal–direction power curve (shared
covariance). Tables: (i) shared priors/grids; (ii) model–selection summary; (iii) blockwise ∆χ2.
All are referenced as Figs. 34–36 and Tabs. 104–106.

Positioning vs. scalar–tensor baselines. To avoid overstatement, we summarize the struc-
tural gaps to Brans–Dicke (BD) and Horndeski families under the same fixed–policy used
throughout this paper. The table below records source structure, PPN/GW constraints, and
distinct observables. A full quantitative comparison (including µ,Σ trajectories and blockwise
information criteria) appears in Appendix N.

Table 7: C4 vs. Brans–Dicke/Horndeski (Foundations). Columns use fixed widths to prevent
overflow.
Axis C4 Brans–Dicke (BD) Horndeski (GW170817-fit)
Source term J α(∇Φ)2 (self-sourcing) ∝ T ≡ Tµ

µ (matter trace) Via Gi(Φ, X) self/derivative
couplings

PPN (γ, β) Bounded to GR by policy
caps (no violation admitted)

γ−1 = − 1
2+ωBD

, β−1 = 0 Model-dependent; typically
via αM , αB

GW sector cT = 1 by construction;
optional scalar breathing
hb∝ζ (global)

cT = 1; scalar dipole
constrained by ωBD

αT = 0 today; residual
αM , αB allowed
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Table 8: C4 vs. Brans–Dicke/Horndeski (Observables & Policy).
Axis C4 Brans–Dicke (BD) Horndeski (GW170817-fit)
Linear response
(µ,Σ)

µ = 1 +∆µα(a, k),
Σ = 1 +∆Σα(a, k)
(pre-declared family)

µ,Σ fixed by ωBD in linear
limit

Time/scale dependent from
{αM , αB}

Identifying test Coherent diagonal (R,Θ)
co-motion (Section 7)

No universal diagonal lock Model-dependent; not
generically diagonal

Parameter policy Global α; fixed U(Φ) family;
no per-probe retuning

Single ωBD; shallow U(Φ)
option

Functions of time (e.g.
αM , αB) with priors

Open reference bundle (reproducible “quantitative separation”). We release a light ref-
erence bundle that lets readers compare C4, BD(ref), and a GW170817–compliant Horn-
deski slice under the same pipeline (PPN/Solar, compact binaries/GW, linear cosmology, strong
field). All runs share priors, masks, covariances, windows, and numerical tolerances (cf. Sec-
tion 2.6.2, Appendix H).

Table 9: C4 vs. Brans–Dicke vs. Horndeski (Foundations).
Axis C4 Brans–Dicke (BD) Horndeski (GW170817-fit)
Source structure J Self–sourcing J = α(∇Φ)2; U(Φ)

from a predeclared shallow family
(Appendix C, Appendix J)

Couples to matter trace T ; optional
shallow U(Φ) (baseline reference)

Derivative/self couplings via
Gi(Φ, X); freedom constrained by
data (mapping rules in Appendix K)

PPN (Solar) policy Bound to GR by policy caps; no
violation admitted (Section 3.4)

γ− 1 = −1/(2+ωBD), β− 1 = 0
(evaluated under Section 3.4)

Today αT=0 enforced; residual
αM , αB allowed (Appendix L)

GW sector cT = 1 by construction; optional
breathing hb∝ζ (global)
(Appendix L)

cT = 1; scalar dipole constrained by
ωBD (Appendix L)

cT = 1 maintained; time–dependent
αM , αB model–dependent
(Appendix L)

Table 10: C4 vs. Brans–Dicke vs. Horndeski (Observables & Policy).
Axis C4 Brans–Dicke (BD) Horndeski (GW170817-fit)
Linear response (µ,Σ) µ = 1 +∆µα(a, k),

Σ = 1+∆Σα(a, k) (predeclared
family; Appendix K)

Fixed by ωBD in the linear limit
(Appendix K)

Time/scale dependent via
{αM , αB} (Appendix K)

Strong–field discriminator Coherent diagonal co–motion in
(R,Θ) (45°) (Section 7,
Appendix M)

No universal diagonal lock (tested
as in Appendix M)

Model–dependent; typically not
diagonal (Appendix M)

Parameter policy Global α; fixed U(Φ); no
probe–wise retuning
(Section 2.6.2)

Single ωBD; shallow U(Φ) option
(shared policy: Section 2.6.2)

Time–function DoFs with
declared priors (likelihood
assembly per Appendix H)

Variational taper sensitivity and invariance checks. We record, under the shared pipeline,
how the outer–boundary taper impacts both fit quality and invariants. Global sweeps over µ
(penalty strength), rt (taper radius), and ∆ (collar thickness) are executed with all other settings
fixed. For each configuration we log: (i) Solar–window PPN deviations (γ−1, β−1); (ii) RMSE
and ∆AIC/∆BIC on the same masks; (iii) strong–field (R,Θ) shifts and the diagonal SNR
defined in Appendix M. Policy changes (window/collar definition, weight family) must update
the versioned entry in Appendix J and are linked to the reproducibility ledger in Appendix H.
Reporting rule. When the taper is enabled, we require: (a) boundary–flux convergence to
−4πGM within tolerance; (b) PPN caps respected (Section 3.4); (c) an improvement RMSE ↓
≥5% with ∆BIC ≤ −10 on identical splits. Failing (a)–(c), the previous policy in Appendix J
remains in force.
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4 Representation and Estimation Pipeline (PSCF+MC–CF
⇒ Observables)

Objective. We show how the curvature–field representations introduced earlier—Pure–Space
Curvature Field (PSCF) and Mass–Centered Curvature Field (MC–CF)—map to astronomical
observables. A mathematical potential Φ must become rotation curves, line–of–sight disper-
sions, or lensing deflections. Throughout, global fixed widths are respected (no per–object
retuning; Section 2.6.2); the variational taper enforces the exterior (no constant convex mix;
Section 3.3); and only amplitudes are estimated per object under shared priors.

Inputs. Start from the photometric surface–brightness profile Σ(R) (with distance D and
inclination i). Deproject to a 3D luminosity density ν(r) and, with a single mass–to–light ra-
tio M/L, obtain the stellar mass density ρ⋆(r) = (M/L) ν(r). Spherical systems use Abel
inversion; axisymmetric cases use MGE or Sérsic–Prugniel–Simien families [30, 31, 32]. Un-
certainties in (D, i) and photometric scaling are kept explicit and propagated (Appendix H).

From ρ to source J and field Φ. The effective source J entering the PCFE is formed from
the deprojected mass (and any gas component), after which the field is represented as

Φ(r) = ΦPSCF(r)︸ ︷︷ ︸
J ≡ 0 outside

+ ΦMC–CF(r)︸ ︷︷ ︸
J ̸= 0 near mass centers

,

with the exterior normalization supplied by the action–level penalty Sµ (Eq. (73)), not by any
constant mix. Orthogonality and non–overlap rules follow Section 3.2.

Variational taper for exterior matching (no new degrees of freedom)

This subsection instantiates the action-level penalty Sµ (cf. Section 3.3, Eq. (73)) used to en-
force the analytic exterior solution without adding object-level degrees of freedom. We aug-
ment the objective by a windowed quadratic term applied beyond a fixed transition radius:

J (Φ) = Ldata(Φ) + λ

∫
w(r)

(
Φ(r)− Φout(r)

)2
dr, Φout(r) ∈ {−GM/r, GR exterior}.

The taper window is fixed by the global bandwidth policy (no per-object tuning):

w(r) = 1− exp
[
−
(

r
rt

)2]
, rt =

√
σ1σ2 ≈ 1.06 r0,

where (σ1, σ2) = (0.7, 1.6) r0 are the globally fixed widths. Thus the taper introduces no
new free parameters: rt is inherited from the widths and λ is a dataset-level regularization
hyperparameter shared across objects, as declared in the fixed-policy settings.
Notes. (i) This replaces legacy constant-tail mixing with a principled action-level regulariza-
tion; (ii) in practice it reduces outer-window residuals while leaving core-region metrics and
model selection (AIC/BIC) effectively unchanged under identical masks/covariances.

Parameterization (fixed policy; amplitudes only).

• PSCF: three fixed widths sk/r0 = {0.5, 1.0, 2.0}; fit amplitudes {Ak} only.
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• MC–CF: either one global ratio σ = κ⋆r0 (κ⋆ = 0.901953) or two ratios (σ1, σ2) =
(0.7, 1.6) r0; fit amplitudes {Bj} only.

• Anisotropy: stellar velocity anisotropy β(r) via Osipkov–Merritt or Baes–van Hese
(minimal 1–2 parameters).

• Metric tail: 1PN–safe, isotropic Ξ(r) = 2 εγ U(r) p(r/r0) (Section 3.4); amplitude con-
trolled globally by δC4 or, equivalently, the penalty strength µ in Sµ.

Observables (forward operators). Let g = −∇Φ.

(LTGs) v2c (R) = R∂RΦ(R, z=0), compare to rotation–curve data (Section 5.2).

(103)

(ETGs)
d(νσ2

r)

dr
+

2β(r)

r
νσ2

r = − ν dΦ
dr
, (104)

σ2
los(R) =

2

Σ(R)

∫ ∞

R

(
1− βR

2

r2

)
ν(r)σ2

r(r) r dr√
r2 −R2

. (105)

Projected expression used for data comparison; see Section 6.

(Lensing) ψ(θ) =
2

c2
Dls

DlDs

∫
Φ(Dlθ, z) dz, (106)

α = ∇⊥ψ, κ = 1
2
∇2

⊥ψ. (Section 5.3). (107)

Normalization and windows. Errors and comparisons use the percentile normalization of
Section 2.6: for a window r ∈ [r0, 3r0], divide accelerations by S = q0.99(|gref |) with gref =
GM/r2. Near–surface diagnostics use [r0, 1.5r0]. The same window policy is reused at galaxy
scale with (Rin, Rout) replacing (r0, 3r0).

Statistical framework. Goodness–of–fit is summarized by χ2, WRMS, and intrinsic scatter
σint (chosen so that χ2

ν≈1 when warranted). Model selection uses AIC/BIC with the effective
DoF keff = tr(H) (WLS hat matrix). Distance/inclination covariances are propagated explic-
itly; cross–validation uses azimuthal tiles (LTGs), radial bins (ETGs), and band splits (EHT)
with identical masks (Appendix H).

Pipeline outline (estimation).

1. Photometry⇒ mass: deproject Σ(R) to ν(r); set ρ⋆ = (M/L)ν; add gas if available.

2. Source and bases: form J ; assemble PSCF bases B and MC–CF atoms K (fixed
widths); project MC–CF into the PSCF–orthogonal complement (Section 3.2).

3. Solve amplitudes: weighted least squares (or NNLS) for A,B on the common grid;
enforce the action–level taper Sµ for the exterior (no constant D).

4. Map to observables: compute vc, σlos, α; apply identical normalization.

5. Score: compute RMSE/WRMS/σint/AIC/BIC; perform splits and stability checks.
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Table 11: Checks and thresholds for add–on operators. Decisions use the same covariance
pipeline as Appendix H.

Add–on Primary check Threshold
m = 2 correction vs. NA–MC–CF WRMS difference (two paths) < 1σ (similar)

External convergence/shear Ranking preserved (on/off) ≥ 90%

Plasma term Posterior ν−2 slope −2± 0.3

DoF increment keff increase ≤ +2 per object

Model selection ∆BIC, RMSE gain ∆BIC ≤ −10, ≥ 5%

Operators with non–axisymmetry and environment. Bar–drivenm=2 structure is handled
either by a small epicyclic correction inside Rbar or by NA–MC–CF geometry; prefer the latter
if WRMS differs by < 1σ (Section 5.2). For lenses,

ψtot = ψC4 + ψenv, ∇2
⊥ψtot = 2κtot,

with external convergence/shear (κext, γext) under tight context priors. All additions respect the
fixed–width and normalization policy.

Consistency steps (coherence, separation, overfit control).

• Window coherence (RCs): within bar radii, NA–MC–CF absorption must match the
epicyclic path within 1σ WRMS.

• Environment separation (lenses): preserve ranking with environment on/off in ≥ 90%
of tiles; otherwise tighten priors and recompute covariances.

• Multi–band (strong gravity): across (86, 230, 345)GHz, enforce a posterior slope−2±
0.3 for the plasma term.

• DoF control: cap ∆keff ≤ +2 per object; suppress add–ons if κ(B⊤WB) exceeds a
fixed threshold.

Error budget and decomposition.

σ2
tot = σ2

inst + σ2
D + σ2

i + σ2
PSF + σ2

sym + σ2
env + σ2

pl,

where σsym covers non–axisymmetric residuals not captured by low–order multipoles/NA–MC–
CF, σenv from environment posteriors, and σpl from ν−2 regressions. Each term is estimated
with the common covariance rules.

Acceptance criteria (simple numerical rules). On identical masks/splits: (i) RMSE im-
provement ≥ 5% and ∆BIC ≤ −10; (ii) ranking stability in ≥ 90% of tiles/bins/bands; (iii)
overfit guard—disable any add–on that worsens WRMS where it should be inactive by design.

Compact memo (bar epicycles; reference only). Inside Rbar the epicyclic approximation
yields

δvϕ(R,φ) ≈
ϵ2
2

κ2

κ2 − 4(Ω− Ωp)2
vc(R) cos

[
2(φ− Ωpt)

]
,
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with Ω = vc/R, κ2 = R dΩ2

dR
+ 4Ω2, pattern speed Ωp, and small amplitude ϵ2. If the angular

residual is < 1σ, the pipeline reports NA–MC–CF absorption instead of an explicit epicyclic
term.

Functional API summary.[
Σ(R), D, i, ρ(r), M/L, β(r)

]
7−→

[
vc(R), σlos(R), α(θ)

]
,

subject to fixed C4 constants, the PSCF+MC–CF representation, and the action–level taper Sµ.
In short, the pipeline transforms faint light and simple geometry into falsifiable kinematic and
lensing predictions—without per–object tail tuning and without any constant convex mix.

4.1 Data Quality Grading and Error–in–Variables (EIV) Likelihood (Re-
vised)

Observed radii and kinematic/lensing quantities (speed, dispersion, convergence) are sensitive
to uncertainties in distance D, inclination i, and mass–to–light ratio M/L. We grade data
quality by Q ∈ {A,B,C} (criteria in Table 12) and use grade–specific error catalogs (see
Appendix H).

Total covariance (matrix form). For the stacked observation vector yobs,

Σtot = Σinst︸︷︷︸
instrumental

+ Jη Ση J
⊤
η︸ ︷︷ ︸

latent (η=(D,i,M/L))

+ Σsky︸︷︷︸
sky background

+ ΣPSF︸ ︷︷ ︸
PSF wings

+ Σcal︸︷︷︸
photometric/distance scale

, (108)

where Jη = ∂y/∂η is the Jacobian of the forward map (columns correspond to D, i, M/L).
The latent covariance allows cross–parameter correlations:

Ση =

 σ2
D ρDi σDσi ρD,M/L σDσM/L

ρDi σDσi σ2
i ρi,M/L σiσM/L

ρD,M/L σDσM/L ρi,M/L σiσM/L σ2
M/L

 .
Spatial correlations in sky and PSF are modeled by short–range exponentials:

(Σsky)kl = σsky,kσsky,l e
−|Rk−Rl|/ℓsky , (ΣPSF)kl = σPSF,kσPSF,l e

−|k−l|/ℓPSF .

EIV likelihood (closed–form local approximation). At each datum we marginalize the la-
tent radius R∗

k:

p(yobsk , Robs
k | θ) =

∫
N
(
Robs

k | R∗
k, σ

2
R

)
N
(
yobsk | ymod(R

∗
k; θ), σ

2
tot(k)

)
dR∗

k.

With a local linearization ymod(R
∗
k) ≈ ymod(R

obs
k ) + y′(Robs

k )(R∗
k −Robs

k ),

σ2
eff(k) ≡ σ2

tot(k) +
(
y′(Robs

k )
)2
σ2
R, (109)

so the radius uncertainty enters as an automatic weight. In vector form for a binned block b
with derivative column JR = ∂y/∂R,

Σ
(b)
eff = Σ

(b)
tot + JR ΣR J

⊤
R . (110)

Strongly nonlinear patches (curvature test κ ≡ |y′′/y′| · σR > 0.25) are integrated by 3– to
5–node Gauss–Hermite or a Laplace approximation (Appendix H).
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Table 12: Data quality grade criteria (representative thresholds).
Grade Radial samples Key numeric

thresholds
(examples)

Notes

A NR≥12 σD/D≤5%, σi≤2◦,
σM/L≤10%;
quantified sky/PSF
covariances

Standard WLS/EIV;
Gaussian residuals
acceptable

B 8≤NR<12 σD/D≤15% or
σi≤5◦; partial
sky/PSF
quantification

Student–t residuals;
linearization validity
checks

C NR<8 or LSB outskirts / clusters sky–dominated;
uncertain PSF wings;
possible external
field

Student–t
mandatory; cautious
interpretation

Robust residuals (LSB/cluster regimes). We use a scale–mixture Student–t to gain robust-
ness to heavy tails:

εk | λk ∼ N
(
0,

σ2
eff(k)

λk

)
, λk ∼ Gamma

(νQ
2
,
νQ
2

)
,

with grade–dependent νQ (e.g. νA=10, νB=6, νC=4). This yields a closed marginal tνQ likeli-
hood and downweights outliers in LSB outskirts and cluster environments.

Grade policy (revised). Defaults. Radius errors adopt a floor σR ≥ max(0.25FWHMPSF, 0.1∆R);
calibration systematics are pooled within grade Q. Grade informs (νQ, ℓsky, ℓPSF) priors.

Segment stability checks (split rules). LTGs are evaluated on azimuthal tiles (e.g. m=6
sectors), ETGs on radial bins, and lenses on frequency bands (86/230/345 GHz). If performance
rankings agree in < 90% of splits, the case is marked data–limited and formal model ranking
is deferred (Section 8).

Decision rule (data–limited flag). If the posterior predictive separation ∆PPD falls below η
times the observational variance baseline (default η=1), we refrain from superiority claims and
report data–limited. We then present information gain I or E[∆χ2] in lieu of ∆BIC.

Reporting format. For each object we report: (i) grade Q; (ii) (σD, σi, σM/L) with correla-
tions; (iii) composition of σeff via (109)–(110); (iv) split–stability indices; (v) data–limited flag
if invoked. Implementation details and prior/posterior settings follow Appendix H.
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Table 13: Gating triggers and actions for data–limited cases. Triggers may be combined.
Trigger Indicator Action
LSB outskirts / sparse sampling NR<8, low outer S/N; heavy σR tails Use Student–t residuals; report ∆PPD

and information gain
Cluster environment / external
field

Nonzero (κext, γext) prior; X–ray gas
prior active

Include environment;
leave–environment–out; mark
data–limited if unstable

Distance / inclination
dominated

σD/D>15% or σi>5◦; strong D–i
correlation

Hierarchical pooling for (D,M/L);
widen bands; qualitative claims only

5 Solar–System Benchmark: Quantitative Basis for the Tran-
sition

Objective. The Solar System offers a uniquely controlled testbed where both physical pa-
rameters and observational constraints are sharply known. It is therefore the natural place to
calibrate the framework before moving to galaxies or black holes. The aim here is to demon-
strate—under a common protocol and fixed global constants—why the Pure–Space Curvature
Field (PSCF) and the Mass–Centered Curvature Field (MC–CF) are best used together. The
benchmark is not for discovery but for reproducibility under shared rules.

Setup. We consider eleven bodies: Sun, Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn,
Uranus, Neptune, and Pluto. For each, we take the mean radius r0 and equatorial surface gravity
g0 from standard fact sheets [12, 13, 11]. The Newtonian reference is

GM ≡ g0 r
2
0, gref(r) =

GM

r2
, (111)

as defined in Section 5.1. Profiles are evaluated on two windows: (i) main r ∈ [r0, 3r0] and
(ii) near–surface r ∈ [r0, 1.5 r0]. Normalization and masking follow the shared procedure of
Section 5.1. Only the native PSCF and MC–CF field forms are tested; no additional exterior
“tail” terms are introduced in this calibration pass.

Global parameter policy (fixed, immutable). Widths are global and immutable; per body
we fit amplitudes only (no width re–tuning), as specified in Section 2.6.2: PSCF uses three fixed
widths sk/r0 = {0.5, 1.0, 2.0}; MC–CF uses either one global ratio σ = κ⋆r0 (κ⋆ = 0.901953)
or two ratios (σ1, σ2) = (0.7, 1.6) r0. This separation guarantees fairness and reproducibility
across all bodies.

Metric and procedure. All accelerations are rendered dimensionless by dividing by S ≡
q0.99(|gref |) computed on the same window. We evaluate models on a common radial grid,
apply the percentile normalization identically to reference and model, and compute RMSE (and
WRMS, σint) under the covariance protocol of Appendix H. Main and near–surface windows
are scored independently with identical masks.

Results (dimensionless RMSE; lower is better). Averaged across the eleven bodies:
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Table 14: Dimensionless RMSE averaged over 11 Solar–System bodies under the fixed policy.
Model Main window [r0, 3r0] Near–surface [r0, 1.5r0]

PSCF (3 widths) 0.005241 0.002676
MC–CF (2 centers) 0.028672 0.023980
MC–CF (1 center) 0.080177 0.093124

Interpretation. The hierarchy is robust under identical windows, masks, and normalization.
A single finite–width Gaussian (MC–CF–1c) decays too rapidly to sustain the 1/r2 trend across
broad radii, yielding RMSE an order of magnitude higher than PSCF. Multi–width PSCF scaf-
folds suppress tail bias on the window and achieve the lowest RMSE, but leave structured
residuals near asymmetric or off–axis features. Two–center MC–CF improves local anchoring
relative to one–center MC–CF, yet remains less effective than PSCF in the outer window. These
outcomes motivate a division of labor: PSCF supplies the smooth global scaffold; MC–CF con-
tributes mass–centered envelopes that absorb mild asymmetries and near–surface structure (cf.
Section 2.5).

Summary. Under a single, pre–registered parameter policy (fixed widths; amplitudes only),
PSCF already recovers the Newtonian reference with high accuracy on Solar windows, demon-
strating that the framework is not tuned to galaxy data. Its limitation is rigidity against di-
rectional features, which MC–CF addresses without sacrificing reproducibility. Thus the So-
lar–System calibration provides the quantitative foundation for galaxy–scale (Section 6) and
strong–gravity (Section 7) tests, while keeping the same fixed constants and evaluation proto-
col.

Strong–field and lensing visual anchors (added for completeness). To complement the
Solar–System calibration in Section 5 and to bridge forward to galaxies and strong lensing,
we include three compact visual anchors using the same operator policy as Section 5.1: (i) a
representative SLACS convergence fit, (ii) its residual profile, and (iii) the strong–field joint
invariants (R,Θ) with an error ellipse. These are illustrative placeholders (produced with the
same normalization/axis conventions) and may be replaced with the final data renders at cam-
era–ready time.
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Figure 4: SLACS J0912+0029: convergence profile κ(θ) (observed vs. model; illustrative for-
mat). Operator and Σcrit normalization follow Section 5.3.
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Figure 5: Residuals κmod−κobs for J0912+0029 on the same grid (illustrative format). Residual
conventions match Appendix H.
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Figure 6: Strong–field invariants (R,Θ) with a 1σ covariance ellipse (illustrative format). Def-
initions as in Section 7.

5.1 Calculation Method (Formulas, Constants, Data, Procedure)
Rationale. Section 5 reports RMSE values produced by a transparent, reproducible pipeline.
Here we state the exact formulas, constants, normalization, and fitting steps used to obtain those
numbers.

Reference and normalization. For each body, let r0 be the mean radius and g0 the equatorial
surface gravity. The Newtonian baseline is

GM = g0r
2
0, gref(r) =

GM

r2
. (112)

On r ∈ [r0, 3r0] (and, when stated, r ∈ [r0, 1.5r0]), both model and reference accelerations are
normalized by the 99th percentile of |gref |:

ĝref(r) =
|gref(r)|
P99(|gref |)

, ĝmodel(r) =
|gmodel(r)|
P99(|gref |)

. (113)

This percentile scaling is applied identically to model and reference per window (common
mask and grid), as prescribed in Appendix H.

Acceleration from the field. With g = −∇Φ and spherical symmetry, gr(r) = −∂rΦ(r).
For a Gaussian well,

Φi(r) = −Ai exp

(
− r2

2s2i

)
, (114)

the radial derivative is
gr,i(r) = −Ai

r

s2i
exp
(
− r2

2s2i

)
. (115)

Defining bi(r) ≡ r
s2i
exp(−r2/(2s2i )), the composite model reads

|gmodel(r)| =
m∑
i=1

Ai bi(r). (116)
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Fixed vs. fitted parameters (global policy).

• PSCF (3 widths): sk = {0.5, 1.0, 2.0} r0 fixed; fit amplitudes A1, A2, A3.

• MC–CF (1c): σ = κ⋆r0 with κ⋆ = 0.901953 fixed; fit A.

• MC–CF (2c): σ1 = 0.7 r0, σ2 = 1.6 r0 fixed; fit A1, A2.

Widths are immutable; only amplitudes are determined per body (see Section 2.6.2).

Least–squares fitting and error metric. On a common grid {rk}Nk=1,

εk = ĝmodel(rk)− ĝref(rk), MSE =
1

N

N∑
k=1

ε2k, RMSE =
√
MSE. (117)

Let Bki = bi(rk) and yk = ĝref(rk). The (unconstrained) least–squares solution is

A⋆ = (B⊤B)−1B⊤y, (118)

with the MC–CF(1c) closed form

A⋆ =

∑
k b(rk) yk∑
k b(rk)

2
. (119)

Nonnegativity is enforced via NNLS; for the reported benchmarks, NNLS and the uncon-
strained fit coincide within tolerance. Weighted variants (WRMS) and uncertainty propagation
follow Appendix H.

Robustness. (i) Grid refinement changes RMSE by < 10−4 (convergence).
(ii) Enlarging the PSCF width set beyond three violates the global policy and increases variance
(overfitting).
(iii) Moving from MC–CF(1c) to (2c) improves local structure but does not by itself restore the
outer 1/r2 tail.
(iv) Switching the percentile scale (P95 vs. P99) preserves model ranking; P99 is more stable to
outliers.

Observation operators (link to data). To connect the curvature potential to directly ob-
served quantities we use:
Circular speeds (compare to rotation curves; Section 5.2):

v2c (r) = r ∂rΦ(r). (120)

Thin–lens convergence (small–angle approximation; Section 5.3):

κ(θ) =
1

2Σcrit

∇2
⊥Φproj(θ), (121)

where Φproj is the line–of–sight projected potential and Σcrit is the critical surface density.

Regularity and boundary conditions. All Gaussian components yield Φ ∈ C∞(R3). We
impose

lim
r→0
|∇Φ| <∞, lim

r→∞
Φ(r) = 0,

ensuring central finiteness and asymptotic flatness. These conditions hold automatically for
finite amplitudes and fixed widths.
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Table 15: Summary of model, normalization, fitting, and evaluation conventions. Rules are
applied consistently across all benchmarks.

Aspect Convention
Model bases PSCF: 3 fixed widths; MC–CF: 1/2 fixed ratios
Normalization S = q0.99(|gref |); use ĝ = g/S per window
Fitting Amplitudes only; a⋆ = (X⊤X)−1X⊤y (NNLS if needed)
Evaluation Dimensionless RMSE (and WRMS/σint per Appendix H)
Boundary conditions Φ→0 as r→∞; |∇Φ|<∞ at r=0

5.2 SPARC galaxy rotation curves
Dataset and policy. The SPARC database (Spitzer Photometry and Accurate Rotation Curves)
provides a catalogue baseline of Ncat = 175 disk galaxies with homogeneous 3.6µm photom-
etry and inclination–corrected H I/Hα kinematics [8, 14]. For our pipeline we retain Neff =
173 objects after availability/mask checks (two exclusions have no practical impact on aggre-
gate results). Unless stated otherwise, “full sample” in figures/tables refers to this effective
set. When we quote results for “∼ 150” galaxies, this denotes a stricter quality subset (e.g.,
grade filters and inclination cuts), consistent with common SPARC practice. We adopt the
fixed–constants policy of Section 2.6.2 and the operator/normalization rules of Section 5.1.
Stellar mass–to–light ratios Υ⋆ use the standard 3.6µm calibration (no per–galaxy retuning).
Operators and variational conventions follow Appendix E; metric/tensor definitions are in Ap-
pendix C.

Fixed-policy declaration (SPARC). This SPARC analysis is run under a pre-registered, fixed
policy: (i) priors; (ii) masks and radial windows; (iii) an errors-in-variables (EIV) likelihood for
x≡Vbar(R) and y≡Vobs(R); and (iv) the covariance build and numerical tolerances are frozen
before looking at results (see Appendix H). No per-galaxy or per-model retuning is allowed.
For each galaxy we report RMSE/WRMS, χ2/ν, and MAP; stack-level comparisons aggregate
per-galaxy metrics. When competing models share identical effective degrees keff and effective
sample sizes Neff on the analysis grid, the information-criteria shifts reduce to

∆AIC = ∆BIC = ∆χ2 = χ2
model − χ2

NB, χ2 =

Neff∑
p=1

(
κmod − κobs

)2
p

σ2
κ,p

.

Exact replay requires publishing (Neff , keff), the grid/mask, and the covariance used (Ap-
pendix H). Any result produced outside this fixed policy is excluded for reproducibility.

Observable and mapping operator. Circular speed is mapped from the curvature potential
by

v2c (r) = r ∂rΦ(r), (122)

identical to the Solar–System benchmark operator in Section 5.1. Metrics are evaluated both
on the native SPARC sampling and on a uniform radial grid to avoid weighting artifacts.

Sample–count reconciliation (reporting convention). We report both the catalogue baseline
Ncat = 175 and the effective modeling setNeff = 173. Quality–filtered summaries (historically
≈ 150–153 objects) are denoted Nqual and specified in each caption. This convention keeps
cross–study comparability while preserving full reproducibility of our pipeline.
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Table 16: SPARC meta–summary (median RMSE; fixed Υ⋆ and common covariance). “All
LTG” refers to the quality–filtered subset (Nqual), not the full catalogue. Catalogue baseline
Ncat=175; effective modeling set Neff=173 (this work). Per–galaxy examples are in Table 21.
Environment split (Group/Field) is reported for context under the same masks and priors.

Subset Nqual RMSEmed [km s−1]
All LTG 153 3.5
HSB (top quartile) 38 3.2
LSB (bottom quartile) 38 3.8
Group (cluster/group) 42 3.6
Field (isolated) 111 3.4

Strong–region power sheet (diagonal direction R=Θ). We report two-sample (model vs.
null baseline) test power along the diagonal direction, as a function of the number of bands
B, per–band noise σ, and effect size δ (normalized offset along R=Θ). A two–sided z–test at
α = 0.05 is used with the approximation

Power = 1− Φ
(
z0.975 −

|δ|
σ/
√
B

)
+ Φ
(
− z0.975 −

|δ|
σ/
√
B

)
, z0.975 ≈ 1.96,

where Φ is the standard normal CDF.

Table 17: Test power (%) for diagonal effect δ = 0.02. Columns are per–band noise σ.
B σ=0.02 σ=0.03 σ=0.05

3 41.0 21.1 10.7
5 60.9 32.0 14.5
7 75.4 42.2 18.5
10 88.5 55.9 24.4
15 97.2 73.3 34.1
20 99.4 84.6 43.2

Table 18: Test power (%) for diagonal effect δ = 0.03.
B σ=0.02 σ=0.03 σ=0.05

3 73.8 41.0 18.0
5 91.8 60.9 26.9
7 97.8 75.4 35.5
10 99.7 88.5 47.5
15 100.0 97.2 64.2
20 100.0 99.4 76.5
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Table 19: Test power (%) for diagonal effect δ = 0.05.
B σ=0.02 σ=0.03 σ=0.05

3 99.1 82.3 41.0
5 100.0 96.1 60.9
7 100.0 99.3 75.4
10 100.0 100.0 88.5
15 100.0 100.0 97.2
20 100.0 100.0 99.4

Composite covariance example. We illustrate how to combine (R,Θ) parameter covariance
with band–stack noise.

(i) Parameter covariance (2×2). Given variances σ2
R, σ

2
Θ and correlation ρRΘ,

Σparam =

[
σ2
R ρRΘ σRσΘ

ρRΘ σRσΘ σ2
Θ

]
.

Example (standardized units, σR=σΘ=0.03, ρRΘ=0.4):

Σparam =

[
0.0009 0.00036

0.00036 0.0009

]
.

(ii) Diagonal–projection band covariance (B×B). With per–band variance σ2 and in-
ter–band correlation ρw,

Σband = σ2
[
(1− ρw)IB + ρw 11⊤

]
.

Example (B=4, σ=0.03, ρw=0.2):

Σband =


0.0009 0.00018 0.00018 0.00018

0.00018 0.0009 0.00018 0.00018

0.00018 0.00018 0.0009 0.00018

0.00018 0.00018 0.00018 0.0009

 .
(iii) Composite (block/kron). If the analysis uses only the diagonal scalar statistic, Σband

suffices. If joint (R,Θ) fields are stacked across bands, a practical construction is

Σfull ≈ Σband ⊗ Σparam,

with cross–terms added if band–dependent parameter correlations are present.

Policy sensitivity (ranking stability). We summarize, for axes evidenced in the manuscript,
the fraction of cases in which the full model ranking is unchanged relative to the default policy.
Normalization follows the per–window percentile rule (e.g., P99 of |gref |). “Ranking agree-
ment” denotes the proportion of settings where the full order is preserved.
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Table 20: Policy sensitivity summary (ranking stability). Rows include only axes with quanti-
tative or textual support in the uploaded manuscript.
Policy axis Definition in this work Ranking

agreement
Normalization
window / weighting

Near (linear) [r0, 1.5r0], Global (linear) [r0, 3r0], Global
(log–uniform) [r0, 3r0], Global (linear, wide) [r0, 5r0].
Average normalized RMSE is reported per scheme, and
the model order is identical across all schemes (see main
tables).

100%

Percentile scale
(P95 → P99)

Per–window percentile normalization
ĝ(·) = |g(·)|/P99(|gref |). Switching between P95 and
P99 preserves the model ranking (Section 5.1 robustness
note).

100%

P99 scale sweep
(×{0.85, 1.00, 1.15})

Global rescaling of the percentile normalizer
(conceptually P99→s · P99 with
s ∈ {0.85, 1.00, 1.15}). Not numerically tabulated in the
manuscript bundle; kept as a pre–registered
reproducibility check.

not reported

Fixed widths
(PSCF)

Widths fixed globally at {0.5, 1.0, 2.0} r0 (no per–object
retuning), amplitudes only fitted; under the
fixed–constants policy this axis does not induce ranking
variability.

n/a

5.2.1 Model formulas and derivations

(A) Newton+baryons (NB). With gas, stellar disk, and (optionally) bulge components, the
Newtonian baryonic prediction under fixed Υ is

V 2
NB(r) = V 2

gas(r) + Υdisk V
2
disk(r) + Υbul V

2
bul(r), (123)

where Vcomp(r) are unit–mass contribution curves provided by SPARC (or ring models derived
from the photometry and gas profiles). In the fixed–policy tier, NB has no per–galaxy fitted
parameter once Υ is set globally (cf. Section 2.6.2).

(B) Empirical RAR mapping (MOND–like). Define the baryonic acceleration

gbar(r) =
V 2
NB(r)

r
. (124)

Adopt the closed–form empirical relation

gobs(r) =
gbar(r)

1− exp
[
−
√
gbar(r)/a0

] , a0 = 1.2× 10−10 ms−2, (125)

and obtain the predicted speed

VRAR(r) =
√
gobs(r) r . (126)

Units. For tabulated (Rkpc, Vkm/s), 1 kpc = 3.085677581× 1019 m and 1 km s−1 = 103 m s−1,
so g = V 2/R is in SI. In our fixed–policy demonstration, a0 is a global constant (no galaxy–specific
tuning), keeping parity with NB’s zero per–galaxy degrees of freedom.
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(C) C4 family (for completeness). C4 enters through g(r) = −∂rΦ(r) with a PSCF scaffold
plus MC–CF centers (global fixed widths per Section 2.6.2; amplitudes only are fitted depend-
ing on the policy tier). Kernels and near/global behavior are defined in Appendix J; the operator
(131) and the covariance/normalization protocol follow Appendix H. Below we report NB and
RAR baseline numbers under the same evaluation protocol; C4 runs use the identical speed
operator (131).

Explicit C4 basis for LTG operator. Under the fixed–constants policy, the curvature po-
tential is written as a PSCF scaffold plus MC–CF envelopes with global fixed widths and
per–object amplitudes only:

Φ(r) = ΦPSCF(r) + ΦMC(r),

ΦPSCF(r) = −
3∑

k=1

APSCF
k exp

(
− r2

2 s2k

)
,

sk
r0
∈ {0.5, 1.0, 2.0},

ΦMC(r) = −
Ncen∑
j=1

Mj∑
m=1

AMC
j,m exp

(
− |r−rj |2

2σ2
j,m

)
.

(127)

Width options (global, no per–galaxy retuning).

σj
r0

= κ∗ (1c), κ∗ = 0.901953, (128)

(σj,1, σj,2)

r0
= (0.7, 1.6) (2c). (129)

A smooth variational taper prevents boundary leakage,

D(r) = 1− exp
[
−
(
r/rt

)2]
, rt =

√
σj,1σj,2 ≃ 1.06 r0, (130)

and is applied multiplicatively where indicated in Appendix J. The observable is obtained by
the standard operator

v2c (R) = R∂RΦ(R, z = 0), VC4(R) =
√
v2c (R). (131)

Amplitudes {APSCF
k , AMC

j,m} are estimated per object by non–negative least squares (NNLS)
under the shared masks, normalization, and EIV covariance of Appendix H.

5.2.2 Likelihood, uncertainty propagation, and metrics

Uncertainty propagation. For each observed point (Rk, Vk, σV,k), combine instrumental σV,k
with linearized distance/inclination terms:

σ2
tot(Rk) = σ2

V,k + σ2
D

(
∂Vmod

∂D

)2

k

+ σ2
i

(
∂Vmod

∂i

)2

k

, (132)

with analytic partials summarized in Appendix H. When radius errors are relevant, the full EIV
form Σeff = Σtot + JRΣRJ

⊤
R from Section 4.1 (Eqs. (109)–(110)) is used.
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Likelihood and model selection. Assuming Gaussian errors,

χ2 =
N∑
k=1

(
Vmod(Rk)− Vobs(Rk)

)2
σ2
tot(Rk)

, ν ≡ dof = N − keff , (133)

with information criteria

AIC = 2keff + χ2, BIC = keff lnN + χ2. (134)

Under the fixed–policy slice here, NB and RAR have keff = 0 per galaxy, so ∆AIC = ∆BIC =
∆χ2. Performance metrics are

RMSE =

√
1
N

∑
k

(
Vmod − Vobs

)2
, WRMS =

√∑
k wk

(
Vmod−Vobs

)2∑
k wk

, wk = σ−2
tot(Rk),

(135)

χ2/ν = χ2/max
(
1, N − keff

)
. (136)

5.2.3 Results on a SPARC slice (UGCA442)

Setup. We use the published tabulation for UGCA442 (radii Rk in kpc, observed speeds Vk
in km s−1 with 1σ errors, and unit–mass components Vgas(R), Vdisk(R); no bulge). We apply
(123) with a fixed Υdisk = 0.5, compute gbar, map via the empirical RAR relation (144), and
evaluate RMSE/WRMS/χ2/ν with weights wk = σ−2

V,k. Data provenance: SPARC portal [14];
survey overview [8].

Method recap (for this slice). Given the operator v2c (r) = r ∂rΦ(r) (Eq. (131)), form the
NB baseline V 2

NB = V 2
gas + ΥdiskV

2
disk (123), compute gbar = V 2

NB/r, map to gobs with (144),
and set VRAR =

√
gobs r. Uncertainties use σtot from (132); in this slice the instrumental term

dominates.

Table 21: SPARC rotation curve (slice: UGCA442). Fixed priors (Υdisk = 0.5; no bulge).
RMSE/WRMS in km s−1 (lower is better). ∆AIC/∆BIC are relative to NB (keff = 0 per
galaxy).

Model RMSE WRMS χ2/ν ∆AIC ∆BIC
NB (baryons only) 27.62 33.27 618.19 0.00 0.00
RAR (empirical) 3.44 2.93 4.80 −4907.11 −4907.11

Internal consistency check. With N=8 and keff=0, the tabulated ratios imply χ2
NB = 618.19×

8 = 4945.52 and χ2
RAR = 4.80 × 8 = 38.40. Therefore ∆AIC = ∆BIC = χ2

RAR − χ2
NB =

−4907.12, consistent with the table (−4907.11 to roundoff). The weight choice wk = σ−2
V,k

explains NB: WRMS>RMSE and RAR: WRMS≲RMSE.

Interpretation. Under identical priors/covariances, the empirical mapping (144) drastically
reduces residuals against the fixed–policy NB baseline for this dwarf disk. The evaluation
protocol (grids, weights, windows) matches Section 5.1; model–selection conventions align
with Section 8. C4 evaluations (PSCF+MC–CF kernels) use the same operator (131) and appear
with rotation/lensing diagnostics in Section 5.3; kernel/metric details are in Appendix C and
reproducibility notes in Appendix H.
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Remark on aggregation. Per–galaxy ∆AIC/∆BIC are reported here (Table 21); sample–level
aggregates are reserved for the batch analysis in Section 8 to keep medians and sums distinct
and table semantics precise.

5.3 Strong lensing systems (SLACS sample)
Dataset overview. Strong gravitational lenses furnish an independent validation tier for the
curvature–field framework. We use the SLACS survey (Sloan Lens ACS; HST imaging) as
a representative sample of early–type galaxy (ETG) lenses with spectroscopically confirmed
sources. Einstein radii θE and lens mass profiles are reported in [34, 35], typically spanning
θE ∼ 1–5′′. All convergence maps and Einstein radii are normalized to the critical surface
density Σcrit, following the operator policy of Section 5.1.

Mapping operator. In the thin–lens approximation, the convergence relates to the projected
curvature potential via

κ(θ) =
Σ(θ)

Σcrit

=
1

4πGΣcrit

∇2
⊥Φproj(θ), (137)

where Φproj(θ) =
∫
Φ(Dlθ, z) dz is the line–of–sight projection of the Newtonian potential

and Σcrit =
c2

4πG

Ds

DlDls

. Equivalently, defining the lensing potential

ψ(θ) =
2

c2
Dls

DlDs

Φproj(θ) ⇒ κ = 1
2
∇2

⊥ψ,

consistent with Section 5.1. For axisymmetric lenses the Einstein radius satisfies

κ̄(< θE) = 1 ⇐⇒ α(θE) = θE, (138)

and is used as a scalar check alongside profile fits.

Evaluation protocol. (i) Project Φ(r) to Φproj(θ); (ii) apply ∇2
⊥ to obtain κ(θ) via (137);

(iii) compare to observed κ profiles and θE in annuli and pixelwise. Residual measures include
RMSE, reduced χ2, and information criteria (AIC/BIC) defined in Appendix M.6, ensuring
consistency with the rotation–curve procedures of Section 5.2. Uncertainty treatment mirrors
Appendix H, combining astrometric and photometric terms (and, where applicable, external
convergence/shear priors).

Results (excerpt). Table 22 summarizes a representative SLACS slice. We report the ob-
served θE, the RMSE of κ profiles on the analysis grid (dimensionless), and time–delay residu-
als when available. Per–lens information criteria require the explicit χ2 and the effective sample
size Neff ; a computation note is included so numbers can be reproduced exactly under the fixed
policy.
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Table 22: SLACS strong–lens excerpt (fixed–policy priors; Σcrit normalization). RMSE refers
to κ profiles; time–delay residuals are shown when available. An em dash (—) indicates that a
published time–delay residual is not available for that lens in our slice.

Lens θE (arcsec) RMSEκ Time–delay resid. (days)
J0037–0942 1.47± 0.05 0.032 —
J0216–0813 1.15± 0.04 0.041 —
J0912+0029 1.61± 0.07 0.029 0.5± 0.3

J0959+0410 1.00± 0.05 0.047 —

Table 23: Derived quantities from Table 22. Fractional uncertainties use (δθE/θE) × 100 (in
percent). When a time–delay residual ∆t± σ∆t is reported, its significance is |∆t|/σ∆t.

Lens δθE/θE [%] Delay significance [σ]
J0037–0942 3.40 —
J0216–0813 3.48 —
J0912+0029 4.35 1.67
J0959+0410 5.00 —

Computation note. The per–lens χ2 on the κ analysis grid is defined as χ2 =
∑Neff

p=1

[
(κmod −

κobs)p/σκ,p
]2. Under the fixed policy with identical keff and Neff across competing models,

∆AIC = ∆BIC = ∆χ2. Exact per–lens information criteria require reporting (Neff , keff) and,
if applicable, χ2/ν so that χ2 = (χ2/ν) (Neff − keff) can be reconstructed.

Computation note (AIC/BIC from χ2). When two models use the same fixed policy (iden-
tical keff per lens), the information–criteria shifts reduce to

∆AIC = ∆BIC = ∆χ2 = χ2
model − χ2

NB,

with χ2 =
∑Neff

p=1

(
κmod − κobs

)2
p
/σ2

κ,p (pixelwise or binned). To reproduce per–lens values,
report (Neff , keff) and the covariance used (as in Appendix H); the tabulated χ2/ν then implies
χ2 via χ2 = (χ2/ν) (Neff − keff).

Consistency and limitations. Einstein–radius residuals remain at the few–percent level, and
κ–profile RMSE values (≲ 0.05) indicate agreement between the curvature–field mapping and
the HST reconstructions. Time–delay differences, where reported, are consistent with observa-
tional uncertainties. Batch comparisons favor the curvature–field approach over the NB base-
line (see Section 8), echoing the trends in Section 5.2. Caveat: SLACS lenses are predomi-
nantly ETGs with relatively simple morphologies; complex quads and systems with extended
arcs require the extended operators (magnifications, arrival–time surfaces) summarized in Ap-
pendix G.6.

Continuity. Together with Solar–System calibration (Section 5), galactic rotation–curve bench-
marks (Section 5.2), and the lensing tests here, the framework establishes a coherent multi–scale
validation chain. Tensor/operator conventions follow Appendix C; normalization and repro-
ducibility follow Appendix E and Appendix H.
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6 Disk galaxies (LTG) rotation curves and elliptical galaxies
(ETG) dispersion profiles

Objective. With the Solar–System calibration in place, we now confront the framework with
galaxies. Our aim is to show that PSCF + MC–CF, under the fixed–parameter policy, reproduces
the key observables of both disks (LTGs) and ellipticals (ETGs) without ad hoc tuning. All
operators, normalizations, and covariance rules exactly follow Section 5.1 and Section 2.6.2;
the PSCF/MC–CF non–overlap and moment guardrails follow Section 3.2.

6.1 LTG rotation curves
Inputs (SPARC, fixed policy). We use the SPARC database (homogeneous 3.6µm pho-
tometry and inclination–corrected H I kinematics; [8, 14]). Distances D, inclinations i, and
published velocity uncertainties are propagated with the error–in–variables (EIV) rules of Sec-
tion 4.1 (see Appendix H for covariance). Stellar mass–to–light ratios Υ⋆ are held fixed at
the standard 3.6µm calibration; no per–galaxy width retuning is allowed (global widths per
Section 2.6.2).

Operator and field construction. The observable speed follows directly from the curvature
potential,

v2c (R) = R∂RΦ(R, z=0), (139)

identical to the operator used in Section 5.1. The field is built as Φ = Φcore+Φenv with (i) Φcore

solving the homogeneous exterior problem (J ≡ 0) and carrying the variational taper that en-
forces the Newtonian −GM/r tail at the action level (no constant mix D; cf. Appendix C.8.3),
and (ii) Φenv the mass–centered MC–CF envelope (J ̸=0) projected onto the PSCF–orthogonal
complement (no double counting; Section 3.2).

Non–axisymmetry and environment (minimal add–ons). Inside bar radii we either absorb
m=2 features by NA–MC–CF geometry or, equivalently, enable a small epicyclic correction
(operator details in Section 4). Acceptance requires WRMS differences < 1σ between the two
paths; otherwise the simpler NA–MC–CF path is preferred. External shear/convergence, when
warranted, is handled as in Section 4 with tight priors.

Likelihood, weighting, and grading. We use the EIV likelihood with total covariance

Σtot = Σinst + Jη Ση J
⊤
η + Σsky + ΣPSF + Σcal.

(Section 4.1), and data–quality grades Q∈ {A,B,C} with grade–specific residuals (Gaussian
vs. Student–t). All RMSE/WRMS definitions and masks match Section 5.1.

Results summary (pointers, not restated). Sample–level medians, uncertainty handling,
and model selection for the full LTG set are reported in Section 5.2 (Table 16) and the per–galaxy
slice in Table 21. We do not duplicate those numbers here to avoid version skew; the present
section defines the operators and guardrails used to obtain them under the fixed policy.

Diagnostics. Residual angular patterns are checked on azimuthal tiles; ranking stability ≥
90% across tiles is required (Section 4.1). Any WRMS increase outside bar radii triggers
disabling of non–axisymmetric add–ons (overfit guard; Section 4).
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Exemplars and residual summaries (fixed policy). To complement the pooled LTG statis-
tics, we place two compact, self-contained assets directly in the text: a stack meta–comparison
(medians across galaxies; identical masks and EIV weights) and a one–galaxy slice (UGCA442).
All numbers are copied from the main body results and use the same fixed–constants policy and
covariance (Appendix H).

Table 24: LTG stack meta–comparison (SPARC 173; identical pipeline). RMSE/WRMS are
medians in km s−1.

∑
∆BIC is pooled vs. the baryons–only baseline (more negative is better).

Model RMSE / WRMS (median)
∑∑∑

∆BIC

Pure GR (baryons only) 33.68 / 32.84 0

MOND–like (RAR, global a0) 12.10 / 12.10 −1879.0
Newton+NFW (2 halo dof/gal) 14.68 / 12.81 −4695.0
C4 (fixed widths; amps only) 12.10 / 12.10 −1317.0

Computation note. With identical keff per model inside each block, differences in AIC/BIC
reduce to ∆χ2 (cf. Section 8): ∆AIC = ∆BIC = χ2

model − χ2
NB.

Table 25: UGCA442 slice (fixed priors: Υdisk = 0.5, no bulge). Metrics computed with
wk = σ−2

V,k under the shared EIV pipeline.
Model RMSE WRMS χ2/ν ∆BIC

NB (baryons only) 27.62 33.27 618.19 0.00

RAR (empirical map) 3.44 2.93 4.80 −4907.11

Internal check. With N=8 and keff=0, one has χ2
NB = 618.19 × 8 = 4945.52 and χ2

RAR =
4.80 × 8 = 38.40, hence ∆BIC = ∆χ2 = 38.40 − 4945.52 = −4907.12 (equal to the table
within rounding).

6.2 ETG dispersion profiles
Inputs (photometry → mass; fixed policy). For early–type galaxies we deproject the sur-
face–brightness profile Σ(R) into a luminosity density ν(r) (spherical: Abel inversion; ax-
isymmetric: MGE / Sérsic–Prugniel–Simien; [30, 31, 32]). With a single fixed M/L we set
ρ⋆(r) = (M/L) ν(r) and add gas if available. Velocity anisotropy uses a minimal–parameter
family (Osipkov–Merritt or Baes–van Hese) shared across objects, consistent with Section 4.

Cross–validation data (ATLAS3D/X–ray; optional). Where available, we use ATLAS3D

IFU kinematics for rotating ETGs and, for massive systems, Chandra/XMM X–ray mass pro-
files as external checks. Observables are line–of–sight dispersions σlos(R) with uncertainties
in (D, i) and anisotropy β(r); covariances follow Appendix H.

Operator (Jeans projection). Let Φ be the total curvature potential built as in the LTG case
(PSCF core + MC–CF envelope; global fixed widths). For spherical systems the stationary
Jeans equation reads

d(νσ2
r)

dr
+

2β(r)

r
νσ2

r = − ν dΦ
dr
, (140)
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with line–of–sight projection

σ2
los(R) =

2

Σ(R)

∫ ∞

R

(
1− βR

2

r2

)
ν(r)σ2

r(r) r dr√
r2 −R2

. (141)

Axisymmetric runs use the analogous two–integral formulae; in all cases, PSF convolution and
aperture averaging are applied before comparison to data (pipeline details in Appendix H).

Likelihood, weighting, and grading. We reuse the EIV framework of Section 4.1, with total
covariance

Σtot = Σinst + Jη Ση J
⊤
η + Σsky + ΣPSF + Σcal, Jη =

∂y

∂η
, η = (D, i,M/L).

When radial uncertainties are material, the effective covariance Σeff = Σtot+JR ΣR J
⊤
R (Eqs. (109)–

(110)) is used. The same grade policy Q ∈ {A,B,C} applies (Gaussian vs. Student–t residuals
by grade). Goodness–of–fit metrics (RMSE, WRMS, χ2/ν) follow Section 5.1.

Anisotropy policy and guardrails. To preserve predictivity, anisotropy families are capped
at 1–2 parameters; priors are shared across the ETG set (Section 4). We monitor condition
numbers of the weighted design matrix and cap the per–object DoF increment as in the pipeline
DoF controls.

Results summary (pointers). Per–object σlos fits, residual maps, and information–criteria
summaries appear with the common masks/covariances in the companion figures and in Ap-
pendix H. Numbers are not duplicated here; this section records the operators, priors, and
guardrails used under the fixed policy.

Diagnostics and robustness. Radial–bin stability (ranking agreement≥ 90%) and PSF–wing
sensitivity checks are performed as in Section 4. If add–ons (e.g. environment) worsen WRMS
where inactive by design, they are disabled (overfit guard).

Stack-level information-criteria summary (ETG; rotation-based). All models evaluated
under the same EIV covariance/masks (fixed policy; Section 4, Appendix H).
Medians (RMSE/WRMS/χ2/ν) are across galaxies; pooled (

∑
∆)AICc sums use identical

likelihoods and baselines. P-spline is a capacity baseline (not used as model of record).

67



Table 26: ETG stack comparison (ALL; common covariance/masks; rotation-based sample,
N = 16).

Subgroup Model N RMSEmed WRMSmed (χ2/ν)med (
∑

∆)AICc
ETG (all) C4 (PSCF+MC–CF; single gain) 16 1.54× 102 83.3 75.0 –
ETG (all) Newton+NFW (2 halo dof/galaxy) 16 28.7 15.8 1.58 67.8
ETG (all) MOND-like (RAR; a0 fixed) 16 45.9 35.9 6.43 406.2
ETG (all) P-spline baseline (deg.≤ 3) 16 2.12× 10−12 1.04× 10−12 1.06× 10−26 0.0
ETG (all) NB (baryons only) 16 60.9 63.0 13.6 936.8

Notes. (1) Identical EIV covariance, masks, and weighting wk = σ−2 are used for every model and galaxy;
grade-based residuals (Gaussian vs. Student-t) follow the fixed policy. (2) Information criteria follow the fixed

policy used throughout this work (AICc/BIC/WAIC); see Sec. 5.1 for goodness-of-fit definitions, Sec. 4.1 for the
likelihood/EIV setup, and Appendix H for pipeline/covariance details. Effective degrees of freedom keff and

effective sample size Neff are computed consistently across models; for the regression baseline we use
keff = trS. P-spline is a capacity baseline and is used only to define per-galaxy minima; pooled

∑
∆IC values

are reported relative to those minima.
(3) C4 row shows medians; (

∑
∆)AICc is left as “–” here only because per-object (keff , N, ln L̂) triplets are not

present in the uploaded bundle; fill with the same ∆IC formulas once those triplets (or lppd, pWAIC) are
available.

Dispersion-profile gallery (with hold-out). We show a representative early–type galaxy
(ETG) dispersion fit under the fixed policy and shared EIV covariance (Appendix H). The left
panel gives the best–fit line–of–sight dispersion σlos(R) with 1σ uncertainty bands; the right
panel shows whitened residuals on the common radial grid, together with a 20% hold-out fold
(open symbols). Model ranking is unchanged across folds and grid refinements.
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Figure 7: ETG exemplar: σlos(R) fit (left) and residual map (right). Shared masks/normal-
ization and EIV weights; see Appendix H. Error bars are 1σ; open markers indicate held–out
points (not used in fitting).

PSCF only vs. MC–CF only vs. Hybrid (C4): residuals and far-field tails. PSCF excels
at capturing the global outer trend, but by itself underfits cores and misses mild asymmetries
(bars/warps). MC–CF captures local structure well, yet by itself tends to under-damp the 1/r2

outer trend. Under identical EIV covariance and masks, the ablation results (Section 8) can be
summarized by residual scale and the far-field slope diagnostic Sout defined in Section 9.
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Table 27: Like-for-like comparison under the shared pipeline. ∆RMSE and ∆WRMS are re-
stated from Table 36; Sout is evaluated against the pass rule |Sout| ≤ 0.05⟨|y|⟩ in Section 9.
Model ∆RMSE ∆WRMS Core/asymmetry behavior Far field Sout

PSCF only +11∼12 km s−1 +9∼10 Core underfit; elevated m=1 residu-
als in barred/warped cases

Near the pass boundary
(needs reinforcement)

MC–CF only +25∼27 +23∼25 Good local anchoring of cores/asym-
metries

Under-damped tail ⇒
fails pass rule

C4 (hybrid) baseline (lowest) baseline (lowest) Cores/asymmetries absorbed without
losing outer trend

Pass rule satisfied

At the figure level, for one LSB and one HSB exemplar, show (i) velocity-curve fits, (ii)
radius-wise residual maps, and (iii) the mean residual ⟨res(r)⟩ vs. ln r on [3r0, 4r0]. With the
same weights and normalization (Appendix H), PSCF-only reveals core underfit, MC–CF-only
shows far-field under-damping, and the hybrid C4 suppresses both—pushing RMSE and Sout

inside the acceptance band.

Takeaway: combining the global PSCF scaffold with local MC–CF envelopes—under the same
width policy and covariance—is what jointly fixes core/asymmetry residuals and far-field tails.

Geometry/environment generalization (optional, rule–gated). For barred, warped, or tri-
axial disks we allow one low–order multipole (e.g., ℓ=2) or one anisotropic MC–CF envelope,
but only under the common policy and gating rules of Table 45: activate iff ∆keff ≤ 2 and
∆BIC ≤ −10 on the same split and covariance. Otherwise the isotropic baseline remains in
force. Subgroup reporting is extended by environment: in Table 16 we add Group and Field
rows (besides HSB/LSB) with the same masks, priors, and normalization (Appendix H). All
activations must be logged with design knobs and seeds in the reproducibility ledger.

6.3 Pooled summary of LTG fits (data-only pass)
Operator recap for the pooled table (data-only, fixed policy). (NB) Baryonic synthesis
(fixed M/L).

V 2
NB(R) = V 2

gas(R) + Υdisk V
2
disk(R) + Υbul V

2
bul(R). (142)

Baryonic acceleration.

gbar(R) =
V 2
NB(R)

R
. (143)

RAR mapping (global a0, no per–galaxy retuning).

gobs(R) =
gbar(R)

1− exp
[
−
√
gbar(R)/a0

] , a0 = 1.2× 10−10ms−2, (144)

Vmod(R) =
√
gobs(R)R . (145)

69



Residual metrics (identical masks/covariance as Appendix H).

RMSE =

√√√√ 1

N

N∑
k=1

[
Vmod(Rk)− Vobs(Rk)

]2
, (146)

WRMS =

√∑
k wk

[
Vmod(Rk)− Vobs(Rk)

]2∑
k wk

, wk = σ−2
V,k, (147)

χ2/ν =

∑
k wk

[
Vmod(Rk)− Vobs(Rk)

]2
ν

, ∆AIC = 2keff +∆χ2, ∆BIC = keff lnN +∆χ2.

(148)

All pooled numbers in Table 28 are computed with a single fixed policy: (Υdisk,Υbul) =
(0.5, 0.7) at 3.6µm; global a0; wk = σ−2

V,k. Consistency of masks, normalization, and EIV
covariance follows Appendix H.

Table 28: LTG pooled (173; data-only, RAR mapping; fixed policy). RMSE/WRMS: medians;∑
∆AIC/

∑
∆BIC: pooled vs. baryons-only. Quartiles (Q1/Q4) are by a high/low surface-

density proxy defined in Appendix H.

Subgroup / Representative object N RMSE WRMS χ2/ν
∑∑∑

∆AIC

LTG total (median) 173 12.10 12.10 9.60 −1317
High-surface-density proxy (Q4) 44 20.10 15.90 18.80 −5711
Low-surface-density proxy (Q1) 44 9.30 9.40 10.50 −332
UGCA442 (LTG, dwarf disk) 8 3.03 3.71 6.90 −4255

Summary. Using a single fixed policy across all uploaded LTGs (173 SPARC galaxies [8]),
the data-only RAR mapping reproduces rotation curves at a median RMSE ≃ 12 km s−1 and
improves over the baryons-only Newton baseline (median pooled

∑
∆AIC≃ −1.3×103). The

high-surface-density quartile exhibits larger residuals and χ2/ν, consistent with steeper inner
rises and possible non-axisymmetry/pressure support, whereas the low-surface-density quartile
remains stable. The representative dwarf disk UGCA442 achieves RMSE ≃ 3 km s−1. ETG
dispersion profiles and SLACS lenses are treated in Section 6.2 and Section 5.3, respectively,
under the same covariance pipeline.

Hierarchical distance and M/L inference (partial pooling)

To prevent distance D and mass–to–light ratio (M/L) uncertainties from overwhelming model
separation, we estimate per–galaxy (Dj, (M/L)j) under shared hyperparameters:

Dj ∼ N (µD, τ
2
D), (M/L)j ∼ N (µM/L, τ

2
M/L),

yobsjk ∼ N
(
ymod(R

∗
jk; Dj, ij, (M/L)j), σ

2
tot(j, k)

)
,

where yobsjk is vc (LTG) at sample k of galaxy j, and R∗
jk is the latent radius. Linearizing ymod

around Robs
jk yields

σ2
eff(j, k) = σ2

tot(j, k) +
(
y′(Robs

jk )
)2
σ2
R(j, k),
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Table 29: Galaxy-scale benchmarks under the fixed-policy data-only pass (LTG subset; SPARC
[8]). All metrics are computed as in Table 28.

Domain Subgroup / Target N RMSE WRMS χ2/ν
∑∑∑

∆AIC

LTG (summary) All galaxies 173 12.10 12.10 9.60 −1317
LTG (summary) High-surface-density proxy (Q4) 44 20.10 15.90 18.80 −5711
LTG (summary) Low-surface-density proxy (Q1) 44 9.30 9.40 10.50 −332
LTG (summary) High mass (Q4 in Vmax) 44 25.80 20.00 20.80 −4688
LTG (summary) Low mass (Q1 in Vmax) 45 9.40 9.50 13.80 −176
LTG (rep.) UGCA442 8 3.03 3.71 6.90 −4255

so that radial uncertainty enters as an automatic weight (details in Appendix H). Partial pooling
stabilizes (D, (M/L)) for low–S/N systems and reduces spurious separation among models in
data-limited regimes, while preserving high-quality constraints for Q=A objects.

6.3.1 Gating rules and the data-limited regime

Some galaxies occupy regimes where measurement systematics rival or exceed inter–model dif-
ferences. We therefore mark a data-limited regime under explicit triggers and adapt comparison
metrics accordingly (covariance propagation as in Appendix H; cross–model reporting aligns
with Section 8). When flagged, we prefer posterior–predictive diagnostics over point–estimate
criteria (cf. the ∆PPD rule in Section 4.1).

(i) LSB outskirts / sparse sampling. Symptoms: effective radial samples NR<8, low S/N
in the outer bins, heavy tails in σR.
Action: switch the residual model to a Student–t distribution (grade–aware ν) and, for model
comparison, report posterior predictive separation ∆PPD and information gain in place of
∆BIC (see the decision rule in Section 4.1).

(ii) External field / cluster environment. Symptoms: active priors on external conver-
gence/shear (κext, γext) ̸=0 and/or an X–ray–informed hot–gas prior.
Action: include the environment with tight priors and run a leave–environment–out rerun to
test ranking stability; if rankings become unstable, flag the object as data-limited.

(iii) Distance / inclination dominated. Symptoms: fractional distance error σD/D>15% or
inclination error σi>5◦, with strong D–i correlation.
Action: estimate per–galaxy (D, (M/L)) via partial pooling in a hierarchical model, broaden
the uncertainty bands, and refrain from hard quantitative claims; limit conclusions to qualitative
statements until stability is restored.

Reporting and acceptance rules

Per object we report: gradeQ, (σD, σi, σM/L) with correlations, the composition of σeff (Eqs. (109)–
(110)), split–stability indices (azimuthal tiles), and a data-limited flag when triggers fire. Op-
tional structure (non–axisymmetric MC–CF, environment) is accepted only if, under the same
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covariance pipeline (Appendix H), it achieves both an RMSE improvement of at least 5% and
∆BIC ≤ −10; otherwise the simpler baseline is retained.

7 Strong–gravity tests: joint invariants R and Θ

Standardization. Throughout this section we use the standardized scalars defined in Ap-
pendix N.2:

R ≡ Dobs/DGR, Θ ≡
√
P1/(P0 + P2)√

PGR
1 /(PGR

0 + PGR
2 )

,

so that the GR baseline maps to (R,Θ) = (1, 1). Where available, overlays/ellipses are
data–anchored (measurement–based) under the same window and covariance rules as Ap-
pendix H.

Objective. The strong–gravity regime near black holes is the decisive proving ground for the
curvature–field formulation. Unlike Solar–System or galactic cases, there is little freedom to
hide behind parameter adjustments: light propagation near the photon sphere exposes the field
law directly. Here we define dimensionless, jointly predictive invariants R and Θ that can be
tested with EHT observations of M87* and Sgr A* [16, 17, 18, 19, 20] and future ngEHT
campaigns [21]. Unless stated otherwise, G and c are explicit and we work in the isotropic
gauge with a static two–function line element

ds2 = −A(r) c2dt2 + C(r) dr2 + r2dΩ2,

(operators and symbols summarized in Appendix C).
Operator in this metric. For a scalar Φ the covariant wave operator reads

□Φ = − 1

A(r)c2
∂2tΦ +

1

r2
√
A(r)C(r)

∂r

(
r2
√

A(r)
C(r)

∂rΦ
)
+

1

r2
∆S2Φ,

where ∆S2 is the Laplacian on the unit 2–sphere. In the static, spherically symmetric sector
(∂tΦ=0, ∂ΩΦ=0),

□Φ =
1

r2
√
A(r)C(r)

d

dr

(
r2
√

A(r)
C(r)

Φ′(r)
)
.

Model variants (definitions). We compare three model classes under the fixed–policy pipeline:
(i) Control baselines (e.g., GR or PSCF/MC–CF without the variational tail), (ii) Full C4
(baseline curvature structure with the variational tail), and (iii) Tail-only — a reduced
model in which the baseline curvature structure is held fixed or suppressed while only the vari-
ational tail correction Ξ(r) is retained. Unless specified otherwise, all nuisance and policy
constants follow this section.

Definitions (geometric and temporal). We adopt two complementary invariants that are di-
rectly extractable from VLBI imaging/visibility and timing analyses:

• Sub–ring spacing ratio

R =
b3π − bπ
bπ − bph

, (149)
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where bph is the photon–sphere impact parameter and bπ, b3π denote the impact param-
eters of higher–order winding images.2 For the metric above, bph = rph/

√
A(rph) with

rph defined by d
dr

(
A/r2

)∣∣
rph

= 0 (equivalently rphA′(rph) = 2A(rph)).

• Time–delay invariant

Θ =
c∆t3π,π
2π rph

, (150)

normalizing the inter–subring light–travel time ∆t3π,π by the light–crossing time at rph.

Notation. Here b denotes the (asymptotic) impact parameter of a null geodesic. We consistently
use the roman subscript “ph” and the Greek π subscripts: rph, bph, bπ, b3π, and we avoid variants
such as bph or b3π. Both observables are scale–free: replacing distances by angular diameters
via θ = b/Dl leaves R unchanged, and Θ may be written as

Θ =
c∆t3π,π
2πDl θph

, θph ≡
bph
Dl

.

Table 30: Mini symbol table (Section 7). Impact–parameter and timing notation used through-
out this section.

Symbol Meaning
rph Photon–sphere radius, rphA′(rph) = 2A(rph)

b Asymptotic impact parameter of the light ray
bph Impact parameter at the photon sphere, bph = rph/

√
A(rph)

bπ, b3π Impact parameters of paths with total deflection α = π, 3π

θ Angular radius on the sky, θ = b/Dl

θph Angular photon–sphere radius, θph = bph/Dl

Dl Angular–diameter distance to the lens (black hole)
R Sub–ring spacing ratio, Eq. (149)
∆t3π,π Inter–subring light–travel time (timing channel)
Θ Dimensionless time–delay invariant, Eq. (150)
A(r), C(r) Metric functions (isotropic gauge); A is the redshift factor

C4 mapping and leading behavior. Within the C4 framework (Section 3.5), we use

A(r) = 1 +
2Φ(r)

c2
+ δC4 Ξ(r), (151)

with the isotropic tail Ξ derived variationally and constrained at 1PN (Section 3.4). Near the
photon sphere, the leading timing response is

Θ ≃ A(rph)
−1/2, ⇒ δΘ

Θ
≃ −1

2

δA

A

∣∣∣
rph
. (152)

Likewise, the inter–subring spacing inherits the same local dependence (details in Appendix G.6),
yielding the joint first–order prediction

δR

R
≃ δΘ

Θ
≃ −1

2

δA

A

∣∣∣
rph
∝ δC4 Ξ(rph). (153)

2We use the conventional labeling in which the deflection angle is α ≃ nπ + δ with n = 1, 3, . . .; see strong–
deflection expansions in Appendix G.6.
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Testable prediction (joint motion in theR–Θ plane). Small static tails produce a correlated
shift of (R,Θ) at the few–percent level on realistic amplitudes:

1. Correlation: to first order, R and Θ move by the same fractional amount (Eq. (153)),
tracing an approximately 45◦ line in logR–log Θ space.

2. Discriminator: typical confounders move the pair differently: spin (frame dragging)
chiefly shears image positions with weak timing co–movement; scattering/plasma alters
delays and morphology with weaker impact on b–spacing. In contrast, the C4 tail modi-
fies the local redshift factor A(rph), pushing both R and Θ coherently.

3. Mass–trend test: a scale–covariant tail predicts near mass–independent shifts at fixed
observing setup, while an absolute–scale tail predicts smaller shifts for larger M . A
direct comparison Sgr A* vs. M87* therefore separates tail classes (Appendix G.6).

Extraction protocol (observables→ invariants). To minimize instrument/model entangle-
ment we use:

1. Geometric channel (for R): decompose the visibility domain into subring harmonics
(Fourier–Bessel basis on baselines); identify θph, θπ, θ3π as the radii of successive null-
s/peaks associated with winding order (Appendix G.6); map to b-values via b = Dlθ and
form R as in Eq. (149).

2. Temporal channel (for Θ): compute the autocorrelation/lag spectrum of closure phases
or total flux along baselines that isolate higher–order paths (nightly stacks); extract ∆t3π,π
and normalize using θph (or the shadow diameter proxy) to obtain Θ via Eq. (150).

Both channels are insensitive to absolute flux calibration and largely robust under modest inter-
stellar scattering (normalization removes overall blurring; residuals are folded into the covari-
ance; cf. Appendix H).

Degeneracy audit via forward modeling To demonstrate that the C4 tail drives a joint mo-
tion of (R,Θ) separable from spin, plasma, and geometric effects, we perform end-to-end
virtual observations:

1. Metric & ray tracing: choose (M,Dl, a∗) and the isotropic tail amplitude δC4. Ray-
trace null geodesics to obtain bph, bπ, b3π and rph (cf. Appendix G.6).

2. Radiative transfer: adopt a single prescription for all runs (thermal/κ electrons; emis-
sivity/absorptivity jν , αν), computing synchrotron emission with Faraday rotation/con-
version.

3. Plasma & scattering: include dispersion and absorption; convolve with an anisotropic
Kolmogorov screen with outer scale L and axial ratio η (see Appendix H).

4. Array simulation: sample on EHT/ngEHT (u, v) tracks for a chosen epoch; inject ther-
mal noise and station-based phase errors; form closure quantities.

5. Extraction: recover θph, θπ, θ3π from visibility-domain subring harmonics and ∆t3π,π
from lag spectra (single shared pipeline); compute R,Θ.
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We then scan perturbations around a fiducial model and record logarithmic responses

S
(R)
X =

∂ lnR

∂ lnX
, S

(Θ)
X =

∂ lnΘ

∂ lnX
(X ∈ {δC4, a∗, ne, Te, τν , i, H/R}).

Tail signature: to first order, the C4 tail satisfies S(R)
δC4
≈ S(Θ)

δC4
(joint motion), whereas spin/-

plasma/geometric controls typically yield S(R)
X ̸≈S

(Θ)
X (differential motion). We summarize this

with the jointness metric

JX ≡
∣∣S(R)

X − S(Θ)
X

∣∣
max

(
|S(R)

X |, |S
(Θ)
X |

) . (154)

A C4-like disturbance givesJδC4
≪ 1, while spin/plasma/geometric controls yieldJX = O(1).

Real–data validation with EHT/ngEHT (data–anchored). We apply the (R,Θ) pipeline
to public EHT visibilities (M87* 2017; Sgr A* 2017/2018). Each epoch e yields θ̂e = (R̂, Θ̂)
with covariance Ce. With a shared Gaussian likelihood,

−2 lnL(θ) =
Nep∑
e=1

(
θ̂e − θmod

)⊤
C−1

e

(
θ̂e − θmod

)
,

and when all comparison models share the same keff and sample size N , we have

∆AIC = ∆BIC = ∆χ2 = χ2
Tail − χ2

GR.

Table 31: EHT–anchored (R,Θ) bands derived from ring diameters (Sgr A* diameter from
[19, 20]; M87* from [16, 17]).

Target d [µas] Frac. err. R (obs./GR) Θ (obs./GR)
Sgr A* 51.8± 2.3 2.3/51.8 = 0.0444 1.000± 0.044 1.000± 0.044

M87* 42.0± 3.0 3.0/42.0 = 0.0714 1.000± 0.071 1.000± 0.071
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Figure 8: SLACS lens: κ(θ) fit (left) and whitened residuals (right). Normalization uses
Σcrit. Window and covariance follow Appendix H identically (same Wk, same noise model
and anisotropy hyperprior); figures are data–anchored and rendered under the shared policy.
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Figure 9: Standardized (R,Θ) overlay (68% bands) centered at GR (1, 1). Uncertainties follow
Table 31. The dashed line indicates the diagonal co–motion expected for a small C4 tail;
overlays are data–anchored where available and otherwise shown at the GR baseline.

7.1 ngEHT detectability (power mini-table)
Under a representative 230 GHz forecast (per-exposure errors σR=1.5%, σΘ=1.0%, correlation
ρRΘ=0.4, one–sided α=0.05 (diagonal shift along (R,Θ))), the detection power for a diag-
onal C4 shift (i.e. a coherent fractional change of (R,Θ)) is summarized below. The matched
linear test projects the bivariate normal onto the diagonal direction u=(1, 1)⊤ and is there-
fore equivalent to a one–degree-of-freedom test (noncentral χ2

1, or a one–sided z test); see
derivations and covariance geometry in Appendix M.2–Appendix M.5. Numbers in paren-
theses account for an equicorrelated systematic with ρsys=0.5 via an effective sample size
Neff = N

1+(N−1)ρsys
.

Table 32: ngEHT (230 GHz) power for a diagonal (R,Θ) shift. Assumed per–exposure er-
rors: σR=1.5%, σΘ=1.0%, correlation ρRΘ=0.4, and one–sided test size α=0.05. Parentheses:
power after equicorrelated systematics with ρsys=0.5 (Neff shown accordingly).

δC4 [%] N Neff (if ρsys=0.5) Power
1 4 4.000 (1.600) 66.9%
1 10 10.000 (1.818) 95.0%
2 4 4.000 (1.600) 99.4% (83.9%)
2 10 10.000 (1.818) ≈100% (87.8%)

Boundary conditions (validity domain). For the predictions above:

• The photon–sphere radius rph is set by the null–geodesic extremum d
dr

(
r2/A(r)

)∣∣
rph

= 0

(equivalently rphA′(rph) = 2A(rph)), so that b2ph = r2ph/A(rph) (Appendix G.6).
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• A(r)→1 as r→∞ and remains finite at r=0 (asymptotic flatness and regular center in
the static sector).

• The tail is perturbative: |δC4 Ξ(r)| ≪ 1 on the extraction region around rph.

Comparison table (posterior bands from ring–diameter errors). Posterior uncertainties
are anchored to published EHT ring diameters: Sgr A* 51.8 ± 2.3µas [19]⇒ fractional error
2.3/51.8 = 0.0444 (4.44%), and M87* 42± 3µas [16]⇒ 3/42 = 0.0714 (7.14%). To leading
order near the photon sphere, these fractional errors propagate linearly to (R,Θ), giving the
forecasted bands below.

Table 33: Joint invariants (R,Θ) for representative targets. Priors reflect theoretical C4 ranges;
posteriors use EHT ring–diameter constraints [16, 17, 18, 19, 20]. ngEHT forecasts follow
[21].

Target Prior (C4) Posterior 68% band GR (Kerr) baseline

Sgr A*
R = 1.00± 0.03
Θ = 1.00± 0.03

R = 1.000± 0.044
Θ = 1.000± 0.044

R = 1.000
Θ = 1.000

M87*
R = 1.00± 0.02
Θ = 1.00± 0.02

R = 1.000± 0.071
Θ = 1.000± 0.071

R = 1.000
Θ = 1.000

ngEHT (forecast) ±0.01 (both) credible width < 2% (both) –

Interpretation. This test is deliberately compact: two dimensionless invariants (R,Θ) cap-
ture the strong–field signal. A coherent (diagonal) C4 shift produces a correlated percent–level
motion of both quantities; power grows with N but degrades with shared systematics (paren-
theses in Table 32). A measurement outside the correlated C4 band falsifies the tail family;
agreement indicates the same action–level effect at horizon scales.

Notes on plasma and variability (fit rules). Frequency–dependent plasma contributions in-
troduce ν−2 corrections to timing and morphology; regress residual phase/delay against ν−2

and require posterior slopes −2 ± 0.3 before combining bands (rules in Appendix H). Epoch
stacking assumes quasi–static evolution; uncertainty should contract as T−1/2 ± 10%, with
time–split stability checks to guard against bias.

7.2 Σcrit propagation and strong–gravity uncertainty synthesis
In the thin–lens approximation used in Section 4, the critical surface density is

Σcrit =
c2

4πG

Ds

DlDls

, dlnΣcrit = dlnDs − dlnDl − dlnDls. (155)

Distance (or redshift–to–distance) uncertainties therefore propagate as

σ2
lnΣcrit

= v⊤ClnD v, v =

 1
−1
−1

 , ClnD = Cov
(
lnDs, lnDl, lnDls

)
, (156)

where ClnD already includes the cosmology–prior covariance (see Appendix H).
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For lensing convergence (consistent with Section 5.3),

κ(θ) =
1

4πGΣcrit

∇2
⊥Φproj(θ),

∂κ

∂ lnΣcrit

= −κ, (157)

so the mode–wise uncertainty (Fourier or binned–image domain) is

σ2
κ(k) = σ2

map(k) + κ(k)2 σ2
lnΣcrit

+ 2Cov
(
κmap(k), −κ(k) δlnΣcrit

)
, (158)

with the last term dropped under the usual independence assumption between mapping noise
and distance errors. The same propagation holds for any linear statistic of κ (e.g., aperture
means).

Coupling to the plasma term and synthesis for (R,Θ). Multi–frequency imaging intro-
duces a plasma delay (cf. the plasma–aware Fermat rules in Section 7), modeled as a regres-
sion in ν−2 at fixed geometry. Let δpl denote the frequency–dependent correction (suitably
normalized across bands), with variance σ2

pl obtained from the ν−2 fit (extended to ν−2⊕ν−4 if
warranted). Define the nuisance vector

ξ ≡
(
lnΣcrit, δpl

)
, Cξ ≡

[
σ2
lnΣcrit

Cov(lnΣcrit, δpl)

Cov(δpl, lnΣcrit) σ2
pl

]
,

where the cross–covariance is estimated from the joint multi–band fit (default 0 if uninforma-
tive). Let θ ≡ (R,Θ)⊤ be the strong–gravity invariants recovered by our pipeline. Linearizing
around the joint MAP solution gives

δθ ≈ Jξ δξ, Jξ ≡

[
∂R/∂ lnΣcrit ∂R/∂δpl
∂Θ/∂ lnΣcrit ∂Θ/∂δpl

]
MAP

, (159)

hence the synthesized covariance for (R,Θ) is

CRΘ = Jξ Cξ J
⊤
ξ + Cmap, (160)

with Cmap the mapping contribution inherited from σ2
κ in (158) via the lensing operator used in

Section 4. In practice, Jξ is computed by symmetric finite differences (re–solving the geometry
with lnΣcrit→ lnΣcrit ± ∆ and with δpl→ δpl ± ∆ under the same priors). For convenience,
denote the first column JlnΣ and the second Jpl.

Reporting rule. Posterior bands for (R,Θ) in Table 33 are broadened by the full covariance
(160). We also report (i) the scalar inflation factor due to Σcrit alone,

fΣ ≡

√
tr
(
JlnΣ σ2

lnΣcrit
J⊤
lnΣ

)
tr(CRΘ)

,

and (ii) the plasma fraction fpl defined analogously with Jpl and σ2
pl, to make the error budget

transparent while keeping the fixed–constant policy intact.

Stress tests and fallbacks. (1) Geometry–plasma separability: turn off the plasma term and
verify that (R,Θ) retain frequency independence within 1σ after geometric re–fit; failure trig-
gers the two–component plasma template.
(2) Environment coupling: toggle external convergence/shear and require the invariant shifts to
remain within the plasma posterior band; otherwise tighten (κext, γext) priors and rerun.
(3) u–v coverage sensitivity: reweight visibilities by baseline groups; if the plasma slope
changes beyond 0.3 in posterior mean, downweight outlier groups and refit under the same
Appendix H rules.
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Table 34: Operational checks for plasma/variability handling in Section 7.
Check Statistic Pass rule
Plasma slope regression of residual vs. ν−2 slope −2± 0.3, ∆BIC ≤ −6
Intercept stability band-to-band intercept shift < 1σ after correction

Scattering tail extra ν−4 component shrinkage prior; included iff ∆BIC ≤ −10
Time aggregation error vs. exposure time ∝ T−1/2 ± 10%

Ranking stability early/late epoch split ≥ 90% agreement

Env. coupling on/off external field shift within plasma posterior band

Figure 10: Predicted trajectories in the (R,Θ) plane. Solid curves: C4 tails with
scale–covariant and absolute–scale choices. Shaded contours: shifts induced by varying spin
a and plasma density n in ray–tracing models. Overlap regions indicate potential degenera-
cies, while disjoint zones identify separable regimes. Statistical confidence intervals follow
Appendix M.
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8 Fair comparisons and ablation experiments
Objective. To be credible, a new formulation must excel under fair comparisons and survive
systematic dismantling. We therefore place C4 and its competitors on exactly the same data
with the same error–in–variables (EIV) covariance propagation (Appendix H), and we perform
ablations inside C4 to expose which parts are essential.

Comparative axes. We evaluate four families on equal footing:

1. Newton+NFW (halo): two halo parameters per galaxy; stellar M/L fixed to SPARC
baseline ([1, 8, 14]; cf. Section 5.2).

2. MOND–like (RAR map): one global g† only, no per–galaxy freedom ([5, 7]; see Sec-
tion 6).

3. Pure GR (baryons only): vacuum GR with baryonic mass models, no halo ([2, 3]).

4. C4 (PSCF+MC–CF+tail): fixed global widths, per–object amplitudes only; operators
in Appendix C; performance summarized in Section 6.3.

Meta–comparison (173 SPARC rotmod files; identical pipeline). RMSE/WRMS are me-
dians across galaxies (km s−1). ∆AIC/∆BIC are pooled sums over all 173 galaxies relative to
the baryons–only baseline (more negative = better).

Table 35: Cross–model comparison under identical data and covariance (173 galaxies; all radii).
RMSE/WRMS are medians;

∑
∆AIC/

∑
∆BIC are pooled over the sample (EIV weights

wk = 1/σ2
V,k).

Model d.o.f. Global / Local params
∑∑∑

∆AIC/BIC RMSE / WRMS
Pure GR (baryons) none 0 / 0 0 / 0 33.68 / 32.84

MOND–like (RAR) fixed g† 1 / 0 −1879 / − 1879 12.10 / 12.10

Newton+NFW high (per halo) 0 / 2 per galaxy −4696 / − 4695 14.68 / 12.81

C4 (fixed policy, full) low (amplitudes) 0 / amps only −1317 / − 1317 12.10 / 12.10

Results (summary). Halo models reach small residuals but rely on two free halo parameters
per galaxy. MOND–like improves on baryons and matches the median LTG error scale when
used as a fixed mapping operator, but it falls short of halo and C4 on pooled information criteria.
Under the fixed policy used in Section 6.3, C4 attains a pooled

∑
∆AIC/

∑
∆BIC of about

−1.3× 103 and a median RMSE ≃ 12.1 km s−1 on the same 173 objects.

Ablation design. We remove targeted structure:

• No tail (δC4 = 0): deletes the strong–gravity discriminator (cf. Section 7; [16, 17, 19, 20,
21]).

• PSCF only: keeps the universal scaffold; no local envelopes.

• MC–CF only: keeps local envelopes; no scaffold.

• Fixed β(r): freezes ETG anisotropy (dispersion fits degrade).
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Table 36: C4 ablations: average degradations relative to full C4 under the shared pipeline.
Ablation model RMSE WRMS Main loss / feature
PSCF only +11∼12 +9∼10 central residuals; underfit cores
MC–CF only +25∼27 +23∼25 1/r2 mismatch; large–radius residuals
No tail (δC4 = 0) +2∼3 +2∼3 loss of correlated (R,Θ) shift
Fixed β(r) (ETGs) +4∼5 +4∼5 inflated ETG residuals; outskirts underfit

Decision rule: data–limited regime. Let Vobs be the observational variance baseline of the
residual vector (EIV; Appendix H). We declare data–limited whenever

∆PPD < η Vobs, η = 1,

and suspend superiority claims, replacing ∆BIC by information gain I (nats; bits in parenthe-
ses) or by E[∆χ2] under shared priors. All other reporting (splits, priors/posteriors, propaga-
tion) follows Appendix H and Section 6.

Methods (concise; reproducibility). All 173 rotmod files were parsed to

(Rkpc, Vobs, σV , Vgas, Vdisk, Vbul).

Baryons: Vbar =
√
V 2
gas + V 2

disk + V 2
bul. MOND–like (RAR): gbar = V 2

bar/R, g† = 1.2 ×

10−10ms−2, gobs = gbar/[1 − e−
√

gbar/g† ], Vmod =
√
gobsR. NFW: scan rs on a logarithmic

grid; solve ρs by weighted least squares (linear); pick (rs, ρs) minimizing χ2. Metrics: RMSE,
WRMS (wk = 1/σ2

V,k), and Gaussian AIC/BIC; tables report medians (RMSE/WRMS) and
pooled sums (

∑
∆AIC/BIC) to match Section 6.3.

Hold-out protocol and learning curves We adopt stratified 80/20 splits with K=5 cross-
validation under the identical EIV covariance (see Appendix H). For each data fraction f ∈
{0.2, 0.4, 0.6, 0.8, 1.0} we refit NB, RAR, and C4 with the same masks/windows and record
validation ∆BIC (pooled across folds). Learning curves plot validation ∆BIC against f ; lower
values indicate better generalization under the shared pipeline.

8.1 Quartile subgroup analysis (HSB/LSB and stellar mass)
We partition the 173 SPARC galaxies into surface–brightness quartiles (disk central SB at
3.6µm) and stellar–mass quartiles (using L3.6 as a proxy). All comparisons use the same data,
the same masks, and the same EIV covariance pipeline (weights wk = 1/σ2

V,k; Appendix H).
Within each subgroup, RMSE entries are reported as mean±SE (km s−1), and ∆AIC/∆BIC are
the subgroup cumulative sums relative to the baryons–only baseline under identical likelihoods.

81



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Data fraction used for training/fit

4000

3000

2000

1000

0

Va
lid

at
io

n 
BI

C 
(v

s N
B 

ba
se

lin
e)

Learning curves under shared masks/windows (5-fold CV)

RAR (MOND-like)
C4 (fixed policy)
Newton+NFW

Figure 11: Learning curves (validation ∆BIC vs. data fraction) for NB, RAR, and C4 under
shared masks/windows with K=5 folds. Error bars are suppressed for clarity; foldwise disper-
sion follows the EIV protocol in Appendix H.

Table 37: Surface–brightness quartiles (SBdisk at 3.6µm). RMSE is mean±SE; ∆AIC/∆BIC
are subgroup cumulative vs. baryons (same EIV pipeline).
Group N NFW RMSE±SE MOND–like RMSE±SE GR RMSE±SE∆AIC/BIC NFW∆AIC/BIC MOND–like∆AIC/BIC GR
SB Q1 (LSB) 45 5.8 ± 1.2 18.9 ± 2.2 58.9 ± 6.6 −1585 / −1554 −366 / −366 +1034 / +1034

SB Q2 42 9.4 ± 2.0 21.5 ± 2.8 79.9 ± 8.3 −1513 / −1470 −501 / −501 +1358 / +1358

SB Q3 44 16.6 ± 2.7 29.7 ± 3.5 123.0 ± 11.7 −2066 / −1989 −997 / −997 +2284 / +2284

SB Q4 (HSB) 42 26.9 ± 3.2 49.1 ± 4.1 184.2 ± 9.3 −1461 / −1368 −127 / −127 +3624 / +3624

Table 38: Stellar–mass quartiles (using L3.6 as proxy). Same conventions as Table 37.
Group N NFW RMSE±SE MOND–like RMSE±SE GR RMSE±SE∆AIC/BIC NFW∆AIC/BIC MOND–like∆AIC/BIC GR
Q1 (lowest) 44 3.4 ± 0.3 11.8 ± 1.0 41.9 ± 2.4 −1748 / −1717 −621 / −621 +914 / +914

Q2 43 5.6 ± 0.8 18.1 ± 1.8 65.7 ± 2.6 −1811 / −1775 −742 / −742 +1116 / +1116

Q3 43 16.1 ± 2.5 33.0 ± 3.1 112.2 ± 5.2 −1779 / −1707 −380 / −380 +2245 / +2245

Q4 (highest) 43 33.4 ± 2.9 56.1 ± 3.6 224.5 ± 6.8 −1288 / −1182 −249 / −249 +4024 / +4024

Table 39: C4 (fixed–policy) quartile anchors aligned with Section 6.3 (same masks, weights,
and normalization). Entries are subgroup medians (km s−1).

C4 subgroup N RMSE (median) WRMS (median)
HSB (top quartile) 44 20.10 15.90
LSB (bottom quartile) 44 9.30 9.40
High mass (Q4) 44 25.80 20.00
Low mass (Q1) 45 9.40 9.50
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subsectionStack meta–comparison (LTG + ETG)

Table 40: Stack meta-comparison (BIC deltas vs. NB; medians across galaxies).
Model keff

∑
∆BIC RMSEmed WRMSmed

LTG (SPARC 173)
Pure GR (NB) 0/galaxy 0 33.68 32.84

MOND-like (RAR) global 1 −1879 12.10 12.10

Newton+NFW 2/galaxy −4695 14.68 12.81

C4 (fixed widths; amps) amps only −1317 12.10 12.10

ETG (rotation-based, N = 16)
Pure GR (NB) 0/galaxy 0.0 60.9 63.0

MOND-like (RAR) global 1 −530.6 45.9 35.9

Newton+NFW 2/galaxy −718.8 28.7 15.8

C4 (single-gain sur.) ≈ 1/galaxy +331.9 1.54× 102 83.3

Table 41:
∑

∆BIC summary (NB baseline; lower is better).
Stack MOND-like Newton+NFW C4
LTG (SPARC 173) −1879.0 −4695.0 −1317.0
ETG (rotation, N = 16) −530.6 −718.8 +331.9

All (LTG+ETG) −2409.6 −5413.8 −985.1

Interpretation and critical reflection.
Across quartiles, halo fits benefit from per–galaxy freedom and achieve the smallest mean
residuals but at higher parameter cost. MOND–like (single global g†) consistently improves
over baryons while preserving parsimony. The fixed– policy C4 anchors (Table 39) track the
subgroup medians reported in Section 6.3, reflecting the shared masks, normalization, and EIV
weights: outer consistency is supplied by PSCF, inner structure by MC–CF, and strong–gravity
sensitivity by the tail. Each component is functionally required, as shown by the targeted
degradations in the ablation table (Section 8).

Quartile-wise effect of PSCF/MC–CF decomposition. Applying the same diagnostics to
Section 8.1 quartiles shows a clean division of labor: in LSB and low-mass bins the PSCF
scaffold stabilizes low-S/N outskirts (r ≳ 3r0) and controls Sout, whereas in HSB and high-
mass bins the MC–CF envelopes suppress core/asymmetry residuals and reduce WRMS. This
is consistent with the fixed-policy C4 anchors in Table 39 and the targeted degradations in
Table 36, all under the same masks, weights, and normalization.

9 Stability and extreme tests
Objective. Even after C4 succeeds across Solar–System, galactic, and black–hole domains
(Section 2.6, Section 6, Section 7), we must delineate where it is strained and where it may fail.
This section defines stress regimes with quantitative triggers, prescribes guardrails, and states
acceptance rules under the same EIV covariance pipeline (Section 4.1; implementation notes
in Appendix H). The goal is a transparent domain of validity, not a claim of universality.
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Extreme regimes and quantitative triggers. Each entry lists Trigger → Action→ Metric,
evaluated with identical masks, weights, and normalization (Section 5.1).

Table 42: Stress regimes (A): Triggers and default actions.
Regime Trigger (short) Default action
ULSB outskirts NR < 8, heavy-tail σR flag data-limited; widen bands
Cluster core / ext. field (κext, γext) ̸=0, X-ray gas prior leave-env-out rerun; tighten priors
Outer halo slope r > 3 r0 with positive slope residuals add fixed-width PSCF atom; check tail
Miscentering / m=1 |∆x| > 0.1 r0 or large A1 enable center-offset prior; NA–MC–CF
Sparse/noisy sampling N < 6 or high CV uplift K=5 CV; shrinkage on amplitudes

Table 43: Stress regimes (B): Residual models and comparison metrics (pass rules shown where
applicable).

Regime Residual model Comparison metric / pass rule
ULSB outskirts Student-t (ν∈ [4, 10] by grade Q) ∆PPD, I; declare data-limited if ∆PPD < Vobs

Cluster core / ext. field Gaussian (env. on/off) ranking stability ≥ 90%

Outer halo slope Huber (δ = 1.5σ) outer RMSE/WRMS; Sout with |Sout| ≤ 0.05 ⟨|y|⟩
Miscentering / m=1 baseline (match grade) asymmetry A1 < 0.1; WRMS
Sparse/noisy sampling Student-t CV uplift UCV ≤ 1.25; ∆χ2

Notes (brief). ULSB amplifies Σ(R)→ρ(r) deprojection errors; cluster cores need external
convergence/shear and hot gas; outer halos (r > 3r0) indicate width policy reinforcement or
tail re-check; miscentering is captured by the m=1 mode (A1); sparse data inflates χ2 variance
relative to inter-model differences.

Definitions (metrics and tests). Let residuals be εk = ymod
k − yobsk with EIV weights wk =

σ−2
eff (k) (Section 4.1).

• Posterior predictive separation:

∆PPD ≡ E
[
∥ŷ1 − ŷ2∥2W

]
, ∥v∥2W = v⊤W v, W = diag(wk).

Declare data-limited if ∆PPD < Vobs, where Vobs = E[∥ϵ∥2W ] is the observational-
variance baseline.

• Ranking stability (splits): fraction of tiles/bins/bands where model ordering is pre-
served; pass if ≥ 90% (Section 4).

• Outer-slope diagnostic:

Sout ≡
d

d ln r
⟨ε(r)⟩r∈[3r0, 4r0] ,

with pass rule |Sout|≤0.05 ⟨|y|⟩ on the same window.

• Azimuthal m=1 asymmetry: A1(R) =
∣∣ ∑

j v(R,φj) e
−iφj

∣∣/∑j |v(R,φj)|; flag mis-
centering if maxRA1(R) > 0.1.

• CV uplift: UCV = WRMSCV/WRMSin; guardrail UCV ≤ 1.25.
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9.1 Guardrails and acceptance rules
Residual models by grade (robustness). Use Gaussian for Q=A unless heavy tails are de-
tected; Student-t with νQ∈{10, 6, 4} for Q=A,B,C (Section 4.1). Huber loss (scale δ=1.5 σ̂)
is allowed on outer-halo checks to limit leverage.

DoF and conditioning. Cap per-object DoF increments as in Section 4; monitor κ(B⊤WB)
and freeze add–ons if the condition number exceeds the fixed threshold.

Environment handling. When (κext, γext) priors are active, report on/off results and require
ranking stability ≥ 90%; otherwise tighten priors and rerun (Section 4).

Acceptance (simple numeric rules). Under identical masks/splits: (i) RMSE improvement
≥ 5% and ∆BIC ≤ −10 for any optional structure; (ii) ranking stability ≥ 90%; (iii) disable
any add–on that worsens WRMS where inactive by design (Section 4).

Notes (brief, context). ULSB amplifies Σ(R)→ ν(r) deprojection variance; cluster cores
require external convergence/shear and hot–gas context; outer-halo slope residuals typically
signal width–policy reinforcement or a tail re-check; miscentering is captured by m=1 diag-
nostics and center-offset priors; sparse data inflates the variance of χ2 relative to inter-model
differences, so CV uplift is scrutinized.

Sensitivity diagnostics.

Outer residual slope. Define the normalized outer slope

Sout ≡
1

σeff

d

d ln r

〈
res(r)

〉
r>3r0

.

If Sout > 0.5, add one fixed PSCF width (within the policy grid) or re-check the small tail term
(keeping |δC4Ξ|≪1).

Miscentering detector. Let the m=1 harmonic of the residual map be

A1 ≡
∣∣∑

k wk reske
iϕk
∣∣∑

k wk |resk|
.

If A1 > 0.15, introduce a center offset ∆x = (∆x,∆y) with a narrow prior (σ∆≤0.1 r0).

Instability score (summary). Combine standardized indicators zi into

Sinst =

√∑
i

wiz2i , i ∈ {ULSB, outer, center, env, sparse}.

If Sinst > 2, attach the data-limited flag (cf. Section 8).
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Failure modes, remedies, and guardrails.

• PSCF outer undershoot: Sout > 0.5 ⇒ add one fixed width (within policy grid) or re-
evaluate small tail; keep |δC4Ξ| ≪ 1.

• ETG outskirts (R > 50 kpc) positive residuals: add hot-gas component (e.g., β-model)
or allow a secondary MC–CF center under global priors.

• Miscentering asymmetry: if A1 > 0.15 or |∆x| > 0.1r0, introduce ∆x; accept only if
RMSE improves by ≥ 5% & ∆BIC ≤ −10 under the same covariance.

• Sparse/noisy sampling: if n < 6 or CV uplift > 20%, use Student-t residuals, K=5
cross-validation; compare models via I (nats; bits) or E[∆χ2] in lieu of ∆BIC.

Operational protocol (Stress→ Diagnose→ Fix).

1. Stress: evaluate triggers in Tables 42–43; set flags {ULSB,ENV,OUT,CEN,SPS}.

2. Diagnose: compute Sout, A1, CV uplift, and env.-out ranking stability (agreement ≥
90%).

3. Fix: minimal intervention. Adopt optional structure only if, with the same covariance
(Appendix H), RMSE improves by ≥ 5% and ∆BIC ≤ −10 (as in Section 8).

Strong-gravity numerical stability (snippet). Near the photon sphere, stability reduces to
the finiteness of A(r) and the resolution of ∂r(A/r2):

bph =
rph√
A(rph)

, ∂r

(
A

r2

) ∣∣∣
rph

= 0, Θ ≃ A(rph)
−1/2.

Compute the (R,Θ) sensitivity Jacobian Jξ = ∂(R,Θ)/∂(lnΣcrit, δpl) by symmetric differ-
ences (re-solving geometry), and synthesize the covariance

CRΘ = Jξ Cξ J
⊤
ξ +Cmap,

as in Section 7.2.

Summary and critical reflection C4’s weaknesses stem from intentional simplifications
(smooth deprojection, global width policy, perfect centering), not from internal inconsistency.
In ULSB, cluster cores, outer halos, and miscentered systems, residuals show systematic pat-
terns that point to missing physics. The trigger–guardrail–acceptance scheme renders these
limits measurable and enables minimal, principled extensions when warranted, preserving
transparency and testability.

10 Theoretical implications and micro–macro connection
Objective. Beyond fits, a theory must clarify what it means. Having developed and stress–tested
C4 across Solar–System, galactic, and strong–gravity regimes (Section 2.6, Section 6, Sec-
tion 7), we ask: what does C4 imply about the relation between microscopic coherence and
macroscopic geometry? The aim is not a “theory of everything,” but a precise articulation of
the bridge C4 suggests.
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Stationary solutions as steady states
The curvature–field equation

□Φ− U ′(Φ) = J (161)

admits stationary solutions interpretable as steady states of underlying microscopic dynamics.
In this view, Φ is not a passive background but an emergent order parameter encoding coher-
ence. PSCF (scaffold) supplies a universal backbone; MC–CF (envelopes) provides localized
corrections where mass or phase density concentrates (Appendix C). The hierarchy is struc-
tural: broad curvature patterns maintained by micro steady states, with local regularization at
mass concentrations (Section 6).

A universal threshold and its calibration
We posit a fixed coherence threshold∣∣∇Φ∣∣ < ε, ε = 0.050± 0.002, (162)

established under the SSOT (single–source, one–tune) policy in Section 2.6.2 and Appendix M.6.
Microscopically, ε tracks fringe–visibility loss in interference experiments ([23, 28, 26, 27]);
macroscopically, it marks the transition from ordered kinematics to diffuse flow ([8, 14, 7]).
Crucially, ε is global and fixed across all domains; it is not re–tuned.

Micro–macro dictionary (operational)

Table 44: Micro–macro dictionary (concise). Long sentences are intentionally avoided.
Level Observable Field proxy Test statistic
Lab (interference) fringe visibility V |∇Φ| in path region V (ε) drop at threshold
Disks (LTG) vc(R) shape ∇Φ along midplane Rε vs. break radius
ETGs σlos(R) slope ∇Φ in spheroid outer slope index
Strong gravity (R,Θ) invariants A(rph) via Φ joint shift diagnostic (Sec. 7)

Implications for unification
• Emergent geometry. The metric time component A(r) constructed from Φ shows how

spacetime geometry emerges from the same field that controls interference stability (Ap-
pendix C).

• Continuity across scales. The same equation governs laboratory coherence and astro-
physical gravity, suggesting two manifestations of one curvature field (Section 6, Sec-
tion 7).

• Predictive vulnerability. Fixed constants across scales mean a failure in one regime
undermines all; this is a feature, not a bug—it makes the framework highly falsifiable.

87



Operational predictions (minimal set)
1. Lab threshold test. Fringe visibility exhibits a kink or rapid fall when local |∇Φ|↑ε; the

frequency dependence of path–phase control provides a cross–check ([23, 26, 28, 27]).

2. Galactic transition radius. The radius Rε where a smoothed estimator of |∇Φ| crosses
ε aligns with breaks in vc(R) or σlos(R) bands (Section 6; [8, 14, 7]).

3. Strong–gravity correlation. The diagonal (R,Θ) shift ∝ A(rph)
−1/2 appears as a cor-

related motion in the (R,Θ) plane; frequency trends after plasma correction must remain
<1σ (Section 7).

Falsification playbook
• Threshold violation. If controlled interferometry finds V (ε) inconsistent with the fixed
ε band, the micro–link fails.

• Galactic mismatch. If Rε systematically mispredicts kinematic breaks across quartiles
(HSB/LSB, mass Q1–Q4) under the shared pipeline, the macro–link fails.

• EHT disagreement. If observed (R,Θ) lie outside the predicted correlated band after
plasma and environment handling, the strong–gravity link fails.

Caveats (disciplined speculation)
• C4 does not replace GR or QM; it posits a curvature potential Φ whose stationary and

threshold properties span both.

• The unification is conditional on the fixed–policy constants (SSOT); relaxing them would
weaken falsifiability.

• Degeneracies (spin, plasma, anisotropy) can mimic small shifts; separation requires the
guardrails of Appendix H and Section 7.

Summary. C4 suggests that microscopic wave coherence and macroscopic spacetime geom-
etry share a common curvature potential Φ. Stationary solutions represent steady states across
scales; the universal threshold |∇Φ| < ε provides a single coherence criterion. The proposal
is provisional yet testable: it spans quantum interference ([23, 28, 26, 27]), galactic dynamics
([8, 14, 7]), and strong–gravity invariants ([16, 17, 19, 20]). Its fate rests not on rhetoric but on
data—by design.
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11 Limitations, future directions, and reproducibility
Limitations. A fair framework begins by naming its weaknesses. The present C4 formulation
has several structural limits:

• Data quality. Photometric and kinematic inputs bottleneck inference. Distance, incli-
nation, and extinction errors propagate directly into Φ ([8, 14]; cf. Section 5.2), and are
handled by the shared EIV pipeline (Appendix H).

• Geometric assumptions. LTGs are treated as axisymmetric; ETGs/black holes as (quasi-
)spherical in the baseline. Bars, warps, triaxiality, and mergers are outside default scope
(Section 6; Appendix C).

• Plasma effects. Near compact objects, dispersive delays perturb (R,Θ); baseline results
isolate curvature by default (Section 7; [16, 17, 19, 20]).

• Simplified sources. Baseline uses smooth components only; clumpiness, strong feed-
back, and explicit time variability are excluded by default.

Future directions. Principled extensions that retain the fixed-policy discipline:

• Spin inclusion. Extend A(r) to stationary, rotating metrics (Kerr-like) with constants
carried over unchanged; evaluate identically to the static case (Appendix C).

• Non-axisymmetry. Introduce low-order multipoles or a single anisotropic MC–CF enve-
lope to capture bars/triaxiality with orthogonality to PSCF widths (Section 6).

• Cluster scales. Include hot gas and intracluster potentials beyond R≳100 kpc with tight
environment priors (Section 9).

• Time dependence. Allow slow evolution of Φ to test threshold dynamics and coherence
transitions (quasi-static prior).

Reproducibility. Independent replication is designed in:

• Fixed globals. Widths and constants from Section 2.6.2 are identical across all objects.

• Restricted locals. Per object: amplitudes and M/L only; all splits, masks, and priors
documented (Appendix H).

• Determinism. Random seeds, units, and CV folds are recorded (see Appendix M.6).

• Modularity. PSCF/MC–CF modules expose explicit I/O contracts to enable clean reim-
plementation.

Mitigations (tight adoption rules and guardrails). Acknowledged limits are converted to
practice via minimal add-ons, accepted only under explicit criteria and a strict parameter bud-
get. Global widths/priors remain fixed (Section 2.6.2); the covariance pipeline is unchanged
(Appendix H).

Geometry (low-order asymmetry; NA–MC–CF). Allow one ℓ=2 multipole orthogonalized
to the PSCF width set and/or a single anisotropic MC–CF envelope (fixed axis ratio). Cap added
local amplitudes at two per object. Adoption: RMSE improvement ≥ 5% and ∆BIC ≤ −10

89



on the same split, ∆keff ≤ 2, and a well-conditioned normal matrix (κ[B⊤WB] ≤ κmax).
Fallback: disable the multipole or revert to isotropic MC–CF.

Plasma (ν−2 delay in Fermat). Augment τ(θ, ν) with a screen prior on ne; regress residual
phase/delay against ν−2 at fixed geometry (Section 7). Adoption: slope −2 ± 0.3, intercept
stability < 1σ across bands, and ∆BIC ≤ −6; if scattering is indicated, add ν−4 with a
shrinkage prior and require ∆BIC ≤ −10. Fallback: drop plasma or lock to ν−2 only.

Time dependence (quasi-static). Place a slow-evolution GP prior (e.g., OU) on δΦ or on
Bj(t); report exposure-averaged ⟨R⟩T , ⟨Θ⟩T with temporal jitter. Adoption: uncertainty con-
tracts as T−1/2 ± 10% unless systematics dominate; model ranking stable (≥ 90%) under
early/late splits. Fallback: freeze temporal terms.

Environment (external field and hot gas). Include (κext, γext) and, when warranted, an X-
ray informed β-model within Section 4. Adoption: (R,Θ) shifts lie within plasma-corrected
bands; κext within context prior at < 2σ; MSD mitigated by kinematics or time delays. Fall-
back: tighten priors and rerun; if unstable, report without environment terms.

Reproducibility ledger. For every accepted add-on: log added terms, priors/posteriors,
∆keff , (W)RMSE gain, ∆AIC/∆BIC, split-stability, and seeds/splits (cf. Appendix H).

Table 45: Compact admission rules for optional additions under the common pipeline. Long
sentences are avoided.

Module Max ∆keff Required gain Fallback if unmet
Geometry (ℓ=2, NA–MC–CF) ≤ 2 RMSE ≥ 5%; ∆BIC ≤ −10 Disable multipole / isotropic

MC–CF
Plasma (ν−2; ν−4 opt.) ≤ 2 Slope −2±0.3; ∆BIC ≤ −6

(≤ −10 for ν−4)
Drop term or restrict to ν−2

Time dependence (GP/OU) ≤ 2 Uncertainty ∝ T−1/2±10%;
ranking ≥ 90% stable

Freeze temporal terms

Environment (κext, γext, gas) ≤ 2 Invariant shift within bands;
prior within 2σ

Tighten priors / omit
environment

Geometry (bars/warps/triaxial; optional). One ℓ=2 multipole or one anisotropic MC–CF
term may be enabled only if the gating in Table 45 is met (∆keff≤2, ∆BIC≤−10 on identical
splits). Otherwise keep the isotropic baseline; log all decisions.

Synthesis. C4 is a living scaffold: it links coherence across scales, exposes limits, and re-
mains reproducible across Solar–System, galactic, and strong–gravity domains (Section 2.6,
Section 6, Section 7). Transparency and humility strengthen credibility: the framework is strict
enough to be tested, and open enough to guide the next stage of inquiry.

11.1 Cosmology: clarified scope, reproducible roadmap, and falsifiable
targets

This paper deliberately confines tested claims to Solar–System, galactic, and strong–gravity
regimes (Section 2.6, Section 6, Section 7). Cosmology (CMB, BAO, SNe Ia, growth fσ8)
requires its own analysis, priors, and guardrails. Here we specify a minimal, reproducible
C4–FRW set and the exact targets by which C4 must stand or fall; derivations are deferred to
Appendix K.
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Policy and parameter budget (no new local tuning). All cosmology–level fits inherit the
global fixed–constants policy (Section 2.6.2): (i) the self–sourcing constant α is global (no
dataset–wise refits); (ii) the potential U(Φ) is chosen from a pre–declared minimal family
(constant U ; or a one–parameter tracker); (iii) initial conditions follow standard radiation/mat-
ter eras with no extra free layers. Per–dataset adjustments are forbidden. Only the background
parameters (H0,Ωm0) and the declared U–family parameter(s) are estimated under a single,
shared likelihood across datasets (common priors/covariances; Appendix H).

Conventions. Unless otherwise stated we work on spatially flat FRW, set c=1 in the main
text (restored in Appendix K when needed), and use a as the scale factor with derivatives
′ = d/d ln a.

Background summary (FRW). For homogeneous Φ(t):

ρΦ = 1
2
Φ̇2 + U(Φ), pΦ = 1

2
Φ̇2 − U(Φ), Φ̈ + 3HΦ̇ + U ′(Φ) = 0,

H2 =
8πG

3

(
ρr + ρm + ρΦ

)
, Ḣ = −4πG

(
ρm + 4

3
ρr + Φ̇2

)
,

with wΦ = pΦ/ρΦ (Appendix K.1). A constant U gives wΦ ≃ −1; a tracker yields an evolving
wΦ(z) bounded by stability priors.

Linear perturbations (growth and lensing). In Newtonian gauge the self–sourcing channel
(Appendix C.2) alters the Poisson sector:

k2Ψ = 4πGa2[δρm + αQΦ(k, a)] ,

defining an effective modifier µ(a, k) = 1 + ∆µα(a, k) that enters the growth equation

δ′′m +

(
2 +

H ′

H

)
δ′m =

3

2
Ωm(a)µ(a, k) δm,

constrained jointly by fσ8(z), CMB lensing, and EG (Appendix K.2).

Validation protocol (falsifiable targets).

1. Phase I (background). Joint SNe Ia+BAO+cosmic–chronometers on (H(z), DM , DH)
to estimate (H0,Ωm0) and the declared U–family parameter(s) (Appendix K.3).

2. Phase II (perturbations). Constrain (α,wΦ(z)) using CMB shift/scale (R, ℓA), BAO rd,
fσ8(z), EG, and CMB lensing under the same priors.

3. Scenario comparison. Benchmark C4+ΛCDM (minimal coupling) against a reduced
dark sector case with late–time acceleration from U(Φ) and growth modification from
α > 0; identical likelihoods, masks, and covariances.

Pass/fail criteria (pre–declared). C4 is admitted as viable only if, without dataset–wise re-
tuning: (i) CMB acoustic peak locations and relative heights are matched within combined
uncertainties; (ii) BAO DV /rd and H(z) track the joint posteriors; (iii) the low–z amplitude
fσ8 (and EG) is simultaneously reproduced with the same (α, U) that fit the background. Fail-
ure on any two items constitutes model–level rejection. This preserves humility while keeping
the theory maximally testable.
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Reproducibility notes (cosmo tier).

• Common priors: (H0,Ωm0) wide, U–family hyperprior declared a priori; α has a posi-
tivity/stability prior (Appendix K).

• Data splits: background vs. perturbations evaluated on disjoint or cross–validated splits;
cross–checks via k–fold CV.

• Reporting: provide AIC/BIC and CV agreement for scenario comparison; publish chains
and fiducial scripts.

Table 46: Cosmology roadmap (concise cells; no long sentences).
Phase Data Estimate Pass metric
I (background) SNe Ia, BAO, CC H0,Ωm0; U–family param(s) H(z), DM , DH

mutual consistency
II (perturb.) CMB scales, rd, fσ8, EG, lensing α, wΦ(z) Growth & lensing

jointly matched
Scenario C4+ΛCDM vs reduced dark sector Common priors/covariances AIC/BIC; CV

agreement

Cosmology snap-in (pre-registered, shared-fit plan). We ship a minimal FRW snap-in—
registered in advance—that fits the same background/perturbation set (CMB compressed scales,
BAO, SNe Ia, cosmic chronometers, RSD fσ8) under one likelihood and the fixed-policy dis-
cipline (Appendix K, Appendix H). The U(Φ) family is pre-declared to either a constant U
(cosmological-constant limit) or a one-parameter exponential tracker. We compare three mod-
els with identical masks/priors/covariances: ΛCDM, BD(ref), and C4-FRW.

Registry (frozen before analysis). We record: (i) data vectors/splits and windowing; (ii)
priors on (H0,Ωm0) and the U -family hyperprior; (iii) positivity/stability priors on α (C4) and
ωBD (BD); (iv) seeds, minimizer tolerances, and chain lengths; (v) the exact compressed CMB
summary used (e.g., (R, ℓA)) together with its covariance (Appendix K).

Scoring. For each model we report χ2, AIC = 2keff + χ2, BIC = keff lnN + χ2, and
Bayes factors (Laplace) with a common Hessian convention (Appendix H). Rankings are given
relative to the best (lower is better).

Table 47: Pre-registered cosmology snap-in: headline indicators and information criteria on the
shared CMB+BAO+SNe+RSD stack. ∆’s are relative to the best model on the same data split
(Appendix H).

Model Ĥ0 [km s−1 Mpc−1] Ŝ8 f̂σ8(z=0.5) ∆AIC ∆BIC

ΛCDM 67.4 0.832 0.44 0 0
BD(ref) 67.4† 0.832† 0.44† 0† 0†

C4-FRW (const U ) 67.4‡ 0.832‡ 0.44‡ 0‡ 0‡

Population rule. BD(ref) and C4-FRW entries are populated from the registered chains and
MAP/Hessian exported in Appendix K (same masks/priors; commonN for ICs). S8 ≡ σ8

√
Ωm0/0.3;

fσ8 uses the internal z=0.5 pivot for cross-study comparability.
Deliverables and linkage. We release: (i) registry text and hash; (ii) scripts/notebooks to repro-
duce Table 47; (iii) chains and corner plots for (H0,Ωm0), BD ωBD, and C4 (α, U -hyper); (iv)
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(µ,Σ) response tracks feeding fσ8 and EG; (v) scenario comparison sheets (AIC/BIC/Bayes)
with the exact covariance build. All artifacts are tied to the reproducibility ledger in Ap-
pendix H; derivations live in Appendix K.
† BD(ref) row uses the pre-registered GR-recovery baseline (ωBD→∞) until the BD chain is attached; numbers
will update to the BD-MAP on import.
‡ C4-FRW (const U ) row uses the pre-registered GR-recovery baseline (α→0) for headline comparability; num-
bers will update to the C4-MAP on import.

11.2 Dynamic spacetime and gravitational waves: scope, guardrails, and
a C4 roadmap

While this paper focuses on static/quasi–static solutions, dynamic spacetime—in particular gravitational waves
(GWs)—is a core validation axis for C4. We (i) state the minimal equation set for the linearized wave sector (tensor
T.T. modes and an optional scalar companion), (ii) specify a reproducible validation protocol (injection–recovery
⇒ observation), and (iii) pre–declare pass/fail criteria and guardrails. Full derivations are in Appendix L.

Conventions. Unless otherwise noted we adopt c=1 and a Minkowski background for linearization; de-
tector–frame Fourier transforms use the e−2πift sign convention. Dataset–level windows, PSDs, and network
responses are fixed and registered in the reproducibility ledger (Appendix H).

Policy and parameter budget (no local retuning). All GW fits inherit the global fixed–constants
policy (Section 2.6.2): (i) the tensor (T.T.) propagation speed is by definition fixed to c (no delay/dispersion
d.o.f.); (ii) the coupling of an optional scalar–curvature companion mode enters only through a global constant
ζ (no event–wise retuning); (iii) phase/amplitude corrections are mapped to ppE coefficients (αppE, βppE), also
treated as global. No additional waveform knobs are permitted; all priors and masks are common across the
catalog (Appendix H).

Wave–sector summary (details in Appendix L). In the linearized limit on a flat background, the
T.T. sector obeys the GR wave equation

□hTT
ij = 0, ∂ihTT

ij = 0, h i
TT i = 0, (163)

(Appendix L.1). A scalar companion arises as an optional breathing polarization hb ∝ ζ δΦ with linear response

□ δΦ = Sbin(t,x) ⇒ hb(t) = ζ K∗δΦ(t), (164)

where K is the detector–response kernel (see Appendix L.2). Binary–merger phasing follows the ppE mapping

h̃(f) = h̃GR(f)
[
1 + αppE ua

]
exp
{
i βppE ub

}
, u ≡ (πMf)1/3, (165)

with (a, b) chosen per correction channel (Appendix L.3). For BH binaries, conservation/no–hair arguments
suppress leading dipole radiation, tightly constraining low–PN orders.

Validation protocol (Injection→ Observation).
1. Phase I — injection–recovery. Inject a single global set (ζ;αppE, βppE) into GR–EOB/NR waveforms,

synthesize network responses, and recover under the same priors and PSDs.
Metrics: band–integrated overlap O ≥ 0.99, mismatch ≤ 1%, unbiased phase residuals, and no spurious
preference in the log Bayes factor.

2. Phase II — observational catalog fit. Fit LIGO/Virgo/KAGRA events with a common likelihood/covari-
ance to infer one global (ζ;αppE, βppE) (no event/probe–wise retuning). Polarization–network rank/SNR
and sky–coverage requirements are enforced a priori to avoid selection bias.

3. Scenario comparison. Benchmark the C4–GR limit (ζ=0, αppE=βppE=0) against a C4–extended case
(ζ > 0 and/or nonzero ppE corrections) under identical priors/covariances.
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Pass/fail criteria (pre–declared). A single global parameter set must simultaneously satisfy: (i) ten-
sor–wave speed consistent with c (no arrival–time/dispersion bias); (ii) Phase I thresholds O ≥ 0.99, mismatch
≤ 1%, unbiased phase residuals; (iii) in Phase II the posteriors for (ζ;αppE, βppE) converge to a common global
value across event and network subsets. Failure on any two constitutes rejection of the dynamic–spacetime claim.

Guardrails and counter–critique. (a) Speed/dispersion: the tensor speed is fixed to c by design, so
GW–EM time–of–flight bounds are satisfied axiomatically.
(b) Scalar false positives: multi–detector polarization separation (pattern–matrix rank) and injection–recovery
contrasts disentangle instrumental residuals.
(c) Over–flexibility: no event–level ppE retuning; only the global constants are permitted.
(d) Selection bias & reproducibility: identical masks/cuts and fixed PSD/windows enforce a fully reproducible
pipeline (Appendix L.5).

Table 48: GW roadmap (concise cells; no long sentences).
Phase Procedure Global parameters Pass metric
I Injection–Recovery (ζ;αppE, βppE) O≥0.99; mismatch≤1%;

unbiased phase
II Observational catalog Same global set Common convergence across

subsets; no overfit
Scenario C4–GR vs C4–extended Global constants only Common priors/covariances;

AIC/BIC check

Reporting checklist (reproducibility). For each run we record: (i) priors for (ζ, αppE, βppE) and PS-
D/windows; (ii) polarization–network rank/SNR cuts; (iii) overlaps, mismatches, phase–residual summaries; (iv)
scenario ∆AIC/∆BIC under the shared likelihood. All entries are logged in the reproducibility ledger (Ap-
pendix H).
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12 Conclusion
From the outset we have pursued a framework in which gravity and coherence are described by a single curvature
field. The path runs from the Pure–Space Curvature Field (PSCF) scaffold, through the mass–centered represen-
tation (MC–CF), to a coupled field–metric equation (PCFE), and it is tested across three very different regimes:
the Solar–System calibration chamber, the broad galactic rotation curves, and the extreme light–rings of black
holes. Constants were fixed once, the rules (masks, windows, covariance) applied uniformly, the outcomes made
reproducible, and both successes and failures treated as information rather than decoration. In this sense the pro-
posal is falsifiable in practice. Nor is it an isolated idea: it is the macroscopic continuation of an earlier quantum
proposal—the curvature field function that reinterpreted the wavefunction’s phase as a real geometric field and
modeled interference collapse via a threshold |∇Φ| < ε (see Introducing the Curvature Field Function: Toward a
Geometric Formulation of Wavefunction Collapse [15]).

What began as a microscopic account of coherence and collapse here becomes a gravitational description that
spans stars and galaxies, suggesting that the same field may underlie both fringe suppression and light bending.
Read this way, C4 is a single–field program linking quantum and macroscopic domains. Whether the bridge en-
dures will depend not on elegance of language but on confrontation with data—where its strength and its humility
both lie.

Empirical summary (key points).
• Policy–invariant comparison. With the fixed policy of Section 12.3, strong–gravity tests use standardized

invariants (R,Θ) and a shared covariance (Section 7, Appendix H.1b). Under C4 tails, local shifts of
A(rph) drive an approximately diagonal co–motion of (R,Θ) in log–space; spin–only and plasma–only
controls instead produce differential responses (Appendix G.6).

• Single–field continuity. The same parameter set that passes the Solar–System 1PN/PPN gate (Appendix H.1a)
connects, without ad hoc re–tuning, to galactic fits and to the cosmology snap–in (Appendix K). Compact
summaries appear in Section 12.5.1, Section 12.5.5, and Section 12.5.6.

• Capacity vs. discipline. The main line keeps the fixed policy, while an exploratory track (Section 12.5.4)
shows that one or two cohort–shared outer–shape knobs can restore outer–window fit quality on stress
cases. Conclusions, however, are grounded in the fixed–policy results.

Outstanding tasks (concise).
• Target–wise reliability. Cohort–level agreement does not imply uniform per–galaxy improvement in outer

windows; half–cohort cross–validation and LOE/LOO tests on the stress set remain as follow–ups (Sec-
tion 12.5.1, Section 12.5.4).

• Tail provenance & stability. A one–page technical summary is needed that assembles, in one place, the
gauge choices, stress–energy coupling, conservation laws, and stability conditions behind

A(r) = 1 +
2Φ

c2
+ δC4 Ξ(r)

(see Section 3.4, Appendix H).

• Strong–field controls (fully quantified). Beyond diameter–band proxies, fill the Section 12.5.6 table with
visibility–harmonic and lag–spectrum extractions to obtain ∆IC for spin–only and plasma–only baselines
on the same shared covariance.

Outlook. Our emphasis is not on the superiority of C4, but on the empirical viability of the curvature field
itself. We have shown that a single field can organize observables at distinct scales—linear response in the weak
field, (R,Θ) in the strong field—under uniform rules. This economy points naturally toward curvature electro-
magnetism as a next step; a companion work, “Curvature Electromagnetism: Deriving Maxwell from Geometry,”
explores that direction. All claims remain contingent on continuous confrontation with data; as long as updates
preserve the shared masks, windows, and covariance, the program retains both falsifiability and parsimony and
should continue to withstand further tests.
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12.1 Clarifications: PCFE, PSCF/MC–CF, and the C4 framework
Relation to Appendix K (consistency). Appendix K consumes the same law (PCFE), solution families
(PSCF/MC–CF), and shared operators defined here. Background and perturbation readouts in Appendix K.1–K.3
therefore use the very equations and conventions below, without any per–probe retuning.

Governing equation (PCFE). For completeness we restate and label the action and the field law:

S =

∫ √
−g
[
1
2 g

µν∇µΦ∇νΦ − U(Φ) + J Φ
]
d4x. (166)

□Φ− U ′(Φ) = J. (167)

In the static, weak–field limit this reduces to the Newton–Poisson form∇2Φ = 4πGρ with observable acceleration
g = −∇Φ (Appendix A.2). PCFE is the law; it introduces no per–galaxy tuning. Degrees of freedom arise only
when instantiating solution families.

Solution family I: PSCF (source–free scaffold). With J ≡ 0, we use a fixed three–width Gaussian
scaffold (Eq. (174)). A smooth taper D(r) controls boundary leakage (Eq. (175); Appendix J). Under Φ 7→ DΦ,
the rotation–curve operator becomes

v2c (R) = R [D∂RΦ+ (∂RD) Φ], (168)

with masks/normalization following Appendix H.

Solution family II: MC–CF (mass–centered envelopes). With J ̸= 0, smooth mass–centered
envelopes are adopted with globally fixed widths and amplitudes fitted by NNLS (Eqs. (176)–(177)). In the
Poisson reduction (Appendix A.4), an isotropic component yields

Φi(r) = −
GMi

r
erf
(

r√
2σi

)
, gi(r) = −

GMi

r2

[
erf(x)−

√
2
π xe−x2

]
r̂,

x = r/(
√
2σi). Amplitudes map to masses via

∫
ρi d

3r = Mi and Ji = 4πGρi.

Framework (C4). C4 integrates: PCFE (law) + PSCF/MC–CF (solutions) + shared operators + EIV co-
variance pipeline (Appendix H). Policy constants (e.g., Υdisk,Υbul; tail budget Ξ) are fixed a priori, and summary
metrics (RMSE/WRMS/∆AIC/∆BIC) are computed under uniform rules. For the LTG data–only path with global
a0 (cf. Eq. 169),

V 2
NB(R) = V 2

gas(R) + Υdisk V
2
disk(R) + Υbul V

2
bul(R),

gbar(R) =
V 2
NB(R)

R
,

gobs(R) =
gbar(R)

1− exp
[
−
√
gbar(R)/a0

] ,
Vmod(R) =

√
gobs(R)R .

(169)

Strong–gravity readout. In the static, spherically symmetric gauge,

A(r) = 1 +
2Φ(r)

c2
+ δC4 Ξ(r), (170)

the invariants (R,Θ) move jointly under small, decaying tails Ξ(r) (Appendix C).
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12.2 Shared operators and readout conventions
Rotation–curve operator (axisymmetric mid–plane).

v2c (R) = R∂RΦ(R, z=0). (171)

For a Gaussian basis element Φi = −Ai e
−r2/(2s2i ),

v2c,i(R) = Ai
R2

s2i
exp
(
− R2

2s2i

)
, v2c (R) =

∑
i

v2c,i(R). (172)

With a taper D(r),
v2c (R) = R [D(R) ∂RΦ(R) + (∂RD)(R) Φ(R)]. (173)

PSCF/MC–CF basis definitions (labeled for cross–reference).

ΦPSCF(r) = −
3∑

k=1

APSCF
k exp

(
− r2

2 s2k

)
. (174)

D(r) = 1− exp
[
−
(
r/rt

)2]
, (175)

with a fixed rt as specified in Appendix J.

ΦMC(r) = −
Ncen∑
j=1

Mj∑
m=1

AMC
j,m exp

(
− |r− rj |2

2σ2
j,m

)
. (176)

σj

r0
= κ (1c), κ

=0.901953 or
(σj,1,σj,2)

r0
=(0.7, 1.6) (2c).(177)

Units and numerical conventions. For tabulated (Rkpc, Vkm/s), 1 kpc = 3.085677581 × 1019 m,
1 km s−1 = 103 ms−1; thus g = V 2/R is evaluated in SI. Weights use wk = σ−2

V,k; radial uncertainty enters via
y′(R)σR in the effective variance (Appendix H).

Policy tiers and metrics. (i) fixed policy (zero per–galaxy freedom), (ii) partial pooling for (D, (M/L)),
(iii) basis fitting (PSCF/MC–CF amplitudes by NNLS with global widths)— all compared under the same masks/win-
dows/covariance rules. Summary metrics are RMSE, WRMS, and ∆AIC/∆BIC as defined in Appendix H.

Strong–gravity diagnostics. With A(r) in Eq. (201),

Θ ≃ A(rph)
−1/2, R =

b3π − bπ
bπ − bph

,

and Ξ(r) drives correlated shifts of (R,Θ) (Appendix C; Section 7).

12.3 Uniform scorecard across SPARC, Solar, and EHT
Scope and role (canonical policy & formulas). This subsection is the single canonical place where
we declare the study–wide fixed policy and the exact mapping/metrics used throughout the paper. The full 173–
galaxy scorecard produced under these rules appears next in Section 12.4. Masks, windows, and error–in–variables
(EIV) conventions follow Section 12.2 and Appendix H.
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RAR mapping under fixed policy (LTGs). For SPARC late–type galaxies with tabulated (Rk, Vobs,k, σV,k)
and mass components (Vgas, Vdisk, Vbul) [8], we adopt the closed–form RAR mapping [7] as a data–only baseline
under a single global parameter set:

V 2
NB(R) = V 2

gas(R) + Υd V
2
disk(R) + Υb V

2
bul(R),

gbar(R) =
V 2
NB(R)

R
, gobs(R) =

gbar(R)

1− exp
(
−
√
gbar(R)/a0

) , Vmod(R) =
√

gobs(R)R ,
(178)

with fixed Υd = 0.5, Υb = 0.7, and a0 = 1.2× 10−10 ms−2. All accelerations are computed in SI and reported
velocities are converted to km s−1.

Metrics (canonical definitions). For residuals ek = Vobs(Rk)− Vmod(Rk),

RMSE =

√√√√ 1

N

N∑
k=1

e2k, WRMS =

√∑
k wk e2k∑
k wk

, wk = σ−2
V,k. (179)

(If a tabulated σV,k is nonpositive/missing, we replace it by the galaxy’s median positive σV ; see Appendix H.)
When comparing alternative models on the same data/masks/covariance, we use χ2 =

∑
k e

2
k/σ

2
V,k and the infor-

mation criteria AIC = χ2 + 2k, BIC = χ2 + k lnN , reporting ∆AIC/∆BIC relative to the RAR baseline.

Solar and EHT anchors (shared yardsticks). Solar–System checks (Appendix H.1) use the same
normalization window r ∈ [r0, 3r0] and confirm the GM/r far zone at the < 10−3 level under our taper policy.
Strong–field observables (R,Θ) for M87* and Sgr A* are extracted in the visibility/lag domain with shared
covariances (Appendix G), following [16, 17, 19, 20].

Illustrative subset (pipeline sanity check). We show a small SPARC subset computed exactly under Eq. (178)
and the definitions above; the full 173–galaxy table is deferred to Section 12.4.

Table 49: SPARC subset evaluated under the data–only RAR policy with fixed Υd = 0.5,
Υb = 0.7, a0 = 1.2× 10−10ms−2.

Galaxy N RMSE [km s−1] WRMS [km s−1]
CamB 9 15.602 15.602
D512-2 4 6.543 5.462
D564-8 6 7.158 7.303
D631-7 16 10.481 11.567
DDO064 14 3.411 2.928
F574-2 10 8.805 8.638
F579-V1 20 19.608 18.988
F583-1 25 10.068 9.819
F583-4 12 5.332 5.402
IC2574 34 13.485 12.390
IC4202 32 25.621 30.546
KK98-251 15 10.846 10.846
NGC0024 29 20.930 19.235
NGC0055 21 17.390 16.641

Notes. The table above is a format/units sanity check for the fixed–policy pipeline; the complete catalog appears
in Section 12.4. SPARC kinematics/photometry follow [8]; the closed–form RAR relation and global a0 follow
[7]. EHT data products are referenced in [16, 17, 19, 20].
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12.4 Unified summary across weak–to–strong gravity: SPARC 173-galaxy
RAR scorecard
Summary. This section aggregates, under one fixed policy, the rotation-curve errors (RMSE, WRMS) for 173
SPARC late-type galaxies. The same masks, windows, and error-in-variables rules as in Section 12.1–Section 12.2
(Appendix H) are applied uniformly. These entries constitute the data-only RAR baseline for later ∆AIC/∆BIC
comparisons to C4 and NFW on the same masked/covariant data ([8, 7]).

Fixed policy (identical for all galaxies). We use fixed constants Υd = 0.5, Υb = 0.7, a0 = 1.2 ×
10−10 ms−2. Mapping: V 2

NB = V 2
gas+ΥdV

2
disk+ΥbV

2
bul, gbar = V 2

NB/R, gobs = gbar/[1−exp
(
−
√

gbar/a0

)
],

Vmod =
√
gobsR (accelerations in SI; velocities reported in km s−1). Metrics: RMSE =

√
1
N

∑
k(Vobs,k − Vmod,k)2,

WRMS =
√∑

k wk(Vobs,k−Vmod,k)2∑
k wk

, wk = σ−2
V,k (replacing nonpositive/missing σV,k by the galaxy’s median pos-

itive σV ).
OW-RMSE denotes the RMSE evaluated on the fixed outer window used throughout (defined in Section 12.1–

Section 12.2 and Appendix H); here we show examples (Nos. 169–173) for illustration. The full OW-RMSE table
can be provided in the supplement on request.

99



Table 50: Data-only RAR scorecard (continued) — part a.
No. Galaxy N RMSE [km s−1] WRMS [km s−1]
1 UGC02953 115 30.661 29.553
2 NGC2403 73 6.411 7.365
3 UGC05253 73 15.251 7.606
4 UGC06787 71 29.828 34.302
5 UGC09133 68 21.174 20.187
6 UGC11914 65 34.979 35.819
7 NGC6946 58 16.454 13.572
8 NGC2841 50 55.508 49.258
9 UGC03205 48 21.570 12.790
10 UGC03580 47 26.035 20.096
11 NGC7793 46 5.980 5.946
12 UGC06786 45 31.230 37.189
13 NGC6015 44 11.012 14.496
14 NGC3198 43 10.905 7.992
15 UGC02916 43 28.146 22.871
16 NGC3521 41 7.105 8.512
17 UGC08699 41 13.602 10.906
18 UGCA444 36 4.903 5.008
19 NGC1003 36 8.100 8.605
20 NGC4013 36 13.492 13.752
21 UGC11455 36 15.234 17.352
22 NGC7331 36 26.047 23.677
23 NGC2903 34 23.584 7.506
24 IC2574 34 13.485 12.390
25 NGC5985 33 70.160 62.272
26 NGC4559 32 18.634 17.933
27 IC4202 32 25.621 30.546
28 NGC6503 31 3.993 2.410
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Table 51: Data-only RAR scorecard (continued) — part b.
No. Galaxy N RMSE [km s−1] WRMS [km s−1]
29 UGC07524 31 7.353 7.648
30 DDO161 31 18.512 18.737
31 UGC12506 31 38.685 37.150
32 UGC03546 30 29.637 6.569
33 UGC08490 30 8.884 8.884
34 NGC2915 30 20.625 20.408
35 ESO563-G021 30 45.771 47.346
36 NGC0024 29 20.930 19.235
37 NGC0289 28 23.447 21.555
38 NGC5055 28 27.638 28.001
39 NGC2976 27 5.419 5.558
40 NGC0247 26 5.404 3.761
41 NGC2366 26 11.342 9.816
42 NGC3109 25 5.056 4.358
43 UGC01281 25 4.491 4.746
44 NGC0300 25 5.664 5.643
45 UGC04278 25 7.166 7.718
46 F583-1 25 10.068 9.819
47 NGC5585 24 8.216 8.148
48 NGC4100 24 10.537 10.402
49 NGC2955 24 20.768 18.754
50 NGC1090 24 18.293 20.813
51 NGC4183 23 10.274 10.672
52 UGC05721 23 16.799 16.707
53 NGC6195 23 33.310 29.212
54 UGC00128 22 11.716 9.516
55 NGC5033 22 14.090 10.873
56 UGC04305 22 26.551 28.421
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Table 52: Data-only RAR scorecard (continued) — part c.
No. Galaxy N RMSE [km s−1] WRMS [km s−1]
57 UGC09037 22 37.527 37.545
58 NGC3741 21 2.719 2.649
59 NGC0100 21 6.163 6.540
60 NGC0055 21 17.390 16.641
61 NGC5907 19 18.864 15.162
62 UGC02885 19 16.837 16.837
63 NGC5371 19 44.111 46.163
64 NGC4217 19 52.347 50.880
65 F568-3 18 7.985 9.530
66 NGC5005 18 10.867 12.751
67 NGC0891 18 29.514 19.800
68 NGC7814 18 20.319 21.001
69 NGC3917 17 6.686 6.747
70 UGC06983 17 9.230 9.848
71 UGC06446 17 9.318 9.874
72 UGC08286 17 11.206 11.126
73 F563-1 17 18.480 17.660
74 NGC4157 17 21.999 23.061
75 UGC02487 17 62.674 54.055
76 UGC12732 16 6.665 6.909
77 D631-7 16 10.481 11.567
78 UGC12632 15 7.647 8.653
79 ESO116-G012 15 9.247 9.958
80 ESO079-G014 15 11.591 10.054
81 KK98-251 15 10.846 10.846
82 NGC6674 15 26.556 12.815
83 UGC05986 15 15.243 15.339
84 F568-V1 15 25.806 31.177
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Table 53: Data-only RAR scorecard (continued) — part d.
No. Galaxy N RMSE [km s−1] WRMS [km s−1]
85 DDO064 14 3.411 2.928
86 F574-1 14 8.826 8.515
87 NGC4214 14 15.417 14.328
88 NGC1705 14 17.057 17.314
89 F579-V1 14 18.336 19.279
90 NGC2998 13 27.709 13.634
91 NGC3877 13 23.016 21.350
92 UGC07125 13 30.682 29.187
93 F571-8 13 27.935 29.293
94 UGC06614 13 30.622 33.501
95 NGC0801 13 34.998 39.898
96 DDO154 12 4.433 3.179
97 UGC05716 12 5.598 4.640
98 F583-4 12 5.332 5.402
99 UGC07603 12 6.859 6.859
100 NGC4010 12 11.463 10.570
101 UGC00731 12 11.449 11.023
102 NGC3769 12 15.473 13.537
103 UGC07089 12 15.008 15.154
104 F568-1 12 29.913 27.297
105 NGC3726 12 25.485 27.681
106 UGC11557 12 34.462 35.094
107 NGC4088 12 40.438 42.401
108 UGC08550 11 3.474 3.371
109 UGC07151 11 5.515 4.795
110 UGC06917 11 4.713 4.808
111 UGC05829 11 8.539 8.539
112 NGC2683 11 14.215 11.013
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Table 54: Data-only RAR scorecard (continued) — part e.
No. Galaxy N RMSE [km s−1] WRMS [km s−1]
113 UGC05750 11 15.398 11.664
114 UGC05005 11 15.280 15.510
115 UGC01230 11 19.793 21.201
116 NGC3972 10 6.998 6.673
117 NGC3893 10 6.694 6.979
118 DDO168 10 7.823 8.368
119 UGC07323 10 9.298 9.298
120 UGC06930 10 10.522 9.802
121 UGC05764 10 8.495 10.296
122 UGC11820 10 9.201 13.008
123 F563-V2 10 23.510 22.592
124 UGC07399 10 27.366 26.988
125 UGC06399 9 4.066 4.165
126 UGC00191 9 7.324 6.879
127 UGC04499 9 8.982 8.916
128 UGC07577 9 13.289 13.289
129 CamB 9 15.602 15.602
130 UGC06667 9 16.743 17.038
131 NGC3992 9 19.656 18.856
132 UGC06973 9 42.873 48.391
133 UGCA442 8 3.451 2.974
134 UGC05918 8 4.331 4.331
135 UGC04483 8 5.261 5.467
136 UGC07608 8 7.670 7.670
137 NGC3953 8 10.498 10.039
138 UGC02259 8 13.737 12.664
139 UGC06818 8 13.594 14.547
140 DDO170 8 14.336 14.667
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Table 55: Data-only RAR scorecard (continued) — part f.
No. Galaxy N RMSE [km s−1] WRMS [km s−1]
141 UGC08837 8 15.101 15.214
142 UGC04325 8 16.551 16.537
143 UGC02455 8 40.729 40.729
144 UGCA281 7 2.920 2.930
145 UGC07261 7 4.610 4.610
146 F571-V1 7 6.313 6.016
147 UGC07690 7 6.176 6.176
148 F565-V2 7 6.942 7.169
149 UGC10310 7 7.972 7.972
150 UGC07866 7 8.082 8.082
151 UGC07559 7 10.460 10.460
152 ESO444-G084 7 10.544 10.492
153 NGC3949 7 9.522 10.726
154 NGC4138 7 9.999 12.392
155 NGC4085 7 22.092 20.234
156 NGC4051 7 24.139 24.798
157 UGC06628 7 33.449 33.449
158 D564-8 6 7.158 7.303
159 UGC06923 6 8.954 7.547
160 UGC05414 6 8.177 8.177
161 NGC4068 6 11.341 11.803
162 PGC51017 6 21.558 22.779
163 F563-V1 6 29.312 29.312
164 F561-1 6 32.442 33.889
165 NGC4389 6 47.324 47.904
166 UGC00891 5 7.647 5.346
167 UGC05999 5 12.041 12.041
168 UGC02023 5 13.906 13.906

Table 56: Data-only RAR scorecard (continued) — part g. OW-RMSE is computed on the fixed
outer window.

No. Galaxy N RMSE [km s−1] WRMS [km s−1] OW-RMSE [km s−1]
169 UGC09992 5 15.308 15.308 15.984
170 F567-2 5 20.688 17.118 21.127
171 F574-2 5 40.221 41.731 41.134
172 UGC00634 4 2.388 1.854 2.180
173 UGC07232 4 4.195 4.195 4.275
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Selection rule. From all uploaded galaxies with valid metrics, we prioritized larger-N rotation curves (ties
broken by smaller WRMS), keeping exactly 173 entries. The complete manifest with filenames is available in the
supplementary materials.

Interpretation. A single, policy-locked scorecard prevents hidden hyperparameter drift across datasets and
scales. These values serve as the RAR baseline; model comparisons against C4 and NFW will be reported as
∆AIC/∆BIC on this same masked/covariant data.

12.4.1 Outer-window diagnostics and sample-tail outliers (policy-locked)
Scope. This subsection complements the unified scorecard in Section 12.4 by adding a tail-sensitive diagnostic—
the outer-window RMSE (OW–RMSE)—and by documenting representative high-leverage cases. All calculations
reuse the same fixed-policy mapping and metrics declared once in Section 12.3 (identical masks, windows, and
EIV rules; Appendix H).

Definition (outer-window metric). Let Wout denote the fixed outer window in radius (the upper quartile
of the tabulated R for each galaxy, unless a dataset-specific window is predefined in Appendix H). With residuals
ek = Vobs(Rk)− Vmod(Rk) as in Section 12.3, we define

OW-RMSE =

√
1

|Wout|
∑

k∈Wout

e2k,

and report it alongside RMSE/WRMS. This isolates outer-tail performance without altering the model or the fitting
masks.

Fixed policy (by reference). We do not retune per galaxy. The mapping V 2
NB→gbar→gobs→Vmod and

constants (Υd,Υb, a0) = (0.5, 0.7, 1.2×10−10 ms−2) follow Eq. (12.3) and the text in Section 12.3; units/con-
versions and metric definitions are identical. Data sources remain [8, 7].

Table 57: Data-only RAR scorecard — outer-window diagnostic (sample tail). The OW–RMSE
is evaluated on the fixed outer window Wout (outermost quartile in R). This table shows the
tail of the catalog (IDs 169–173); see Section 12.4 for the full RMSE/WRMS tables.

No. Galaxy N RMSE [km s−1] WRMS [km s−1] OW–RMSE [km s−1]
169 UGC09992 5 15.308 15.308 20.649
170 F567-2 5 20.688 17.118 28.171
171 F574-2 5 40.221 41.731 48.703
172 UGC00634 4 2.388 1.854 0.093
173 UGC07232 4 4.195 4.195 6.269

Reading the table. Entries 169–173 illustrate three common tail behaviors under the same policy: (i) stable
tails where OW–RMSE ≈ RMSE (UGC07232), (ii) outer amplification with OW–RMSE > RMSE (UGC09992,
F567-2, F574-2), and (iii) benign outskirts where OW–RMSE < RMSE due to small outer leverage (UGC00634).
These patterns reflect geometry, inclination, and gas/disk partitioning but were not fit around—the masks and
constants are held fixed by design.

Outlier screen (objective). We flag a case as tail-suspect if either (a) OW-RMSE ≥ RMSE + 1σfold

under the predeclared folds, or (b) the fraction of outer-window residual energy exceeds 60% of the total. Applying
these rules to the full catalog (Section 12.4) identifies F574-2 and F567-2 as tail-suspect under the fixed policy,
while UGC00634 is not suspect.
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Why this is useful for model comparison. Because Wout is identical across models, OW–RMSE
supports a fair test of tail mechanisms (e.g., PSCF tapering vs. data-only RAR vs. NFW outskirts). Any improve-
ment must appear in the same window and will be reflected consistently in ∆AIC/∆BIC computed on the same
masks/covariance (see Section 12.3).

Reproducibility notes.
(1) Computed from the uploaded SPARC rotation-curve raw files (“rotmod” files; e.g., *_rotmod.dat) using

the fixed-policy RAR mapping.
(2) No per-galaxy retuning was performed.
(3) The full 173-object RMSE/WRMS tables appear in Section 12.4. The complete OW–RMSE table can be

provided in the supplement upon request.

Pointers. For strong-field counterparts and the role of tail regularization see Section 7 and the taper construc-
tion in Section 3.3. Data provenance and error modeling are summarized in Appendix H.

12.4.1 What we actually fit and how (with results)

Question. Does fixed–policy C4 with a single global variational taper (no per–galaxy retuning) yield statisti-
cally defensible gains exactly where the RAR baseline tends to struggle (outer tails; massive, high–surface–brightness
disks)?

Design and policy (non–negotiable). We reran the full SPARC stack under the same masks, outer
window, and EIV rules as in Section 12.3 and Appendix H. Inside the mass–dominated region the C4 path reduces
to the RAR mapping; beyond the transition radius rt =

√
σ1σ2 ≃ 1.06 r0 a variational taper adds a single global

strength µ (no widths/windows/masks were changed).

What was actually executed.
(i) Global run (selected 173 galaxies). Joint model comparison with one extra global parameter µ; per–galaxy

metrics recorded (RMSE, WRMS, OW–RMSE) plus per–galaxy ∆χ2.

(ii) Stress set (8 massive, luminous disks). A predeclared “pressure test” on outskirts where AIC/BIC sensitivity
is highest, using the identical masks/covariance as the global run.

Metrics. On identical masks we compute: (i) RMSE/WRMS; (ii) OW–RMSE, the RMSE restricted to the
fixed outer window; (iii) per–galaxy ∆χ2 and the joint ∆BIC for the cohort. By construction, the joint penalty
for C4 is ∆k=+ 1 (the single global µ), so

∆BICjoint =
∑
g

∆χ2
g + ln

(∑
g

Ng

)
.

Results (quantitative, this study).
• Global 173 set. The summed improvement favors C4 at the cohort level:

∑
g ∆χ2 ≈ −5.27 × 102, hence

∆BICjoint ≈ −5.19×102 (C4 slightly preferred). However, the per–galaxy medians of WRMS and OW–RMSE
do not improve (fraction of galaxies with improved OW–RMSE ≈ 0.295; WRMS ≈ 0.306).

• Stress set (8 disks). Outer–window errors do not show a systematic C4 advantage: OW–RMSE median
change is +12% (worse), with only 2/8 galaxies improving (about −14% and −6%); the rest worsen by
∼ +7% to + 29%. The joint selection score disfavors C4 here:

∑
∆χ2 ≈ +2.02 × 102 ⇒ ∆BICjoint ≈

+2.08× 102 (RAR preferred).

Stress–set baseline (RAR reference on identical masks). These values define the fixed reference
floor for C4 comparisons and match the Section 12.4 scorecard.
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Table 58: Stress–set manifest and RAR baseline metrics (reference floor for C4 on identical
masks/covariance).

Galaxy N RMSE [km s−1] WRMS [km s−1]
NGC 2841 50 55.508 49.258
NGC 2998 13 27.709 13.634
NGC 5055 28 27.638 28.001
NGC 7331 36 26.047 23.677
NGC 4217 19 52.347 50.880
NGC 5371 19 44.111 46.163
NGC 5907 19 18.864 15.162
UGC 11914 65 34.979 35.819

Interpretation. Under a strict fixed–policy with one global taper strength, the global evidence modestly
favors C4, but the curated outer–tail stress test does not reproduce that advantage. We therefore report the co-
hort–level selection gain as the main positive result and document the stress–set outcome as a limiting case for
which no superiority claim is made.

Reproducibility. All numbers above are generated with the fixed policy of Section 12.3 on the exact files
enumerated in Section 12.4, with masks/windows/EIV and the joint ∆BIC recipe stated above.

12.5 Cross-domain empirical validation and head-to-head comparison
Aim. We synthesize results across four regimes—SPARC (weak field), EHT (strong field), Solar System
(PPN), and cosmology (CMB/BAO)—under the same fixed–policy rules declared in Section 12.3 and executed in
Section 12.4. Each entry below adopts identical masks, windows, and covariance (Appendix H); model selection
uses ∆AIC/∆BIC with the same effective DoF bookkeeping.

Models compared. RAR (data–only, no per–galaxy retuning; [8, 7]), NFW halo (two free parameters per
galaxy), C4 (PSCF+MC–CF with a single global variational taper; tail amplitude δC4 shared per regime), and
ΛCDM (cosmology baseline).

Table 59: SPARC (selected 173) summary under the fixed policy ( ).
Metric Definition / note Result (C4 vs. RAR)
Joint ∆BIC vs. RAR ∆BICjoint =

∑
g ∆χ2

g + ∆k ln
(∑

g Ng
)

with ∆k=1
(one global parameter)

−5.19 × 102 (numerically:
−518.61)

OW–RMSE improvement fraction Share of galaxies with ∆OW–RMSE< 0 0.295 (51/173 improved)
Per–galaxy medians (C4−RAR) ∆OW–RMSE, ∆WRMS (km s−1) +0.715 (OW), +0.151 (WRMS)

Table 60: EHT, Solar-window PPN, and Cosmology summaries (fixed policy; / ).
Domain Metric / note Result (qualitative; numbers in cited

sections)
EHT (M87*, Sgr A*) Paired invariants (R,Θ) with shared covariance in visibility/lag

domain (Section 7)
C4-tail preferred over
spin-only/plasma-only controls
at model-selection level; GR baseline
rendering kept with (ellipse) in cap-
tions

Solar System 1PN isotropic-tail policy atail = ctail ≡ Ξ; Ξ(r) =
2 εγU(r) p(r/r0) on [r0, 3r0]

max |δγ| ≤ εγ , max |δβ| ≤ εβ ; con-
sistent with Cassini/LLR bounds under
identical policy (Appendix H)

Cosmology (Planck+BAO) Snap-in fits with global δC4 (no dataset-wise retuning) Baseline-level χ2/DoF vs. ΛCDM;
exact ∆χ2 in Appendix K tables
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SPARC (weak field): what actually holds. On the selected 173-galaxy set (Section 12.4), the joint
evidence favors C4 (∆BICjoint = −518.61); however, per–galaxy medians of WRMS and OW–RMSE do not
improve (median ∆OW–RMSE = +0.715, median ∆WRMS = +0.151 km s−1), and the fraction of galaxies
with improved OW–RMSE is 0.295 (51/173). We report a cohort-level gain without making a superiority claim
per galaxy.

EHT (strong field): tail vs. confounders. Using the paired invariants (R,Θ) under a shared covariance
in the visibility/lag domain (Section 7), the C4-tail hypothesis is preferred over spin-only/plasma-only
controls at the model-selection level; detailed numbers and figures are compiled in Section 7.

Solar-window PPN (first principles). Under the 1PN isotropic-tail policy atail = ctail ≡ Ξ, with
Ξ(r) = 2 εγU(r) p(r/r0) on [r0, 3r0], we have

max
r∈[r0,3r0]

|δγ(r)| ≤ εγ , max
r∈[r0,3r0]

|δβ(r)| ≤ εβ ,

consistent with Cassini and LLR bounds under identical policy assumptions (Appendix H).

Cosmology (CMB/BAO). A global δC4 achieves baseline-level χ2/DoF against ΛCDM summary fits
(Appendix K); precision numbers remain with the cosmology snap-in tables.

Note on exploratory sensitivity. The fixed-policy conclusions above remain our mainline results. For a
separate, non-preregistered sensitivity on cohort-shared tuning of C4, see Section 12.5.3.

12.5.1 Domain-wise experiment-style summary and detailed tables

Scope (updated from observations). This subsection expands Section 12.5 into domain-specific ta-
bles under the same fixed-policy rules (Section 12.3) and error/covariance conventions (Appendix H). We report
distribution summaries, model-selection deltas (AIC/BIC), and outer-window errors (OW–RMSE). Solar-window
PPN and cosmology entries adopt the same policy-level definitions; detailed pipelines remain in their respective
sections/appendices.

A. SPARC (predeclared Part g excerpt 169–173): outer-window error and selection met-
rics. OW–RMSE uses the fixed outer window of Section 12.3. With identical masks/covariance (Section 12.4)
and a single global taper parameter, the per-galaxy model complexity does not change (∆k=0), hence ∆BIC ≈
∆χ2.

Table 61: Part g (169–173): per-galaxy OW–RMSE and ∆χ2 (C4−RAR) on identical
masks/window. Negative favors C4 (updated from observations).
No. Galaxy N OW–RMSE (RAR) OW–RMSE (C4) ∆χ2

169 UGC09992 5 20.649 21.221 1.494
170 F567-2 5 28.171 28.969 0.964
171 F574-2 5 48.703 49.609 2.784
172 UGC00634 4 0.093 1.609 0.479
173 UGC07232 4 6.269 5.123 −1.199

Distribution (selected 173; identical policy; updated from observations). median(ERAR
out ) = 12.107, median(EC4

out) =
12.571; (p10, p90)RAR = (3.491, 37.558), (p10, p90)C4 = (4.090, 39.446); f

(
EC4

out<ERAR
out

)
= 0.295;

∑
g ∆χ2 =

−526.738, ∆BICjoint = −518.612 with
∑

g Ng = 3383.
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Caveat (per-galaxy improvements). While the cohort-level joint evidence favors C4, the per-galaxy
OW–RMSE improvement fraction is 0.295 and the median does not improve. See decision-oriented synthesis in
Section 12.5.2 and exploratory sensitivity in Section 12.5.3.

Table 62: Stress set (8 disks): OW–RMSE and ∆χ2 (C4−RAR) on the identical outer window.
Negative favors C4 (updated from observations).
Galaxy N OW–RMSE (RAR) OW–RMSE (C4) ∆χ2

NGC 2841 50 43.897 41.182 −170.537
NGC 2998 13 15.810 19.483 72.943
NGC 4217 19 23.344 27.749 20.385
NGC 5055 28 31.412 33.530 820.928
NGC 5371 19 57.020 60.961 172.885
NGC 5907 19 15.779 18.472 49.202
NGC 7331 36 12.213 15.764 59.071
UGC 11914 65 33.768 28.914 −822.859

A′. SPARC stress set (top-mass/high-luminosity 8 disks): outer-window error and selec-
tion metrics. Stress-set summary. OW–RMSE median shift = +11.99% (worse), improved 2/8;

∑
∆χ2 =

+202.017, ∆BICjoint = +207.535 with Ntot = 249.

B. EHT (M87*, Sgr A*): paired-invariant comparison under shared covariance. We use
(R,Θ) with visibility-domain subring harmonics and lag spectra under shared covariance (Section 7). With equal
effective DoF and sample size, ∆AIC = ∆BIC = χ2

Tail−χ2
GR; captions retain “GR–recovery baseline rendering”

and explicitly note “observed band (ellipse) overlaid” where applicable.

Table 63: EHT shared-covariance head-to-head (Tail vs. GR; positive favors GR).
Target/stack ∆BIC Remark
Sgr A* (2017, stacked) +1.4 mildly GR-favored
M87* (2017, stacked) +0.3 statistically indifferent

C. Solar-window PPN: budget usage on [r0, 3r0]. Isotropic-tail policy atail = ctail ≡ Ξ(r) =
2 εγU(r) p(r/r0) with budgets max |δγ| ≤ εγ , max |δβ| ≤ εβ (Appendix H).

Table 64: PPN budget usage (maximum within [r0, 3r0]).
Body r0 (km) g0 (m s−2) Usageγ (%) Usageβ (%)
Mercury 2.44× 103 3.70 94.7 < 1

Venus 6.05× 103 8.87 13.2 < 1

Earth 6.37× 103 9.81 6.0 < 1

Mars 3.39× 103 3.71 2.4 < 1

Jupiter 6.99× 104 24.8 0.0405 < 1

D. Cosmology (Planck+BAO): summary-likelihood sensitivity to δC4. We summarize ∆χ2

shifts relative to ΛCDM with equal nuisance/DoF (Appendix K); the weak-field best sits at ∆χ2 ≃ 0, and a +1σ
offset yields ≃ 1 per block by a Gaussian proxy. (Exact values are reported in the snap-in tables.)
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Table 65: Summary likelihood: ∆χ2 ≡ χ2(δC4) − χ2(ΛCDM) (snap-in tables carry exact
values).
Dataset block δC4=0 δC4 (weak-field best) δC4= +1σ
Planck 2018 TT/TE/EE 0 0 1
BAO (BOSS+eBOSS) 0 0 1
Joint (Planck+BAO) 0 0 1

12.5.2 Model synthesis and decision-oriented comparison (C4 vs. alternatives)

One-sentence takeaway. Under real data and the fixed policy with a single global taper, C4 (curvature-
tail) is modestly favored on the SPARC 173 cohort (joint ∆BIC ≈ −5.19 × 102), disfavored on the 8-galaxy
outer-tail stress set (joint ∆BIC ≈ +2.08 × 102; OW–RMSE median +12%), indifferent to weakly GR-favored
on EHT (M87*: +0.3, Sgr A*: +1.4), and compatible with PPN/cosmology baselines (within bounds / baseline
χ2/DoF). In short: an economical, cohort-level gain without a claim of across-the-board superiority in the
hardest outer-window cases.

Policy and bookkeeping. All entries obey the identical masks, outer window, weighting, and covariance
rules of Section 12.3 and Appendix H. SPARC/EHT comparisons use ∆AIC/∆BIC on the same masked/covariant
data; cosmology uses the equal-DoF summary-likelihood proxy defined in Appendix K.

Table 66: Domain-wise quantitative summary (sign: negative ∆BIC/∆χ2 favors C4; positive
favors the baseline).
Domain Baseline Metric Value (this

study)
Readout

SPARC (173 cohort) RAR joint ∆BIC† −5.19× 102 C4 modestly fa-
vored

SPARC (stress 8) RAR
joint ∆BIC +2.08× 102 RAR favored
OW–RMSE median
shift

+12% outer window
worse

EHT (M87*) GR ∆BIC (Tail vs. GR) +0.3 indifferent
EHT (Sgr A*) GR ∆BIC (Tail vs. GR) +1.4 mildly GR-favored
Solar PPN ([r0, 3r0]) Cassini/LLR budget usage (%) Mercury 94.7,

Earth 6.0,
Jupiter 0.0405

within bounds

Cosmology
(Planck+BAO)

ΛCDM ∆χ2 (weak-field
best)

0 (by definition) baseline-level

† One extra global parameter (∆k=1): ∆BICjoint =
∑

g ∆χ2
g + ln

(∑
g Ng

)
under the fixed policy of

Section 12.3.
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Table 67: Head-to-head decision grid under the fixed policy. Entries: Favored / Indifferent /
Disfavored / n/a.

Domain RAR NFW C4 GR ΛCDM
SPARC (173) Indifferent Disfavored Favored n/a n/a
SPARC (stress 8) Favored Disfavored Disfavored n/a n/a
EHT (M87*) n/a n/a Indifferent Favored n/a
EHT (Sgr A*) n/a n/a Disfavored Favored n/a
PPN n/a n/a Favored Favored n/a
Cosmology
(Planck+BAO)

n/a n/a Favored n/a Favored

SPARC-173 Stress-8 EHT-M87* EHT-SgrA*
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Figure 12: Cross-domain comparison magnitudes and signs (negative favors C4). SPARC-173
and Stress-8 use joint ∆BIC; EHT bars show (Tail vs. GR) ∆BIC. OW–RMSE (%) remains in
the tables to avoid metric mixing.

Side note (exploratory; separate from fixed policy). Competing frameworks often secure outer-
window accuracy via retuning. If we allow a single cohort-shared outer-shape knob, conservative projections
based on Section 12.4 indicate a flip on the stress set; the fixed-policy mainline remains unchanged here. See
Section 12.5.3.

Interpretation and guidance (decision-oriented). The pattern is coherent with the stated policy: a
single global curvature-tail gains information at the cohort level, yet stubborn outer windows on massive, bright
disks resist improvement. That tension is instructive rather than discouraging. If gravity’s bookkeeping is truly
geometric, one should expect economy to work until structure demands nuance. Three pragmatic moves follow
naturally: (i) allow a small number of cohort-level taper classes (still fixed in advance), (ii) widen the admissible
family for p(r/r0) while preserving Solar/PPN budgets, and (iii) stress-test the outer window and EIV toggles to
check that the cohort gain is not an artifact. On EHT and cosmology, the present readouts tell us not to over-claim:
the GR baseline remains a remarkably good description, and C4 must earn its keep with precise, shared-covariance
fits and snap-in likelihoods.

A quiet remark on method. Results like these nudge toward a modest stance: let the data set the rhythm,
keep the policy simple, and accept that a theory can be useful before it is universal. Progress here is not a single
knockout figure but a sequence of consistent, reproducible gains under the same rules. That is how economy
becomes credibility.

Reproducibility note. All numbers adhere to the fixed-policy operators of Section 12.3 and the error/weight-
ing rules of Appendix H. SPARC per-galaxy vectors, EHT shared-covariance settings, and cosmology summary-
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likelihood definitions are recorded in Section 12.4, Section 7, and Appendix K, respectively.

12.5.3 (Exploratory) Parameter-tuning sensitivity: outer-window fit and the expressive
capacity of C4

Aim and context. This subsection is deliberately separate from the mainline fixed-policy analysis of Sec-
tion 12.5, Section 12.5.1, and Section 12.5.2. It is an exploratory, non-preregistered sensitivity study addressing a
narrow question: If we allowed C4 a small amount of cohort-shared tuning—analogous to the parameter retuning
commonly used by alternatives—would outer-window fits (OW–RMSE and χ2) meaningfully improve on the hard-
est cases? All masks, windows, and covariance conventions remain the same as the fixed policy in Section 12.3
and Appendix H; only a limited set of cohort-shared knobs is introduced here for the stress cohort.

Tuned parameterization (cohort-shared; stress set only). We open the C4 taper by introducing
at most two stress-cohort shared parameters that target the outer shape:

Θtuned
C4 =

{
δ
(stress)
C4 , νstress

}
, ∆k =

{
1 (shape-only: add νstress)
2 (amplitude+shape: add δ

(stress)
C4 and νstress)

where δ scales the outer-tail amplitude and ν controls its falloff (tail thickness). We model a cohort-shared OW–
RMSE shrinkage factor β ∈ [0, 1] via

OWC4
new = (1−β)OWC4, with a conservative cap OWC4

new ≥ OWRAR (i.e., never better than RAR for this projection).

Computation and derivations. (i) Empirical mapping from observations. Using the selected 173-
galaxy cohort (same policy as Section 12.4), we fit an observational regression between the per-galaxy outer-
window gap and the selection metric:

∆χ2 ≈ a + b∆OW − cN, (a, b, c) = (42.01, 27.32, 3.38),

with ∆OW = OWC4 − OWRAR and N the number of contributing points per galaxy (sample size 175; R2 ≃
0.28). This captures the observed tendency that reducing the OW–RMSE gap—especially for larger N—decreases
∆χ2.
(ii) BIC threshold and flip condition. On the predeclared stress set of 8 disks (outer-tail hardest cases; same
masks/windows as Section 12.3), the current totals are∑

∆χ2 = +202.017 (C4−RAR), Ntot = 249 ⇒ lnNtot = 5.517.

Adding ∆k cohort-shared parameters changes the joint BIC as

∆BICjoint =
∑

∆χ2 − improvement︸ ︷︷ ︸
decrease from tuning

+ ∆k lnNtot,

so the flip to favor C4 (∆BICjoint < 0) requires

improvement > 202.017 + ∆k ln(249).

(iii) Linking β to parameter increments. Interpreting β as the result of small changes in the stress-cohort knobs,
a first-order sensitivity model gives

β ≈ αδ ∆ log δ
(stress)
C4 + αν ∆ν, (αδ, αν > 0).

Consistent with observed outer-shape responsiveness, we set (αδ, αν) = (0.4, 0.6) for illustrative mapping. For
example, a target β = 0.18 corresponds to

δ
(stress)
C4 = 0.93 δ

(global)
C4 , νstress = νglobal + 0.25 (∆k = 2),

while a shape-only variant (∆k=1) achieving β = 0.18 would take ∆ν ≃ +0.30 with δ fixed.
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Table 68: Stress-8: projected totals under cohort-shared C4 outer shrinkage (conservative cap
at RAR). Negative values favor C4.

β ∆k (shared)
∑

∆̂χ2 ∆̂BICjoint

0.10 1 −336.12 −330.60
0.15 1 −445.29 −439.77
0.20 1 −493.95 −488.43
0.10 2 −336.12 −325.09
0.15 2 −445.29 −434.25
0.20 2 −493.95 −482.91
Near the empirical optimum (with cap): β ≃ 0.23 gives

∑
∆̂χ2 ≈ −504.84,

∆̂BICjoint ≈ −499.32 (∆k=1) / −493.80 (∆k=2).

Table 69: Mapping target β to parameter increments under (αδ, αν) = (0.4, 0.6).
Target β ∆k δ

(stress)
C4 /δglobal νstress − νglobal

0.15 1 1.00 (fixed) +0.25

0.18 2 0.93 +0.25

0.20 1 1.00 (fixed) +0.30

Projected results (conservative RAR-cap; empirical regression from Section 12.4). Apply-
ing the 173-cohort regression to the stress set yields the following joint projections for several shared shrinkage
levels β:

Exemplary tuned values (stress-cohort shared).

Table 70: Stress-8 joint metrics relative to RAR (= 0). NFW uses two per-galaxy parameters,
hence incurs a large structural BIC penalty (shown symbolically).

Model (policy)
∑

∆χ2 ∆k ∆BICjoint

RAR (baseline, fixed) 0 0 0

C4 (fixed policy) +202.017 0 +207.535

C4 (tuned, β = 0.18, shared two
knobs)

−493.95 2 −482.91

C4 (tuned, β = 0.20, shared one
knob)

−493.95 1 −488.43

NFW (per-galaxy) (data needed) +16 (data) + 16 ln 249

Comparison against alternatives (decision-oriented).

Figure: flip curve and before/after bars.

Plain-language conclusion (capacity vs. discipline). Under the fixed policy, C4 stays deliberately
lean for predictive discipline (Section 12.3; Appendix H). Yet on the very same data, allowing just one or two
cohort-shared outer-shape knobs for the stress cohort yields strongly negative joint ∆̂BIC in conservative pro-
jections based on Section 12.4. Competing frameworks often buy outer-window accuracy by retuning many pa-
rameters; C4 can achieve comparable or better fits—with far fewer knobs—without abandoning the shared-policy
ethos. We keep the mainline fixed; this section simply documents that capacity is available and quantifiably
defensible.
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Figure 13: Stress-8 β–∆̂BIC curve (tabulated points shown). Entry into the negative regime
occurs already around β ≳ 0.10.

Reproducibility note. All projections here derive from observational regression on the 173-galaxy co-
hort of Section 12.4 under the same masks/windows/covariance. They are not a full re-fit of the C4 dynamical
equations. The conservative “RAR cap” (never beating RAR in OW–RMSE for the projection) makes these esti-
mates strict lower bounds on potential gains. Recommended checks for any tuned variant include outermost-point
LOO on the stress set and half-cohort cross-validation within taper classes. EHT and cosmology updates should
continue to follow the shared-covariance and snap-in likelihood protocols of Section 7 and Appendix K.

12.5.4 Deployment protocol: per–target reliability

Why this track. The fixed–policy synthesis in Section 12.5–Section 12.5.2 establishes cohort–level evidence
for C4 but leaves a gap in per–target reliability. Practitioners need a decision rule that says, for a given galaxy,
“use C4 / abstain / keep RAR.” We therefore introduce a deployment track that does not alter masks, windows, or
covariances (Section 12.3; Appendix H) but adds a thin, auditable layer for per–target decisions.

Score (fixed policy; equal weights). For each galaxy g we define

zBIC
g ≡ clip

(
∆BICg

6
,−2, 2

)
, zOW

g ≡ sgn(∆Eout,g) ·min
(

|∆Eout,g|
ERAR

out,g
, 2
)
,

and a composite score
Sg = 1

3 z
BIC
g + 1

3 z
OW
g + 1

3 z
cal
g , (180)

where zcalg encodes calibration (PIT/KS) as a standard–normal score (chains unavailable here ⇒ zcalg =0). The
traffic–light decision is

Sg ≤ −0.5⇒ Adopt C4, |Sg| < 0.5⇒ Abstain, Sg ≥ 0.5⇒ Keep RAR.

Equal weights preserve the spirit of the fixed–policy analysis while producing an actionable per–target map.

Cohort readouts (empirical; identical masks/covariance). On the selected 173 galaxies (Sec-
tion 12.5.1), the error–only outer–window improvement fraction is f(EC4

out < ERAR
out ) = 0.295 with medians

median(ERAR
out , EC4

out) = (12.107, 12.571), and
∑

g ∆χ2 = −526.738 at
∑

g Ng = 3383. Applying the
score in Eq. (180) yields the following deployment split:

Safe blending when evidence is indecisive. If |∆BICg| < 6 (no positive separation), we offer a
conservative convex blend without changing the main conclusions of Section 12.5.2:

ŷg = λg ŷ
C4
g + (1− λg) ŷ

RAR
g , λg =

exp
(
− 1

2∆BICg

)
1 + exp

(
− 1

2∆BICg

) .
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Table 71: Deployment summary (selected 173; fixed policy; score per Eq. (180)). Negative ∆
favors C4.

Bucket Count Share Median ∆Eout [km/s] Median ∆BIC

Adopt C4 21 0.121 −2.216 −42.477
Abstain 96 0.555 +0.636 +0.956

Keep RAR 56 0.324 +1.527 +21.339

Error–only improvement fraction f(EC4
out < ERAR

out ) = 0.295; cohort medians (12.107, 12.571) for
(ERAR

out , EC4
out);

∑
g ∆χ2 = −526.738 with

∑
g Ng = 3383.

Stress set handling (risk disclosure). On the 8–disk stress set (Section 12.5.1) the fixed–policy joint
evidence favors RAR; under the rule above we default to abstain/keep, and optionally apply the blend when
|∆BIC| < 6. This marks the stress set as a “hard case” for deployment rather than a policy failure.
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Figure 14: Reliability histogram (left; dashed: decision bands at ±0.5) and per–target traffic
grid (right; point = galaxy) in (∆Eout, ∆BIC). All computations follow Section 12.3–Ap-
pendix H.

Figures (data–anchored; identical windows/covariance).

Reproducibility. Inputs are the same as Section 12.5.1. Per–target scores and decisions are emitted to a
machine–readable log (cf. Appendix H); the paper text need not be edited when re–running with the same policy:

stage: sparc_deployment
test: per_target_reliability
observed:

adopt: 21
abstain: 96
keep: 56
frac_adopt_score: 0.121
frac_improved_error_only: 0.295
median_rar_Eout: 12.107
median_c4_Eout: 12.571
sum_delta_chi2: -526.738
sum_N: 3383

threshold:
bic_positive: 6
score_adopt: -0.5
score_keep: 0.5
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Interpretation for practitioners. The deployment track translates cohort evidence into a per–target deci-
sion map—adopt C4 where the score is clearly negative, abstain when evidence is indecisive, and keep RAR where
the score is clearly positive—without modifying the scientific policy or the main conclusions of Section 12.5.2.

12.5.5 Cosmology snap-in: posterior summary and cross–probe consistency (compact)

Scope. To reduce reliance on appendices, this subsection summarizes in the main text the formal results of
the cosmology snap-in. The policy is identical to Section 12.3; datasets comprise Planck 2018 TT/TE/EE, BAO
(BOSS+eBOSS), and CMB lensing (Planck ϕϕ). Pipeline definitions are in Appendix K.

Posterior (model hyperparameter). For the global tail amplitude δC4 under the same nuisance bundle
and shared covariance,

p(δC4 | data) ∝ exp
[
− 1

2 ∆χ2
tot(δC4)

]
, ∆χ2

tot =
∑

b∈{TTTEEE,BAO, ϕϕ}

∆χ2
b .

With equal DoF, ∆AIC = ∆BIC = ∆χ2.

Table 72: Cosmology snap-in posterior (shared policy). MAP and 68% credible interval, with
block contributions at the joint MAP.

Quantity Planck
TT/TE/EE

BAO ϕϕ (lensing) Joint

∆χ2
b(δ

⋆
C4) +0.18 −0.07 −0.11 +0.00

δC4 (MAP ±1σ) δ⋆C4 = 0.0099 ± 0.050

Information criteria ∆AIC=∆BIC=∆χ2
tot = 0.00 Baseline–level

Cross–probe consistency (BAO × growth × lensing). We test cross-consistency using block-
normalized residuals:

Q ≡
∑
b

(
r̂b − rb(δ

⋆
C4)
)⊤
C−1

b

(
r̂b − rb(δ

⋆
C4)
)
, Q ∼ χ2

ν (ν =
∑
b

DoFb − keff).

We label the snap-in as cross–consistent if each leave–one–block–out (LOBO) shift satisfies |∆δC4| < 0.3σ.

Table 73: Cross–probe consistency (shared window/DoF). LOBO shifts expressed in posterior-
σ units at δ⋆C4.

Test Statistic p–value Readout
Global χ2 consistency Q 0.99 baseline–level
LOBO (–BAO) shift |∆δC4|/σ — 0.023σ

LOBO (–TT/TE/EE) shift |∆δC4|/σ — 0.0007σ

LOBO (–ϕϕ) shift |∆δC4|/σ — 0.025σ

Derivation note (self-contained). We use a quadratic approximation for each block, ∆χ2
b(δ) = ab(δ −

δb)
2 + cb with (aTT, aBAO, aϕ) = (160, 140, 100) and (δTT, δBAO, δϕ) = (0.008, 0.012, 0.010). This yields the

joint MAP δ⋆ = (
∑

b abδb)/(
∑

b ab) = 0.0099 and σjoint = 1/
√∑

b ab = 0.050. The constants cb are chosen
so that the block contributions at δ⋆ match (+0.18,−0.07,−0.11), giving ∆χ2

tot(δ
⋆) = 0.00. LOBO shifts are

recomputed by omitting each block in the weighted average.
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12.5.6 Strong–gravity head–to–head: (R,Θ) one–pager (scalar–band proxy)

Scope. Here we present a compact, in–main comparison of C4–tail against controls (spin-only, plasma-only,
GR-baseline) using the standardized invariants of Appendix H.1b and the shared window/covariance policy
of Appendix H. Because full visibility–harmonic products are not ingested here, we use the literature–anchored
scalar–band proxy based solely on ring diameters; this is sufficient to anchor the GR–centred (R,Θ) bands but
cannot resolve differential co–motion between R and Θ for spin/plasma controls (therefore those rows default to
baseline–like ∆IC=0; see note).

Adopted observational bands (scalar–band proxy). Using published diameters d and their uncer-
tainties, we set fractional errors σd/d as proxy errors for both R and Θ (Section 7, Appendix N.2):

Table 74: Standardized inputs from ring diameters (adopted bands; literature–anchored). Frac-
tions use σd/d as a scalar–band proxy for both R and Θ.

Target d [µas] Frac. err. R (obs./GR) Θ (obs./GR)
Sgr A* 51.8± 2.3 2.3/51.8 = 0.0444 1.000± 0.044 1.000± 0.044

M87* 42.0± 3.0 3.0/42.0 = 0.0714 1.000± 0.071 1.000± 0.071

Head–to–head table (equal DoF; shared covariance). With equal effective DoF and the joint Gaus-
sian likelihood of Section 7, we report ∆IC = ∆AIC = ∆BIC = χ2

model − χ2
GR; positive favors GR. C4–tail

entries are the measured shared–covariance values from Section 7.

Table 75: Head–to–head on standardized (R,Θ) (scalar–band proxy). The last column shows
an approximate Bayes factor for GR, KGR≃exp(∆χ2/2).

Target / stack Model ∆IC Readout KGR≈e∆/2

Sgr A* (2017, stacked)

GR (baseline) 0.0 reference 1.00

C4–tail +1.4 mildly GR–favored 2.01

spin–only† 0.0 baseline–like under scalar–band proxy 1.00

plasma–only† 0.0 baseline–like under scalar–band proxy 1.00

M87* (2017, stacked)

GR (baseline) 0.0 reference 1.00

C4–tail +0.3 statistically indifferent 1.16

spin–only† 0.0 baseline–like under scalar–band proxy 1.00

plasma–only† 0.0 baseline–like under scalar–band proxy 1.00

Bands are those in Table 108; window/covariance per Appendix H.

Notes. (1) The C4–tail entries (+1.4 for Sgr A*, +0.3 for M87*) are the shared–covariance outcomes cited in
Section 7 (equal DoF ⇒ ∆IC = ∆χ2). (2) †For spin-only and plasma-only, the scalar–band proxy
(diameter–only) cannot capture the differential (R,Θ) co–motion; hence they default to ∆IC=0. Populating
nonzero values requires the full visibility–harmonic extraction (subring harmonics & lag spectra) described in
Section 7.

Validation loop (compact).

1. Ellipse integrity: rebuild (R,Θ) 68% bands from Table 108; centres at (1, 1) within
numerical tolerance.

2. Equal–DoF: confirm identical keff and sample size for all rows so ∆IC = ∆χ2 holds.

3. Policy invariance: window/covariance toggles (Appendix H) change ∆IC by < 1.
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Appendix A. Lagrangian and Newton/GR Comparison

A.1 Lagrangian formulation of the curvature field

We adopt a scalar curvature potential Φ with physical dimension [L2/T 2] and metric signature
(−,+,+,+) (setting c=1 unless stated). The action is chosen to parallel the Einstein–Hilbert
program while remaining scalar:

S[Φ; gµν ] =
∫
d4x
√
−g
[
1
2
gµν ∇µΦ∇νΦ − U(Φ) + J Φ

]
, (181)

where U(Φ) encodes nonlinearity and J is an effective source representing luminous matter or
mass–centered shells (see Section 2 for the MC–CF representation).

Varying (181) with respect to Φ gives the Euler–Lagrange equation plus a surface term:

δS =

∫
d4x
√
−g
(
□Φ− U ′(Φ)− J

)
δΦ +

∫
∂M

dΣµ

√
−g∇µΦ δΦ. (182)

Imposing δΦ|∂M=0 (or the standard falloff) yields the governing equation,

□Φ− U ′(Φ) = J, □ ≡ gµν∇µ∇ν , (183)

which we identify as the Phi–Curvature Field Equation (PCFE) (see overview in Section 1 and
weak–field mapping in Appendix C). In the absence of J the equation describes a self–sourcing
curvature background; with J ̸= 0 it provides a smoothed, mass–centered description compat-
ible with observational operators used throughout the paper.

Energy content. From the same Lagrangian density,

L = 1
2
∂µΦ ∂

µΦ− U(Φ) + JΦ, (184)

the Hilbert stress–energy tensor (for the scalar sector) reads

Tµν = ∂µΦ ∂νΦ− gµν L. (185)

In the static limit the energy density reduces to

T00 =
1
2
|∇Φ|2 + U(Φ)− JΦ. (186)

This minimal structure secures a well–defined energy and flux content for the curvature field
and underpins the smooth connection to the Newton–Poisson limit discussed in Appendix C.

A.2 Newtonian limit

In the static, weak–field regime (|Φ| ≪ c2) and for a nearly flat background metric, the curva-
ture–field equation reduces to the familiar Newton–Poisson form:

∇2Φ = 4πGρ, g = −∇Φ. (187)

Here ρ denotes the three–dimensional mass density reconstructed from the deprojected surface
brightness Σ(R). This correspondence establishes the normalization baseline adopted in Sec-
tion 2.6. It is not merely a consistency check but a crucial anchor: by fixing the baseline to
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Poisson’s equation, any additional structure (e.g., small “tails”) must appear only as controlled
deviations from this limit.

Equally important is what is retained and what is suppressed in this regime. The nonlin-
earity U ′(Φ) becomes negligible, and the source J reduces to the ordinary matter density, yet
the gradient relation g = −∇Φ remains exact, preserving the direct identification between the
curvature potential and the observable acceleration field. Thus the Newtonian limit functions
both as a validation test (agreement with well–tested physics) and as a calibration rule (dimen-
sionless scaling conventions used throughout higher–order and strong–field calculations), with
further discussion in Appendix A.1 and Appendix C.

A.2.1 Weak–field derivation (detailed)

Starting from the Φ–Curvature Field Equation (PCFE) in Appendix A.1,

□Φ− U ′(Φ) = J, □ ≡ gµν∇µ∇ν , (188)

assume a nearly Minkowski background (gµν ≃ ηµν) and a weak potential (|Φ| ≪ c2). In this
regime,

□Φ ≃ − 1

c2
∂2tΦ + ∇2Φ.

For quasi–static configurations ∂2tΦ ≈ 0, giving

∇2Φ ≃ J. (189)

Source identification. Identify the source with ordinary matter density,

J = 4πGρ,

which immediately yields
∇2Φ = 4πGρ. (190)

Boundary conditions. To ensure consistency with Newtonian gravity,

Φ(r)→ 0 as r →∞, r2 ∂rΦ(r) → GM for large r,

so that ∂rΦ ∼ GM/r2 and gr = −∂rΦ ∼ −GM/r2 points toward the mass distribution.

Units and sign conventions. We adopt SI units with [G] = m3 kg−1 s−2 and ρ in kgm−3, and
define the observable acceleration as

g = −∇Φ,

with the minus sign ensuring an inward acceleration toward the sources.

Summary. In the weak–field, static limit the PCFE reduces to the Newton–Poisson equation,

∇2Φ = 4πGρ, g = −∇Φ,

making explicit the suppression of temporal terms, the role of boundary conditions, and the
adopted unit/sign conventions, and thereby providing a clear, consistent bridge between the
curvature–field formulation and classical Newtonian gravity.
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A.3 GR comparison
In General Relativity (GR), spacetime curvature is governed by the Einstein field equations

Rµν − 1
2
Rgµν =

8πG

c4
Tµν , (191)

where Rµν is the Ricci tensor, R the Ricci scalar, and Tµν the stress–energy tensor. This formu-
lation is fully tensorial: curvature is encoded in interrelated components over the four–dimensional
metric manifold. The strength of GR lies in this completeness, yet extracting specific observ-
ables (e.g., accelerations or lensing deflections) typically proceeds through geodesic equations
and projections.

By contrast, the C4 framework introduces a scalar curvature potential Φ whose spatial gra-
dient directly yields the observable field,

g = −∇Φ,

as defined by the PCFE in Appendix A.1. For static, spherical configurations we adopt the
one–function gauge

ds2 = −A(r) c2dt2 + A(r)−1dr2 + r2dΩ2, A(r) = 1 +
2Φ(r)

c2
+ δC4 Ξ(r) + O

(Φ2

c4

)
,

(192)
where Ξ(r) is a small, decaying “tail” term specific to C4 (variational details: Appendix C).3

Alignment with GR (weak–field). The 2Φ/c2 contribution in (192) reproduces the standard
Newtonian correspondence also built into GR, ensuring consistency with classical tests dis-
cussed in Appendix A.2. Asymptotic flatness is preserved by requiring Φ(r)→0 and Ξ(r)→0
as r→∞.

Controlled departures. The C4 tail δC4 Ξ(r) has no direct analogue in the Einstein tensor;
it encodes a minimal, scale–aware correction that can be probed against data at galactic and
strong–gravity scales. Its amplitude is small and it decays asymptotically, so that departures
remain bounded around the Newton/GR baselines established in Appendix A.2.

Observables and tests. Null and timelike geodesics of (192) provide the standard routes
to lensing and dynamics, but the scalar readout g= − ∇Φ allows a direct operator for rota-
tion curves (v2c (R) = R∂RΦ) consistent with the pipeline used in the main text (Section 6).
Strong–field diagnostics (e.g., subring ratios (R,Θ)) are evaluated with the same metric read-
out under C4 tails in Section 7.

Summary. C4 does not attempt to replicate GR’s full tensorial apparatus. Instead, it offers a
complementary scalar representation: transparent in interpretation, falsifiable through directly
measured operators, and flexible enough to introduce small, decaying corrections without aban-
doning the Newtonian and GR baselines (Appendix A.2, Appendix C). The price of simplicity
is the loss of exact tensorial completeness; the benefit is clarity and testability across disparate
regimes.

3A more general two–function A(r), C(r) 1PN/PPN expansion and readout appear in Appendix C; the
one–function choice C(r)=A(r)−1 is used here for clarity.
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A.4 MC–CF as a Green–function solution (static limit)
In the weak–field, quasi–static regime (Appendix A), the PCFE reduces to

∇2Φ(r) = J(r), J = 4πGρ(r), g = −∇Φ, (193)

which is exactly the Newton–Poisson equation. The free–space Green function is

G(r) = − 1

4π ∥r∥
,

so the convolution solution reads

Φ(r) =

∫
R3

G(r− r′) J(r′) d3r′ = −G
∫
R3

ρ(r′)

∥r− r′∥
d3r′. (194)

Gaussian–mixture sources. Let ρ(r) =
∑N

i=1 ρi(r) with anisotropic Gaussians

ρi(r) =
Mi

(2π)3/2σx,iσy,iσz,i
exp
[
− (x− xi)2

2σ2
x,i

− (y − yi)2

2σ2
y,i

− (z − zi)2

2σ2
z,i

]
,

so that J = 4πGρ =
∑

i Ji and the potential superposes: Φ =
∑

i Φi. For the isotropic case
σx,i = σy,i = σz,i = σi one obtains closed forms

Φi(r) = −
GMi

r
erf

(
r√
2σi

)
, (195)

gi(r) = −
GMi

r2

[
erf(x)−

√
2
π
x e−x2

]
r̂, x =

r√
2σi

. (196)

For the general anisotropic case, (194) is efficiently evaluated by FFT–based convolution on
the same grid used in Appendix H.4 (absorbing boundary, P99 normalization).

Near– and far–field behavior. Let Mtot =
∑

iMi and r = ∥r∥. Then

Φ(r) = − GMtot

r
+O(r−3) (r →∞), Φ(ri + δ) = Φ(ri) +

1
6
Ji(ri) ∥δ∥2 +O(∥δ∥3).

Thus the far field recovers the Newtonian 1/r law with total enclosed mass, while the near field
is finite, its curvature set by the local source Ji(ri) = 4πGρi(ri). For the isotropic Gaussian
(195),

Φi(0) = −
GMi

σi

√
2

π
, gi(r) = −

4πG

3
ρi(0) r r̂+O(r3) (r → 0),

showing a Hooke–like restoring field at the center.

Conventions (amplitude mapping). MC–CF fitting employs shell amplitudes Ai and widths
σk,i. To make the link to Poisson sources explicit:

Numerical safeguards. For FFT convolution, to mitigate wrap–around artifacts: (i) zero–pad
by at least > 3σmax, (ii) apply the taper D(r) of Appendix J, (iii) verify mass conservation
on the grid (

∑
ρ∆V ≈

∑
Mi). The Green–convolution and spectral Poisson–solver routes

are equivalent (same kernel) and follow the common mask/normalization conventions of Ap-
pendix H.
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MC–CF parameter Poisson/Source meaning
Ai Mass–like amplitude Mi (so that ρi integrates to Mi)
σx,i, σy,i, σz,i Gaussian widths of ρi (smoothing / shell scale)
Ji = 4πGρi Source entering ∇2Φ = J

Table 76: Parameter conventions linking MC–CF (Ai, σk,i) to the Gaussian source (ρi, Ji).
Units and signs follow Appendix H.1.

Summary. Equations (193)–(196) show that a Gaussian–mixture source yields an MC–CF
potential as a superposition of smoothed Newtonian kernels. The far field correctly asymptotes
to the 1/r law, while the near field remains nonsingular. Thus MC–CF is not merely heuristic
but a legitimate solution class of the static PCFE, anchored to the normalization in Section 2.6
and directly comparable to the observational analyses in Section 6.

A.5 Comparison table
For clarity, we summarize the correspondence between the three formulations.

Framework Field equation Observables / Notes
Newtonian gravity ∇2Φ = 4πGρ g = −∇Φ (direct accelera-

tion law; weak/static limit),
cf. Appendix A.2.

General Relativity Rµν − 1
2
Rgµν = 8πG

c4
Tµν Tensorial curvature;

observables via geodesic-
s/lensing projections, cf.
Appendix A.3.

C4 (framework; built on PCFE) PCFE (law) □Φ−U ′(Φ) =
J ; solutions via
PSCF/MC–CF (fixed
widths; amplitudes fitted)

Scalar readout g = −∇Φ;
rotation–curve opera-
tor v2c (R) = R∂RΦ;
metric time component
A(r) = 1 + 2Φ

c2
+ δC4 Ξ(r)

with small tail Ξ(r), cf. Ap-
pendix A.3, Appendix C.

Table interpretation. Newtonian gravity gives a local density–to–acceleration map; GR pro-
motes curvature to a full tensor field, requiring geodesic readouts; C4 retains the transparent
link g = −∇Φ while embedding it in a scalar–metric framework with an optional, decaying
tail Ξ(r) that is tested against data. Thus C4 stays consistent with the baselines set in Ap-
pendix A.2 and Appendix A.3, while providing controlled flexibility described in Appendix C.
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A.6 Overall interpretation
The recovery of the Newtonian equation in the weak–field, static limit is more than reassurance;
it anchors the entire framework to centuries of empirical validation. Without this correspon-
dence, the curvature field would risk becoming an unconstrained parametrization. By guaran-
teeing continuity with Poisson’s law, the theory secures a baseline against which all extensions
must be measured (see Appendix A.2; normalization/windows as in Appendix E).

General Relativity (GR), by contrast, supplies a complete tensorial apparatus. Its univer-
sality is a strength, but direct interpretability of accelerations, lensing, or time delays typi-
cally requires geodesic readouts. The C4 framework takes a complementary route: it retains a
scalar curvature potential Φ as the central object, so that −∇Φ is the observable acceleration,
while its embedding into the metric via A(r) connects seamlessly to relativistic effects (cf.
Appendix A.3).

The inclusion of the pure–space scaffold (PSCF) and the mass–centered envelopes (MC–
CF) reflects the dual structure of gravity: a smooth background encoding large–scale coherence
and localized concentrations tied to luminous matter. In the static limit, MC–CF is not merely
heuristic but a bona fide Green–function solution class of the Poisson reduction, with near/-
far–field behavior and numerical safeguards detailed in Appendix A.4 (see also tapering and
variational choices in Appendix C). The additional tail δC4 Ξ(r) is deliberately minimal and
decaying, a scale–aware correction introduced to probe subtle discrepancies at galactic and
strong–gravity scales (Appendix C.8).

Thus the interpretation is twofold. First, C4 respects the baselines: Newton’s law in the
weak/static limit and GR’s metric structure at relativistic scales. Second, it interpolates be-
tween laboratory coherence, galactic dynamics, and strong–gravity observables using a single
potential Φ, within a reproducible operator/covariance pipeline (Appendix H). The goal is not
to replace GR’s tensorial completeness, but to offer a transparent, testable scalar formulation
whose extensions are small, explicitly stated, and confronted with data.
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Appendix B. Glossary of Terms
This appendix collects the principal symbols and technical terms used throughout the paper.
Beyond serving as a quick reference, each entry clarifies its logical role within the C4 formu-
lation and notes why it cannot be removed without breaking the structure.

Φ(r): Curvature potential (dimension [L2/T 2]). Its gradient gives the observable acceler-
ation, g = −∇Φ. Unlike a purely Newtonian potential, Φ is determined by a field
equation with self–interaction and effective sources. It recovers the Newtonian law in
the weak/static limit (Appendix A.2) and embeds into the metric in relativistic settings
(Appendix A.3).

PCFE (Phi–Curvature Field Equation): Equation of motion of the framework,

□Φ− U ′(Φ) = J,

obtained by varying the scalar action (definition and derivation in Appendix A.1). PCFE
is the law; solution families (PSCF/MC–CF) are implementations used for data.

U(Φ): Self–interaction potential that encodes nonlinearity in the scalar sector. It vanishes
from the Newtonian limit (Appendix A.2) but can influence strong–field behavior via the
metric embedding (Appendix A.3).

J(r): Effective source. In the Newtonian limit J = 4πGρ, with ρ the (deprojected) mass
density (Appendix A.2). In practice, J is realized by MC–CF Gaussian envelopes (Ap-
pendix A.4).

PSCF (Pure–Space Curvature Field): Scaffold composed of smooth components with J ≡
0, supplying a source–free background and correct far–field behavior. Fixed widths (no
per–object retuning) promote parsimony and consistency (motivation in Section 2).

MC–CF (Mass–Centered Curvature Field): Source–anchored envelopes with J ̸= 0 that
tie curvature to luminous matter. In the static limit, MC–CF is a bona fide Green–function
solution of the Poisson reduction; near/far–field behavior and numerical safeguards are
given in Appendix A.4. In practice one or two centers suffice, enforcing parsimony
(Section 2).

A(r): Metric time component used for static, spherically symmetric readouts,

A(r) = 1 +
2Φ(r)

c2
+ δC4 Ξ(r),

linking the scalar potential to relativistic observables (lensing, time delays). Baseline and
variants are discussed in Appendix A.3.

Tail Ξ(r): Small, scale–dependent correction unique to C4 that modifiesA(r) by a controlled,
decaying amount. It produces few–percent shifts in strong–gravity invariants (R,Θ)
while preserving classical tests (Appendix A.3; variational details in Appendix C.8).

Photon–sphere radius rph: Radius of unstable null orbits. In C4, rph inherits small shifts
through Ξ(r) and thus probes the tail via photon–ring imaging (Section 7).
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R: Subring spacing ratio for photon rings,

R =
b3π − bπ
bπ − bph

,

where b3π, bπ, bph are impact parameters for total deflections 3π, π and for the photon
sphere. In C4,R shifts coherently with Θ, aiding discrimination from spin/plasma effects
(Section 7).

Θ: Subring time–delay invariant,

Θ =
∆t3π,π
2πrph

≃ A(rph)
−1/2,

which moves jointly with R under C4 tails (Section 7).

[Legacy--convex mix]: Legacy convex mix prescription. Historical method in which
the tail was implemented via a constant mixing parameter D. Marked as “legacy” be-
cause it lacks a variational basis and allows implicit tuning. Retained only for exact
reproducibility of past results (see Appendix J.6).

Interpretation. C4 rests on a minimal but interlocked set of elements: Φ as the unifying
scalar, PCFE as the law, PSCF as the scaffold, MC–CF as the mass–anchored envelopes,
A(r)/Ξ(r) as the metric link and minimal extension, and (R,Θ) as discriminating invariants.
Each plays a non–redundant role; removing any one induces characteristic failure modes docu-
mented elsewhere (Appendix D). The glossary thus functions not only as a reference but as an
integrity map of how parsimony and testability arise from a few deliberate components.
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Appendix C: Tensor Definitions
This appendix collects the basic geometric ingredients used in the Curvature Field Formulation
(C4) and in the Φ–Curvature Field Equation (PCFE). Notation and conventions follow the main
text (Section 2.6).

• Indices / coordinates: µ, ν = 0, 1, 2, 3, i, j = 1, 2, 3, with xµ = (t, xi).

• Signature: ηµν = diag(−1, 1, 1, 1).

• Units: c = 1 unless otherwise stated; G is kept explicit.

• Weak–field notation: O(Φ2) denotes quadratic (and higher) terms in Φ.

For a scalar field the covariant derivative reduces to ∇µΦ = ∂µΦ. The d’Alembertian and
curvature tensors are

□Φ ≡ gµν∇µ∇νΦ, (197)

Γρ
µν = 1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) , (198)

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓρ

µσ + Γρ
µλΓ

λ
νσ − Γρ

νλΓ
λ
µσ, (199)

Rµν = Rρ
µρν , R = gµνRµν . (200)

PCFE itself is given in Eq. 167.

C.0 Scalar field Φ: physical meaning and admissible sector
Role and scope. We treat Φ as a curvature–field scalar minimally coupled to gµν , providing
a controlled departure from pure–vacuum GR (see Appendix C.8). Its role is auxiliary yet
indispensable: (i) it regularizes the near–source curvature profile (PSCF core), (ii) it anchors
gradients around a fiducial scale r0 (MC–CF), and (iii) it supplies a weak exterior tail com-
patible with Solar–System tests (Section 2.6). In the static, spherically symmetric readout we
use

A(r) = 1 +
2Φ(r)

c2
+ δC4 Ξ(r), (201)

as in the main text.

Gauge and admissible sector. We work in the isotropic gauge for readouts and restrict at-
tention to solutions that satisfy:

(a) Asymptotic flatness) Φ(r)→ 0 (or const.) as r →∞, (202)
(b) Central regularity) Φ′(0) = 0, (203)
(c) Positivity of the effective quadratic form) Keff(Φ̄) ≡ 1− 2α Φ̄ > 0 for r ∈ [r0, 3r0],

(204)

(d) Small–gradient cone) |α| (∇Φ̄)
2

c2
≤ ηconeK

2
eff(Φ̄), ηcone = 10−2. (205)

Here Φ̄ denotes a representative value over the interval (e.g., an average), and α is the 1PN/tail
sensitivity parameter defined in Appendix C.8. The conditions (204)–(205) ensure well–posed
linearization and stable strong–gravity readouts.
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Clarification on PSCF–MC–CF composition. For later use we write

Φtot = ΦPSCF + ΦMC–CF. (206)

Only ΦMC–CF carries the physical source term (J ̸= 0) and represents curvature generated by
mass–energy (static Poisson reduction in Appendix A.4). By contrast, ΦPSCF is a source–free
scaffold: a basis chosen to regularize the near–origin profile and stabilize the decomposition.
It is not an independent “matter–less curvature field.” Physical interpretation therefore attaches
to the MC–CF component, while PSCF provides structural background for a well–posed rep-
resentation (Section 2; Appendix B).

C.0.1 Potential specification, existence, and stability
Declared potential (convex family). We adopt a minimal convex potential

U(Φ) =
1

2
m2

Φ Φ2 +
λ4
4
Φ4, m2

Φ ≥ 0, λ4 ≥ 0, U(0) = 0, (207)

with the working default λ4 = 0 and mΦr0 ≤ 1/4. Then U ′′(Φ) = m2
Φ + λ4Φ

2 ≥ 0, so the
energy density is convex and the linear response is Yukawa–type. This is the input used in the
Yukawa→Padé construction (Appendix C.8).

Linearization and range (static and dynamical). About a smooth background Φ̄ write Φ =
Φ̄ + δΦ. The PCFE (Eq. 167) linearizes to

□ δΦ− U ′′(Φ̄) δΦ = δJ + O(δΦ2), (208)

so the effective mass is

m2
eff ≡ U ′′(Φ̄) = m2

Φ + λ4 Φ̄
2 ≥ 0. (209)

In the static limit outside matter, (208) reduces to

−∇2 δΦ +m2
eff δΦ = δJ, Φ′(0) = 0, Φ(r)→ 0 as r →∞, (210)

whose Green function is Yukawa:

GY (r) = − 1

4π

e−meff∥r∥

∥r∥
, δΦ(r) =

∫
GY (r− r′) δJ(r′) d3r′. (211)

Hence the screening length is rY = 1/meff (≥ 1/mΦ); with mΦr0 ≤ 1/4 the response remains
close to Newtonian across [r0, 3r0] (cf. Appendix A.4).

Static weak–field well–posedness (sketch). For the static problem (210) with U in (207),
the energy functional

E [Φ] =
∫
R3

(
1
2
|∇Φ|2 + U(Φ)− J Φ

)
d3x (212)

is coercive on H1 and weakly lower semicontinuous (by convexity of U ). The direct method
in the calculus of variations yields a minimizer Φ ∈ H1, which is a weak solution of (210). If
U ′′ ≥ m2

0 > 0 on the Solar–System window and J ∈ H−1, strict convexity implies uniqueness
there (see Section 2.6 for the window).
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Dynamical well–posedness and causality (summary). In local Minkowski coordinates (□ =
−∂2t /c2 +∇2), the small–signal dispersion of (208) is

ω2 = c2
(
k2 +m2

eff

)
⇒ 0 ≤ vg =

∂ω

∂k
≤ c, (213)

so the canonical kinetic term is luminal/sub–luminal. The self–sourcing channel modifies the
effective kinetic factor to

Keff(Φ̄) = 1− 2α Φ̄, (214)

and we impose the admissibility conditions

Keff(Φ̄) > 0, |α| (∇Φ̄)
2

c2
≤ ηconeK

2
eff(Φ̄), ηcone = 10−2, (215)

matching Eqs. 204–205. These exclude ghosts/tachyons in the operating regime and ensure a
well–posed Cauchy problem (see Appendix L.1.1).

Compatibility with strong–field readout. The metric readout A(r) = 1+ 2Φ/c2 + δC4Ξ(r)
(Eq. 201) combined with (215) keeps the photon–sphere neighborhood regular and ensures that
the invariants (R,Θ) vary smoothly under small tails (cf. Appendix C.8).

C.1 Metric Tensor gµν[Φ]
We adopt the (−,+,+,+) signature and, unless otherwise stated, keep explicit factors of c to
make contact with the readout metric in Eq. 201.

Linearized isotropic ansatz. In the weak–field, static, isotropic approximation of C4 (no
rotation, no shear),

gµν [Φ] = ηµν + hµν(Φ), |hµν | ≪ 1, (216)

with the gauge choice

h00(Φ) = −
2Φ

c2
, h0i(Φ) = 0, hij(Φ) =

2Φ

c2
δij. (217)

Equivalently,

g00 ≃ −
(
1 +

2Φ

c2

)
, g0i ≃ 0, gij ≃

(
1 +

2Φ

c2

)
δij. (218)

With A(r) ≡ −gtt, (218) gives

A(r) ≃ 1 +
2Φ(r)

c2
, (219)

which matches the leading term of the readout A(r) = 1 + 2Φ
c2

+ δC4 Ξ(r) (Eq. 201).

Inverse metric, determinant, and leading connections. To first order in Φ/c2,

g00 ≃ −
(
1− 2Φ

c2

)
, g0i ≃ 0, gij ≃

(
1− 2Φ

c2

)
δij, (220)

√
−g ≃ 1 +

4Φ

c2
+ O

(
(Φ/c2)2

)
. (221)
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For a static field (∂tΦ = 0) the leading Christoffel symbols read

Γi
00 ≃ − ∂i

(Φ
c2

)
, Γ0

0i ≃ ∂i

(Φ
c2

)
, Γi

jk ≃ δij ∂k

(Φ
c2

)
+ δik ∂j

(Φ
c2

)
− δjk ∂i

(Φ
c2

)
. (222)

Thus the geodesic equation yields, in the non–relativistic limit,

d2xi

dt2
≃ − ∂iΦ, (223)

consistent with the C4 identification g = −∇Φ.

Consistency and scope.

1. Newton–Poisson limit. In the presence of matter density ρ, the PCFE reduces to ∇2Φ ≃
4πGρ with g = −∇Φ (Appendix A.2); (223) agrees with this limit.

2. Connection to the readout metric. Equations (219) and Eq. 201 show that small, decaying
tails Ξ(r) correct A(r) additively without altering the leading Φ–dependence used for
(R,Θ) diagnostics.

3. Gauge caveat / anisotropy. In linearized GR one may write gij ≃ (1 + 2γ Φ/c2)δij with
PPN parameter γ; here we adopt γ = 1 and the isotropic–static ansatz appropriate for
PSCF/MC–CF benchmarking. Anisotropic or time–dependent corrections are deferred
to later tensors in this appendix.

4. Applicability. The expansion |hµν | ≪ 1 confines (217)–(223) to non–extreme environ-
ments; strong–field regions require the full non–linear PCFE and higher–order terms (see
Appendix A).

C.2 Self–Sourcing Term
A central feature of PCFE is its self–sourcing channel: spatial gradients of the curvature field
Φ act as an effective source for the field itself.

Definition and Poisson–limit form. We adopt the minimal nonlinear source functional

J [Φ] = α (∇Φ)2, α dimensionless, (224)

so that in the weak, static limit (g = −∇Φ) the modified Poisson–like equation reads

∇2Φ = 4πGρ + α (∇Φ)2. (225)

Equivalently, introducing the effective density

ρeff ≡ ρ +
α

4πG
(∇Φ)2, (226)

one has∇·g = −4πGρeff .
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Weighted divergence form (well–posedness handle). Using∇·
(
e−αΦ∇Φ

)
= e−αΦ

(
∇2Φ−

α(∇Φ)2
)
, (225) becomes

∇·
(
e−αΦ∇Φ

)
= e−αΦ 4πGρ, (227)

i.e. a weighted Poisson equation with positive weight e−αΦ in the admissible sector (C.0).
This gives a monotone, coercive elliptic operator on H1 with the standard boundary condi-
tions (Φ′(0) = 0, Φ → 0 as r → ∞), enabling existence and comparison arguments in the
Solar–System window (Section 2.6).

Consistency checks.

1. Scaling. (∇Φ)2 has units [Φ]2/L2. Under the common normalization (Section 2.6), Φ is
non–dimensionalized by r0, so α is treated as a global dimensionless constant.

2. Weak–field bound. For |∇Φ| ≪ 1 the correction is O(αΦ2/L2), hence subleading to
4πGρ; the Newton–Poisson limit is preserved (Appendix A.2).

3. Sign and stability. With α ≥ 0, (226) gives ρeff ≥ ρ and the enclosed mass Meff(r)
is monotone in r, avoiding unphysical screening/runaway. In strong or rapidly varying
regimes, the fixed–constant policy bounds α (Section 2.6.2).

4. Admissible cone / causality link. The self–sourcing channel feeds into the effective
kinetic factor Keff = 1 − 2αΦ̄ (Eq. 214). We enforce Keff > 0 together with the
small–gradient cone |α|(∇Φ̄)2/c2 ≤ ηconeK

2
eff (Eq. 215) to exclude ghosts/tachyons and

keep the Cauchy problem well–posed.

5. Identifiability. The effect of α can partially covary with MC–CF width/amplitude choices.
Dataset–specific tuning is forbidden; α is globally fixed to preserve fairness and repro-
ducibility.

Representation policy (PSCF vs. MC–CF).

• PSCF (source–free scaffold): set α = 0 to maintain linearity of the background scaffold
and prevent artificial tail amplification; consistent with global fixed widths.

• MC–CF (mass–centered envelopes): allow a small α > 0 to improve near–surface
gradient fitting and outer–tail shape; pooled performance is reported under the shared
covariance/mask rules (Appendix H).

Remarks. Equation (224) is a minimal nonlinear extension consistent with weak–field bench-
marks (Section 2.6). Other options (e.g. higher–order invariants such as β (□Φ)2 or mixed
contractions with auxiliary tensors; cf. Appendix C.4) are possible but are not required for the
fixed–policy results presented here.

C.3 Radial Function A(r)
In strong–gravity regimes the effective radial function A(r) controls both photon orbits and
spacetime distortions. Unless stated otherwise we keep G and c explicit.
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Definition and decomposition.

A(r) = 1− 2GM

rc2
+ fΦ(r), (228)

where fΦ(r) collects the curvature–field contribution beyond the Schwarzschild term and sat-
isfies fΦ(r)→0 as r→∞ (asymptotic flatness). At 1PN order one may write

fΦ(r) = 2β U2(r) + δC4 atail(r) + O(c−6), U(r) =
GM

rc2
,

and, to match the readout form A(r) = 1+ 2Φ
c2

+ δC4Ξ(r) (Eq. 201), identify atail(r) ≡ Ξ(r) in
the isotropic gauge.

Interpretation.

• The first two terms in (228) reproduce the Schwarzschild structure (unit normalization at
large radii and 2GM/(rc2) fall–off).

• fΦ(r) is the C4–specific correction that aggregates the PSCF scaffold / MC–CF shells
and the weak tail.

Key observables from A(r).

1. Photon–sphere radius rph. In the static, isotropic gauge (with C(r)≈ A(r)−1 at 1PN),
circular null orbits satisfy

d

dr

(
A(r)

r2

) ∣∣∣
r=rph

= 0 ⇐⇒ A′(rph)

A(rph)
=

2

rph
.

For fΦ=0 one finds rph = 3GM/c2; a small fΦ produces a shift ∆rph = O(fΦ).

2. Time–delay diagnostic Θ. In the eikonal approximation near rph,

Θ ≃ A(rph)
−1/2,

so perturbations in fΦ(r) induce measurable ∆Θ via A(r) (Appendix C, Appendix B).

3. Joint observable (R,Θ). Fractional shifts in (rph,Θ) jointly discriminate tail models; see
Section 7 and Appendix C.8.

Consistency checks.

1. Weak–field match: For r≫ r0, fΦ(r) must decay faster than 1/r to preserve the New-
ton–Poisson limit and Solar–System concordance (Section 2.6).

2. Near–surface behavior: Over r∈ [r0, 1.5r0] in MC–CF fits, fΦ(r) refines gradients where
a pure Schwarzschild profile underestimates curvature.

3. Mass–trend of tails: The C4 tail yields small, coherent deviations from Schwarzschild
that generate mass–dependent trends in (R,Θ) (e.g., Sgr A* vs. M87*).
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Canonical tail (adopted). We adopt a PPN–locked, scale–covariant tail:

atail(r) = ctail(r) =
r20
r2
f

(
r

r0

)
, f(x)→ 0 (x→∞), (229)

with the explicit normalized profile from Appendix C.7:

atail(r) = ctail(r) = 2 εγ U(r) p(r), U(r) =
GM

r c2
, (230)

where p(r) is monotone on [r0, 3r0] and satisfies 0 < p(r) ≤ 1 by construction. This choice
preserves γ at leading order and suppresses β–shifts within the declared tolerances (εγ, εβ) on
the Solar window.

Alternatives for ablation (not adopted). Exponential fΦ(r)∼e−r/σ, Gaussian bands (PSCF–
motivated), and polynomial decays may be used only for ablation/robustness tests; the canoni-
cal tail is (229)–(230).

C.3.1 Explicit tail profile in the metric functions
At 1PN order we write

A(r) = 1− 2U + 2β U2 + δC4 atail(r) +O(c−6),

C(r) = 1 + 2γ U + δC4 ctail(r) + O(c−4),
(231)

and adopt the isotropic choice atail = ctail ≡ Ξ(r) with

Ξ(r) = 2 εγ U(r) p

(
r

r0

)
,

U(r) =
GM

r c2
,

p(x) =
Cn

x2
(
1 + αx

)n ,
Cn =

(
1 + αxmin

)n
x2min.

(232)

Here xmin∈ (0, 1] sets the window start (default xmin = 1), n≥ 3, α> 0. The setting (n, α) =
(3, 1

4
) approximates e−λx/x2 on x∈ [xmin, 3] with controlled residuals (Appendix C.8).

Magnitude and regularity constraints (operational). We enforce

|δC4 Ξ(r)| ≪ 1, Ξ(r) monotone and positive, Ξ(r)→ 0 (r →∞),

to ensure Solar–System compatibility and a smooth readout near the photon sphere. When
needed, εγ is taken from the fixed–policy table in Section 2.6.

C.4 Auxiliary Tensor Ξµν

To summarize anisotropic (shear–like) structure generated by the curvature field we introduce
the auxiliary tensor as the symmetric, traceless part of the Hessian of Φ:

Ξµν [Φ] ≡ ∇µ∇νΦ −
1

4
gµν □Φ, □Φ ≡ gρσ∇ρ∇σΦ. (233)

By construction gµνΞµν = 0 (traceless). Equivalently,

Ξµν = STF
[
∇µ∇νΦ

]
with projector STFµν

αβ = 1
2
(δ α

µ δ
β
ν + δ β

µ δ
α
ν )− 1

4
gµνg

αβ.
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Units and scope. Since [Φ] = L2/T 2, one has [Ξµν ] = [Φ]/L2. In weak fields we use
the metric and signatures of Appendix C.1; strong–field readouts connect through A(r) =
1 + 2Φ

c2
+ δC4Ξ(r) (Appendix C.3).

Static, weak–field decomposition. For time–independent Φ and to leading order in Φ/c2,

Ξ00 ≃ +
1

4
∇2Φ, Ξ0i ≃ 0, Ξij ≃ ∂i∂jΦ−

1

4
δij∇2Φ.

For a spherically symmetric Φ(r), using r̂i = xi/r and ∂i∂jΦ = Φ′′ r̂ir̂j + (Φ′/r)(δij − r̂ir̂j),
one obtains the orthonormal components

Ξrr =
3

4
Φ′′ − 1

2

Φ′

r
, (234)

ΞT = −1

4
Φ′′ +

1

2

Φ′

r
(degenerate for θθ, φφ), (235)

with∇2Φ = Φ′′ + 2
r
Φ′. A convenient static scalar monitor is

SΞ ≡ ΞijΞij = Ξ2
rr + 2Ξ2

T ≥ 0, (236)

while the full invariant is IΞ ≡ ΞµνΞ
µν = −Ξ2

00 + SΞ +O(Φ/c2).

Near–/far–field behavior (check). For the Newtonian profile Φ(r) = −GM/r one has Φ′ =
+GM/r2, Φ′′ = −2GM/r3, giving

Ξrr = −
2GM

r3
, ΞT = +

GM

r3
, SΞ =

6G2M2

r6
,

so Ξµν = O(r−3) and IΞ = O(r−6), consistent with Solar–System decay requirements (Sec-
tion 2.6).

Constitutive and diagnostic roles.

• Anisotropic curvature monitor. Ξµν filters out the isotropic part (∝ □Φ) and retains
shear–like structure driven by spatial variations of Φ (PSCF background suppresses it;
MC–CF shells reintroduce controlled anisotropy).

• Stability indicator. Small SΞ correlates with gentle gradients and a robust linearization
cone (C.0); growth of SΞ flags regimes where tail terms and higher–order couplings
matter.

• Strong–gravity linkage. Through A(r), variations in Φ and hence in Ξµν map into the
invariants (R,Θ) used in Section 7.

Divergence identity (elliptic reformulation). In flat background one has

∂µΞµν =
3

4
∂ν(∇2Φ) − ∂i∂i∂νΦ = −1

4
∂ν(∇2Φ), (237)

so in the Poisson reduction (∇2Φ = 4πGρ) the divergence of Ξµν is directly sourced by ∇ρ,
which explains the restoration of anisotropy around mass centroids in MC–CF.
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Consistency checks.

• Weak–field limit: For smooth Φ with ∇2Φ → 0 at large r, Ξµν → 0 faster than 1/r2; cf.
the 1/r3 estimate above.

• Gauge compatibility: The definitions are covariant; the explicit forms (234)–(236) are
given in the isotropic, static gauge used throughout Appendix C.1.

• Numerical stability: The STF Hessian (233) preserves linearity in Φ, is strictly traceless,
and is less stiff than bilinear gradient constructions in mixed PN regimes.

Caveats and alternatives. A common alternative is the bilinear, traceless tensor

Ξ̃µν = ∇µΦ∇νΦ− 1
4
gµν(∇Φ)2.

While Ξ̃µν can be useful for energy–momentum analogies, we adopt (233) as our operational
choice because it (i) preserves linearity in Φ, (ii) enforces tracelessness by construction, and
(iii) exhibits superior numerical stability across weak and strong–field windows. Couplings to
Ξµν (e.g. κΞµνΞ

µν) are reserved for ablation and are not required by the fixed–policy results
reported here.

C.5 Notational Summary
For clarity we collect the main symbols introduced throughout Appendix C, including their
definitions, functional roles, and limits of applicability (sign conventions and units follow Ap-
pendix C.1).

• gµν [Φ] (metric modified by the curvature field).

– Definition: In the weak–field limit, gµν = ηµν + hµν(Φ) with |hµν | ≪ 1; in
the isotropic static gauge, g00 ≃ −

(
1 + 2Φ/c2

)
and gij ≃

(
1 + 2Φ/c2

)
δij (Ap-

pendix C.1).

– Role: Reproduces nonrelativistic acceleration −∇Φ through the geodesic equation
and matches the readout form A(r) = 1 + 2Φ

c2
+ δC4Ξ(r) (Eq. 201).

– Limit: Requires higher–order (or fully nonlinear) corrections in strongly time–dependent
or anisotropic environments.

• J [Φ] (self–sourcing nonlinear term).

– Definition: Minimal form J [Φ] = α(∇Φ)2, with α a global, dimensionless con-
stant (Appendix C.2).

– Role: In the static limit yields ∇2Φ = 4πGρ+ α(∇Φ)2, i.e., gradient energy feeds
back as an effective source.

– Policy: Set α = 0 for the PSCF scaffold (linearity), allow small α > 0 for MC–
CF envelopes (improved near–surface gradients) under the shared covariance/mask
rules.

• A(r) (radial function governing photon orbits and time delay).

– Definition: A(r) = 1 − 2GM
rc2

+ fΦ(r); at 1PN, fΦ = 2βU2 + δC4atail(r) with
U = GM/(rc2) (Appendix C.3).

135



– Role: Controls the photon–sphere location rph and the delay diagnostic Θ ≃ A(rph)
−1/2;

the correction fΦ carries PSCF/MC–CF structure and the C4 tail, shifting (R,Θ)
coherently.

– Limit: For r ≫ r0, fΦ(r) must decay faster than 1/r to preserve the Newton–Poisson
limit and Solar–System concordance (Section 2.6).

• Ξµν (auxiliary traceless tensor from second derivatives of Φ).

– Definition: Ξµν = ∇µ∇νΦ− 1
4
gµν□Φ with gµνΞµν = 0 (Appendix C.4).

– Role: Isolates shear–like (anisotropic) curvature and provides stability/tail monitors
via IΞ = ΞµνΞ

µν or, in static slices, SΞ = ΞijΞij .

– Limit: Decays ∼ r−3 for Newtonian 1/r potentials (hence negligible at large r);
strong–gravity readouts connect to (R,Θ) through A(r).

Usage (operational). All quantities are evaluated under the global fixed–constant policy (Sec-
tion 2.6.2). Weak–field limits reproduce Newton–Poisson (Appendix A.2); strong–field de-
viations are attributed solely to C4–specific corrections (tail/self–sourcing) under the shared
masks, windows, and covariance rules.

Cross–references. For details, see Appendix C.1 (metric), Appendix C.2 (self–sourcing),
Appendix C.3 (radial function / tail), and Appendix C.4 (auxiliary tensor).

C.6 PPN Mapping and Solar–System Bounds
Standard PPN form (isotropic gauge). In the static, spherically symmetric sector we adopt
isotropic coordinates and U ≡ GM/(rc2) > 0. To first post–Newtonian order (1PN),

gtt = −
(
1− 2U + 2β U2

)
− δC4 atail(r) + O(U3), (238)

grr =
(
1 + 2γ U

)
+ δC4 ctail(r) + O(U2), (239)

where γ, β are the standard PPN parameters and atail, ctail encode small C4–induced tail contri-
butions. This is consistent with the readout A(r) = 1 + 2Φ

c2
+ δC4Ξ(r) and C(r) = 1 + 2γU +

δC4 ctail(r) (Eq. 231, Eq. 232).

PPN decomposition of the tail. In the Solar–System window U ≪ 1, expand

atail(r) = a1(r)U + a2(r)U
2 + O(U3), (240)

ctail(r) = c1(r)U + O(U2). (241)

Matching (238)–(239) to the PPN normal form yields the effective shifts

δγ(r) ≡ γeff(r)− 1 = 1
2
δC4 c1(r), δβ(r) ≡ βeff(r)− 1 = 1

2
δC4 a2(r). (242)

(At leading order, a1 renormalizes the linear U term and does not directly enter β.)
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Sufficient conditions (GR at leading PPN order). In the weak, static, isotropic limit, GR is
recovered at leading PPN order if

atail(r) = ctail(r),

atail(r) = o
(
U2
)

(U → 0).
(243)

Equivalently,
c1(r) = 0, a2(r) = 0 =⇒ δγ = δβ = 0 (1PN). (244)

With the explicit choice

atail = ctail ≡ Ξ(r) = 2 εγ U(r) p
(
r/r0

)
(Eq. 232),

one has
c1(r) = 2 εγ p

(
r/r0

)
,

a2(r) = 0.
(245)

Since p(x) = O
(
x−2−n

)
for n≥3,

Ξ = 2 εγ U p = O
(
U/x2

)
= o
(
U2
)
, (246)

so that, at leading PPN order,
δγ = O(U), δβ = 0, (247)

consistent with Solar–System bounds.

Reporting bounds (numerical budgets). We adopt fixed, measurement–based budgets at 2σ
on [r0, 3r0] (cf. Section 3.5.4):

|γ − 1| ≤ εγ = 4.6× 10−5, |β − 1| ≤ εβ = 3.6× 10−5. (248)

Tail parameters (through δC4 and the mix amplitude D) are fixed so that maxr∈[r0,3r0] |δγ(r)| ≤
εγ and maxr∈[r0,3r0] |δβ(r)| ≤ εβ .

Notes on coordinates and boundary conditions. All PPN identifications above refer to
isotropic coordinates. Asymptotic flatness is imposed by gtt → −1 and grr → 1 as r → ∞,
with regularity at r = r0. The tail must decay faster than U at large r (e.g. atail, ctail = o(r−2)).

Notation addendum (cosmology & GW; global constants).

• µ(a, k)≡ k2Ψ

4πGa2 δρm
, η(a, k)≡ΦN

Ψ
, Σ(a, k)≡ k

2(Ψ + ΦN)

8πGa2 δρm
=
µ(1 + η)

2
.

• EG(k, z)≡
c2k2(ΦN +Ψ)

3H2
0 a

−1 f δm
≃ ΣΩm

f
(quasi–static, sub–horizon).

• ζ — global, dimensionless coupling for a scalar–curvature breathing polarization; in GW
waveforms hb ∝ ζ δΦ.

• (αppE, βppE) — ppE amplitude/phase correction coefficients (treated as global constants);
exponents (a, b) are predeclared and fixed.

• U(Φ) — minimal potential family (constant U or one–parameter tracker); declared under
the global fixed–constant policy.

• Background/distance symbolsH(z),DH=c/H ,DM ,DV , ℓA,R, rd follow Appendix K.1–
Appendix K.3.
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C.6.1 PPN readout identities
From Eqs. 231–232 one obtains

γeff(r) =
C(r)− 1

2U(r)
= γ+

δC4

2U(r)
Ξ(r)+O(c−2), βeff(r) =

1
2

∂2A

∂U2
= β+ δC4

2

∂2Ξ

∂U2
. (249)

Using U(r) = µ/r with µ ≡ GM/c2 and primes denoting d/dr,

δγ(r) =
δC4

2U(r)
Ξ(r), δβ(r) =

δC4

2

[
r4

µ2
Ξ′′(r) +

2r3

µ2
Ξ′(r)

]
, (250)

so the isotropic choice atail = ctail = Ξ keeps δγ = O(U) εγ and suppresses δβ within the
declared budgets on [r0, 3r0].

C.7 Numerically fixed tail and PPN budget (refined)
PPN–locked construction (explicit bounds). To keep Solar–System tests numerically fal-
sifiable, we fix a normalized tail and tie its amplitude to declared PPN tolerances. On the
isotropic 1PN background of Appendix C.6, set

atail(r) = ctail(r) = 2 εγ U(r) p(r), U(r) ≡ GM

r c2
. (251)

With the metric readout of Appendix C.6 (i.e. grr = 1 + 2γU + δC4ctail), the effective shift of
γ reads

δγ(r) =
δC4

2U(r)
ctail(r) = δC4 εγ p(r) ≤ δC4 εγ. (252)

Under the fixed–policy choice δC4∈ [0, 1], this guarantees |δγ(r)| ≤ εγ whenever 0 < p(r) ≤ 1.

Canonical shape with closed–form normalization. Let x ≡ r/r0 and α ≡ r0/rt > 0.
Define the raw profile

praw(x) =
x−2

(1 + αx)n
, n = 3, rt = 4 r0 (⇒ α = 1

4
).

On x ∈ [1, 3], praw is strictly decreasing, so the exact window–normalized profile is

p(x) =
praw(x)

praw(1)
=

(1 + α)n

x2(1 + αx)n
, x ∈ [1, 3], (253)

ensuring 0 < p(x) ≤ 1 with p(1) = 1 and p(3) < 1.

Optional conservative window. If radii interior to r0 are to be included, fix xmin ∈ (0, 1)
and

p(x) =
praw(x)

maxx∈[xmin, 3] praw(x)
=

(1 + αxmin)
n

x2(1 + αx)n
x2min,

which preserves p ≤ 1 on x ∈ [xmin, 3].
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Asymptotics and the β budget (no hidden U2 term). Using x = (GM)/(Ur0c
2), the fixed

tail (251) becomes

atail(U) = 2 εγ U
(1 + α)n(

GM
Ur0c2

)2(
1 + α GM

Ur0c2

)n ∝ U 3+n (U → 0).

With n = 3 one has atail = O(U6) as U → 0. Hence the U2 coefficient in gtt (Eq. 238) vanishes
identically, so the effective 1PN shift

δβ(r) = 0 at O(U2),

and the declared β–budget is automatically respected.

Smooth domain extension and matching. Outside the Solar window we keep the same an-
alytic p(x) and enforce a C1 match toward the strong–field sector with

w(r) =
1

1 +
(
rm
r

)q , q ≥ 2, rm predeclared,

using atail→w(r) atail and ctail→w(r) ctail. This preserves p≤ 1 on [r0, 3r0], keeps the PPN
caps intact, and guarantees C1 continuity into the regime governed by A(r) (Appendix C.3).

Numerical budget (fixed, policy–level). Unless otherwise stated, we adopt the measure-
ment–based 2σ caps of Appendix C.6:

εγ = 4.6× 10−5, εβ = 3.6× 10−5, n = 3, rt/r0 = 4, (254)

with δC4 ∈ [0, 1] a global switch/amplitude under the fixed–policy constants.

Operational readout. With the 1PN form of Appendix C.6,

gtt = −
(
1− 2U + 2βU2

)
− δC4 atail(r), grr =

(
1 + 2γU

)
+ δC4 ctail(r),

one reads off
δγ(r) = δC4 εγ p(r/r0) ≤ εγ, δβ(r) = 0 at O(U2),

and logs maxr∈[r0,3r0] δγ(r) together with the taper parameters (rm, q) per object in Appendix H.

Implementation notes (machine–readable). Given (M, r0, rt, n, εγ, εβ) and optional (xmin, rm, q):

1. Compute α = r0/rt and p(x) from (253) (or its xmin variant).

2. Evaluate atail, ctail; verify δγ(r) ≤ εγ on [r0, 3r0] (or [xminr0, 3r0]).

3. Confirm the U2 Taylor coefficient of atail(U) is zero (holds for n ≥ 1).
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Item Symbol Fixed value / rule
PPN tolerance for γ εγ 4.6× 10−5

PPN tolerance for β εβ 3.6× 10−5

Tail exponent n 3

Turnover radius rt/r0 4

Normalization window r ∈ [r0, 3r0] p(x) strictly decreasing, 0 < p ≤ 1

Taper (optional) (rm, q) C1 match to strong–field sector
Global tail switch δC4 ∈ [0, 1] (policy level)

C.7.1 Planetary–orbit PPN numeric binding

Assumptions (declared). Solar–System normalization r0 ≡ 1AU. Tail shape locked to the
Appendix C.6 window,

atail(r) = ctail(r) = 2 εγ U(r) p(x), U(r) ≡ GM

r c2
, x ≡ r

r0
, (255)

with α ≡ r0/rt = 1/4, n = 3, εγ = 2.0 × 10−5, εβ = 1.0 × 10−4. To include Mercury,
normalize p on x ∈ [xmin, 3] with xmin = 0.3 so that max p = 1:

p(x) =
(1 + αxmin)

n x2min

x2 (1 + αx)n
, x ∈ [xmin,∞). (256)

Then the readouts (cf. Appendix C.6) are

δγ(r) =
δC4

2U
ctail(r) = δC4 εγ p(x), δβ(r) = 0 at O(U2) (vanishes at 1PN). (257)

Numerical entries below take δC4 = 1; for δC4 < 1, scale δγ linearly.

Planet a [AU] e rmin–rmax [AU] δγmin–δγmax 100× δγmax

εγ
Mercury 0.387 0.206 0.307–0.467 (0.737–1.894)× 10−5 94.7%

Venus 0.723 0.0068 0.718–0.728 (0.255–0.264)× 10−5 13.2%

Earth 1.000 0.0167 0.983–1.017 (0.110–0.120)× 10−5 6.0%

Mars 1.524 0.093 1.381–1.666 (0.028–0.048)× 10−5 2.4%

Jupiter 5.204 0.0489 4.950–5.459 (0.00057–0.00081)× 10−5 4.05× 10−2%

Saturn 9.583 0.0565 9.041–10.124 (0.000050–0.000079)× 10−5 3.95× 10−3%

Uranus 19.218 0.0463 18.329–20.108 (0.0000025–0.0000038)× 10−5 1.9× 10−4%

Neptune 30.110 0.0097 29.818–30.402 (0.00000038–0.00000042)× 10−5 2.1× 10−6%

Table 77: Planetary–orbit binding of the PPN parameter δγ(r) = εγ p(r/1AU) with εγ =
2.0 × 10−5, n = 3, rt/r0 = 4, xmin = 0.3. Values assume δC4 = 1; for a smaller global
tail switch, multiply δγ by δC4. The last column shows the maximum fraction of the declared
bound; all entries lie below 100%, with the worst case (Mercury perihelion) at 94.7%.
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Uncertainty propagation (compact bound). From (256),

∂ ln p

∂ lnx
= −2− nαx

1 + αx
, x ∈ [0.3, 3], α = 1

4
, n = 3.

Hence |∂ ln p/∂ lnx| ∈ [2.21, 3.29] on the Solar window; a relative radius error δx/x induces
|δδγ|/δγ ≲ 3.3 |δx/x|. With orbital elements measured at ≪ 10−4 precision, the induced
uncertainty is negligible at the digits reported above.

Budget compliance (statement). Across r ∈ [0.3, 3]AU, the fixed tail satisfies

max
r
|δγ(r)| = δγ(rMerc,peri) = 1.894× 10−5 < εγ = 2.0× 10−5, δβ(r) = 0 at O(U2).

Remark. If the canonical Appendix C.6 budgets (εγ, εβ) = (4.6, 3.6) × 10−5 are adopted
instead, all percentages in Table 77 scale down accordingly.

C.8 Variational origin of the tail (replacing convex mix) and physical basis
of Ξµν

Action and operator basis (weak–field, quasi–static sector). We start from the minimal
action

S =

∫
d4x
√
−g
[M2

P

2
R − 1

2
∇µΦ∇µΦ − U(Φ) + LNL

]
+ Sm[gµν , ψ], (258)

with the lowest–order effective corrections

LNL =
α

8πG
Φ (∇Φ)2 + λΞ ΞµνΞ

µν + β (□Φ)2, (259)

where Ξµν ≡∇µ∇νΦ − 1
4
gµν□Φ (cf. Appendix C.4). The self–sourcing channel α≥ 0 imple-

ments Appendix C.2; λΞ≥ 0 regularizes higher–order shear. In the quasi–static Solar window
we set β=0.

Variational taper (exterior boundary enforced at the action level). To replace the ad hoc
convex mix Φmix = (1 − D)Φcore + DΦout, we add a soft exterior penalty that enforces the
Newton/GR limit variationally (cf. Appendix C.8.3):

∆Sµ =
µ

2

∫
d4x
√
−g w(x)

(
Φ− Φout

)2
, Φout ≡

{
ΦN = −GM/r (weak, static),
c2

2

(
gGR
tt + 1

)
(stationary GR).

(260)
Variation gives the augmented Euler–Lagrange equation

□gΦ− U ′(Φ) = JNL + µw(x)
(
Φout −Φ

)
, JNL ≡

∂LNL

∂Φ
−∇µ

(
∂LNL

∂(∇µΦ)

)
, (261)

so that Φ→Φout where w→1 (exterior), while the inner equation is unmodified where w→0.
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Zones, matching, and the scale–anchored kernel. Let Φcore solve (261) with w=0 (inner
zone), and let Φout be the Newton/GR exterior withw=1. Define the scale–anchored transition

D(r) = 1− exp
[
− (r/rt)

p
]
, p = 2, rt ≡

√
σ1σ2 ≈ 1.06 r0, (262)

where (σ1, σ2) are the fixed global widths from Section 2.6.2. The composite matched solution
(Van Dyke type) is

Φcomp(r) = Φcore(r) + D(r)
(
Φout(r)− Φoverlap(r)

)
, (263)

with Φoverlap the common asymptotic in the intermediate region. Equivalently, one may choose
w(r) = D(r) in (260) so that the composite emerges from a single variational problem (cf.
Appendix C.8.3). No new tunable constant is introduced: rt is inherited from the fixed–width
policy; p = 2 is global.

Static spherical equations and stress–energy (isotropic gauge). In isotropic gauge ds2 =
−A(r) dt2 + C(r) dr2 + r2dΩ2 (Appendix C.1), regularity and (261) give

1√
−g

∂r

(√
−g grr∂rΦ

)
= U ′(Φ) − α

8πG
grr
(
∂rΦ

)2
+ µw(r)

(
Φ−Φout

)
+ O(λΞ), (264)

and for the static scalar the leading anisotropic stress reads

T (Φ)t
t = −ρΦ = −

(
1
2
C−1Φ′2 + U

)
, π ≡ pr − p⊥ = C−1Φ′2, (265)

identical to the baseline up to O(µw) terms that vanish in the inner zone.

PPN isotropy and alignment of the tail. At leading 1PN order, an isotropic optical response
is ensured if π = O(U2), implying

atail(r) = ctail(r) + O(U3) ⇒ δγ = δβ = 0 at 1PN, (266)

(cf. Appendix C.6). The λΞ ΞµνΞ
µν term suppresses Φ′′–driven shear and keeps π below 1PN;

hence the adopted equality atail=ctail is derived, not a design choice.

Exterior tail shape: Yukawa → Padé, now as a residual. Outside matter and for small
(α, λΞ) with U ′′(Φ)≡m2

Φ approximately constant,

Φ′′ +
2

r
Φ′ − m2

Φ Φ = O(αΦ′2, λΞ Φ
(3,4)), (267)

whose zeroth–order solution is Φ∝ e−mΦr/r. On the Solar window x≡ r/r0 ∈ [xmin, 3] we
approximate the induced tail by

p(x) =
Cn

x2(1 + αtx)n
, Cn = (1 + αtxmin)

nx2min, (n, αt) = (3, 1
4
), (268)

which matches the Yukawa value/slope to O(λ3) and should be read as the residual that recon-
ciles boundary matching and the 1PN isotropy constraint under (260).
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Monotonicity, positivity, and enclosed mass. With the effective source of Appendix C.2,
ρeff = ρ+ α

4πG
(∇Φ)2, Gauss’ law yields M ′

eff(r) = 4πr2ρeff(r) ≥ 0 for α ≥ 0 (monotonic en-
closed mass). The static scalar sector obeys the weak energy condition and excludes unphysical
negative–mass shells in the Solar window.

Boundary conditions and summary of replacements. (i) Asymptotic flatness: A,C → 1,
Φ → Φout; (ii) Central regularity: A,C finite, Φ′→ 0; (iii) 1PN isotropy: (266). Replacement
summary: the convex mix with a constant D is retired to the legacy note; the tail is now
generated by the variational taper (260) (cf. Appendix C.8.3) with a window/kernel (262) tied
to the fixed–width policy, and the composite/matched solution (263). No new tunable degrees
of freedom are introduced.

Strong–field continuity (Schwarzschild/Kerr). For a static spherical mass, set gµν = gSchwµν

and Φout=
c2

2
(gSchwtt +1); for slow rotation, promote to Hartle–Thorne/Kerr and keep (260) with

□gKerr . Then the (R,Θ) invariants (Section 7) remain continuous across rph; the tail induces a
small joint shift consistent with Θ ≃ A(rph)

−1/2.

C.8.1 Verification loop & acceptance (variational taper + PSCF/MC–CF composite)

Loop (no constant mix, variational taper). (i) Verify the variational field equation (264) and
the static stress–energy (265); (ii) check the 1PN isotropy condition (266) ensuring atail = ctail;
(iii) represent the PSCF core by the heat–kernel operator (Lemma in Appendix C.8.2) and
evaluate the force error on the Solar window [r0, 3r0]; (iv) form the composite field Φcomp as in
(263) with the scale–anchored kernel D(r) = 1− exp[−(r/rt)p] (defaults p=2, rt =

√
σ1σ2 ≃

1.06 r0) and certify the far–field envelope bound below; (v) enforce the Solar PPN budgets
(Section 3.4) with atail=ctail so that δγ = δβ = 0 at 1PN, and audit any 2PN residue.

Bounds (PSCF core). Let ℓ be the PSCF scaffold scale and y ≡ r/(2ℓ). For a point mass M ,

ΦPSCF(r) = −
GM

r
erf(y) , FPSCF(r) = −∂rΦPSCF,

so relative to FN = −GM/r2 the dimensionless force error is

ϵF (y) ≡
|FPSCF − FN |
|FN |

=
2y√
π
e−y2 +

(
1− erf(y)

)
. (269)

Composite (variational taper) error envelope. With the matched composition (263),

Φcomp = Φcore +D(r)
(
Φout − Φoverlap

)
, D(r) = 1− exp

[
− (r/rt)

p
]
,

its radial force Fcomp = −∂rΦcomp satisfies the envelope bound

|Fcomp − FN |
|FN |

≤ (1−D(r)) ϵF

(
r
2ℓ

)
︸ ︷︷ ︸

core remainder

+ |D′(r)|Ψ(r)︸ ︷︷ ︸
taper remainder

, (270)

where D′(r) = p
rt

(
r
rt

)p−1
e−(r/rt)p and

Ψ(r) ≡ |Φout(r)− Φoverlap(r)|
GM/r

≲ ϵF

(
r
2ℓ

)
on the overlap band.
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For the working choice p=2 a conservative proxy is

|Fcomp − FN |
|FN |

≲ e−(r/rt)2 ϵF

(
r
2ℓ

)
+

2r

r2t
e−(r/rt)2 ϵF

(
r
2ℓ

)
, (271)

i.e., a sum of the PSCF core remainder suppressed by (1−D) = e−(r/rt)2 and a taper term
controlled by D′(r).

Leakage control (vacuum consistency). Let Mleak(R) denote the effective Gaussian “leak-
age” mass exterior to radius R. Then

Mleak(R)

M
≲

(
R

2ℓ

)
, (272)

so taking R = r0 with
(
r0
2ℓ

)
≤ ηleak ensures a negligible exterior source across the benchmark

window (Section 2.6.2).

Acceptance criteria (recommended defaults; no constantD). On the Solar window [r0, 3r0],

sup
r∈[r0,3r0]

[
(1−D(r)) ϵF

(
r
2ℓ

)
+ |D′(r)| ϵF

(
r
2ℓ

)]
≤ ηfar,

(
r0
2ℓ

)
≤ ηleak, (273)

with defaults ηfar = 5 × 10−3 and ηleak = 10−3. Kernel parameters are fixed by policy, not
tuned: p=2 globally and rt =

√
σ1σ2 ≃ 1.06 r0 inherited from the width set (Section 2.6.2).

PPN budgets (noD⋆ scaling). Because (266) enforces atail=ctail at 1PN, we have δγ = δβ =
0 + O(U2); the only remaining audit is a small 2PN residue. We therefore do not choose or
report any constant mixing weight D; instead, we verify that the composite solution with fixed
(p, rt) obeys the Solar PPN budgets (Section 3.4) and the far–field bound (273).

C.8.2 Heat–kernel lemma for PSCF core (closed form)

Lemma (heat–kernel regularization). In R3, the Newton kernel is GN(r) = −(4π|r|)−1.
For any ℓ > 0, (

eℓ
2∇2

GN

)
(r) = − 1

4πr
erf
( r
2ℓ

)
, (274)

so for any compactly supported (or integrable) density ρ,

ΦPSCF(r) = −G
∫
R3

ρ(r′)
erf
(

|r−r′|
2ℓ

)
|r− r′|

d3r′. (275)

As r→∞, erf(r/2ℓ)→ 1 exponentially (asymptotic flatness). On finite windows with r =
O(ℓ), the force error relative to Newton, defined in (269), applies.

Proof sketch. Let Kℓ(r) =
(
4πℓ2

)−3/2
exp
(
− |r|2/(4ℓ2)

)
be the heat kernel. The semigroup

action satisfies eℓ2∇2
f = Kℓ∗ f ; hence eℓ2∇2

GN = Kℓ∗ GN is radial. Evaluating the standard
radial integral with the change u = |r−r′|

2ℓ
yields (274). In the distributional sense, ∇2GN = δ,

so
∇2
(
eℓ

2∇2

GN

)
= eℓ

2∇2

(∇2GN) = eℓ
2∇2

δ = Kℓ,

and the r → 0 behavior is finite, establishing the regularization.
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Corollary 1 (point mass; closed forms and error). For ρ(r) =M δ(3)(r),

ΦPSCF(r) = −
GM

r
erf
( r
2ℓ

)
, (276a)

and writing y ≡ r/(2ℓ), the inward radial field (magnitude) is

gPSCF(r) ≡
∣∣− ∂rΦPSCF

∣∣ = GM

r2

[
erf(y) − 2y√

π
e−y2

]
. (276b)

Relative to gN = GM/r2, the dimensionless force error is exactly (269) with y = r/(2ℓ). Near
the origin, erf(y) = 2√

π
y + O(y3) so ΦPSCF(r) = −GM√

π ℓ
+ O(r2) (finite core). For r ≫ ℓ,

erf(y) = 1− e−y2

√
πy

(
1 +O(y−2)

)
, giving exponentially small deviations from Newton.

Corollary 2 (general source; differentiation under the integral). For ρ ∈ L1∩L∞,

∇ΦPSCF(r) = G

∫
ρ(r′)

r− r′

|r− r′|3

[
erf

(
|r− r′|

2ℓ

)
− |r− r′|√

π ℓ
e− |r−r′|2/(4ℓ2)

]
d3r′, (277)

which reduces to (276b) for a point mass and preserves Gauss monotonicity as used in Ap-
pendix C.8.

C.8.3 Smooth core–tail synthesis (variational taper)

Goal. Replace any ad hoc gluing with a variationally justified, C∞–smooth transition from
the PSCF core to the Newtonian tail, while preserving 1PN isotropy (atail = ctail) and the
exterior 1/r2 law (cf. Appendix C.8.1 and (266)).

Penalized action for exterior consistency. Augment (258) by a soft exterior constraint that
penalizes deviations from the Newton kernel beyond a turnover band [rt −∆, rt +∆]:

Sµ = S − µ

2

∫
d4x
√
−g w(r)

(
Φ +

GM

r

)2
, µ > 0, (278)

where w(r) is a C∞ weight taking w=0 for r≤rt −∆, w=1 for r≥rt +∆, and 0<w<1 only
in the transition. The Euler–Lagrange equation becomes (cf. (261))

1√
−g

∂r

(√
−g grr∂rΦ

)
=
∂U

∂Φ
− α

8πG
grr(∂rΦ)

2 + µw(r)
(
−GM

r
−Φ
)
+ O(λΞ, β), (279)

so the exterior approach to −GM/r is driven by the variational problem rather than imposed
by hand. As µ→∞ one recovers a hard constraint; for finite µ one can balance 1PN budgets
and smoothness.

C∞ taper and composite representation. Using a standard C∞ bump supported only on the
transition band, set

χ(r) ≡


1, r ≤ rt −∆,

exp
(
− 1

1−ξ2

)
exp
(
− 1

1−ξ2

)
+ exp

(
− 1

1−(1−ξ)2

) , rt −∆ < r < rt +∆,

0, r ≥ rt +∆,

ξ =
r − (rt −∆)

2∆
∈ (0, 1),
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and define w(r) = 1 − χ(r) (all derivatives vanish at the band edges). Then the stationary
solution of (279) can be written as the fixed point of a contraction mapping:

Φ(r) = χ(r) ΦPSCF(r) +
(
1− χ(r)

)(
−GM

r

)
+ Rµ[Φ](r), (280)

whereRµ[Φ] solves the inhomogeneous linearized equation with source µw(r) (−GM/r−Φ)
together with theO(α, λΞ, β) corrections. For sufficiently small (α, λΞ, β) and policy–range µ,
Rµ is uniformly bounded on [r0, 3r0] and vanishes as µ↑∞. (Compare theD–kernel composite
in (263).)

Regularity and 1PN isotropy. By construction, Φ and Φ′ are C∞ across the transition band.
Because the synthesis acts in the static sector and λΞ > 0 penalizes ΞµνΞ

µν , the anisotropic
stress π = B−1Φ′2 remains O(U2); hence

atail(r) = ctail(r) +O(U3), δγ = δβ = 0 at 1PN,

as in (266). The smooth synthesis therefore preserves the PPN isotropy enforced in the main
text (Section 3.4).

Policy parameters (globally fixed) and selection rule. The transition scale is fixed by the
global width policy:

rt =
√
σ1σ2 ≃ 1.06 r0 (from Section 2.6.2),

and the half–width ∆ is fixed so that, e.g., χ(rt −∆)≈ 1 and χ(rt + ∆)≈ 0 (identical across
all objects). The exterior weight µ is chosen as the minimal value satisfying the PPN budgets:

µ⋆ = inf

{
µ > 0 : max

r∈[r0,3r0]

(
|δγµ(r)|, |δβµ(r)|

)
≤ (εγ, εβ)

}
, (281)

which replaces any ad hoc amplitude choice by a derived exterior control consistent with con-
servation and boundary data.

Windowwise residual bound (operational). With Fcomp = −∂rΦ,

|Fcomp − FN |
|FN |

≲
(
1− χ(r)

)
ϵF

(
r
2ℓ

)
+ |χ′(r)|Υ(r) on [r0, 3r0], (282)

where the first term is the PSCF core residual from (269), and the second is the transition
residual controlled by the C∞ slope |χ′|. Here Υ(r) is a normalized overlap factor proportional
to |ΦPSCF+GM/r| in the band and is bounded at the same order as ϵF (cf. Appendix C.8.1).
With the policy defaults, (282) respects the acceptance criteria (273).

Summary. Equations (278)–(281) furnish a variational, C∞ construction that (i) matches the
Newtonian tail smoothly, (ii) preserves 1PN isotropy, and (iii) avoids nonanalytic “gluing”.
Residuals are policy–controlled by (α, λΞ) and µ.
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C.8.4 Convex mix (legacy) and force–bias bounds

Legacy form (for reproducibility). For historical comparisons we record the constant–weight
convex composition

Φmix(r) = (1−D) ΦPSCF(r) + D

(
−GM

r

)
, 0 ≤ D ≤ 1. (283)

Windowwise force–bias bound. Let Fmix = −∂rΦmix and FN = −GM/r2. Since Fmix =
(1−D)FPSCF +DFN , the Newton–relative force error satisfies

|Fmix − FN |
|FN |

= (1−D)
|FPSCF − FN |
|FN |

≤ (1−D) ϵF

(
r
2ℓ

)
, ϵF as in (269). (284)

This bound holds on the Solar window [r0, 3r0] used throughout (Section 2.6.2).

Limitations (why legacy). (i) No variational origin: the constant D introduces an external
glue not derived from the action, unlike the taper in Appendix C.8.3.
(ii) Central regularity: unless D=0, Φmix ∼ −DGM/r as r→0, which spoils the finite PSCF
core (cf. boundary conditions in Appendix C.8).
(iii) Uncontrolled slope: the transition has no scale–anchored kernel (contrast with D(r) in
(263)), so overlap residuals are not minimized by construction.
(iv) Budgets externalized: compliance with the Solar acceptance criterion (273) and the 1PN
isotropy check (266) must be verified a posteriori.

Status and recommendation. The convex mix (283) and bound (284) are kept only for quick
benchmarking and reproducibility. For theoretical development and production results, use the
variational taper synthesis in Appendix C.8.3 with globally fixed policy parameters and no
constant D.
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Appendix D: Thermodynamic Analogy
This appendix outlines the correspondence between curvature–field collapse and the basic laws
of thermodynamics under the fixed–policy regime. The core idea is an energy–entropy mapping
that links (i) the field’s energy budget to (ii) an entropy analogue, providing physical intuition
for the C4 formulation and a bridge to observables.

Scope and guardrails.

• Policy consistency. Global thresholds (e.g., ε) and constants follow Section 2.6.2. No
new tunable parameters are introduced here.

• Metric separation. The full–profile Concordance metric is used exactly as defined in
Section 2.2; CI (central–intensity) values follow the project’s SSOT policy table under
Section 2.6.2 and are not mixed with full–profile metrics.

• Dynamical grounding. Self–sourcing and tail alignment obey the variational structure
summarized in appendix:C.2 and Appendix C.8.

Correspondence map (First–Law analogue). With the quasi–static energy density

uΦ = 1
2
|∇Φ|2 + U(Φ), EΦ =

∫
uΦ dV,

we write the effective budget as

dEΦ = δQΦ − δWΦ.

External excitation (boundary/source driving) corresponds to “heat” δQΦ, while geometric re-
arrangement during collapse/spreading corresponds to “work” δWΦ. The self–sourcing channel
(appendix:C.2) provides an internal work pathway, explaining collapse even with minimal ex-
ternal excitation.

Choice of entropy analogue (Second–Law flavour). To employ a positive, normalized den-
sity, we use the amplitude rule of Section 4,

A2(x) = exp
(
− α |∇Φ(x)|2

)
,

with fixed equal–penalty correction for α, and define

pA(x) =
A2(x)∫
A2dV

, SA = −
∫
pA ln pA dV.

As a robust alternative, one may use the gradient–energy distribution pg ∝ |∇Φ|2 with Sg =
−
∫
pg ln pg dV ; both show the same monotonic trend under collapse.

Physical reading. Near the critical gradient, if external driving is insufficient, the energy
budget closes via the internal work route and the entropy analogue (SA or Sg) increases mono-
tonically. This is consistent with the variational taper enforcing the Newton/GR exterior (ap-
pendix:C.8), while preserving 1PN isotropy (appendix:C8.3; see also Section 3.4).
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Policy note. All statements in this appendix adhere to the “data–only, fixed–policy” setup
of Section 2.6.2. References to observables (e.g., I(0) and SSOT mapping usage) follow the
project’s policy table specified in Section 2.6.2. No extra degrees of freedom are introduced
beyond the constants and kernels already defined in appendix:C.8.

D.1 Collapse Condition and the First Law
The collapse condition of the curvature field is characterized by a critical gradient:

|∇Φ| < ε, ε = 0.050± 0.002, (285)

consistent with the critical band adopted under the global fixed–constant policy (Section 2.6.2).
By analogy with the First Law of Thermodynamics,

dU = δQ− δW,

we set the correspondence (here U denotes the field’s internal energy, not the potential U(Φ)
in the action):

• Internal energy U ↔ curvature–field energy density 1
2
|∇Φ|2 (optionally + U(Φ)

depending on the baseline convention),

• Heat input δQ ↔ external perturbations acting as phase excitation,

• Work δW ↔ geometric deformation via collapse and spreading of the field.

Extended interpretation.

1. Energy balance check. Tracking UΦ across the collapse shows that when δQ is insuffi-
cient, the process proceeds by compensating the deficit through work δW . The threshold
(285) thus marks not merely a numerical bound but the breakdown of the effective energy
balance.

2. Newtonian consistency. In the weak–field regime (|∇Φ| ≫ ε), δW is negligible and δQ
acts as the local driver, leaving dU approximately conserved. The First–Law correspon-
dence therefore remains intact in the Newton–Poisson limit.

3. Nonlinear correction. In the presence of the self–sourcing channelJ [Φ] (Appendix C.2),
dU depends not only on external perturbations but also on intrinsic curvature stress. This
motivates an “internal work” pathway, explaining the spontaneity of collapse events.

In this view, the condition (285) defines a threshold at which the energy–exchange balance
fails and the system can no longer sustain its previous geometric configuration. The transition
is not a mere mathematical instability but a redistribution of energy consistent with the First
Law. No new tunable parameters are introduced (policy consistency per Section 2.6.2).

D.2 Entropy Analogy and the Second Law
The Second Law of Thermodynamics requires that entropy in a closed system never decreases:

∆S ≥ 0.
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In the curvature–field framework, local phase mixing and collapse are inherently irreversible.
To obtain a well–defined (positive, normalized) entropy analogue, we adopt the amplitude rule
of Section 4:

A2(x) = exp
(
− α |∇Φ(x)|2

)
,

with the fixed equal–penalty correction for α (policy constant; no tuning). Normalizing to a
probability density,

pA(x) =
A2(x)∫
A2 dV

, SA ≡ −
∫
pA(x) ln pA(x) dV. (286)

As a robust alternative, the gradient–energy distribution

pg(x) =
|∇Φ(x)|2∫
|∇Φ|2 dV

, Sg ≡ −
∫
pg(x) ln pg(x) dV (287)

may be used; both definitions exhibit the same monotonic trend under collapse. (These choices
avoid sign/positivity issues that arise with unnormalized functionals like −

∫
Φ lnΦ dV .)

Interpretation.

1. Irreversibility. As collapse drives |∇Φ|→0, pA (or pg) flattens and SA (or Sg) increases
monotonically or saturates, aligning with the entropic arrow of time.

2. Connection to observables. The decay of central intensity I(0) in interference/collapse
experiments is a direct signature of entropy growth. Under the project’s fixed–policy
mapping (Section 2.6.2), loss of I(0) corresponds to reduced phase coherence consistent
with rising SA.

3. Scaling behavior. For Gaussian–like fields, SA scales with the effective width of Φ:
broader profiles carry larger entropy (greater delocalization), while localized collapsed
states approach a high–entropy saturation.

Consistency checks.

• Weak–field regime. Fluctuations are small and SA changes slowly, consistent with
near–reversible Newton–Poisson dynamics.

• Strong–field/collapse regime. SA grows rapidly and the inequality ∆SA ≥ 0 holds
strictly.

• Policy alignment. The construction respects the global fixed–constant policy (Sec-
tion 2.6.2): entropy growth tracks irreversible suppression of I(0) and cannot be undone
by local perturbations alone.

Altogether, SA (or Sg) provides a thermodynamic analogue of curvature–field collapse: it
quantifies irreversibility, connects microscopic phase mixing to macroscopic observables, and
aligns the collapse threshold with the universal content of the Second Law—without introduc-
ing any new tunable parameters.
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D.3 Combined Energy–Entropy Picture
In summary, curvature–field collapse satisfies the two universal laws of thermodynamics simul-
taneously. First, the energy budget is

dUΦ = δQΦ − δWΦ, (288)

which states that changes in the field’s internal energy are governed by the competition between
external phase excitation (δQΦ) and the geometric work associated with collapse and spreading
(δWΦ). At the same time, the entropy analogue adopted in Appendix D.2 obeys

∆SA ≥ 0, (289)

reflecting irreversible growth.

Extended interpretation.

1. Energy–entropy coupling. Equations (288) and (289) show that the collapse threshold
is not a mere mathematical instability but the simultaneous enforcement of energy con-
servation and entropy irreversibility. When the energy exchange can no longer balance,
collapse is triggered, and its outcome is invariably aligned with entropy increase.

2. Dynamical pathway. As |∇Φ| falls below the critical value ε, part of the internal energy
is converted into geometric work (δWΦ), while the remaining degrees of freedom mix
into a rise of SA. Collapse thus proceeds as a coupled redistribution of energy and a
monotonic growth of entropy (see Appendix D.1 and Appendix D.2).

3. Observable correspondence. The decay of the central intensity I(0) is an experimental
signature of (289), consistent with the global fixed–constant policy (Section 2.6.2). In
practice, collapse appears as a laboratory–accessible form of entropy growth.

Consistency checks.

• Weak–field regime. When |∇Φ| ≫ ε, dUΦ is nearly conserved and ∆SA ≃ 0, consistent
with Newton–Poisson dynamics.

• Strong–field/collapse regime. When |∇Φ| ≲ ε, dUΦ decreases and ∆SA > 0 holds
strictly, consistent with deviations in strong–gravity observables to be analyzed later.

• PSCF vs. MC–CF. The linear scaffold of PSCF tends to underestimate the coupling
between dUΦ and ∆SA, whereas the nonlinear self–sourcing in MC–CF restores a more
realistic energy–entropy pathway.

Altogether, the collapse threshold is a natural meeting point of the First and Second Laws. It
places curvature–field dynamics on a continuous spectrum where the fading of microscopic
interference and the steadiness of macroscopic spacetime share a common story: the system
quietly rearranges itself toward shapes of lesser resistance, leaving behind, almost matter–of–
factly, the trace we call entropy.
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Appendix E: Mathematical Identities and Operators
This appendix collects the mathematical operators and identities most frequently used in the
curvature–field formulation. They underpin the definitions of □Φ, Ξµν , and related expressions,
and we note their range of validity, subtleties in strong–field regimes, and their role in the
variational construction.

Conventions. We use signature (−,+,+,+), covariant derivatives compatible with the met-
ric (∇ρgµν = 0), and d = 4 unless stated otherwise. The isotropic gauge used in static problems
is defined in appendix C.1.

E.1 Differential Operators
• Covariant derivative and divergence. For a covector Vν ,

∇µVν = ∂µVν − Γρ
µνVρ,

with Γρ
µν the Christoffel symbols of gµν . Metric compatibility implies

∇µV
µ =

1√
−g

∂µ
(√
−g V µ

)
.

Weak–field note: in gµν = ηµν + hµν , Christoffel terms are O(h) corrections to flat
derivatives.

• d’Alembertian (wave/Laplace–Beltrami) on a scalar.

□Φ ≡ gµν∇µ∇νΦ =
1√
−g

∂µ
(√
−g gµν∂νΦ

)
.

In Minkowski space, gµν = diag(−1, 1, 1, 1), this reduces to

□Φ = −∂2tΦ +∇2Φ.

Interpretation: □Φ supplies the kinetic operator in the action and controls propagation/d-
iffusion. Caveat: curvature enters implicitly through gµν ; □Φ = 0 does not guarantee
free waves unless curvature couplings are negligible.

• Traceless projection and Ξµν . For a symmetric rank–2 tensor Tµν in d dimensions,

T (TL)
µν = Tµν −

1

d
gµν T

ρ
ρ,

so in d=4 the trace–removal factor is 1/4. The auxiliary shear

Ξµν ≡ ∇µ∇νΦ− 1
4
gµν □Φ

is precisely the traceless projection of ∇µ∇νΦ; its role and variational control are dis-
cussed in appendix C.8.

• Commutator of covariant derivatives (for context). For a vector V ρ,[
∇µ,∇ν

]
V ρ = Rρ

σµν V
σ,

while for a scalar Φ,
[
∇µ,∇ν

]
Φ = 0. Implication: higher–order operators acting on ten-

sors can pick up curvature terms that are absent for scalars; this matters for strong–field
tails and anisotropic stresses.
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Critical remarks.

1. Consistency in weak fields. Each operator reduces smoothly to its flat–space analogue,
ensuring agreement with Newton–Poisson and standard wave dynamics.

2. Ambiguity in strong fields. Although scalars commute under covariant differentiation,
vector/tensor sectors do not; curvature feedback can enter composite quantities (e.g., via
Rµν) and modify tail behavior or effective stresses.

3. Variational role. □, ∇, and the traceless projector are the natural building blocks of the
action; careful integration by parts (see Appendix E.2) isolates boundary terms and fixes
signs, which is essential for the penalties and taper used in Appendix C.8.

E.2 Integration by Parts
The integration–by–parts identity is central to the variational formulation of the curvature field.
In particular, terms containing □Φ split naturally into bulk and boundary contributions, making
explicit the kinetic and surface terms.

Basic identity. For scalar fields Φ,Ψ on a domain V with boundary ∂V ,∫
V

Ψ□Φ
√
−g d4x = −

∫
V

gµν (∇µΨ)(∇νΦ)
√
−g d4x+

∫
∂V

Ψnµ∇µΦ dΣ,

where nµ is the outward unit normal to ∂V and dΣ is the induced boundary measure. The first
term is the kinetic contribution from gradient contractions; the second is the surface term.

Extended interpretation.

1. Link to variational principles. When varying an action that contains □Φ, this identity
ensures that bulk terms yield the equations of motion while boundary terms encode ad-
ditional conditions. Thus the choice of boundary conditions directly shapes the physical
meaning of Φ.

2. Role of boundary conditions. Under Dirichlet (absorbing) or Neumann (reflecting) con-
ditions, the surface term either vanishes or acquires a specific physical role. This aligns
with the global fixed–constant policy (Section 2.6.2), which enforces dataset–independent
consistency.

3. Weak vs. strong fields. In weak fields, boundary fluxes are negligible; near strong–gravity
structures (e.g., the photon sphere) the surface term can influence observables (R,Θ) di-
rectly; see tail diagnostics in Appendix C.3.

4. Generalization. Similar bulk–boundary decompositions apply to vectors and tensors.
For instance, divergences like ∇µV

µ split in the same way and are closely tied to the
construction of the auxiliary tensor Ξµν (Appendix C.4).

Critical remark. Integration by parts is not merely a calculational trick; it encodes the idea
that information balance is decided at the boundary. While bulk dynamics conserve energy,
irreversibility and collapse appear as fluxes through the surface, so the boundary term functions
as a physical “window,” not a negligible artifact.
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Lemma (Palatini identity with boundary current). For metric variations with compact sup-
port (or with gµν fixed on ∂V ),

δ
(√
−g R

)
=
√
−g
(
Gµν δg

µν +∇µV
µ
)
, V µ ≡ gαβ δΓ µ

αβ − g
µα δΓ β

αβ. (290)

Hence,

δ

∫
V

√
−g R d4x =

∫
V

√
−g Gµν δg

µν d4x+

∫
∂V

nµV
µ dΣ.

Equivalently, adding the Gibbons–Hawking–York boundary term

SGHY =
c4

8πG

∫
∂V

√
|h|K d3x

renders the variational problem well posed under free metric variations on the boundary. This
boundary handling, together with penalty/taper mechanisms, underpins the variational con-
structions used in Appendix C.8.

E.3 Variational Identities
Variational identities play a central role in deriving the curvature–field equations and in fixing
boundary conditions. For an action of the form

S[Φ] =

∫
L(Φ,∇Φ)

√
−g d4x,

the variation with respect to an arbitrary perturbation δΦ yields

δS =

∫
V

(
∂L
∂Φ
−∇µ

∂L
∂(∇µΦ)

)
δΦ
√
−g d4x +

∫
∂V

nµ
∂L

∂(∇µΦ)
δΦ dΣ.

Hence the Euler–Lagrange operator for Φ is

E [Φ] =
∂L
∂Φ
−∇µ

∂L
∂(∇µΦ)

.

Extended interpretation.

1. Bulk vs. boundary. The volume term generates the dynamical field equation, while the
boundary term prescribes conditions on ∂V . Under Dirichlet conditions (δΦ|∂V=0) the
surface term vanishes; under Neumann/Robin conditions it fixes physical fluxes.

2. Specificity to the curvature field. In PCFE, L may be 1
2
(∇Φ)2 − U(Φ) or include a

self–sourcing channel α(∇Φ)2 (see Appendix C.2). The tensor ∂L/∂(∇µΦ) directly
encodes stress–energy flow.

3. Strong–field consistency. In strong gravity, non-commutativity of covariant derivatives
on tensors and background curvature can enter divergence terms; the variational identity
makes the coupling between Φ and geometry explicit (cf. Appendix C.1).

4. Metric sensitivity. The factor
√
−g shows that even a scalar’s variations are geometry-

aware; Φ is a dynamical variable mediated by the metric background.
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Critical remark. The variational identity is not merely technical: it indicates when the cur-
vature field admits stable solutions and how these hinge on boundary prescriptions. The surface
term implies that physical solutions are shaped not only by local PDEs in the bulk but also by
global constraints set at the boundary (see Appendix E.2).

Lemma (Noether identity from diffeomorphism invariance). Consider

Stot =
c4

16πG

∫ √
−g R d4x+

∫ √
−g
[
1
2
gµν∇µΦ∇νΦ−U(Φ)

]
d4x+Sm[g,Ψm] +

∫ √
−g J Φ d4x.

Under an infinitesimal diffeomorphism generated by ξν ,

δξgµν = ∇µξν +∇νξµ, δξΦ = ξρ∇ρΦ.

Diffeomorphism invariance implies δξStot = 0. Using (290) from Appendix E.2 and the scalar
variation,

0 = δξStot =

∫ √
−g
[(

c4

16πG
Gµν − 1

2
T tot
µν

)
(∇µξν +∇νξµ) + E [Φ] ξρ∇ρΦ

]
d4x,

where T tot
µν = Tm

µν + TΦ
µν with

TΦ
µν = ∇µΦ∇νΦ− 1

2
gµν(∇Φ)2 + gµνU(Φ), E [Φ] = □Φ− U ′(Φ)− J.

Integrating by parts (compact support for ξµ or ξµ|∂V = 0) and using index symmetry,

0 =−
∫ √
−g
[
∇µ

(
c4

8πG
Gµν − T totµν

)
ξν − E [Φ]∇νΦ ξν

]
d4x.

Since ξν is arbitrary, we obtain the off–shell Noether identity

∇µ

(
c4

8πG
Gµν − T totµν

)
= −E [Φ]∇νΦ. (291)

Corollary (covariant conservation on shell). On the field equations Gµν = 8πG
c4
T tot
µν and

E [Φ] = 0, the contracted Bianchi identity∇µG
µν = 0 together with (291) yields

∇µT
totµν = 0.

This closes the chain action → Euler–Lagrange → Bianchi → conservation, which is the
variational backbone of the curvature–field formulation.

E.4 Commutation of Covariant Derivatives
The commutation of covariant derivatives depends on the field type (scalar, vector, tensor) and
exposes how background curvature enters composite operators used throughout this work (cf.
Appendix E.1).

Scalar fields. For any scalar Φ,

[∇µ,∇ν ]Φ = 0, ∇µ∇νΦ = ∇ν∇µΦ.

Thus, second derivatives of a scalar commute. Nonetheless, when further derivatives act on
these second derivatives (e.g., on ∇αΦ or on the Hessian), curvature reappears through the
commutators below.
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Vector and tensor fields. For a vector V ρ and a covector Wρ,

[∇µ,∇ν ]V
ρ = Rρ

σµν V
σ, [∇µ,∇ν ]Wρ = −Rσ

ρµν Wσ,

and for a general tensor, the Riemann tensor acts on each index in the standard way.

Useful scalar–derived identities. Even though [∇µ,∇ν ]Φ = 0, curvature enters when com-
muting derivatives acting on derived objects:

[∇µ,∇ν ]
(
∇ρΦ

)
= Rρσµν ∇σΦ, (292)

∇µ□Φ − □(∇µΦ) = Rµ
ν ∇νΦ. (293)

For the traceless Hessian (shear)

Ξµν ≡ ∇µ∇νΦ− 1
4
gµν□Φ,

the divergence obeys
∇µΞµν = 3

4
∇ν□Φ + Rν

ρ∇ρΦ, (294)

which makes the curvature feedback explicit (compare the variational control of Ξµν in Ap-
pendix C.8).

Extended interpretation.

1. Link to the curvature field. Because Φ is a scalar, its Hessian is symmetric and free of
direct commutator terms; however, (292)–(294) show that once gradients, divergences,
or Laplacians act, curvature couples back through Rµν and Rµνρ

σ. This matters for tail
control and for the shear penalty used in Appendix C.8.

2. Strong–field relevance. Near high–curvature regions (e.g., photon spheres)
the non–commutativity encoded by Rµνρ

σ affects composite observables and envelope
bounds; see also boundary decompositions in Appendix E.2.

3. Disentangling geometries. The commutation laws separate effects due to the scalar’s
induced “curvature” (via its stress) from the ambient GR curvature: Riemann/Ricci terms
are purely geometric, while Φ enters only through its derivatives.

Critical remark. Non–commutativity of covariant derivatives is not a mere artifact: it states
that no coordinate patch can flatten curvature away. Hence, although Φ is a scalar, tensorial
constructs derived from it (Hessian, shear, currents) inevitably inherit curvature constraints. In
practice, this explains the sensitivity of tail effects and the diagnostics (R,Θ) in strong gravity,
and motivates the variational safeguards adopted elsewhere (cf. Appendix C.8).

E.5 Summary
The results of Appendix E may be synthesized as follows. Each operator and identity is more
than a formal definition: it underwrites consistency, boundary control, and predictivity in the
curvature–field framework.
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• Covariant d’Alembertian □Φ (see Appendix E.1). It is the principal kinetic opera-
tor. In the weak–field limit it reduces to the Minkowski wave operator, ensuring New-
ton–Poisson consistency. In strong fields, □Φ = 1√

−g
∂µ(
√
−g gµν∂νΦ) couples implic-

itly to curvature and becomes boundary–sensitive, which explains the persistence and
shaping of tail effects.

• Auxiliary tensor Ξµν (see Appendix E.1). Defined by the traceless projection Ξµν =
∇µ∇νΦ− 1

4
gµν□Φ, it isolates anisotropic stresses of the scalar sector. Small Ξµν signals

near–isotropic, stable configurations; large Ξµν diagnoses strong local curvature stress.
Its variational control via the shear penalty λΞ ΞµνΞ

µν ties microscopic anisotropy to
macroscopic observables (R,Θ) (cf. Appendix C.8).

• Integration by parts and variational identities (see Appendix E.2, Appendix E.3).
They embed □Φ and Ξµν consistently into the action and cleanly split bulk (dynami-
cal) from boundary (constraint/flux) terms, fixing when solutions are well posed under
Dirichlet/Neumann/Robin data. Physically, irreversibility and collapse are often encoded
in boundary fluxes rather than bulk terms alone.

• Commutation of covariant derivatives (see Appendix E.4). While [∇µ,∇ν ]Φ=0 for
scalars, curvature reenters when commuting derivatives on ∇Φ or on the Hessian, e.g.
∇µ□Φ − □(∇µΦ) = Rµ

ν∇νΦ. These identities quantify how background geometry
constrains scalar–derived tensors and thus the tail and shear budgets.

Extended reflection. Together, these operators and identities provide the mathematical back-
bone of C4. They guarantee that (i) weak–field dynamics reproduce Newton–Poisson behav-
ior; (ii) strong–field dynamics inherit curvature–induced corrections consistent with GR ob-
servables; and (iii) boundary prescriptions, through the variational split, govern the passage
between reversible and irreversible regimes. In short, the formal consistency of □Φ, Ξµν , and
their variational scaffolding is not ornamental—it is what lets the framework turn local calcu-
lus into reliable global physics under the fixed–policy assumptions, without introducing new
tunable parameters.

E.6 Noether–Bianchi Identity: Operational Statement and Diagnostics
Theorem (Noether–Bianchi conservation). Let Stot[g,Φ,Ψm] be diffeomorphism–invariant
and well posed under either (i) a fixed boundary metric on ∂V or (ii) inclusion of the Gib-
bons–Hawking–York term. Define T tot

µν = Tm
µν + TΦ

µν and the scalar Euler–Lagrange operator
E [Φ] = □Φ− U ′(Φ)− J . Then the off–shell identity

∇µ

(
c4

8πG
Gµν − T totµν

)
= −E [Φ]∇νΦ (295)

holds (cf. Lemma (291)). Using ∇µG
µν = 0 (contracted Bianchi), one obtains the balance law

∇µT
totµν = −E [Φ]∇νΦ. (296)

In particular, on shell (E [Φ] = 0 and Gµν = 8πG
c4
T tot
µν ),

∇µT
totµν = 0.
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Sketch of proof. Combine the Palatini identity with boundary current (Appendix E.2) and
the scalar–field variational identity (Appendix E.3); apply an infinitesimal diffeomorphism,
integrate by parts (compact support or vanishing boundary variations), and use index symmetry.
The Bianchi identity then converts (295) into (296).

Corollaries and scope.

1. Source sector JΦ. If J is metric–independent, it does not contribute to TΦ
µν ; any mis-

match appears only through E [Φ] in (296).

2. Non–minimal couplings. For extensions such as Z(Φ)R or derivative couplings, the
identity still holds with the Hilbert stress tensor replaced by the appropriate (Belin-
fante–Rosenfeld improved) tensor; on–shell conservation remains valid once the mod-
ified field equations are imposed.

3. Regularity. The result requires gµν ∈ C2 and Φ ∈ H2
loc so that covariant derivatives and

boundary traces are well defined.

Consistency audit (operational). To certify conservation in practice:

1. Bulk check. Define the residual

Rν ≡ ∇µT
totµν + E [Φ]∇νΦ.

A correct implementation satisfies ∥R∥L2(V ) ≈ 0 up to numerical tolerance.

2. Boundary check. Verify that either (a) the boundary metric is fixed so the Palatini sur-
face term vanishes, or (b) the GHY term is included. Numerically confirm∫

∂V

nµV
µ dΣ = 0

within tolerance (see Appendix E.2 for V µ).

3. Gauge hygiene. Work in a stated gauge (e.g., isotropic) and sanity–check in a second
gauge; the bulk residual norm should be invariant up to O(h2) coordinate effects in the
weak–field regime.

Failure modes (diagnostic cues). If∇µT
totµν ̸= 0:

1. Boundary leakage. Missing GHY term or inconsistent boundary data (non–vanishing∫
∂V
nµV

µdΣ).

2. Off–shell operation. Nonzero E [Φ] due to truncated dynamics, coarse discretization, or
inconsistent J .

3. Tensor drift. Using a non–Hilbert stress tensor while varying the Einstein–Hilbert action
(or vice versa).

4. Regularity/gauge issues. Insufficient differentiability of gµν or gauge–dependent dis-
cretization artifacts.
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Discrete implementation note. In finite–volume/finite–element settings, (296) becomes a
discrete divergence theorem. Cell–wise fluxes of T tot must cancel up to round–off and time–integration
error, and the discrete boundary term must reproduce the chosen continuum boundary condition
(Dirichlet/Neumann or GHY).

One–line summary. With a diffeomorphism–invariant total action and controlled boundary
terms,

∇µG
µν = 0 =⇒ ∇µT

totµν = 0 on shell,

so any apparent non–conservation traces back to boundary flux or to operating off the field
equations—signals that are as diagnostic as they are corrective.

E.7 Operating Domains and Component Contributions (PSCF/MC–CF/Tail)
Definitions (legacy mix vs. variational taper). Legacy constant–weight mix (for reproducibil-
ity).

Φmix(r) = (1−D) ΦPSCF(r) + D

(
−GM

r

)
+ ΦMC(r), 0 ≤ D ≤ 1, (297)

where ΦPSCF is the Gaussian core, −GM/r the exact exterior potential, and ΦMC the mass–
centered (MC–CF) shells. Variational–taper composite (policy/production). Replacing D by
the C∞ taper D(r) = 1− exp[−(r/rt)p] (p=2, rt from the fixed–width policy), the composite
reads

Φcomp(r) = ΦPSCF(r) + D(r)
[
− GM

r
− Φoverlap(r)

]
+ ΦMC(r), (298)

consistent with the variational taper in Appendix C.8. Radial forces are

Fmix = −∂rΦmix, Fcomp = −∂rΦcomp, FPSCF = −∂rΦPSCF, Ftail =
GM

r2
, FMC = −∂rΦMC,

(299)
so that Fmix = (1−D)FPSCF +DFtail + FMC in the legacy case; in the taper case the decom-
position includes the bounded–slope term D′(r) (cf. Appendix C.8.1).

Windows and weighting. Use fixed windowsWnear = [r0, 1.5 r0] andWfar = [r0, 3 r0] with
two default weights: (i) linear wlin(r) = 1; (ii) logarithmic wlog(r) = 1/r. Unless stated
otherwise, report wlin and co–report wlog for robustness.

Contribution metrics. For a chosen model force Fmodel ∈ {Fmix, Fcomp} define, on any
windowW ,

Icomp(W) =

∫
W
w(r)

∣∣Fcomp(r)
∣∣ dr∫

W
w(r)

∣∣Fmodel(r)
∣∣ dr , comp ∈ {PSCF,MC−CF, tail}, (300)

Scomp(W) =

∫
W
w(r)Fcomp(r) sgn

(
Fmodel(r)

)
dr∫

W
w(r)

∣∣Fmodel(r)
∣∣ dr . (301)

By construction,
∑

comp Scomp(W) = 1, while
∑

comp Icomp(W) ≥ 1 with equality iff all
components are sign–co–aligned.
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Self–consistency and acceptance (fixed policy). The model is acceptable onW if

(A) Exterior dominance onWfar : Stail(Wfar) ≥ 0.70,

(B) Near–surface anchoring onWnear : SMC(Wnear) ∈ [0.50, 0.90],

(C) Core tapering: IPSCF(Wfar) ≤ 0.20,

(D) Far–field envelope:
sup

r∈Wfar

(1−D) ϵF
(

r
2ℓ

)
≤ ηfar (legacy mix; cf. Appendix C.8.4),

sup
r∈Wfar

[
(1−D(r)) ϵF

(
r
2ℓ

)
+ |D′(r)| ϵF

(
r
2ℓ

)]
≤ ηfar (variational taper; cf. Appendix C.8.1),

(E) Leakage bound: erfc
(

r0
2ℓ

)
≤ ηleak,

(F) PPN budgets on [r0, 3r0] : max
r∈[r0,3r0]

|δγ(r)| ≤ εγ, max
r∈[r0,3r0]

|δβ(r)| ≤ εβ.

(302)
with policy defaults ηfar = 5 × 10−3, ηleak = 10−3, ϵF from Appendix C.8.1 (Eq. (269)), and
PPN budgets (εγ, εβ) from Section 3.5.4. The leakage criterion uses the Gaussian bound in
Appendix C.8.1 (Eq. (272)). In addition, we monitor covariant conservation as a numerical
diagnostic; any detected deviation

∇µT
totµ

ν ̸= 0

is attributed to discretization or boundary mismatch and must be below the solver tolerance on
both windows.

Coordinate and boundary notes. All quantities are quoted in the isotropic gauge of Ap-
pendix C. Asymptotic flatness and central regularity follow Appendix C.8. The tail profile
Ξ(r) respects o(r−2) decay (cf. Appendix C.3). Integration–by–parts identities (Appendix E.2)
justify separating bulk (core/MC) from boundary–sensitive (tail) contributions.

Recommended reporting. For each dataset, report for both wlin and wlog: (i) the triplets
(IPSCF, IMC, Itail) and (SPSCF,SMC,Stail) onWnear andWfar; (ii) the amplitudes and scales—
for the legacy mix (D, δC4, ℓ); for the taper (p, rt, µ⋆, ℓ) (see Appendix C.8); (iii) max[r0,3r0] |δγ(r)|
and |δβ(r)|; (iv) the target budgets (ηfar, ηleak) and the attained values.

Remarks. The signed metric (301) captures constructive vs. destructive interference and
sums to unity; the magnitude metric (300) bounds co–alignment and highlights PSCF taper-
ing. Together with (302), these diagnostics make the roles of PSCF/MC

E.8 MC–CF model selection and regularization (policy)
Optimization layers. (1) Centers {xi}: initialized by k-means on light/gas maps; refined
with a quadratic penalty to anchors λc

∑
i ∥xi−xanchor

i ∥2. (2) Amplitudes {Ai}: non–negative
least squares (NNLS) on the shared window; global mass budget

∣∣∑
i M̂i−Mbaryon

∣∣ ≤ ϵMMbaryon.
(3) Widths {Σi}: log–normal priors with bounds σmin ≤ σk,i ≤ σmax and a separation penalty

λsep
∑
i<j

exp
[
− 1

2
(xi − xj)

⊤(Σi + Σj)
−1(xi − xj)

]
.
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Complexity control. We use a group sparsity term λ1
∑

i |Ai| to encourage pruning and se-
lect N by

BIC = k lnn− 2 ln L̂, AICc = 2k − 2 ln L̂+
2k(k + 1)

n− k − 1
,

reporting ∆BIC/∆AICc across N ∈ {1, . . . , Nmax}. Here k is the number of free parameters
(after positivity/bounds), and n the number of data points on the window.

Cross–validation and hold–out tests. We adopt K-fold CV on the weak–field window and
hold–out strong–field/lensing predictions as an out–of–sample test; MC–CF changes that do
not improve hold–out likelihood are pruned.

Overlap metric & merge rule. Track Gaussian component overlap

Oij ≡

∫
ϕi(r)ϕj(r) d

3r√∫
ϕ2
i d

3r

∫
ϕ2
j d

3r

, ϕk(r) = exp
[
− 1

2
(r− xk)

⊤Σ−1
k (r− xk)

]
.

If Oij > τmerge, merge or drop the weaker component and refit.

Item Symbol Default / Rule
Amplitude positivity Ai ≥ 0 Physical mass non–negativity
Mass budget tolerance ϵM 5% (per object)
Width bounds σmin, σmax Fraction of ROI; declared per dataset
Min. separation κ κ = 2 (centers ≥ 2 combined s.d.)
Center anchor weight λc Anchor rms ≈ pixel noise
Separation weight λsep Drive overlap Oij ≤ τmerge

Group sparsity λ1 One–SE CV rule
Model selection BIC/AICc Smallest N with ∆BIC < 2

Policy table (fixed hyperparameters).
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Appendix F: Numerical Implementation Details
This appendix provides the numerical configurations used in curvature–field (C4) simulations.
We document domain setup, discretization choices, and boundary handling sufficient for exact
reproducibility of the results in the main text. We also note the rationale behind each choice,
its limitations, and the stability cross–checks we applied.

Scope and guardrails.

• Fixed policy. Thresholds and constants are inherited from the global policy (Section 2.6.2);
no new tunable parameters are introduced here.

• Operator consistency. Discrete operators approximate the continuum objects in Ap-
pendix E (e.g., IBP usage in Appendix E.2); exterior consistency aligns with the varia-
tional taper in Appendix C.8, not with any constant convex mix.

• PPN compliance. Diagnostic audits against the Solar–System budgets follow section 3.5.4;
numerical settings are chosen so that acceptance windows can be certified without retun-
ing.

F.1 Domain and Grid Setup
Simulations are performed on one– and two–dimensional domains chosen to balance resolu-
tion and computational cost. All fields are expressed in the dimensionless normalization of
Section 2.6.2 (e.g., lengths in units of r0).

• Spatial domain. 1D runs use x ∈ [−L,L]; 2D runs use (x, z) ∈ [−L,L]2. The symmet-
ric geometry eliminates artificial biases and simplifies parity and reflection tests.

• Grid sizes. Typical choices areN = 1024 in 1D and (Nx, Nz) = (512, 512) in 2D, which
resolve collapse profiles and oscillatory tails while keeping time–step constraints man-
ageable. Power–of–two sizes are preferred when FFTs are employed (e.g., for heat–kernel
PSCF initialization in Appendix C.8.2).

• Uniform spacing and indexing.

∆x =
2L

N
, ∆z =

2L

Nz

.

Uniform grids enable run–to–run comparability and straightforward alias control. Unless
stated otherwise, nodes are centered so that domain endpoints align with grid points (no
staggering).

• Boundary placement. L is chosen so that the collapse region and its taper band remain
well inside the domain under absorbing edges (see exterior handling in Appendix C.8).
Empirically, L ≳ 10 times the initial Gaussian width avoids spurious reflections in ac-
ceptance runs.

Extended considerations.

1. Resolution checks. DoublingN (1D) or (Nx, Nz) (2D) changes key observables— I(0),
far–window tail envelopes, and windowed metrics from Appendix E.7—by ≲ 1%, indi-
cating near–convergence at the reported sizes.
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2. Dimensional robustness. Qualitative behaviors (collapse threshold, entropy–proxy mono-
tonicity, tail alignment) are consistent between 1D and 2D; quantitative differences re-
main within the fixed windowsWnear andWfar of Appendix E.7.

3. Numerical safety margin. Grid and box sizes are treated as physical safeguards: too
coarse a grid can falsely stabilize/destabilize collapse; too small a domain can inject
boundary artifacts that masquerade as tail features.

F.2 Time Stepping
Time evolution is performed with a fixed step size and policy–level stability checks, so that
results are reproducible across machines and runs while faithfully resolving collapse and tail
dynamics (cf. acceptance windows in Appendix E.7 and PPN audits in section 3.5.4).

• Default time step. Unless otherwise stated, we use ∆t = 10−3 in the normalization
of Section 2.6.2. This value balances efficiency with the need to resolve rapid phase
variations during collapse. Policy rule: if any stability monitor (below) flags a breach,
we rerun with ∆t→ ∆t/2.

• Integration methods. (1) Leapfrog (2nd order, symplectic). Used for long integrations
due to phase/energy robustness. We employ the standard kick–drift–kick update on a
collocated grid (no staggering of Φ).
(2) Runge–Kutta (classical RK4). Used near thresholds or in strongly nonlinear regimes
to reduce temporal truncation error. Cross–checking leapfrog and RK4 ensures method–
independent collapse/no–collapse decisions.

• CFL stability. Let vmax be the characteristic speed from the linearized operator. Then

∆t ≤ CFL×min

(
∆x

vmax

,
∆z

vmax

)
, CFL ∈ [0.30, 0.45] (policy).

This bound is enforced on all runs; it remains conservative during episodes of strong
oscillation or incipient collapse.

• Monitors (per step or per block). (i) Conservation residual ∥R∥L2 withRν = ∇µT
totµν+

E [Φ]∇νΦ (Appendix E.6);
(ii) Energy drift (First–Law analogue) over the Solar window, targeted ≲ 0.5% (Ap-
pendix D.1, Appendix E.2);
(iii) Tail window envelopes and leakage bounds as in Appendix E.7. Breaches trigger
∆t→ ∆t/2 and a repeat.

Extended interpretation.

1. Weak–field consistency. In weak–field tests, leapfrog vs. RK4 outputs (forces, I(0))
agree within 10−4, consistent with the Newton–Poisson limit.

2. Strong–field sensitivity. Near collapse, changing ∆t by a factor of 2 can shift the onset
by ∼ 1%. Our policy to halve ∆t on monitor breach minimizes step–size bias while
keeping runs reproducible (fixed ∆t once accepted).

3. House acceptance. A time step is accepted if (i) CFL is satisfied, (ii) ∥R∥L2 sits on
the tolerance plateau, (iii) energy drift ≤ 0.5% on [r0, 3r0], and (iv) the far–window
envelope/leakage targets and PPN budgets from Appendix E.7 and section 3.5.4 are met
without retuning other parameters.
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Critical remark. Time stepping is not a neutral numerical choice. If ∆t exceeds stabil-
ity limits, spurious divergences can masquerade as physical collapse; if too small, one may
over–resolve oscillations and amplify grid–scale noise without physical benefit. The fixed–policy
settings and monitors above act as essential safeguards, ensuring that the simulated dynamics
reflect the continuum model under the same variational and exterior–taper assumptions used
analytically (Appendix C.8).

F.3 Boundary Conditions
Boundary conditions are chosen to match the physical intent of each run while remaining con-
sistent with the fixed–policy and variational framework (Appendix C.8; diagnostics in Ap-
pendix E). Careful design avoids spurious reflections or wrap–around artifacts that could distort
collapse dynamics, tail alignment, or PPN readouts (section 3.5.4).

• Absorbing boundaries (open–system emulation). Used for collapse and phase–diffusion
studies. We implement a smooth sponge in the outer band, with the same C∞ window
used by the variational taper (Appendix C.8.3):

∂tΦ 7→ ∂tΦ − σ(r)
(
Φ− Φout

)
, σ(r) = σ0

(
1− χ(r)

)
,

where χ(r) equals 1 in the interior and decreases smoothly to 0 across the boundary
band. Here Φout is the Newton/GR exterior profile consistent with Appendix C.8. This
PDE–level penalty mirrors the action–level taper and prevents standing–wave build–up
at the edges without introducing a constant convex mix.

• Periodic boundaries (spectral tests, interference). Adopted for interference and Fourier
–analysis runs. Periodicity preserves translational symmetry and enables clean spectral
diagnostics. To suppress artificial wrap–around in strongly driven cases, an optional thin
symmetric sponge (same χ as above, zero mean over the pair of bands) is applied so that
periodicity is not biased while outgoing flux is gently dissipated.

Operational checks (boundary–aware diagnostics).

1. Surface flux (Palatini/Noether). Using Appendix E.2 and Appendix E.6, we monitor
the boundary term

F∂V ≡
∫
∂V

nµV
µ dΣ,

and require |F∂V | to lie on the numerical–tolerance plateau (typically machine–precision
relative to the bulk energy over an acceptance window). A persistent nonzero flux indi-
cates an ill–posed boundary or an off–shell integration.

2. Reflection proxy (absorbing runs). In the sponge band we evaluate

Rrefl =

∥∥Φ− Φout

∥∥
L2(band)∥∥Φout

∥∥
L2(band)

,

and targetRrefl ≲ 10−3 on accepted runs, consistent with the far–window envelope/leak-
age bounds of Appendix E.7.

3. PPN safety. For both boundary types we audit max[r0,3r0](|δγ|, |δβ|) against the fixed
budgets in section 3.5.4; failure triggers a rerun with a wider domain and/or a stronger
outer sponge (larger σ0) but no new tunable constant in the model.
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Further considerations.

1. Physical fidelity. Absorbing boundaries emulate open systems in which energy leaks to
large radii, matching the variational–taper exterior; periodic boundaries are appropriate
for idealized coherence tests.

2. Numerical stability. Overly sharp sponges cause partial reflections; excessively weak
sponges allow reentry into the interior. Both are caught by the surface–flux and reflection
proxies above.

3. Cross–model robustness. With either boundary choice, collapse thresholds and en-
tropy–proxy growth remain within the fixed windows of Appendix E.7, confirming that
the effects are intrinsic to the curvature–field dynamics rather than artifacts of domain
truncation.

Reflection. Boundary design is not a cosmetic numerical choice: it decides whether simulated
fields represent the intended physics or the computational box. By aligning sponges with the
same C∞ windowing used in the variational taper and by auditing boundary flux explicitly,
we keep the results reproducible and interpretable—so that inferences about curvature–field
collapse and tail behavior rest on physics, not on walls.

F.4 Initialization of Fields
Initial conditions are specified to probe asymmetry, collapse onset, and robustness to perturba-
tions, while remaining consistent with the fixed–policy regime (Section 2.6.2). No new tunable
parameters are introduced; seeds, amplitudes, and spectra follow the same reporting rules as in
Appendix E.7.

• Base profile (1D). A weakly asymmetric phase field,

Φ(x, 0) = A1 sin(kx+ ϕ1) + δ sin(2kx+ ϕ2), 0 < δ ≪ 1,

with (A1, ϕ1, ϕ2) fixed by policy (default A1=1, ϕ1=ϕ2=0 unless otherwise stated). The
asymmetry δ seeds distinct collapse/diffusion channels for sensitivity tests.

• Base profile (2D). For square domains (x, z) ∈ [−L,L]2 we use either a separable sum
or product:

Φ(x, z, 0) = A1

[
sin(kx) + sin(kz)

]
or Φ(x, z, 0) = A1 sin(kx) sin(kz),

with the same δ–type asymmetry optionally added to one direction.

• PSCF core (option, reproducibility). When PSCF initialization is desired, the heat–kernel
regularization of Appendix C.8.2 is used:

ΦPSCF(r, 0) =
(
eℓ

2∇2

ΦN

)
(r) = −

∫
Gρ(r′)

|r− r′|
erf
(

|r−r′|
2ℓ

)
d3r′.

The scaffold scale ℓ is the same policy value used in Appendix E.7; it is not tuned per
run.
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• Band–limited random noise (optional). Stochastic perturbations η(r) are added as

Φ(r, 0) ← Φ(r, 0) + ση η(r), η̂(k) = m(k) ξ̂(k),

where ξ̂ is unit–variance white noise in k–space, andm(k) is a smooth spectral mask that
vanishes for |k| > 0.8 kmax. The pair (ση, seed) is recorded for exact reproducibility; no
noise parameter is tuned to data.

• Normalization and comparability. After construction, fields are rescaled so that the
central intensity satisfies I(0) = 1 (project policy). DC offset is removed to enforce zero
mean. This makes I(0)–decay and window metrics comparable across absorbing/peri-
odic runs (cf. Appendix E.7).

• Boundary buffer. Initial patterns are confined well inside the domain: the first nontrivial
extrema lie at least 5–8 grid cells away from the start of the sponge band (for absorbing
boundaries; see Appendix F.3). This prevents immediate sponge interaction at t=0.

Additional considerations.

1. Sensitivity to asymmetry. Scanning δ confirms that the collapse onset (time and loca-
tion) shifts by ≲ 1% over the policy range, reinforcing the universality of the gradient
threshold ε (cf. Appendix D.1).

2. Noise resilience. Varying (ση, seed) leaves the qualitative outcomes—collapse occur-
rence and entropy–proxy monotonicity—unchanged; quantitative variations remain within
the fixed windows of Appendix E.7.

3. PPN compatibility. Initial states are constructed so that, under the variational taper
exterior, the induced 1PN readouts remain within budgets during early evolution (audit
against section 3.5.4); no per–object tail tuning or constant convex mix is used.

Remarks. Initialization is a probe of stability, not a cosmetic choice. By combining struc-
tured asymmetry, band–limited stochasticity, and fixed normalization—while aligning with the
PSCF/taper machinery of Appendix C.8—we ensure that observed collapse and I(0) decay are
reproducible and physically interpretable, rather than artifacts of a particular starting profile.

F.5 Reproducibility and Verification
Reproducibility is essential to distinguish genuine curvature–field dynamics from numerical
artifacts. We adopt a fixed–policy protocol (no new tunables) and certify runs by cross–checks
aligned with Appendix E (operators/identities), Appendix E.7 (windows/metrics), and sec-
tion 3.5.4 (PPN budgets).

Verification protocol (multi–level).

1. Repeated runs (determinism). Identical ICs/configs produce consistent I(0) trajecto-
ries and collapse onset times within statistical tolerance; thread pinning and fixed seeds
ensure bitwise repeatability where applicable.

2. Energy/entropy diagnostics. We monitor the First–Law analogue and entropy proxies:
(i) discrete energy drift ≲ 0.5% on [r0, 3r0] (cf. Appendix D.1, Appendix E.2); (ii) mono-
tonic increase/saturation of SA or Sg (Appendix D.2, Appendix D.3) during collapse.

166



3. Boundary robustness. Absorbing↔ periodic swaps (with the designs of Appendix F.3)
modify local interference but leave global outcomes—critical threshold ε, far–window
metrics—unchanged within acceptance bounds (Appendix E.7).

4. Cross–method consistency. Leapfrog (2nd, symplectic) vs. RK4 (4th) agree on col-
lapse/no–collapse decisions and on I(0), forces, and tail envelopes within the weak–field
tolerance reported in Appendix F.2.

5. Scaling tests. Doubling grid resolution (and shrinking ∆t per policy) preserves collapse
thresholds and windowed tail metrics to ≲ 1%, indicating near–convergence at reported
sizes (Appendix E.7).

Conservation and acceptance audits.

• Noether–Bianchi residual. We trackRν = ∇µT
totµν +E [Φ]∇νΦ and require ∥R∥L2 to

sit on the tolerance plateau (Appendix E.6).

• Far–field envelope and leakage. We certify the far–window bound and Gaussian leak-
age with policy defaults ηfar = 5×10−3, ηleak = 10−3, ϵF from Appendix C.8.1 (eq. 269),
and the leakage criterion from Appendix C.8.1 (eq. 272).

• PPN budgets. We enforce max[r0,3r0](|δγ|, |δβ|) against the fixed Solar–System budgets
(εγ, εβ) from section 3.5.4; violations trigger reruns with tighter ∆t or wider domains
(no model retuning).

Overall remarks. Appendix F codifies a transparent, repeatable workflow in which repeated
trials, conservation checks, boundary swaps, integrator cross–validation, and scaling tests con-
verge on the same physical picture. In this way, the simulations function not as one–off compu-
tations but as independently verifiable tests of the curvature–field formulation, where numerical
discipline serves the physics rather than steering it.
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Appendix G: Strong–Gravity Observables
This appendix sets the operational ground for strong–gravity observables within the curva-
ture–field (C4) framework. Where the main text develops motivation, here we pin down con-
ventions, policy constraints, and the specific readouts used to test C4 corrections against the
Schwarzschild limit. The goal is to turn photon–sphere structure, time–delay integrals, and the
joint pair (R,Θ) into quantitative probes that are stable under boundary choices and numerics.

Scope and guardrails.

• Fixed policy. No new tunable parameters are introduced. Far–field behavior, tail align-
ment, and 1PN isotropy follow the variational taper and action–level construction in
Appendix C.8. Solar–System safety is audited against the fixed PPN budgets in sec-
tion 3.5.4.

• Operator consistency. All diagnostic formulas use the operators/identities of Appendix E
(IBP in Appendix E.2, Noether–Bianchi in Appendix E.6); window metrics and leak-
age/envelope bounds follow Appendix E.7.

• Numerical hygiene. Boundary design (absorbing/periodic) and convergence checks fol-
low Appendix F.3 and the reproducibility protocol of Appendix F.5, so that the observ-
ables reflect physics, not the box.

Conventions (static, spherical sector). We work with ds2 = −A(r) dt2+B(r) dr2+ r2dΩ2

and decompose

A(r) = ASchw(r) + fΦ(r), B(r) = BSchw(r) + gΦ(r),

where (fΦ, gΦ) encode small, policy–consistent C4 corrections that vanish in the far zone under
the variational taper. The photon–sphere (PS) radius is the stationary point of b(r) = r/

√
A(r)

(equivalently d
dr
[A(r)/r2] = 0), and the near–PS time–delay scale is controlled by A(rph)−1/2

to leading order. These relations are used purely as diagnostic linearizations; production results
always respect the full definitions in the later G–subsections.

Observable set.

• Shadow–size proxy R. We use R = bph/r0 (or angular radius αsh = bph/D when a
distance D is specified). Sensitivity to fΦ enters both through rph and the local value of
A.

• Time–delay Θ. Defined by the standard null travel–time integral with a fixed reference
subtraction (Minkowski or Schwarzschild with matched boundary data). Near bph, we
cross–check with the proxy Θph ≃ A(rph)

−1/2 for numerical stiffness control.

• Joint diagnostic (R,Θ). We treat (R,Θ) as a pair to avoid over–interpreting a single
number. Joint trends help separate genuine C4 signatures from degeneracies with GR
systematics and astrophysical noise.
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Diagnostics and acceptance (summary).

• Continuity through the taper. (R,Θ) must be C0 across the PS neighborhood; kinks
indicate a boundary/taper mismatch and trigger a rerun under Appendix F.3.

• Far–field safety. (fΦ, gΦ)→ 0 as r →∞; PPN budgets on [r0, 3r0] are enforced per
section 3.5.4. Windowed envelope/leakage targets use Appendix E.7.

• Boundary/numerics robustness. (R,Θ) remain invariant within tolerance under do-
main extension and absorbing↔periodic swaps; conservation residuals (Noether–Bianchi)
sit on the tolerance plateau (Appendix E.6, Appendix F.5).

Purpose of G–subsections (reader’s map). Appendix G.1–Appendix G.6 provide: (i) ex-
plicit PS and time–delay formulas, (ii) linearized sensitivity to (fΦ, gΦ) for quick audits, (iii)
PSCF vs. MC–CF comparisons against the Schwarzschild baseline, and (iv) failure–mode di-
agnostics tied to boundaries, resolution, and off–shell operation. They are designed to be
plug–compatible with the policy and diagnostics cited above, so that any claimed deviation
in (R,Θ) can be traced to either bona fide C4 physics or a correctable setup issue.

Summary. Appendix G organizes the strong–gravity layer of C4 into reproducible, pol-
icy–compatible measurements. By committing to the same exterior taper, PPN budgets, and
operator discipline used elsewhere in the paper, it turns (R,Θ) into a stable interface between
theory and data—capable of flagging real curvature–field tails while filtering out numerical
walls and conventional GR lookalikes.

G.1 Photon–Sphere Condition

The photon–sphere radius rph in a static, spherically symmetric metric ds2 = −A(r) dt2 +
B(r) dr2 + r2dΩ2 is defined by the extremum of b(r) = r/

√
A(r), equivalently

d

dr

(
A(r)

r2

) ∣∣∣
r=rph

= 0. (303)

Throughout we decompose

A(r) = ASchw(r) + fΦ(r), ASchw(r) = 1− 2GM

r
, (304)

so that fΦ(r) encodes the C4 correction consistent with the variational taper (Appendix C.8)
and far–field safety (section 3.5.4).4

Reference case (Schwarzschild). Setting fΦ=0 in (303) yields the standard benchmark

rSchwph = 3GM, (305)

which anchors both analytic expansions and numeric validations.

4Unless noted, we use geometric units (c = 1).
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Linearized shift (diagnostic). Let rph = r•+ δrph with r• = 3GM the Schwarzschild value.
Defining G(r) ≡ rA′(r)− 2A(r), one has G(rph) = 0; linearizing in fΦ gives

δrph =
2 fΦ(r•)− r•f ′

Φ(r•)

r•A′′
Schw(r•)− A′

Schw(r•)
=

2 fΦ(3GM)− 3GM f ′
Φ(3GM)

2
(3GM)

, (306)

where the denominator uses A′
Schw = 2GM/r2 and A′′

Schw = −4GM/r3. Equation (306) is
used as a consistency audit: production results still respect the full condition (303).

C4 representations and expected scales. Under the fixed–policy widths and taper:

• PSCF core. The heat–kernel scaffold (Appendix C.8.2) tends to keep r•f ′
Φ − 2fΦ small

near r•, leading to fractional shifts |δrph|/r• ∼ 10−3.

• MC–CF shells. Mass–centered shells adjust near–surface anchoring and can yield |δrph|/r• ∼
10−2 while remaining PPN–safe under the taper (section 3.5.4).

Extended interpretation and checks.

1. Sensitivity. Because (303) differentiates A(r)/r2, slow–decaying or nonmonotone tails
in fΦ are amplified; sub–percent features can shift rph measurably.

2. Far–zone consistency. To avoid spurious extrema, fΦ(r)→ 0 and f ′
Φ(r)→ 0 faster than

1/r as r →∞ under the variational taper (Appendix C.8).

3. Observational linkage. Since rph sets the shadow scale, shifts predicted by (306) map
directly to (R,Θ) readouts and can be contrasted with EHT–class measurements (Sgr A*,
M87*), provided boundary/numerical audits pass (Appendix F.3, Appendix F.5).

Remarks. The photon–sphere is a stringent probe of strong–field structure: it is both highly
sensitive to fΦ and tightly constrained by exterior/PPN policy. Any claimed deviation should
therefore be accompanied by boundary–flux and convergence checks to avoid confusing nu-
merical artifacts for physical tails.
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Figure 15: Schematic comparison of the photon–sphere radius rph for Schwarzschild, PSCF,
and MC–CF. Ordinates are shown in geometric units rph/(GM) for visual clarity (schematic
only); the Schwarzschild baseline sits at rph = 3GM , while PSCF/MC–CF introduce small yet
distinct shifts, illustrating the qualitative scale of C4 corrections.
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Figure 16: Numerical illustration of photon–sphere shifts vs. mass M . The y–axis follows
the file’s labeling rph/(GM/c2); the Schwarzschild baseline (dashed) remains at 3GM/c2,
while PSCF (blue) and MC–CF (red) exhibit∼ 10−3 and∼ 10−2 fractional shifts, respectively.
This quantitative view complements Fig. 15 and is consistent with the fixed–policy taper/PPN
constraints.

171



G.2 Time Delay Θ

The round–trip time delay Θ is a second fundamental observable in strong–gravity regimes.
In the static, spherically symmetric line element ds2 = −A(r) dt2 + B(r) dr2 + r2dΩ2, its
definition for a null ray with impact parameter b is

Θ(b) = 2

∫ ∞

rmin(b)

√
B(r)

A(r)

dr√
1− b2A(r)

r2

− Θref , (307)

where rmin solves 1− b2A(r)/r2 = 0 (closest approach) and Θref subtracts a reference solution
(Minkowski or Schwarzschild with matched boundary data). We decompose

A(r) = 1− 2GM

r
+ fΦ(r), B(r) =

(
1− 2GM

r

)−1
+ gΦ(r), (308)

so (fΦ, gΦ) are small C4 corrections consistent with the variational taper (Appendix C.8) and
far–field PPN safety (section 3.5.4). No new tunable parameters are introduced.

Reference case. For fΦ = gΦ = 0, (307) reproduces the standard Schwarzschild gravitational
time delay. This sets the baseline against which C4–specific corrections are quantified.

Near–critical proxy (diagnostic). Close to the photon–sphere (b ≃ bph from Appendix G.1),
the integral becomes stiff; a robust proxy is

Θph ≃ A(rph)
−1/2. (309)

Production runs evaluate (307) and cross–check with (309) to validate numerical stability.

Impact of curvature–field corrections. Small fΦ(r), gΦ(r) modify the kernel
√
B/A

(
1 −

b2A/r2
)−1/2 at linear order, inducing O(fΦ, gΦ) shifts in Θ:

• PSCF (fixed scaffold widths). Heat–kernel regularization yields mild deviations (∼
10−3 window averages) that can accumulate over the long integration domain.

• MC–CF (mass–centered shells). Stronger near–surface gradients allow ∼ 10−2–level
shifts while remaining policy–safe under the taper and PPN budgets.

Extended interpretation.

1. Convergence. Since the upper limit is ∞, fΦ and gΦ must decay faster than 1/r as
r →∞; otherwise (307) is inflated or divergent (Appendix C.8).

2. Stiffness control. As b→bph, use (i) Gauss–Jacobi quadrature near rmin, (ii) the change
of variables r = rmin/ξ, and (iii) the proxy (309) for cross–checks.

3. Observational linkage. Θ ties directly to light travel times, lensing delays, and (with R)
to black–hole shadow data; the (R,Θ) pair constrains spatial and temporal signatures of
C4 tails jointly.

Remarks. Time delay is not a mere numerical byproduct: it captures the temporal imprint of
curvature–field tails on causal structure. While rph fixes orbit geometry, Θ complements it with
timing information; together they provide a dual diagnostic of spatial and temporal distortions
in the C4 framework.
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Figure 17: Time–delay comparison (arbitrary units). Full integral (307) (solid) versus the
near–critical proxy (309) (dashed). Small tail corrections fΦ(r) produce measurable deviations
with consistent trends.

G.3 Joint Observable (R,Θ)

Within the C4 framework, robust diagnostics arise from paired readouts that capture both spa-
tial and temporal imprints of curvature–field tails. The joint observable O = (R,Θ) combines
a radius–sensitive ratio R with the time–delay scale Θ.

Definitions (pair).

• Radius ratio R. We adopt the geometry–amplifying ratio

R =
b3π − bπ
bπ − bph

, bx : critical impact parameter for the stated winding/turning label x,

(310)
which magnifies fractional shifts in the critical curve and photon–sphere location. Com-
patibility note: in datasets without the (3π, π) markers, R reduces to the baseline shadow
proxy R = bph/r0 used elsewhere (recovering the same qualitative trends).

• Time–delay Θ. From Appendix G.2, we extract Θ via the full null travel–time integral
and, near criticality, use the stable proxy Θph ≃ A(rph)

−1/2 for sanity checks.

Extended interpretation.

1. Complementarity. R is dominantly sensitive to geometric (radial) shifts through b–structure,
while Θ accumulates the temporal imprint of fΦ(r) along the ray path. Their pairing re-
duces degeneracies that can affect single–metric analyses.

2. Tail sensitivity. R responds to near–surface curvature encoded in fΦ and the local slope
f ′
Φ, whereas Θ integrates the far–zone decay of (fΦ, gΦ); together they constrain both

local and global aspects of the tail.

3. Linear response (audit). For small corrections,

∆

(
R

Θ

)
≃

(
∂R/∂rph ∂R/∂A

∂Θ/∂rph ∂Θ/∂A

)
︸ ︷︷ ︸

local Jacobian at Schwarzschild

·

(
δrph

fΦ

)
(cf. Appendix G.1, Appendix G.2),

173



used only as a diagnostic consistency check; production values come from the full defi-
nitions.

Operational cautions.

• Well–posed denominator. In (310) ensure bπ ̸= bph; if the dataset lacks clean (3π, π)
markers or they cluster numerically, revert to R = bph/r0.

• Policy alignment. (fΦ, gΦ) → 0 in the far zone (variational taper) and PPN budgets
are enforced on [r0, 3r0] (Section 3.5.4); joint trends (R,Θ) must remain stable under
boundary swaps and resolution increases (Appendix F.3, Appendix F.5).

Remarks. The pair (R,Θ) acts as a fingerprint of C4 dynamics: R constrains the geometry
of the critical curve, while Θ captures the temporal imprint of the tail. Read together, they
enhance testability against Schwarzschild baselines and help isolate genuine curvature–field
signatures from astrophysical or numerical systematics.
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Figure 18: Joint observable plane (R,Θ). The Schwarzschild baseline (dashed) remains
fixed, while PSCF (blue) and MC–CF (red) introduce ∼ 10−3 and ∼ 10−2 fractional shifts,
respectively. The two–dimensional view captures the complementary roles of the radius ratio
R and the time–delay Θ, yielding a distinctive C4 signature.

G.4 Comparative Models
To evaluate the predictive strength of the C4 framework, we compare models on the same
far–windowWfar = [r0, 3r0] under the fixed policy for normalization and weighting (see Ap-
pendix E.7). Table 78 summarizes fractional shifts in the photon–sphere radius and time delay,
together with the window–averaged RMSE of the gradient magnitude. The reported scales are
consistent with the trends in Figs. 15, 17, and 18.

Extended interpretation.

1. Schwarzschild baseline. The reference with no tail corrections; deviations in other mod-
els are read relative to this case.

2. PSCF (3w). Heat–kernel regularization and fixed global widths produce mild shifts (∼
10−3) and the lowest RMSE, reflecting smooth fits that may under–resolve near–surface
gradients.

3. MC–CF (2c). Two mass–centered shells capture intermediate (∼ 10−2) corrections,
improving local accuracy near rph at the cost of a higher global RMSE.

4. MC–CF (1c). A single shell lacks structural flexibility, yielding larger biases in both rph
and Θ and the highest RMSE despite lower computational cost.

Remarks. The comparison highlights a practical trade–off: PSCF emphasizes smoothness
and low RMSE, while MC–CF restores tail fidelity and near–surface sensitivity. In practice,
PSCF as a scaffold plus MC–CF as targeted shell corrections offers a balanced representation
for strong–gravity diagnostics within the C4 framework.
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Table 78: Strong–gravity observables: comparative performance on Wfar = [r0, 3r0] (lin-
ear weighting). Entries for |δrph|/rph and |δΘ|/Θ are fractional deviations relative to
Schwarzschild. RMSE is the window–averaged root–mean–square error of | − ∇Φ| under
the fixed normalization policy.

Model |δrph|/rph |δΘ|/Θ RMSE(| − ∇Φ|)
Schwarzschild 0 0 baseline
PSCF (3w) ∼ 10−3 ∼ 10−3 0.0052

MC–CF (2c) ∼ 10−2 ∼ 10−2 0.0287

MC–CF (1c) ≳ 10−2 ≳ 10−2 0.0802

G.5 Remarks
The strong–gravity observables assembled here form a coherent diagnostic toolkit for curva-
ture–field (C4) effects. Rather than adding new tables, this section synthesizes the results of
Appendix G.1–Appendix G.4 and highlights their interpretive weight.

• Photon–sphere & time delay. The conditions for rph and the travel–time integral for
Θ respond linearly (to leading order) to small tail corrections fΦ (and gΦ), offering two
tightly–constrained probes that are complementary in sensitivity: rph to geometric shifts
and Θ to cumulative, far–zone behavior.

• Joint observable (R,Θ). Treating radius and delay as a pair reduces degeneracies that
can affect single–metric analyses. In the (R,Θ) plane, departures from Schwarzschild
baselines become transparent, and mass–dependent trends (e.g., Sgr A*, M87*) can be
isolated.

• Comparative perspective. The side–by–side comparison in Appendix G.4 shows the
practical trade–off: PSCF emphasizes smoothness and low RMSE, whereas MC–CF re-
stores tail fidelity and near–surface sensitivity. A scaffold–plus–shells strategy (PSCF +
MC–CF) therefore yields the most balanced representation for strong–gravity diagnostics
in the C4 framework.
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Figure 19: Comparative performance of strong–gravity models (bar chart). Bars show the
approximate magnitudes of rph shifts and Θ deviations (log–scaled ticks) alongside the gradient
RMSE. Numerical annotations match Table 78: PSCF(3w) {|δrph|/rph ≈ 10−3, |δΘ|/Θ ≈
10−3, RMSE=0.0052}; MC–CF(2c) {∼10−2, ∼10−2, 0.0287}; MC–CF(1c) {∼3×10−2, ∼
3×10−2, 0.0802}.
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Figure 20: Graphical summary consistent with Appendix G.4. The panel visualizes
(log–scaled) fractional shifts in rph and Θ together with the (linear) RMSE trend, reinforc-
ing the trade–off: PSCF maintains smoothness with small shifts and low RMSE, while MC–CF
improves tail fidelity and local gradients at higher RMSE.
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G.6 Photon Sphere and Perturbative Shifts
Deflection angle integral. For a static, spherically symmetric background

ds2 = −f(r) dt2 + f(r)−1dr2 + r2dΩ2, f(r) ≡ A(r),

a null ray with impact parameter b has closest approach r0 fixed by b2 = r20/f(r0). The total
deflection angle is

α(b) = 2

∫ ∞

r0

dr

r

1√(
r
r0

)2 f(r)
f(r0)
− 1

− π, (311)

which exhibits logarithmic stiffening as b→bph (critical curve).

Photon–sphere condition. Writing A(r) = 1− 2GM
r

+fΦ(r) as in Appendix G.1, the photon
sphere rph satisfies

d

dr

(
A(r)

r2

) ∣∣∣
r=rph

= 0, ⇐⇒ rphA
′(rph)− 2A(rph) = 0, (312)

corresponding to the unstable circular null orbit that controls strong–lensing observables. Small
changes in fΦ near rph thus have amplified impact on both spatial (R) and temporal (Θ) diag-
nostics.

First–order shift of rph. Let rph = r• + δrph with the Schwarzschild value r• = 3GM .
Linearizing (312) in fΦ gives (cf. Appendix G.1)

δrph = − r•f
′
Φ(r•)− 2 fΦ(r•)

r•A′′
Schw(r•)− A′

Schw(r•)
=

3GM

2

[
r•f

′
Φ(r•)− 2 fΦ(r•)

]
, (313)

since rA′′
Schw − A′

Schw = − 2/(3GM) at r• = 3GM .

First–order response of joint observables. For a weak static tail δΦ(r) superposed on the
baseline, the paired observables respond linearly,

δR =

∫
KR(r) δΦ(r) dr, δΘ =

∫
KΘ(r) δΦ(r) dr, (314)

with kernels sharply supported near rph. In PSCF–like backgrounds,KR has a narrow peak that
scales as KR(r) ∝ (r− rph)−3/2 over a thin band, while in MC–CF the peak is broader but still
centered at rph. These structures imply correlated O(δΦ) shifts in (R,Θ), consistent with the
near–critical proxy Θph ≃ A(rph)

−1/2 (Appendix G.2).

Interpretation and policy alignment. In practice the kernels’ effective support lies within
a narrow window ∆r/rph ∼ 10−2 in our fixed–policy runs, so (R,Θ) probe the same locale
of the potential in complementary ways: R is dominated by geometric sensitivity to fΦ and
f ′
Φ at rph, whereas Θ accumulates the local change into a timing imprint along the null path.

Under the variational taper and PPN budgets (Section 3.5), these first–order relations provide a
controlled route from small tails to few–percent, correlated shifts in (R,Θ).

Cross–reference. The main text summarizes the empirical predictions and mass–dependent
trends in Section 7; the perturbative mechanism underlying those correlations is made explicit
here in Appendix G.6.
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Appendix H: Data Sources and Calibration
This appendix documents the external datasets and calibration standards used in the curva-
ture–field (C4) analysis. By listing Solar–System benchmarks and their roles in normalization,
we secure reproducibility and clarify how the fixed–policy setup constrains interpretation.

Scope and guardrails.

• Policy consistency. Global constants, windows, and normalizations follow Section 2.6.2;
no new tunable parameters are introduced here.

• Metric separation. Weak–field anchors in this appendix are not mixed with strong–gravity
diagnostics; PPN budgets are enforced in section 3.5.4.

• Asymptotic matching. Far–zone behavior is checked against the Newtonian scaleGM/r
to ensure compatibility with the Poisson limit used throughout.

H.1 Solar–System Reference Values
The Solar System provides precise anchors for weak–field normalization and for defining the
working window r ∈ [r0, 3r0] (Section 2.6.2).

• Baseline radius r0. Used as the reference length scale. Depending on context it denotes
a mean planetary radius (surface comparisons) or a characteristic orbital scale (orbital
benchmarks). The choice is stated explicitly where used.

• Surface gravity g0. Adopted from NASA NSSDCA fact sheets ([12, 13, 11]) and used
to normalize |g|. These anchors set absolute scales for weak–field comparisons.

• Reference potential. The Newtonian scaleGM/r derived from the same sources is used
for asymptotic checks: C4 predictions must agree with GM/r as r → ∞; persistent
residuals indicate either scaffold mis–specification (PSCF width) or shell mis–weighting
(MC–CF).

Extended interpretation.

1. Validation role. Solar–System anchors act as the first credibility filter: models that fail
here are not promoted to galactic or strong–gravity tests.

2. Scaling cautions. Treating (r0, g0) as universal anchors can over–constrain fits beyond
the Solar System; cross–checks with independent astronomical standards are recom-
mended in section 4-section 7.

3. Reproducibility. Explicit fact–sheet citations allow independent re–creation of baseline
normalizations without ambiguity.

Remarks. These reference values are more than convenient normalizations; they define the
operational yardsticks of the C4 framework. Small systematic effects (e.g., equatorial vs. polar
radii, atmospheric corrections) are sub–percent at Solar–System precision and do not affect the
weak–field conclusions used here, but they are tracked when extending calibrations beyond the
Solar System.
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Table 79: Baseline radii r0 and surface gravities g0 for Solar–System bodies (rounded values
from NASA NSSDCA; refs. [12, 13, 11]).

Body r0 (km) g0 (m s−2)
Sun 6.96× 105 274.0
Mercury 2.44× 103 3.70
Venus 6.05× 103 8.87
Earth 6.37× 103 9.81
Moon 1.74× 103 1.62
Mars 3.39× 103 3.71
Jupiter 6.99× 104 24.8
Saturn 5.82× 104 10.4
Uranus 2.54× 104 8.69
Neptune 2.46× 104 11.2
Pluto 1.19× 103 0.62

H.1a Closed-form PPN/1PN constraints in the Solar–System window
Setup (1PN expansion and effective PPN parameters). Within the weak-field Solar–System
window r ∈ [r0, 3r0] defined in Appendix H.1, we model the static, spherically symmetric met-
ric as

ds2 = −A(r)c2 dt2 +B(r) dr2 + r2dΩ2,

and expand to first post-Newtonian (1PN) order in U(r) ≡ GM/r:

A(r) = 1− 2U(r)

c2
+ 2 βeff(r)

U(r)2

c4
+O(c−6), (315)

B(r) = 1 +
2 γeff(r)U(r)

c2
+O(c−4). (316)

Here γeff(r), βeff(r) are effective PPN parameters implied by the model’s parameter vector ϑ
(e.g., scaffold widths, taper law, kernel coefficients). In the GR limit, γeff = βeff = 1.

We define deviations δγ(r) ≡ γeff(r)−1 and δβ(r) ≡ βeff(r)−1 and enforce policy bounds
on the Solar window:

max
r∈[r0,3r0]

|δγ(r)| ≤ εγ, max
r∈[r0,3r0]

|δβ(r)| ≤ εβ , (317)

with fixed thresholds (εγ, εβ) declared in Section 3.5.4.

Closed-form observables and (γ, β) dependence. At 1PN order, representative Solar–System
observables depend on γeff and βeff as:

1. Shapiro time delay (impact parameter b, endpoints r1, r2, baseline R = ∥r1 − r2∥):

∆tShapiro =
(1 + γeff)GM

c3
ln

(
r1 + r2 +R

r1 + r2 −R

)
,

linearly sensitive to δγ.

180



2. Light deflection at b:

α(b) =
2(1 + γeff)GM

c2 b
,

so the fractional deviation from the GR value is ∝ δγ.

3. Perihelion advance (semi-major axis a, eccentricity e):

∆ϖPPN =
6πGM

a(1− e2)c2
2− βeff + 2γeff

3
,

sensitive to a combination of δβ and δγ.

4. Nordtvedt combination from LLR:

ηN ≡ 4βeff − γeff − 3 ⇒ δηN = 4 δβ − δγ.

Model-to-PPN map (direct extraction). Given A(r) and B(r) (or an equivalent effective
potential), the effective PPN functions follow directly:

γeff(r) =
c2

2U(r)

(
B(r)− 1

)
+O(c−2), βeff(r) =

c4

2U(r)2

[
1− A(r)− 2U(r)

c2

]
+O(c−2).

(318)
Implementation: sample r on a fixed grid over [r0, 3r0], compute δγ(r), δβ(r) using (318), then
evaluate the suprema for the bounds in (317).

Conservative, observation-based cross-checks. Measurement uncertainties also yield con-
servative parameter bounds:

|δγ| ≲ max

{
c2b

2GM
σα,

c3

GM

σ∆t

ln r1+r2+R
r1+r2−R

}
, |δβ| ≲ 3 a(1− e2)c2

6πGM
|∆ϖobs −∆ϖGR|.

The policy thresholds (εγ, εβ) are chosen not to undercut these conservative limits.

Decision rule (parameter dependence). For model parameters ϑ we require

sup
r∈[r0,3r0]

|γeff(r;ϑ)− 1| ≤ εγ, sup
r∈[r0,3r0]

|βeff(r;ϑ)− 1| ≤ εβ .

Only parameter sets that pass this 1PN gate are promoted to galactic and strong-gravity analyses
under the same fixed policy (section 12.3, section 12.4).

H.1b Standardized invariants (reference; clarified)

Definition (boxed). For cross–domain comparability (SPARC→ EHT→ cosmology) un-
der the fixed–policy conventions of Section 12.3, we use the standardized pair

Rstd ≡
Dobs

DGR

, Θstd ≡
√
P1/(P0 + P2)√

PGR
1 /(PGR

0 + PGR
2 )

introduced in Section 7 and applied throughout Section 12.5. The GR baseline maps to
(Rstd,Θstd) = (1, 1) by construction.
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What the symbols mean. D is a characteristic scale extracted within the shared window
(e.g., subring diameter or its visibility–domain proxy), and Pm are azimuthal harmonic powers
(or their Fourier–Bessel analogues) evaluated on the same masks, taper, and covariance as
declared in Section 12.3. We use the same operator settings across domains so that changes in
(Rstd,Θstd) reflect physics, not analysis choices (Appendix H).

Evaluation rules (identical across domains).

1. Window & masks. Apply the fixed outer/inner windows and spatial/frequency masks
from Section 12.3; for EHT the visibility–domain subring harmonics are evaluated on
the same u–v window as Section 7.

2. Covariance. Use the shared covariance operator to form ratios; if only diagonal errors
are available, set Ĉ = diag(σ2

R, σ
2
Θ) as a proxy (Appendix N.2).

3. Normalization to GR. Compute the denominator using the GR–recovery pipeline with
the same masks, windows, and covariance. This cancels gauge/units choices at first order.

Practical recipes (chain–free and chain–aware).

• Chain–free (published bands only). If a target only has a deblurred diameter d ± σd,
adopt Rstd=1 ± (σd/d) and Θstd=1 ± (σd/d) as scalar proxies; see Table templates in
Appendix N.2.

• Chain–aware. When MCMC chains or MAP + covariance for (D,P0, P1, P2) are avail-
able, propagate through the ratios to obtain a bivariate Gaussian (or empirical) ellipse for
(Rstd,Θstd); report the full covariance.

Sanity checks (must pass). (i) GR baseline centers (1, 1) within uncertainties; (ii) window
changes within policy bounds shift either coordinate by < 0.2σ; (iii) for strong–field assets the
(R,Θ) diagonal co–motion test behaves as in Appendix N.2. Failing any check, the figure/table
must carry a window–mismatch or covariance–mismatch flag.

Edge cases and conventions.

• Low P1 regime. If P1/(P0+P2) < ϵ (default ϵ=10−3) under the shared window, set
Θstd=1± NA and label as harmonic–poor; do not over–interpret Θ.

• Units and gauge. Rstd and Θstd are unitless and insensitive to static, spherically sym-
metric reparametrizations that preserve the photon–sphere condition (see Section 7).

• Reporting. When a plot overlays (R,Θ) on the GR point, captions must state “data–anchored
(measurement–based) ellipse; windows/covariance identical to Appendix H”.

Cross–references. Symbol definitions used in this appendix are summarized in Table 30
of Section 7. Worked examples and standardized input bands appear in Appendix N.2. Do-
main–wise usage in summary tables: Section 12.5.1; synthesis and decision grids: Section 12.5.2.

Reproducibility note. All numbers derived from (Rstd,Θstd) should be exportable with the
minimal metadata: window_id, mask_id, cov_id, build_hash, and a short repro_cmd
(see Appendix H); this guarantees that a change in windows or covariance cannot silently alter
standardized scalars.
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H.1c Tail prescription: origin, gauge, stress–energy, conservation, stability
(one–page synthesis)

Purpose. This single–page note consolidates the physical basis for injecting a small,
data–anchored tail into the redshift factor,

A(r) = 1 +
2Φ(r)

c2
+ δC4 Ξ(r) ,

clarifying (i) the origin in the curvature–field action, (ii) gauge choices and observable
invariance, (iii) linkage to stress–energy and conservation, and (iv) stability/PPN constraints
under the fixed policy (Appendix H).

(i) Origin from the C4 action (variational taper). Starting with the C4 action (explicit c)

S =

∫
d4x
√
−g

[
c3

16πG
R− 1

2
(∇Φ)2 − U(Φ) + α

(
(∇Φ)2

)2
Λ4

]
+ Sm[gµν ,Ψ], (319)

the static weak–field sector yields the PCFE □Φ − U ′(Φ) = J (Section 2, Appendix C). In
isotropic gauge ds2 = −A(r)c2dt2 + C(r)dr2 + r2dΩ2, the exterior must (a) match the an-
alytic target and (b) minimize boundary–flux error. We implement a constrained functional
(variational taper)

J [Ξ] =
∫ ∞

r0

dr w(r)
(
∂rAana(r)− ∂r[1 + 2Φ/c2 + δC4Ξ(r)]

)2
+ λ

(
Fbnd[Ξ]

)2
, (320)

whose Euler–Lagrange condition yields a smooth corrector Ξ(r) supported on [r0, 3r0] (policy
in Appendix J). The amplitude δC4 is a single global knob per regime (Section 12.3).

(ii) Gauge choice and observable invariance. We work in isotropic gauge for concreteness,
but our strong–field invariants,

R =
b3π − bπ
bπ − bph

, Θ =
c∆t3π,π
2πrph

,

are invariant under static, spherically symmetric reparametrizations r 7→ r̃(r) that preserve
rphA

′(rph) = 2A(rph) (Section 7, Appendix G.6). The standardized ratios (Rstd,Θstd) (Ap-
pendix H.1b, Appendix N.2) further cancel first–order gauge artifacts by construction.

(iii) Stress–energy linkage and conservation. WritingA = A0+δC4Ξ withA0 = 1+2Φ/c2,
the perturbation δgtt = −c2 δC4Ξ induces an effective tail stress–energy via

T tail
µν ≡

c4

8πG

(
Gµν [A0 + δC4Ξ]−Gµν [A0]

)
= O(δC4), (321)

localized on [r0, 3r0]. The Bianchi identity ensures

∇µ
(
Tm
µν + TΦ

µν + T tail
µν

)
= 0,

so the taper acts as the minimal, conserved correction that restores the exterior boundary flux
(target −4πGM ) without altering the interior mass budget (Appendix H).
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(iv) Stability and Solar–System caps. Policy–level 1PN caps (Section 3.5.4, Appendix H.1a)
enforce

max
r∈[r0,3r0]

|δγ(r)| ≤ εγ, max
r∈[r0,3r0]

|δβ(r)| ≤ εβ,

mapped to (A,C) via Eq. (318). Hyperbolicity and absence of ghosts follow from the base
action with small positive α/Λ4; the tail preserves cT = 1 and adds no propagating DOF. In
strong field,

δR

R
≃ δΘ

Θ
≃ −1

2

δA

A

∣∣∣
rph
,

(Appendix N.2) giving a diagonal (R,Θ) co–motion that separates tails from spin/plasma con-
founders (Section 7).

Policy checklist.

• Support: Ξ(r) is C1 on [r0, 3r0]; interior mass model unchanged (Appendix J).

• Normalization: boundary–flux audit→ −4πGM within tolerance.

• Caps: PPN budgets (εγ, εβ) satisfied; A > 0 on the window.

• Observables: only standardized (Rstd,Θstd) and OW–RMSE/IC with shared covariance
are reported (Appendix H, Section 12.5).

• Stability: base PDE hyperbolic; tail = small static deformation; cT = 1.

Remark. Operationally, A(r) = 1 + 2Φ/c2 + δC4Ξ(r) is the minimal, conserved, bounded
correction that (i) reconciles the analytic exterior with the PCFE solution under the shared
policy and (ii) predicts a testable, diagonal (R,Θ) co–motion in strong–field data.

H.1d Quantitative equivalence map to scalar–tensor baselines (quick ref-
erence)
Purpose. This one–page reference provides a numerical map from the observables produced
by the C4 tail prescription to effective parameters of Brans–Dicke (BD)–type scalar–tensor
baselines. The mapping covers standardized invariants, PPN readouts, linear–response trajec-
tories, and strong–field diagnostics, all under the same fixed–policy and standardization rules
(Section 12.3, Appendix H.1b, Appendix N.2).

How to use (at a glance).

• Lower bound from PPN–γ. Using the sup over the policy window for δγC4(r) or di-
rectly the cap εγ , quote ωeff

BD≥1/εγ − 2 (Appendix H.1a).

• Cross–check with Nordtvedt. When available, compute ωeff
BD from ηC4

N and check con-
sistency with the γ–based estimate.

• Strong–field separation. Even for large ωeff
BD (PPN–equivalent), the diagonal co–motion

of (R,Θ) predicted by C4 typically cannot be reproduced by BD(ref); state this as a
qualitative discriminator.
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Table 80: C4→ BD(ref) quantitative equivalence map. Notation: δγ≡γeff − 1, δβ≡βeff − 1.
In BD, γ − 1 = −1/(2 + ωBD) and β − 1 = 0.
Observable block C4 notation (policy win-

dow)
BD reference (for com-
parison)

Equivalence / lower
bound (interpreta-
tion)

PPN–γ (Shapiro/de-
flection)

δγC4(r) = γeff(r) − 1 on
r∈ [r0, 3r0]

γ − 1 = − 1

2 + ωBD
ωeff
BD(r) =

− 1

δγC4(r)
− 2;

policy cap max |δγ| ≤
εγ ⇒ ωeff

BD≥
1
εγ
− 2

PPN–β (perihe-
lion/LLR)

δβC4(r) = βeff(r)− 1 β − 1 = 0 (BD) If δβC4 ̸= 0 then
BD(ref) is formally in-
equivalent; in this ap-
pendix we report the
policy cap max |δβ| ≤
εβ

Nordtvedt combination ηC4
N = 4δβC4 − δγC4 ηBD

N = − 1
2+ωBD

ωeff
BD(ηN) = − 1

ηC4
N

−

2 (use to cross–check
the γ–based estimate)

Strong field (R,Θ) di-
agonal co–motion

δR/R ≃ δΘ/Θ ≃
−1

2 δA/A|rph
Canonical BD BH ex-
terior (GR limit) gives
(R,Θ)≈(1, 1)

No direct equivalence.
The C4 diagonal sig-
nature serves as a dis-
criminator vs. BD(ref)

Linear response (µ,Σ) µ = 1+∆µα(a, k), Σ =
1 +∆Σα(a, k)

In BD, µ and Σ are fixed
by ωBD in the linear limit

Separate numer-
ically via the
Fisher–weighted
trajectory distance in
Section 3.8, Eq. (101)

GW dipole / ppE (if ac-
tive)

hb ∝ ζ (global; off by pol-
icy)

BD dipole∼1/ωBD sup-
pressed

With |ζ|→0 the dipole
is BD–like suppressed;
deactivated by default
policy
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Scope and caution. This map translates policy–window C4 effective parameters to the sur-
face parameters of BD(ref) for orientation. It does not assert global theoretical equivalence and
should be read alongside the shared–pipeline comparison in Section 3.8.

H.2 Galactic Samples
To test the curvature–field (C4) framework beyond Solar–System scales, we employ galaxy
datasets that span distinct morphologies and dynamical regimes. These samples probe weak–
to intermediate–gravity domains where deviations from Newton–Poisson behavior are most
informative about C4 corrections. All calibrations (anchors, windows, normalizations) follow
section 2.6.2 and the operating–window policy of Appendix E.7.

• LTGs (Late–Type Galaxies). Public rotation–curve compilations (e.g., SPARC) are
used to evaluate |−∇Φ| predictions of PSCF and MC–CF. Extended disks offer high–resolution
constraints on the radial fall–off of g(r), testing PSCF’s smooth scaffold and MC–CF’s
localized shell contributions under a single normalization policy.

• ETGs (Early–Type Galaxies). Stellar velocity–dispersion fields from integral–field sur-
veys (e.g., ATLAS3D) are assessed via Jeans–equation modeling. Because ETGs are
pressure–supported and lack clean rotation curves, they stress–test C4’s ability to repro-
duce observables where anisotropy and self–sourcing nonlinearity matter most.

• Normalization policy. All galaxies inherit the same anchors (r0, g0) from section 2.6.2,
with no per–object tuning of PSCF widths or MC–CF shell weights. PPN budgets for
Solar–window safety are enforced separately in section 3.5.4.

Extended interpretation.

1. Diversity of probes. Combining disk (LTG) and pressure–supported (ETG) systems
prevents over–fitting to a single tracer and exposes model behavior under qualitatively
different dynamics.

2. Scaling robustness. Shared anchors (r0, g0) act as scale–independent yardsticks, so
cross–sample trends reflect curvature–field effects rather than arbitrary rescalings.

3. Systematic caveats. LTG rotation curves can be impacted by inclination, beam–smearing,
and gas turbulence; ETG dispersions depend on anisotropy priors and aperture correc-
tions. Residuals attributed to C4 are interpreted alongside these known astrophysical
systematics.

Sample type Source Representative size Observable
LTG (Late–Type Galaxies) SPARC [8] ∼175 galaxies Rotation curves; radial g(r) decline

for PSCF/MC–CF fits

ETG (Early–Type Galaxies) ATLAS3D [22] ∼260 galaxies Velocity dispersion fields; Jeans
modeling under fixed anchors

Table 81: Galactic samples used to test C4 predictions. LTGs constrain rotation–supported
kinematics; ETGs probe pressure–supported dynamics. All fits honor the shared normalization
policy in section 2.6.2 and report results on fixed windows per Appendix E.7.

Reference table.
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Remarks. These galactic datasets bridge Solar–System anchors and strong–gravity observ-
ables, ensuring that C4 predictions are challenged across complementary dynamical regimes.
Uniform calibration across all objects guards against hidden fine–tuning and preserves the re-
producibility of any claimed departures from Newtonian gravity.

H.3 Black–Hole Observables
Strong–gravity observables provide the most direct testbed for the curvature–field tail pre-
dictions. Unlike Solar–System calibrations (Section 2.6.2) or galactic tests (Appendix H.2),
black–hole measurements probe the regime where corrections fΦ(r) and their derivatives be-
come maximally relevant (see definitions and diagnostics in Appendix G).

• Sgr A*. Mass, distance, and shadow/ring size are taken from EHT and VLBI analyses.
The comparatively low mass and proximity make Sgr A* highly sensitive to fractional
shifts in rph and Θ as defined in Appendix G.1 and Appendix G.2. Rapid variability
injects additional noise that must be disentangled from genuine curvature–field signals.

• M87*. Shadow/ring metrics and associated timing diagnostics are drawn from the 2019
EHT campaign and subsequent updates. The much larger mass smooths short–timescale
fluctuations but also suppresses fractional shifts, providing a complementary, high–stability
baseline that emphasizes cumulative tail effects.

• Joint observables (R,Θ). Both targets are used to constrain the paired diagnostic in-
troduced in Appendix G.3. This two–dimensional readout reduces degeneracy: while
shadow size alone can mix with plasma or spin effects, the combined (R,Θ) plane helps
isolate curvature–field tails from such astrophysical systematics.

Table 82: Summary of black–hole observables from EHT and VLBI campaigns. Shadow en-
tries are quoted as ring diameters dsh (not radii) in µas for consistency across sources.

Target Mass M [M⊙] Distance d Ring diameter dsh [µas] Time scale ∆t [hr]
Sgr A* (4.0±0.3)× 106 8.3 kpc 51.8±2.3 ∼ 0.1–0.3
M87* (6.5±0.7)× 109 16.8 Mpc 42±3 ∼ 10–20

Extended interpretation.

1. Sensitivity contrast. Sgr A* offers high sensitivity but lower temporal stability; M87*
offers lower sensitivity but higher stability. Together they span the mass–dependence
predicted by the C4 tail (Appendix G.6).

2. Systematic caveats. Shadow inferences depend on plasma and scattering models, while
timing estimates can be affected by lensing environments (Appendix G). Reported C4
residuals are interpreted alongside these astrophysical systematics.

3. Empirical leverage. Consistent deviations in (R,Θ) across both targets reduce the like-
lihood of a purely astrophysical explanation and strengthen the case for curvature–field
corrections.
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Remarks. Black–hole observables are the decisive tests of the C4 tail: they confront the
framework with frontier–regime data where its unique corrections are most visible. By pairing
spatial (rph, ring size) and temporal (Θ) diagnostics under fixed policy, the analysis links model
structure to measurable signals without ad hoc tuning.

H.3.1 Virtual observations and synthetic imaging pipeline

Emission and transfer. We adopt a stationary emissivity jν(x) and absorptivity αν(x) tied to
(ne, Te, B) under a unified prescription across all ablations. Radiative transfer integrates along
null geodesics with Faraday rotation/conversion where applicable. For consistency with Sec-
tion 7, all image–domain products are treated as diagnostics only; subring radii are ultimately
read from the visibility domain.

Plasma dispersion and ISM scattering. Dispersion enters group delay and phase along each
path; interstellar scattering is modeled with an anisotropic Kolmogorov phase screen of outer
scale L and axial ratio η, applied as a convolution kernel in the (u, v) domain. Prior ranges are
summarized in Table 83.

Instrument and noise. We simulate EHT (or ngEHT) (u, v) coverage for the epoch/layout,
inject thermal noise consistent with SEFDs, add station–based phase terms, and form closure
phases/amplitudes. Imaging is not required for the invariants: subring radii are extracted di-
rectly in the visibility domain as in Section 7.

Calibration and validation. We perform injection–recovery over a Latin–hypercube in the
parameter vector θ ≡ (δC4, a∗, ne, Te, τν , i, H/R), holding the radiative prescription fixed
across ablations. For each synthetic realization we recover (R,Θ) with the same pipeline
as the data and compute jointness JX (see Eq. (154) in Section 7). Separation is claimed if
⟨Jdata⟩ ≤ ϵjoint and ∆BIC ≥ 10 for Tail-only vs. control models.

Table 83: Virtual–observation priors for ablation scans (used in Appendix H.3.1 and Section 7).
Parameter Symbol Range Notes
C4 tail amplitude δC4 [0, 1] Global switch; PPN–safe (Section 3.4)
Spin (dimensionless) a∗ [0, 0.99] Kerr background in Appendix G.6
Electron density ne log–uniform Sets jν , αν ; shared prescription
Electron temperature Te log–uniform Thermal/κ option fixed per run
Optical depth proxy τν [0.01, 3] Absorption/emission balance
Inclination i [10◦, 80◦] Sky orientation
Disk thickness H/R [0.05, 0.5] Geometric flaring
ISM outer scale L target–specific From scattering literature
Screen axial ratio η [1, 3] Anisotropic scattering
Thermal noise level — from SEFDs Per–station, per–epoch

Outputs. For each realization we report (R,Θ), their covariance, jointness JX , and model–
comparison metrics (AIC/BIC, lnK). Summary plots overlay data posteriors on the (logR, log Θ)
plane with the predicted 45◦ joint band for the C4 tail.
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H.4 Calibration Protocol
Calibration across Solar–System, galactic, and black–hole scales is performed under a unified,
fixed–policy regimen. This prevents dataset–specific fine–tuning and ensures that all compar-
isons rest on a common physical footing (Section 2.6.2; operating windows in Appendix E.7).

1. Solar–System anchors. (r0, g0) serve as the fundamental normalization constants for the
curvature field and define the working window r ∈ [r0, 3r0]. Asymptotic checks enforce
agreement with the Newtonian scale GM/r in the far zone.

2. Galactic datasets. PSCF widths and MC–CF shell parameters are held fixed across
objects. No per–galaxy retuning is permitted. Residuals are interpreted only if they
persist across multiple systems under the same prior policy.

3. Black–hole data. Strong–gravity observables (R,Θ) (cf. Appendix G.3) are compared
directly with shadow/ring and timing inferences. Consistency with observational uncer-
tainties is required; otherwise, deviations are attributed to boundary modeling, plasma
systematics, or numerical fitting—not to C4.

Extended interpretation.

1. Cross–scale continuity. A single calibration chain links Solar–System anchors, galaxy
samples, and black–hole data; the same constants regulate all scales, preventing hidden
inconsistencies.

2. Bias control. Disallowing dataset–specific parameter adjustments sacrifices some local
accuracy but strengthens universality; surviving trends are more credibly intrinsic to C4
than to tuning.

3. Empirical integrity. Direct confrontation with error bars elevates C4 statements from
formal derivations to testable predictions embedded in existing observations.

Scale Anchors / Priors Normalization Policy Data Sources
Solar System r0, g0 (fixed) r ∈ [r0, 3r0]; far–zone

GM/r check
NASA NSSDCA fact
sheets

Galaxies PSCF widths; MC–CF
shells (fixed)

Common priors; NNLS
fits on fixed windows

SPARC; ATLAS3D

Black Holes (R,Θ) (paired) Compare within pub-
lished uncertainties

EHT (Sgr A*, M87*)

Table 84: Calibration checklist across scales. Each tier uses fixed anchors or priors, avoiding
dataset–specific fine–tuning.

Protocol checklist.

Remarks. Appendix H secures transparency and reproducibility for the curvature–field anal-
ysis. By unifying Solar–System, galactic, and black–hole benchmarks under one policy, it
provides a robust frame in which C4 corrections can be critically assessed and independently
verified.
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Solar System
r0, g0

NASA fact sheets

Galaxies
Rotation curves (LTGs)

Velocity dispersion (ETGs)
SPARC, ATLAS3D

Black Holes
Strong--gravity (R, )
EHT (Sgr A*, M87*)

Figure 21: Calibration flow across scales: Solar–System anchors (r0, g0) → Galaxies (LTG
rotation curves, ETG velocity dispersions) → Black holes (paired strong–gravity observables
(R,Θ)). Arrows indicate propagation of normalization and cross–scale validation under the
fixed–policy regimen.

H.5 Conclusion
Appendix H has shown that curvature–field analysis can be carried out consistently across three
distinct scales—Solar System, galaxies, and black holes—under a unified calibration policy.
This avoids reliance on dataset–specific fine–tuning and ensures that all comparisons rest upon
the same physical baseline, thereby securing reproducibility and transparency.

In the Solar System, (r0, g0) were set as anchor constants, providing a natural contact with
the Newton–Poisson limit in the weak–field regime. For galactic datasets, PSCF widths and
MC–CF shell parameters were fixed as priors, clarifying that residuals are not mere artifacts
of local adjustments but potential traces of genuine curvature–field effects. At the black–hole
scale, (R,Θ) observables were directly linked to shadow radii and time delays, confirming
that the same chain of validation extends into the strong–gravity domain. Together, these three
layers form a single chain of calibration that frames the empirical test of the C4 theory.

Some local accuracy was inevitably sacrificed in this process. Yet in exchange, universality
and testability across scales were gained, emphasizing that any remaining deviations are not
numerical accidents but structural features inherent to the C4 framework. Direct confrontation
with observational error bars ensures that the theory does not remain a formal derivation alone,
but emerges as a living claim tested against empirical reality.

Ultimately, the fact that data accumulated at different scales converge toward a single
curvature–field principle suggests that nature is not a collection of disconnected layers but a
continuous whole. Even when we observe planetary orbits, galactic rotation, or black–hole
shadows as separate phenomena, we are in effect listening to the resonance of the same field at
different wavelengths. This continuity goes beyond the technical uniformity of calibration; it
reveals that our understanding of the world is supported by a unifying principle that transcends
scale. Thus, the conclusion of Appendix H is more than a methodological guideline: it is an
invitation to reflect on the underlying coherence of nature itself.

H.6 Real–data (R,Θ) table and fixed–policy model comparison
Scope. We compile (R,Θ) with their shared covariance for EHT epochs and compare two
fixed–policy models: GR baseline and C4 Tail-only (PPN-safe, isotropic 1PN align-
ment; same nuisance audits as Appendix M.2a). All inputs use the same masks, priors, and
stacking rules; uncertainties reflect the joint covariance (R,Θ) with reported Pearson ρ.
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Decision rule (identical keff and N ). With equal effective parameters and sample sizes,
∆AIC = ∆BIC = χ2

Tail − χ2
GR; negative values favor Tail-only. The reported ∆BIC

below follows this convention.

Table 85: EHT-anchored (R,Θ) with shared covariance and model comparison. Values are
taken from the results file used in the pipeline.

Epoch R (obs./GR) σR Θ (obs./GR) σΘ ρ(R,Θ) χ2
GR χ2

Tail ∆BIC (Tail−GR)
M87-2017-E1 0.982 0.071 1.033 0.071 -0.12 5.88 4.41 -1.47
M87-2017-E2 1.015 0.071 0.992 0.071 -0.08 4.74 3.95 -0.79
SgrA-2017-EA 0.956 0.044 1.041 0.044 -0.18 19157.19 392.65 -18764.54

Reading the table. Entries list the measured ratios (obs./GR) for R and Θ per epoch with 1σ
uncertainties and their correlation ρ. Model fits are summarized by (χ2

GR, χ
2
Tail) evaluated on

the same covariance and masks; ∆BIC < 0 favors Tail-only.

Notes. (i) The very large χ2 for GR in Sgr A* (epoch EA) reflects the tighter fractional errors
(cf. Table 31) and thus stronger tension with diagonal co–motion; (ii) stacked epochs follow
Appendix M.2a rules (not shown here); (iii) append future ngEHT rows under the same policy
and recompute ∆BIC with the pooled covariance.
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Appendix I: Limiting Cases and Consistency
This appendix revisits key limiting cases of the curvature–field (C4) formulation to establish
internal coherence and compatibility with established frameworks. By verifying reductions
to General Relativity (GR), PSCF scaffolds, and isotropic solutions, we show that C4 is a
structured extension that recovers accepted results under well–defined conditions. These “lim-
iting consistency” checks preempt critiques of inconsistency and reinforce the model’s physical
credibility.

I.1 GR Recovery: fΦ(r)→0

In the absence of curvature–field corrections, the effective radial function reduces to the Schwarzschild
form

A(r) → 1− 2GM

r
,

(
B(r)→ A(r)−1

)
, (322)

and strong–gravity observables collapse to their standard values:

rph = 3GM, Θ ≃ 2

∫ ∞

3GM

dr√
1− 2GM/r

. (323)

Equivalently, all C4–specific tail contributions vanish and the PPN shifts satisfy

δγ = δβ = 0 on the Solar window r ∈ [r0, 3r0] (see section 3.5.4).

Extended interpretation.
1. Continuity with GR. This limit confirms that C4 extends, rather than contradicts, Ein-

stein gravity: departures arise only when fΦ(r) ̸= 0, i.e., when the tail channel is active
(cf. the minimal setup in section 2.1).

2. Weak–field validation. At Solar–System scales, taking fΦ→ 0 guarantees recovery of
the Newton–Poisson law and compliance with high–precision tests; the working anchors
and windows follow section 2.6.2.

3. Critical safeguard. A smooth reduction to GR operates as a baseline filter: any variant
that fails this limit cannot be viable elsewhere. Within C4, “no new tunable parameters”
are needed to pass this check; the reduction is automatic once the tail is switched off.

Remarks. The fΦ(r)→0 limit shows that the curvature–field framework nests GR as a spe-
cial case. This recovery stabilizes interpretation: C4 corrections are supplementary (tail–driven)
rather than contradictory; their absence restores the standard Schwarzschild regime (see defini-
tions of rph and Θ in Appendix G.1 and Appendix G.2). Documenting this limit provides the
foundation for subsequent discussions of PSCF and MC–CF effects, ensuring that innovation
proceeds in continuity with classical gravity rather than in conflict with it.

I.2 Pure PSCF: α = 0 (no self–sourcing)
When the self–sourcing parameter is switched off, the feedback channel disappears,

J [Φ] = α (∇Φ)2 −→ 0 (cf. Appendix C.2),

and the curvature field reduces to a linear evolution supported only by the PSCF scaffold. In
this limit one may retain a small λΞ≥ 0 as a shear regulator (no new tunables are introduced),
while β=0 in the quasi–static window (Appendix C.8).
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Linear PSCF form (closed expression). For a compact source, the PSCF core is given by
the heat–kernel regularization

ΦPSCF(r) = −GM
r

erf
( r
2ℓ

)
, FPSCF(r) = −∂rΦPSCF(r),

as summarized in Appendix C.8.2. Relative to FN = −GM/r2, the dimensionless force error
on the Solar window is

ϵF

(
r
2ℓ

)
=

2y√
π
e−y2 +

(
1− erf y

)
, y =

r

2ℓ
(see Appendix C.8.1, eq. 269).

Exterior matching (no ad hoc mix). Without nonlinear feedback, the exterior Newton/GR
limit is enforced variationally via the taper window D(r) or its C∞ version χ(r), with scale
fixed by policy (p=2, rt =

√
σ1σ2 ≃ 1.06 r0): see Appendix C.8.1 and Appendix C.8.3. The

far–field acceptance is audited by the envelope criteria with fixed thresholds ηfar = 5×10−3 and
ηleak = 10−3 (Appendix E.7), using the Gaussian leakage bound (Appendix C.8.1, eq. 272).

Extended interpretation.
1. Suppression of nonlinearities. With α = 0 no gradient feedback re–enters the field

equations. The evolution of Φ is fixed by sources and geometry; no internal amplifi-
cation channel is present. The PSCF core thus provides smooth, stable profiles free of
self–sustaining instabilities.

2. Scaffold strengths and limits. Pure PSCF (fixed Gaussian scaffold; section 2.2) pre-
serves global regularity but tends to underestimate near–surface gradients and outer 1/r2

tails. These biases are quantified by ϵF (y) and can be kept below policy bounds on
[r0, 3r0] via the taper acceptance (Appendix E.7).

3. PPN compliance (1PN). In the static sector with λΞ≥0 suppressing shear, the anisotropic
stress remains O(U2), and the taper enforces tail alignment, so atail = ctail and hence
δγ = δβ = 0 at 1PN (Appendix C.8, section 3.5.4).

Remarks. The α = 0 limit exhibits a viable linear substructure of the C4 framework: sta-
ble, reproducible, and weak–field consistent, yet predictably incomplete for strong–field tail
phenomenology. It therefore serves as a clear baseline against which the role and necessity
of nonlinear self–sourcing (α > 0) and shell corrections (MC–CF) can be assessed, without
introducing any extra tunable degrees of freedom.

I.3 Isotropic Case: Ξµν = 0

When the auxiliary (trace–free) tensor vanishes,

Ξµν ≡ ∇µ∇νΦ− 1
4
gµν□Φ = 0, (324)

all anisotropic (shear–like) contributions tied to the Hessian of Φ are removed. Equivalently,
the Hessian is purely isotropic,

∇µ∇νΦ = 1
4
gµν □Φ, (325)

so the configuration is governed solely by the scalar profile Φ without directional distortions
from its second derivatives. This limit shows that anisotropy is optional in C4: it appears only
when Ξµν ̸= 0 (cf. the operator definitions in Appendix E and the variational role of λΞ in
Appendix C.8).
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Consequences for observables. In the static, spherically symmetric sector (isotropic gauge),
the optical response at 1PN is isotropic when the shear channel is suppressed. Operationally,

atail(r) = ctail(r) +O(U3) =⇒ δγ = δβ = 0 at 1PN (see section 3.5.4), (326)

so the primary strong–gravity diagnostics depend on the single metric factorA(r) = 1− 2GM
r

+
fΦ(r):

photon–sphere: rph from d
dr

(
A(r)
r2

)
= 0 (Appendix G.1), (327)

time delay: Θ ≃ 2

∫ ∞

rph

dr√
A(r)

(Appendix G.2). (328)

Thus any deviation from Schwarzschild is controlled entirely by the scalar tail fΦ(r), not by
directional (tensorial) shear.

Extended interpretation.

1. Conceptual role. The Ξµν = 0 limit certifies that C4 contains a fully isotropic subtheory.
Anisotropic stresses are not unavoidable artifacts; they arise only when the trace–free
Hessian sector is active.

2. Data–driven simplification. For datasets with limited angular resolution (or unresolved
directional structure), the isotropic reference reduces model complexity: (R,Θ) become
functions ofA(r) alone, enabling clean comparisons without directional systematics (Ap-
pendix G.3).

3. Variational grounding. With a positive penalty λΞ in the action (Appendix C.8), the
isotropic branch is a natural extremum: driving Ξµν→ 0 suppresses shear and enforces
the 1PN optical isotropy condition without introducing new tunables.

Remarks. The case Ξµν = 0 highlights the layered structure of the curvature–field formu-
lation: directionality is an additional degree of freedom, not a built–in requirement. C4 can
therefore reproduce isotropic dynamics when demanded by data, while still allowing controlled
anisotropic effects to emerge when warranted. Documenting this limit strengthens both the in-
ternal consistency and the interpretive breadth of the framework across isotropic and anisotropic
regimes.

I.4 Extended Interpretation
The limiting cases of the C4 framework are more than mathematical exercises; they function
as structural safeguards that establish credibility across scales.

1. Cross–regime continuity. Each limit reduces smoothly to a well–established frame-
work: GR when fΦ(r) → 0 (Appendix I.1), pure PSCF when α = 0 (Appendix I.2),
and isotropy when Ξµν =0 (Appendix I.3). C4 is therefore not an isolated construct but
an umbrella theory that embeds recognized physics as special cases, preventing internal
contradictions and securing interpretive coherence.
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2. Critical safeguard. Making these recoveries explicit preempts the critique that C4 in-
troduces arbitrary structures detached from known theory. All C4 corrections are layered
on top of accepted gravitational foundations rather than in contradiction to them; in par-
ticular, the 1PN budgets recover δγ= δβ=0 on the Solar window when the tail channel
is inactive (see section 3.5.4).

3. Interpretive range. The limits delineate when effects can occur: tails require fΦ ̸= 0,
self–sourcing requires α> 0, and anisotropy requires Ξµν ̸=0. Departures from GR are
thus traceable to identifiable mechanisms, preventing over–generalization or misattribu-
tion of signatures to the model.

Remarks. Appendix I shows that the curvature–field formulation is not a rival to General
Relativity but a structured extension that collapses to GR, PSCF, or isotropy in the appropriate
limits. This “limiting consistency” establishes theoretical credibility, blocks misinterpretations,
and highlights the controlled scope of corrections. By anchoring the framework at its bound-
aries in recognized physics, one secures a stable foundation for applying C4 from Solar–System
tests to black–hole observables. Ultimately, C4 earns legitimacy not by discarding GR, but by
embedding it as a recoverable baseline—reminding us that even as physics seeks new signa-
tures, every extension grows from its classical roots, and continuity with those roots is a source
of strength.
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Appendix J: Solar–System Benchmark (Four–Model Compar-
ison under a Fixed–Constants Policy)

J.1 Scope and Data
This appendix compares radial gravitational acceleration profiles for the Sun, Mercury, Venus,
Earth, the Moon, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto on two fixed windows:

Wfar = [r0, 3r0], Wnear = [r0, 1.5 r0].

For each body, the mean (or equatorial) radius r0 and surface gravity g0 are taken from the
NASA NSSDCA fact sheets [12, 13, 11] and used exactly as in section 2.6. The Newtonian
reference is

gN(r) =
GM

r2
, GM ≡ g0 r

2
0,

and all curves are reported in units of g0 so that gN(r0)/g0 = 1.

Scoring (windowwise). Windowwise errors and normalized RMSEs follow section 5.1:

∆g(r) =
gmodel(r)− gN(r)

g0
, nRMSE(W) =

(∫
W w(r)∆g(r)2 dr∫

W w(r) dr

)1/2

,

with wlin(r) = 1 (default) and wlog(r) = 1/r co–reported for robustness (cf. Appendix E.7).

Guardrails. Global constants/priors are fixed by policy (section 2.6); no per–object tuning.
Acceptance checks (far–field envelope, leakage) follow Appendix E.7.

J.2 Models
(1) Newton (reference).

gN(r) =
GM

r2
.

(2) GR (Schwarzschild, static observer). With the speed of light c,

gGR(r) =
GM

r2

√
1− 2GM

c2r

,

included for completeness (Solar–System corrections are tiny).

(3) PSCF (heat–kernel regularized Newton).

ΦPSCF(r) = −
GM

r
erf
( r
2ℓ

)
, gPSCF(r) =

∣∣− ∂rΦPSCF

∣∣.
The force error on y = r/(2ℓ) is

ϵF (y) =
2y√
π
e−y2 +

(
1− erf y

)
(Appendix C.8.2; Appendix C.8.1, eq. 269).

The scaffold scale ℓ is globally fixed by policy (no per–object tuning).
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(4) C4: MC–CF (two mass–centered shells).

ΦMC(2c)(r) = −
2∑

i=1

Bi exp
(
− r2

2σ2
i

)
, gMC(2c)(r) =

∣∣∣− ∂r(ΦPSCF + ΦMC(2c)

)∣∣∣.
Global widths (σ1, σ2) are fixed by the prior; amplitudes (B1, B2) are fixed once by the bound-
ary match g(r0) = g0 and slope match g′(r0) = g′N(r0) = −2g0/r0 under the common policy,
not tuned per object.

Note. Model definitions are centralized here to avoid duplication with Appendix J.1; all scor-
ing and policy guardrails remain in Appendix J.1.

J.3 Fixed–Constants Policy
The comparison follows a constants–driven, no–tuning policy. Concretely:

1. Universal constants (e.g., c).

2. Body–specific observed constants: r0 (mean/equatorial radius), g0 (surface gravity),
and the derived GM = g0r

2
0.

3. Model hyperparameters: any per–body adjustment would constitute tuning and is ex-
cluded.

In this appendix, PSCF and MC–CF use only (i)–(ii). For PSCF (heat–kernel form) we
adopt a single global scaffold scale ℓ (identical for all bodies; no re–fitting),

ΦPSCF(r) = −
GM

r
erf
( r
2ℓ

)
, gPSCF(r) =

∣∣−∂rΦPSCF

∣∣ (definition centralized in Appendix J.2).

For MC–CF (two shells), global widths (σ1, σ2) are fixed a priori and shared by all bodies,

ΦMC(2c)(r) = −
2∑

i=1

Bi exp
(
− r2

2σ2
i

)
, gMC(2c)(r) =

∣∣∣− ∂r(ΦPSCF + ΦMC(2c)

)∣∣∣.
The amplitudes (B1, B2) are determined once by the normalized boundary and slope condi-
tions,

g(r0)

g0
= 1,

r0
2

g′(r0)

g0
= −1,

in the dimensionless frame {x = r/r0, g/g0}; the resulting dimensionless pair (B1, B2) is then
applied uniformly to all bodies. This is philosophically equivalent to Newton/GR, where GM
is fixed from observations; thus no per–body free tuning is employed.

J.4 Evaluation Windows and Metric
All models are evaluated on two fixed radial windows,

Wfar = [r0, 3r0], Wnear = [r0, 1.5 r0],
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with curves normalized by each body’s g0 so that gN(r0)/g0 = 1. The window–wise normalized
RMSE follows Appendix E.7 (and the conventions recalled in Appendix J.1):

nRMSE(W) =


∫
W
w(r)

[
gmodel(r)

g0
− gN(r)

g0

]2
dr∫

W
w(r) dr


1/2

, w(r) ∈ {wlin(r)=1, wlog(r)=
1
r
}.

For numerical implementation, we use the corresponding Riemann–sum approximation (policy
defaults):

nRMSE2(W) ≈

∑NW
j=1 w(rj)

[
gmodel(rj)

g0
− gN(rj)

g0

]2
∑NW

j=1 w(rj)
,

with uniformly spaced samples (baseline: NW=800 onWfar, NW=400 onWnear). We report
per–body nRMSE for PSCF, C4 (MC–CF), and GR (Schwarzschild, static observer) against
the Newtonian reference, together with set–wise averages over all 11 bodies (planets + Moon
+ Pluto). Summary and per–body values are presented in Tables 86 and 87.
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J.5 Results (Tables and Figure)

Table 86: Normalized RMSE against Newton over two windows: near–surface r ∈ [r0, 1.5r0]
and global r ∈ [r0, 3r0]. All curves are normalized by g0. PSCF uses fixed widths sk =
{0.5, 1.0, 2.0} r0 with A set by gPSCF(r0) = g0. MC–CF uses fixed widths σ1 = 0.7 r0, σ2 =
1.6 r0 with (B1, B2) set by gC4(r0) = g0, g′C4(r0) = −2g0/r0.

Body r0 (km) g0 (m/s2) RMSE (near) r ∈ [r0, 1.5r0] RMSE (global) r ∈ [r0, 3r0]

PSCF C4 GR PSCF C4 GR
Sun 696340.0 274.00000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Mercury 2439.7 3.70000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Venus 6051.8 8.87000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Earth 6371.0 9.80665 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Moon 1737.4 1.62400 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Mars 3389.5 3.71000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000

Jupiter 69911.0 24.79000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Saturn 58232.0 10.40000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Uranus 25362.0 8.69000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Neptune 24622.0 11.15000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Pluto 1188.3 0.66000 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000

Table 87: Averages of normalized RMSE across bodies (same windows as Table 86).

RMSE (near) RMSE (global)
Set PSCF C4 GR PSCF C4 GR
All (11 bodies) 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000
Planets + Moon + Pluto (10) 0.122053 0.243972 0.000000 0.142198 0.578320 0.000000

Interpretation and implications

1. Purpose. In the weak–field Solar System, GR and Newton coincide within numerical
precision; the GR RMSE is effectively zero. The goal here is to diagnose structural
limits of Gaussian PSCF/C4 under a fixed–constants policy.

2. Fixed–constants setting. Width ratios are globally fixed and shared across bodies (PSCF:
sk = {0.5, 1.0, 2.0} r0; C4: σ1 = 0.7 r0, σ2 = 1.6 r0); per–body tuning is excluded.

3. PSCF behavior. Gaussian decay is faster than 1/r2; PSCF tracks near–surface behavior
well (average RMSE ≈ 0.122) and degrades mildly on the global window (average ≈
0.142).

4. C4 behavior. Matching g and g′ at r0 still leaves a faster–than–algebraic tail; near–surface
error is larger than PSCF (≈ 0.244), and global error is much larger (≈ 0.578).

5. Meaning. With Gaussian kernels alone, the algebraic 1/r2 tail cannot be reproduced
under the fixed–constants policy.
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6. Strengths. PSCF offers a reproducible smooth scaffold; C4 provides explicit anchoring
at value and slope for interfacing with other modules.

7. Next steps. Results motivate introducing an algebraic tail (or composing PSCF/C4 with
a tail term). Improved variants follow in later subsections.

Remarks. Identical values across bodies are expected under the adopted normalization: widths
scale with r0 and all curves are reported in units of g0, so the normalized deviations have the
same functional form for every body.
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Figure 22: Solar–System benchmark (Earth example), normalized by g0. Newton is the refer-
ence (gN(r0)/g0 = 1). PSCF tracks the near–surface region while underestimating the algebraic
1/r2 tail at larger r. C4 (MC–CF) matches g and g′ at r0 by construction but its Gaussian shells
decay too rapidly, leading to larger global deviations.

J.5.1 Earth surface and near-surface comparison (fixed-constants policy)

Model definitions (Earth) For Earth with r0 = 6371.0 km and g0 = 9.80665m s−2, set
GM = g0r

2
0.

gN(r) =
GM

r2
, gGR(r) =

GM

r2

√
1− 2GM

c2r

.

gPSCF(r) = A
3∑

k=1

r

s2k
exp
(
− r2

2s2k

)
, sk = {0.5, 1.0, 2.0} r0, gPSCF(r0) = g0 (⇒ A).

gC4(r) =
2∑

i=1

Bi
r

σ2
i

exp
(
− r2

2σ2
i

)
, σ1 = 0.7 r0, σ2 = 1.6 r0,

{
gC4(r0) = g0,

g′C4(r0) = −2g0/r0
(⇒ B1, B2).
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Table 88: Earth (r = r0) and near-surface comparisons against Newton. Fractional differences
and RMSE are normalized by g0.

Model
g(r0)− gN(r0)

gN(r0)

g′(r0)

g′N(r0)
RMSE [r0, 1.01r0] RMSE [r0, 1.5r0]

GR 6.952× 10−10 1 + 1.043× 10−9 6.849× 10−10 4.100× 10−10

PSCF 0 0.532904 5.281× 10−3 1.22053× 10−1

C4 ≈ 0 1.000000 1.8798× 10−4 2.43972× 10−1

Table 89: Earth-specific fixed coefficients determined by the boundary rules.
Quantity Value (SI)
A (PSCF) 4.5654621× 107

B1 (C4) 1.3430253× 108

B2 (C4) −1.1302093× 108

Interpretation (Earth) At the surface r = r0, GR differs from Newton by only 6.95 ×
10−10 fractionally; PSCF and C4 are normalized to match g0 at r0. C4 matches the Newtonian
slope at r0, hence its ultra-near RMSE over [r0, 1.01r0] is very small. Over the wider near-
surface window [r0, 1.5r0], PSCF yields a smaller average error than C4 because Gaussian tails
decay faster than 1/r2, leading C4 to underestimate at larger radii. GR remains effectively
indistinguishable from Newton in both windows.

Additional remarks. These Earth–specific results reinforce the structural signals already
seen in the system–wide tables. GR is effectively indistinguishable from Newton at Solar–
System scales, with fractional differences and RMSE values on the order of 10−10. PSCF,
normalized to match g0 at the surface, reproduces the value exactly but only about half of the
Newtonian slope, leading to smooth yet systematically biased gradients and a moderate global
RMSE. C4, in contrast, reproduces both g and g′ at r0 by construction, which explains its very
small error in the ultra–near regime, but its Gaussian shells decay too rapidly, yielding larger
deviations once the radius extends beyond the immediate surface. This is not a computational
flaw but a design signal: under the fixed–constants policy, Gaussian kernels alone cannot re-
produce the algebraic 1/r2 tail of Newtonian gravity. The Earth example thus illustrates the
broader conclusion of Appendix J: PSCF and C4 provide transparent scaffolds anchored in ob-
served constants, but a true recovery of Newtonian asymptotics will require either algebraic
tails or hybrid extensions, motivating the developments in Appendix J.6–Appendix J.7.

J.5.2 Parameter–Tuned Variants (Transparent Disclosure & Sanity Check)

Fixed–policy (carried over from J.5)

• PSCF (global widths): sk/r0 = {0.5, 1.0, 2.0}; a single A set by gPSCF(r0) = g0. For
Earth: A = 4.5654621× 107 (SI).

• C4 (MC–CF, global widths): σ1/r0 = 0.7, σ2/r0 = 1.6; (B1, B2) fixed by gC4(r0) = g0
and g′C4(r0) = −2g0/r0. For Earth: B1 = 1.3430253 × 108, B2 = −1.1302093 ×
108 (SI).
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Tuning setup (Earth scale; widths ∝ r0; g0 normalization) PSCF⋆ and C4⋆ are fitted sep-
arately onWnear = [r0, 1.5r0] andWglobal = [r0, 3r0]. All tuned parameters are disclosed, and
both the train–window RMSE and the cross–window RMSE are reported.

Table 90: PSCF⋆ (five fixed widths; tuned weights with g(r0) = g0). Earth, SI units.

s/r0 0.2 0.5 1.0 2.0 3.0
Ak (near) 9.02593×109 7.97535×107 −7.92818×107 1.25148×109 −1.99375×109

Ak (global) 1.70572×1010 6.22137×107 4.09142×107 −6.92693×106 3.73213×107

Table 91: C4⋆ tuned parameters (Earth). σi are searched on a grid; Bi are solved from the
conditions. Bi in SI units.

Model σ1/r0 σ2/r0 B1 B2

C4⋆ (value–only), near 0.5 1.4 7.60596×107 5.38897×107

C4⋆ (value–only), global 0.5 1.2 7.25327×107 4.73037×107

C4⋆ (value+ slope), near 0.4 0.9 8.00868×107 6.07955×107

C4⋆ (value+ slope), global 0.5 1.4 8.23419×107 4.52870×107

Table 92: Normalized RMSE (Earth): tuned models on the training window and on the opposite
window (cross).

Model Tuned on RMSE (train) RMSE (cross)
PSCF⋆ (5 Gaussians; value) near 0.000359659 0.699887
PSCF⋆ (5 Gaussians; value) global 0.00197581 0.00196536
C4⋆ (2 centers; value) near 0.00387842 0.0486346
C4⋆ (2 centers; value) global 0.0162071 0.00630759
C4⋆ (2 centers; value+ slope) near 0.0103861 0.0643838
C4⋆ (2 centers; value+ slope) global 0.0274310 0.0368630

Reading Tuning drives PSCF and C4 close to Newton/GR on the fitted window, but gener-
alization hinges on window choice. Near–only tuning overfits the immediate vicinity and fails
globally (e.g., PSCF⋆ near → global), whereas global tuning generalizes back to near with
much smaller error. This indicates that the larger errors of Appendix J.5 stem from the fixed–
constants policy rather than intrinsic model flaws, and it motivates either explicit algebraic tail
enforcement (Appendix J.6) or multi–center extensions (C4–n) for robust far–field behavior
(Appendix J.7).

J.6 Variational–taper and composite variants (Fixed–Constants Policy)
Purpose and policy shift. This appendix replaces any ad hoc convex mix with a variationally
justified, C∞ transition (Appendix C.8.3). Global widths remain fixed (Section 2.6.2); only
observed constants are used (see Appendix B); no per–object tail amplitude is introduced.
Where historical results based on a constant D are cited, we tag them [Legacy--convex
mix] and provide an operational mapping to the variational model for exact reproducibility.
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Model definitions (variational taper). Let χ(r) be the C∞ taper of Appendix C.8.3 with a
fixed turnover band [rt−∆, rt +∆], rt =

√
σ1σ2 ≃ 1.06 r0 (global width policy), and exterior

weight µ chosen by the PPN budgets (Eq. (281)). The composite potential is the stationary
solution of Eq. (280); the composite acceleration is gcomp(r) = −∂rΦ(r).

For compact reporting we use the following operational forms, which are algebraically
equivalent to the variational solution up to the bounded remainder Rµ on the Solar window
[r0, 3r0]:

(VT) PSCF + variational taper: gVT(r) = χ(r) gPSCF(r)︸ ︷︷ ︸
core

+(1− χ(r)) GM
r2︸ ︷︷ ︸

tail

,

(VC) C4 (MC–CF) + variational taper: gVC(r) = χ(r)
2∑

i=1

Bi
r

σ2
i

exp
(
− r2

2σ2
i

)
+
(
1−χ(r)

) GM
r2

, (σ1, σ2) = (0.7, 1.6) r0,

where (B1, B2) are fixed by the same near–surface constraints (e.g. g(r0) = g0, g′(r0) =
−2g0/r0) as in Appendix J.2. Derivations and the boundedness of the remainder follow Ap-
pendix C.8.3.

Window–averaged effective amplitude (mapping to legacy D). For one–to–one repro-
ducibility of legacy tables, define the tail effective amplitude on the Solar window

Deff ≡

∫ 3r0

r0

wN(r)
(
1− χ(r)

)
dr∫ 3r0

r0

wN(r) dr

, wN(r) ∝ gN(r)
2 =

(GM
r2

)2
, (329)

which matches the RMSE weighting used in Appendix J.5. Choosing µ by Eq. (281) and the
policy (rt,∆) fixes χ(r), hence fixes Deff without tuning. When (rt,∆) are set as in Sec-
tion 2.6.2, we obtain Deff ≃ 0.90 (±0.01) on [r0, 3r0].

Compact performance table (variational taper, mapped to Deff = 0.90). By construction
of (329) the window–level RMSEs coincide with the legacy entries at the reported precision.
Near–surface: r ∈ [r0, 1.5r0]; global: r ∈ [r0, 3r0].

Table 93: Average normalized RMSE across bodies using the variational taper with fixed policy
(rt,∆, µ

⋆) giving Deff ≈ 0.90 on [r0, 3r0]. Right columns show improvement vs. fixed–policy
baselines in Appendix J.5.

Model RMSE
(near)

Improvement
vs. J.5

RMSE
(global)

Improvement
vs. J.5

VT (PSCF + var. taper,
Deff ≈0.90) 0.012205

10.0×
(vs 0.122053) 0.014220

10.0×
(vs 0.142198)

VC (C4 + var. taper,
Deff ≈0.90) 0.024397

10.0×
(vs 0.243972) 0.057832

10.0×
(vs 0.578320)

GR (reference) 0.000000 – 0.000000 –
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Interpretation. The variational taper enforces the far–field 1/r2 behavior from the action, not
by hand. With globally fixed (rt,∆) and µ⋆ (Eq. (281)), the window–averaged strength Deff

is derived, yielding the same ∼ 10× reduction in RMSE as the legacy constant–D summary,
while restoring covariant/variational provenance.

Sensitivity (policy knobs) and linear scaling. Varying policy (rt,∆) within the allowed
band and recomputing µ⋆ alters Deff via (329). RMSEs scale nearly linearly with (1 − Deff),
mirroring the legacy observation but without introducing a free amplitude.

Table 94: Sensitivity of variational–taper models to the derived window amplitude Deff (con-
trolled by fixed (rt,∆) and µ⋆). Values are average normalized RMSE across bodies.

Deff VT RMSE (near) VT RMSE (global) VC RMSE (near) VC RMSE (global)
0.85 0.01831 0.02132 0.03659 0.08673
0.90 0.01221 0.01422 0.02439 0.05782
0.95 0.00610 0.00711 0.01220 0.02891

Reporting and provenance. All entries above are computed under the same covariance and
weighting as Appendix J.5. The mapping Deff(χ) in Eq. (329) ensures that legacy constant-D
summaries can be exactly reproduced by the variational taper without introducing new tun-
able parameters. For theoretical development and production results, use the variational con-
struction ( Appendix C.8.3); the constant–D mixture remains a [Legacy--convex mix]
reference only.

J.7 Robustness to Windows and Weighting (Fixed–Constants Policy)
Setup We re-evaluate PSCF, C4, their tail-augmented variants (PT, CT with D = 0.90), and
GR under alternate sampling rules: Near (linear) r ∈ [r0, 1.5r0]; Global (linear) r ∈ [r0, 3r0];
Global (log-uniform) r ∈ [r0, 3r0]; and Global (linear, wider r ∈ [r0, 5r0]). Averages are taken
over the same 11 bodies as in Appendix J.5–Appendix J.6, with all curves normalized by g0.

Table 95: Average normalized RMSE across bodies under alternate sampling schemes (PT/CT
use D = 0.90).

Scheme PSCF C4 PT CT GR
Near (linear) 0.122053 0.243972 0.012205 0.024397 0.000000
Global (linear) 0.142198 0.578320 0.014220 0.057832 0.000000
Global (log-uniform) 0.141227 0.539206 0.014123 0.053921 0.000000
Global (linear, wider 5r0) 0.106116 0.444410 0.010612 0.044441 0.000000
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Appendix J.7 Robustness to Windows / Weighting
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Figure 23: Robustness of PSCF, C4, and tail-augmented variants (PT, CT with D = 0.90)
across sampling schemes. GR remains indistinguishable from Newton (≈ 0). Tail augmenta-
tion consistently lowers RMSE by about one order of magnitude relative to the corresponding
base model. Absolute magnitudes vary slightly with sampling (linear vs. log, 3r0 vs. 5r0), but
the hierarchy and improvement factors are preserved.
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Appendix J.7 Robustness (log scale; GR shown at floor)
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Figure 24: Same data as Fig. 23, shown on a logarithmic y-axis. GR has exactly zero RMSE,
plotted here at a visualization floor (10−9) with the annotation “≈ 0”. The log scale emphasizes
the separation: PT/CT lie about one order of magnitude below their base counterparts (PSCF,
C4), while GR remains effectively indistinguishable from Newton.
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Interpretation Across all schemes, the ordering is consistent: GR ≈ Newton ≪ PT ≪
PSCF ≪ C4. Tail augmentation (PT, CT) preserves the fixed–constants policy and yields
∼ 10× lower errors than the corresponding base models for both near and global windows.
Changing the global window or using log-uniform sampling alters absolute magnitudes slightly
but does not change these conclusions. Extending the window to 5r0 decreases absolute RMSEs
because Gaussian kernels decay more strongly, but the relative ordering remains invariant.

J.8 Galactic Rotation–Curve Benchmark
Scope and targets We benchmark the fixed–constants policy of Appendix J.5–Appendix J.7
against real spiral–galaxy rotation curves. Representative cases are NGC 3198 and NGC 2403,
which are prototypical late–type disks with extended Hi kinematics. The data are taken from
the SPARC portal [14] and its master publication [8].

Normalization and windows All accelerations and speeds are normalized by the Newtonian
values at the disk–scale anchor radius:

r0 ≡ 2.2Rd, v0 ≡ vN(r0) =
√
r0gN(r0).

In practice, r0 was estimated as the peak of the disk contribution Vdisk(r), and v0 was taken as
the baryonic curve Vbar(r0). Evaluation windows follow Appendix J.5–Appendix J.7:

near: r ∈ [r0, 1.5 r0], global: r ∈ [r0, 3 r0], (optional) wider: r ∈ [r0, 5 r0].

Baryonic baseline (NB) The Newton+Baryon (NB) baseline is constructed from concentric
rings:

V 2
bar(r) = V 2

gas(r) + V 2
disk(r) + V 2

bul(r).

Here Vdisk is derived from 3.6µm photometry, Vgas from the observed Hi surface density (scaled
by 1.33 for helium), and Vbul from bulge decompositions (zero for these two galaxies). We first
compare Vobs with NB and compute normalized residuals

∆v/v0 = (Vmodel − Vobs)/v0,

as shown in Figs. 25–27.

Extended comparison: PSCF, C4, PT, CT Under the same normalization and window
conventions, we also present PSCF, C4 (MC–CF), and their tail–augmented composites PT
(PSCF+Tail) and CT (C4+Tail). The global tail weight is fixed to D = 0.90 (Appendix J.6).
Figures 28–30 show the extended comparison, demonstrating that PSCF and C4 reproduce
the near–disk curvature while PT/CT enforce the correct algebraic decay at large radii. The
composites reduce global RMSE by approximately |1 − D| without any per–galaxy retuning
(Appendix J.6, Appendix J.7).
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Table 96: Normalization summary for the benchmark galaxies. r0 is the radius of peak Vdisk,
and v0 = Vbar(r0).

Galaxy r0 [kpc] v0 [km s−1]

NGC 3198 6.74 134.60
NGC 2403 2.28 100.23
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Figure 25: NGC 3198 rotation–curve benchmark (Observed vs NB) with normalized residuals
(2 pages). Vertical dashed lines mark r0, 1.5r0, 3r0, and 5r0.
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Figure 26: NGC 2403 rotation–curve benchmark (Observed vs NB) with normalized residuals
(2 pages).
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Figure 27: Stacked normalized residuals (Observed vs NB) across NGC 3198 and NGC 2403.
Median and IQR are shown for near and global windows.
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Figure 28: NGC 3198 extended comparison: Observed vs NB, PSCF, C4, PT(D=0.90), and
CT(D=0.90). All curves are plotted under the same normalization (r0, v0). The lower panel
shows the corresponding normalized residuals.
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Figure 29: NGC 2403 extended comparison (layout as Fig. 28). PSCF/C4 reproduce the near–
disk curvature, while PT/CT enforce the correct algebraic decay at large radii (Appendix J.6).
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Figure 30: Stacked normalized residuals (near/global windows) comparing NB, PSCF, C4,
PT(D=0.90), and CT(D=0.90). Composites compress the far–field residual envelope relative
to PSCF/C4, while preserving the anchored region around r0 (Appendix J.7).
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J.9 Scaling Law under Variational Taper and Ablation
Statement (variational form). Let Φ be composed by the penalized action Sµ with a C∞

taper χ(r) supported on [rt − ∆, rt + ∆] (cf. Appendix C.8.3), and let gcore ∈ {gPSCF, gC4},
gN be the Newton reference. Define the window–effective tail amplitude with respect to the
RMSE sampling measure d℘ on an evaluation windowW:

Deff(W) ≡
∫
W

(
1− χ(r)

)
d℘(r), 1−Deff(W) =

∫
W
χ(r) d℘(r). (330)

Then the composite acceleration gVT obtained from Sµ admits the representation

gVT(r) = Deff(W) gN(r) +
(
1−Deff(W)

)
gcore(r) + Rµ(r), (331)

where the remainder Rµ is uniformly bounded on W and ∥Rµ∥L2(W,d℘)→ 0 as µ ↑ ∞ (with
fixed rt,∆). Consequently, the g0–normalized RMSE obeys

RMSEW [VT]

RMSEW [core]
= |1−Deff(W)| + εrem, |εrem| ≤

∥Rµ∥L2(W,d℘)

RMSEW [core]
, (332)

i.e. the same linear attenuation as the convex mix holds up to the small variational remainder.
With the budget–aware µ⋆ of Appendix C.8.3, εrem is negligible on [r0, 3r0].

Ablation protocol (variational family).

(i) Window–amplitude sweep: produce Deff ∈ {0.85, 0.90, 0.95} by adjusting (rt,∆) at
fixed µ⋆, or by µ–nudging at fixed (rt,∆) (all within the PPN budgets).

(ii) Width–set replacement: PSCF sk/r0 ∈ {(0.4, 0.9, 1.8), (0.5, 1.0, 2.0), (0.6, 1.2, 2.4)};
C4 σi/r0 ∈ {(0.6, 1.4), (0.7, 1.6), (0.8, 1.8)}.

(iii) Sampling weights: uniform in r, log–uniform in log r, and r−1–weighted; compute near
([r0, 1.5r0]) and global ([r0, 3r0]) RMSEs.

Verification (ratios vs. ideal |1−Deff |). Across 11 bodies and all windows, measured ratios
match the ideal factor to numerical precision of our solver; small nonzero εrem stays≪ 10−6

under the adopted µ⋆.
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Table 97: Scaling–law verification under variational taper. Ratios coincide with |1−Deff |within
numerical tolerance.

Window Deff |1−Deff | RMSEVT/RMSEPSCF max |∆|VT RMSEVC/RMSEC4 max |∆|VC

near-linear 0.85 0.15 0.150000 < 10−6 0.150000 < 10−6

near-linear 0.90 0.10 0.100000 < 10−6 0.100000 < 10−6

near-linear 0.95 0.05 0.050000 < 10−6 0.050000 < 10−6

global-linear 0.85 0.15 0.150000 < 10−6 0.150000 < 10−6

global-linear 0.90 0.10 0.100000 < 10−6 0.100000 < 10−6

global-linear 0.95 0.05 0.050000 < 10−6 0.050000 < 10−6

global-log 0.85 0.15 0.150000 < 10−6 0.150000 < 10−6

global-log 0.90 0.10 0.100000 < 10−6 0.100000 < 10−6

global-log 0.95 0.05 0.050000 < 10−6 0.050000 < 10−6

global-5r0 0.85 0.15 0.150000 < 10−6 0.150000 < 10−6

global-5r0 0.90 0.10 0.100000 < 10−6 0.100000 < 10−6

global-5r0 0.95 0.05 0.050000 < 10−6 0.050000 < 10−6

Takeaway. Under the variational taper, performance gains likewise follow the linear attenua-
tion |1−Deff |; the Gaussian scaffold governs near–surface curvature, while the taper–enforced
Newton sector fixes the far–field.

J.9.1 Verification Loop (Variational Scaling)

Experiment. Using the Appendix J.5 width sets (PSCF s/r0 = {0.5, 1.0, 2.0}; C4 σ/r0 =
{0.7, 1.6}), we sweep Deff ∈ {0.85, 0.90, 0.95} by (rt,∆) at fixed µ⋆ and, separately, by
µ–nudging at fixed (rt,∆). On 11 bodies and four windows (near, global–linear, global–log,
global–5r0) we report RMSE[VT]/RMSE[PSCF] and RMSE[VC]/RMSE[C4] (averaged across
bodies), the ideal |1−Deff |, and the max absolute deviation.

Result. Ratios agree with |1 − Deff | within 10−6 for all settings; width–set replacements
yield the same outcome. This confirms (332) and explains the ∼ 10× reduction observed near
Deff≈0.90 in Appendix J.6.

J.9.2 Legacy — Convex Mix (historical) & Critical Notes

Exact scaling (historical reference). For the convex mixture

gPT/CT(r) = D gN(r) + (1−D) gcore(r), D ∈ [0, 1],

define the error relative to Newton as e(r) ≡ g(r)− gN(r). Then

ePT(r) = (1−D)
[
gPSCF(r)− gN(r)

]
, eCT(r) = (1−D)

[
gC4(r)− gN(r)

]
.

For any evaluation windowW and any RMSE sampling measure d℘ (matching Appendix J5–
Appendix J7), the g0-normalized RMSE is

RMSEW [g] ≡

(∫
W

e(r)2

g20
d℘(r)

)1/2

,

hence it satisfies the exact linear attenuation

RMSEW [PT/CT] = |1−D| RMSEW [core] . (333)

This subsection is retained solely for reproducibility of prior results. Production analyses
should use the variational taper (Appendix C.8.3) and the window–derived strength Deff .
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Critical analysis (key points).

• Triviality vs. utility. The gain is purely algebraic: mixing with gN shrinks residuals by
|1−D|without changing the Gaussian scaffold. It enforces the far-field 1/r2 law but does
not correct intrinsic curvature biases of the scaffold.

• Reference choice. Using GR instead of Newton as the reference makes no practical
difference on Solar windows because gGR≈gN.

• Anchors and invariance. Anchor conditions (e.g., g(r0)= g0; and for C4, g′(r0)= −
2g0/r0) are preserved by the linear composition; only the residuals scale by |1−D|.

• Generalization. Composition guarantees the correct algebraic decay but not optimal
near-surface curvature; see Appendix J.5.2 and Appendix J.7 for window-dependent be-
havior.

• Edge cases. Extrapolations with D /∈ [0, 1] formally satisfy (333) but may violate physi-
cal interpretability (over- or under-shooting the Newton sector); such cases are not used
in this work.

J.9.3 Extensions and Repairs (Fixed–Constants Friendly)

(E1) Three–center MC–CF (C4–3C) with curvature anchoring. Add one Gaussian center
with global widths σi/r0 = {0.6, 1.4, 2.4} and determine coefficients from

g(r0) = g0, g′(r0) = −
2g0
r0
, g′′(r0) =

6g0
r20
.

Write

gC4-3C(r) =
3∑

i=1

BiGi(r), Gi(r) =
r

σ2
i

exp
(
− r2

2σ2
i

)
,

and solve the linear systemG1(r0) G2(r0) G3(r0)

G′
1(r0) G′

2(r0) G′
3(r0)

G′′
1(r0) G′′

2(r0) G′′
3(r0)


B1

B2

B3

 =

 g0

−2g0/r0
6g0/r

2
0

 ,

with

G′
i(r) =

( 1

σ2
i

− r2

σ4
i

)
e−r2/(2σ2

i ), G′′
i (r) =

( r3
σ6
i

− 3r

σ4
i

)
e−r2/(2σ2

i ).

This preserves the fixed–constants policy (no per–object tuning) while correcting second–order
curvature near the surface. Note: far–field asymptotics still require a Newton sector; pair C4–
3C with the variational taper of Appendix C.8.3 or with a tail composite.
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(E2) Two–term algebraic tail (PT–2). Adopt a global two–term tail

gPT-2(r) = D
GM

r2
+ E

GMr0
r3

+ A
∑
k

r

s2k
exp
(
−r2/2s2k

)
,

with (D,E) fixed globally (dimensionless E scaled by r0), and choose A from g(r0) = g0.
The r−3 term provides a small, globally consistent curvature correction while preserving the
far–field 1/r2 law. For operations, under the RMSE weighting on W = [r0, 3r0] (e.g. wN ∝
g2N ),

D ← Deff(W),

E : choose a single global value by minimizing the second–moment
residual relative to VT.

thereby avoiding any per–object freedom.

(E3) Radially weighted mixing D(r) (caution). A minimal one–parameter profile

D(r) = 1− (1−D) exp
(
−(r − r0)/λ

)
, λ = r0,

keeps D(r0) = D and tends to 1 at large r. This breaks the exact linear RMSE scaling but
can reduce near–surface bias. To remain fixed–policy, λ/r0 must be a single global constant.
(Recommended default remains the variational taper rather than D(r).)

Recommended default for fixed–policy runs. Use the variational taper as the primary
mechanism: set global (rt,∆) and choose µ⋆ from PPN budgets so that on [r0, 3r0] the ef-
fective strength satisfies Deff ≈ 0.90. For PSCF, keep widths {0.5, 1.0, 2.0}r0; optionally add
C4–3C (E1) for curvature anchoring. Report near/global RMSE and include a log–uniform
global–window robustness metric.

J.10 Sensitivity and Error Budget
First–order error propagation (inner–product form). Let the g0–normalized residual be

ẽ(r; θ) ≡ gmodel(r; θ)− gN(r; θ)
g0

, R(θ) ≡
∥∥ẽ(·; θ)∥∥

L2(W,d℘)
=
(∫

W
ẽ(r; θ)2 d℘

)1/2
,

where θ ∈ {g0, r0} and d℘ is the RMSE sampling measure (as in Appendix J.5–Appendix J.7).
Then the first–order perturbation for small δθ is

δR ≈
∑
θ

∂R

∂θ
δθ,

∂R

∂θ
=

1

R

〈
ẽ, ∂θẽ

〉
L2(W,d℘)

.

Below we give ∂θẽ in closed/operational form for each model family under the fixed–constants
policy (GM = g0r

2
0, widths ∝ r0).
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Lemma (exact g0–invariance for PSCF/C4 and their composites). For PSCF, C4, PT/CT
(with global D) and the variational–taper composite (with window–fixed Deff), one has

∂g0 ẽ(r; θ) = 0 for all r ∈ W .

Sketch. Under GM = g0r
2
0, Newton gives

∂g0gN =
gN
g0
.

PSCF/C4 are anchored by g(r0) = g0 and depend linearly on g0, hence

∂g0gmodel =
gmodel

g0
.

Therefore

∂g0 ẽ =
1

g0

(
∂gmodel

∂g0
− ∂gN
∂g0

)
− gmodel − gN

g 2
0

=
1

g0

(
gmodel

g0
− gN
g0

)
− gmodel − gN

g 2
0

= 0.

For PT/CT and VT, the same cancellation holds in ẽ because the Newton sector is subtracted
before division by g0, and D (or Deff) are global, hence independent of g0.

Newton reference (for comparison). With GM = g0r
2
0,

∂gN
∂g0

=
gN
g0
,

∂gN
∂r0

=
2gN
r0

.

These enter only through ẽ since R compares a model to gN.

PSCF sensitivities (closed form). Let sk = αkr0 and

gPSCF(r) = A
∑
k

Φk(r), Φk(r) =
r

s2k
exp
(
− r2

2s2k

)
, A : gPSCF(r0) = g0.

Because
∑

k Φk(r0) =
C
r0

with C =
∑

k α
−2
k e−1/(2α2

k) (constant), one has A =
g0r0
C

. Hence

∂gPSCF

∂g0
=
gPSCF

g0
(⇒ ∂g0 ẽ = 0),

and
∂gPSCF

∂r0
=
gPSCF

r0
+ A

∑
k

∂Φk

∂r0
=
(
− 1

r0
+
η(r) r2

r30

)
gPSCF(r),

where

η(r) ≡
∑

k α
−4
k wk(r)∑

k α
−2
k wk(r)

, wk(r) = exp
(
− r2

2α2
kr

2
0

)
.

Thus

∂r0 ẽ(r) =
1

g0

(
∂r0gPSCF − ∂r0gN

)
=

1

g0

[(
− 1

r0
+
η(r) r2

r30

)
gPSCF(r)−

2gN(r)

r0

]
.
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C4 sensitivities (operational linear–algebra form). With σi = βir0,

gC4(r) =
2∑

i=1

BiGi(r), Gi(r) =
r

σ2
i

exp
(
− r2

2σ2
i

)
,

and boundary conditions {g(r0) = g0, g
′(r0) = −2g0/r0}. Let M(r0)B = Y (r0) be the 2× 2

system with rows {Gi(r0)} and {G′
i(r0)}, and Y = (g0, −2g0/r0)⊤. Then

∂gC4

∂g0
=
gC4

g0
(⇒ ∂g0 ẽ = 0),

and
∂gC4

∂r0
=

(
∂r0B

)⊤
G(r)︸ ︷︷ ︸

via M−1(∂r0Y−∂r0M B)

+B⊤∂r0G(r)︸ ︷︷ ︸
explicit r0 in Gi

,

where

∂r0Y =
(
0,

2g0
r20

)⊤
, ∂r0Gi(r) =

( 1

σ2
i

− r2

σ4
i

)
e−r2/(2σ2

i ) ·
(
− 2

r0
+

r2

σ2
i r0

)
.

This expression is numerically stable because it uses the same primitives already evaluated for
g and g′ at r0.

Composites (PT/CT) and variational taper (VT). For a constant D,

gPT/CT = D gN + (1−D) gcore ⇒ ∂r0 ẽPT/CT = (1−D) ∂r0 ẽcore, ∂g0 ẽPT/CT = 0.

For VT onW , with fixed (rt,∆, µ
⋆) and derived Deff(W) (Appendix C.8.3),

∂r0 ẽVT ≈ (1−Deff) ∂r0 ẽcore and ∂g0 ẽVT = 0,

since Deff is window–level and policy–fixed (thus ∂θDeff ≈ 0).

Dominant contributors (revised). Under the fixed–constants policy:

(i) g0 measurements: do not affect the normalized RMSE for PSCF/C4/PT/CT/VT (exact
cancellation above); GR has O(g0r0/c2) sensitivity, negligible on Solar windows.

(ii) r0 (scale) uncertainty: dominant. It changes both the Newton reference (∂r0gN =
2gN/r0) and the Gaussian scaffold (via widths ∝ r0).

(iii) Sampling/window choice: affects R through d℘ and the region W (near vs. global),
hence reweights ⟨ẽ, ∂r0 ẽ⟩.

(iv) Width sets (model mismatch): fixed global width sets induce a systematic curvature
bias that shows up in ∂r0 ẽ; composites/VT attenuate it by (1−D) or (1−Deff).

Error budget (operational summary).

Source Scaling in R Remarks
g0 error 0 (exact, PSCF/C4/PT/CT/VT) cancels in ẽ; GR sensitivity ∼ O(g0r0/c

2)

r0 error ∝
〈
ẽ, ∂r0 ẽ

〉
/R see closed forms above

Window/sampling changes d℘,W alters weighting of residual structure
Composite tail (D or Deff) R 7→ |1−D|Rcore gradients ∂R scale likewise
Grid resolution |W| quadrature error ↓ with finer grid keep uniform/log rules consistent
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J.10.1 Cohérence: analytic vs. discrete perturbations

Procedure (non-redundant check). For each model family (PSCF, C4, PT, CT, and VT) and
windowW:

1. Analytic targets. Evaluate ∂R/∂g0 and ∂R/∂r0 from the formulas in Appendix J.10 (do
not restate here). Record the following invariants/scaling targets:

Invariance:
(
∂R/∂g0

)
PSCF/C4/PT/CT/VT

= 0,

Scaling (PT/CT):
(
∂R/∂r0

)
PT/CT

= |1−D|
(
∂R/∂r0

)
base

,

Scaling (VT):
(
∂R/∂r0

)
VT
≈ (1−Deff)

(
∂R/∂r0

)
core

,

(variational remainder negligible on [r0, 3r0]).

2. Finite differences (central). With shared quadrature/grid and small symmetric steps
δg0 = εg0, δr0 = εr0 (ε ∈ [10−8, 10−6]),

∂R

∂g0

∣∣∣
FD
≈ R(g0 + δg0, r0)−R(g0 − δg0, r0)

2 δg0
,

∂R

∂r0

∣∣∣
FD
≈ R(g0, r0 + δr0)−R(g0, r0 − δr0)

2 δr0
.

3. Coherence metric. Report the relative discrepancy

∆θ =

∣∣∂R
∂θ
− ∂R

∂θ

∣∣
FD

∣∣
max

(
ε0,
∣∣∂R
∂θ

∣∣) , ε0 = 10−12,

and verify that: (i)
(
∂R/∂g0

)
FD
≈ 0; (ii) PT/CT follow the |1−D| factor; (iii) VT follows

(1−Deff) within the small variational remainder.

Outcome (what passes the check). Because PT/CT are linear compositions gcomp = D gN+
(1−D) gbase, residuals and their model-side sensitivities inherit the same factor |1−D|. More-
over, under the fixed–constants policy the g0-normalized residual cancels exactly for all PSCF/
C4/PT/CT/VT: (

∂R/∂g0
)
analytic

= 0 =⇒
(
∂R/∂g0

)
FD
≈ 0,

so no separate “normalization-side” term survives. Numerically, analytic and discrete pertur-
bations agree to floating-point tolerance (typically ∆θ ≲ 10−10 on the adopted grids), and the
PT/CT and VT scaling laws match their targets above.

J.10.2 Discussion of sensitivities

Decomposition (first order, policy consistent). For small perturbations of the observed con-
stants {g0, r0}, write the normalized RMSE increment as

δR ≈ κg0
δg0
g0︸ ︷︷ ︸

normalization side

+ Sg0

δg0
g0

+ Sr0

δr0
r0︸ ︷︷ ︸

model side

,
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where the windowed coefficients S• are those induced by the derivatives in Appendix J.10. Un-
der the fixed–constants policy (PSCF, C4, PT/CT with constant D, and VT with window–fixed
Deff), the g0–normalized residual cancels exactly (Appendix J.10 Lemma), so

κg0 = 0, Sg0 = 0 (GR has O(g0r0/c2) sensitivity, negligible on Solar windows).

Moreover,

Sr0(PT/CT) = |1−D|Sr0(base), Sr0(VT) ≈ (1−Deff)Sr0(core),

with the variational remainder negligible on [r0, 3r0].

Table 98: Qualitative sensitivity guide (sign and scaling). Entries show the leading dependence
of δR; coefficients are window–dependent.

Source PSCF C4 PT/CT (fixed D) VT (fixed Deff )
g0 normalization 0 0 0 0

Model vs ref via g0 0 0 0 0

Model vs ref via r0 ±Sr0 δr0/r0 ±Sr0 δr0/r0 ± |1−D|Sr0 δr0/r0 ± (1−Deff)Sr0 δr0/r0

Window (near→global) ↑ (Gaussian tail bias) ↑↑ (stronger) ↓ by |1−D| ↓ by (1−Deff)

Grid size |W| ∝ |W|−1/2 ∝ |W|−1/2 ∝ |W|−1/2 ∝ |W|−1/2

Implications. (i) Enlarging the window amplifies the Gaussian–tail mismatch for PSCF/C4;
tail mechanisms (PT/CT/VT) damp the resulting sensitivity by |1−D| or (1−Deff) but cannot
alter the (already–zero) normalization channel. (ii) Uncertainty in r0 directly couples to the
scaffold widths (sk, σi) ∝ r0; hence Sr0 typically dominates in the near window where curva-
ture is tightly constrained. (iii) Increasing |W| reduces estimator variance as |W|−1/2 but not
bias; structural remedies (e.g., curvature anchoring C4–3C or variational taper) are needed to
address bias. (iv) For VT, sensitivity in the far field aligns with the Newton sector; near–surface
behavior remains governed by the Gaussian scaffold and its r0–scaling.

J.10.3 Extensions and reinforcements

C1. Curvature anchoring (fixed–policy). Augment C4 with a third center, using global
widths σ/r0 = {0.6, 1.4, 2.4}, and determine coefficients by the three surface anchors

g(r0) = g0, g′(r0) = −
2g0
r0
, g′′(r0) =

6g0
r20
.

This C4–3C construction reduces the near–window scale sensitivity Sr0 without any per–body
tuning and remains compliant with the fixed–constants policy.

C2. Two–term algebraic tail. Adopt the global two–term composite

g(r) = D
GM

r2
+ E

GMr0
r3

+
∑
k

Ak
r

s2k
exp
(
− r2

2s2k

)
,

with (D,E) fixed globally (dimensionless E scaled by r0) and Ak set by the standard anchor
g(r0) = g0 (and, if desired, additional near–surface constraints). The r−3 term supplies a mild,
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scale–aware curvature correction while preserving the 1/r2 far field. Operational rule: on
W = [r0, 3r0] with RMSE weighting (e.g. wN ∝ g2N ),

D ← Deff(W), E chosen once by minimizing a second–moment residual vs. the VT baseline,

thus avoiding per–object freedom. In sensitivity terms, the model–side coefficient scales as
Sr0 7→ (1−D)Sr0 (or 1−Deff for VT).

C3. Window fusion and weighting. Report R on near, global–linear, and global–log win-
dows, and add a fused score

Rmix = αRnear + β Rglobal + γ Rlog, α, β, γ ≥ 0, α+ β + γ = 1,

with (α, β, γ) fixed a priori. Use a common quadrature/grid convention across windows. This
stabilizes conclusions against sampling choices and grid effects (variance control), while cur-
vature anchoring/tails address bias.

C4. Uncertainty envelopes (policy–consistent). Under the fixed–constants policy, the g0
channel cancels exactly (Appendix J.10), so the first–order envelope is

CI1σ : R ±
∣∣∣ Sr0

σr0
r0

∣∣∣ (PSCF/C4).

For PT/CT, replace Sr0 7→ |1−D|Sr0; for VT, Sr0 7→ (1−Deff)Sr0 . (If GR is included as a
reference, an additional O(g0r0/c2) · σg0/g0 term is formally present but negligible on Solar
windows.)

C5. Practical default (balanced bias/variance). Use D = 0.90 (or Deff ≈ 0.90 for VT),
PSCF widths {0.5, 1.0, 2.0}r0, and optionally add C4–3C curvature anchoring (C1). Report
{Rnear, Rglobal, Rlog, Rmix} together with the policy–consistent uncertainty envelopes from C4.
This configuration pairs structural bias control (curvature + tail/VT) with variance control (win-
dow fusion) while remaining within the fixed–constants policy.

J.11 Reproducibility (Code & Data) and Artifact Index
Scope (single source of truth). This subsection is the canonical checklist for reproducing
every numerical and plotting result in Appendix J.5–Appendix J.10. Any repeated checklists
elsewhere should point back to Appendix J.11.

Determinism and numerics. All computations use IEEE–754 double precision and are de-
terministic (no randomness). The RMSE norm is the windowed L2 norm used throughout
Appendix J.5–Appendix J.10:

RMSEW =
(∫

W
ẽ(r)2 d℘(r)

)1/2
, ẽ(r) =

gmodel(r)− gN(r)
g0

,

with sampling measures and windows exactly as specified below.
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Reproduction steps.

(i) Global policy and constants. Set fixed global widths and normalization constants as
in Appendix J.2 (PSCF s/r0 = {0.5, 1.0, 2.0}; C4 σ/r0 = {0.7, 1.6}; optional C4–
3C {0.6, 1.4, 2.4}). Use GM = g0r

2
0 and anchor g(r0) = g0 (and, where applicable,

g′(r0) = −2g0/r0).

(ii) Windows and grids. Reuse the evaluation windows and grids from Appendix J.5–
Appendix J.7: near [r0, 1.5r0], global–linear [r0, 3r0], global–log [r0, 3r0], and optional
global–linear [r0, 5r0].

(iii) Weighting. For RMSE weighting on Solar/Galactic windows, use wN(r) ∝ gN(r)
2 (as

in Appendix J.6–Appendix J.7), i.e. d℘(r) ∝ gN(r)
2 dr for linear grids and the corre-

sponding measure for log grids.

(iv) Tail mechanism. For legacy convex mix (PT/CT) set the fixed global tail weight D as
in Appendix J.6 (default D = 0.90). For the variational taper (VT/VC), fix (rt,∆) per
Section 2.6.2, choose µ⋆ by the PPN budgets (Appendix C.8.3), and record the induced
Deff on each window via Eq. (329).

(v) Galactic data. Load SPARC photometry/gas and perform ring discretization following
Appendix J.8. Use r0 = 2.2Rd (disk peak) and v0 = Vbar(r0) for normalization. Build
V 2
bar = V 2

gas + V 2
disk(+V

2
bul).

(vi) Environment parity. Use identical quadrature/grid rules across analytic and finite–
difference checks (Appendix J.10.1). Use the same figure styles when regenerating plots
to avoid cosmetic diffs.

Artifact index (figures).

• Fig. J7-1 (J.7) — Robustness across sampling schemes (linear/log; 3r0/5r0).

• Fig. J7-2 (J.7) — Same data as Fig. J7-1 on log y.

• Fig. J8A (J.8) — NGC 3198 rotation curve: observed vs. NB with residuals.

• Fig. J8B (J.8) — NGC 2403 rotation curve: same layout as Fig. J8A.

• Fig. J8C (J.8) — Stacked normalized residuals: median and IQR by window.

• Fig. J8A′ (J.8) — NGC 3198: NB, PSCF, C4, PT(D=0.90), CT(D=0.90) with residuals.

• Fig. J8B′ (J.8) — NGC 2403: extended comparison (same layout).

• Fig. J8C′ (J.8) — Stacked residuals: NB vs. PSCF/C4 vs. PT/CT.

Artifact index (tables).

• Tab. J5-ES (J.5.1) — Earth at r0: surface/near-surface comparisons (fractional diffs,
RMSE).

• Tab. J5-EC (J.5.1) — Earth-specific fixed coefficients (A,B1, B2).

• Tab. J5.2-PS (J.5.2) — PSCF⋆ tuned weights (five widths).
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• Tab. J5.2-C4 (J.5.2) — C4⋆ tuned parameters (grids and solved Bi).

• Tab. J5.2-R (J.5.2) — Normalized RMSE (train vs. cross).

• Tab. J6-A (J.6) — Variational taper: average RMSE and improvement vs. fixed policy.

• Tab. J6-S (J.6) — Sensitivity of VT/VC to derived Deff .

• Tab. J7-R (J.7) — Robustness across sampling schemes.

• Tab. J9-V (J.9) — Variational scaling verification (|1−Deff | law).

• Tab. J10-S (J.10) — Qualitative sensitivity guide (signs & scaling).

Provenance pointers. PSCF/C4 global width policy and anchors: Appendix J.2. Variational
taper construction and budgets: Appendix C.8.3. Windows, weighting, and robustness con-
ventions: Appendix J.5–Appendix J.7. Galactic benchmark protocol and normalization: Ap-
pendix J.8.

Notes. (i) Where legacy constant-D results are reproduced, tag them [Legacy--convex
mix] and map via D ↔ Deff on the target window (Appendix J.6). (ii) When adding new
artifacts, register a \label and list it here to maintain a single source of truth. (iii) For analytic
vs. discrete checks, follow Appendix J.10.1 (use identical grids and central differences).

J.11.1 Deterministic replay

Determinism. All runs depend only on global fixed widths/anchors (Appendix J.2), shared
windows/grids (Appendix J.5–Appendix J.7), and a fixed tail policy (Appendix J.6). No stochas-
tic elements are used. Any discrepancy between repeated runs therefore originates from the
numerical environment rather than from the model itself—for example, differences in lin-
ear–algebra kernels (BLAS/LAPACK), math libraries (libm), compiler optimization settings,
or CPU–level arithmetic rules such as fused multiply–add (FMA) or “fast–math” approxima-
tions.

Replay checklist (acceptance criteria).

1. Grids & windows. Recreate near, global–linear, global–log (and optional 5r0) grids
bitwise-identical to those used in Appendix J.5–Appendix J.7. Record grid digests (e.g.,
SHA256 of node arrays).

2. Baselines. Recompute Newton/GR from (g0, r0) withGM = g0r
2
0; verify GR≈ Newton

within Solar-System tolerance (< 10−9 fractional at r0).

3. Models. Rebuild PSCF/C4 with global widths; reproduce the Solar-System RMSE tables
(Table J.5-1, Table J.5-2) with relative error ≤ 10−12.

4. Tail policies. (a) Legacy mix (PT/CT): form g = D gN + (1−D) gbase, verify residuals
and RMSE scale by |1−D| to machine precision;
(b) Variational taper (VT/VC): compute Deff on each window via Eq. (Appendix J.6.1)
and verify the (1−Deff) attenuation (cf. Appendix J.9).
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5. Figures. Match curves and residual panels in Fig. J8A and Fig. J8B (identical axes,
limits, and tick locations). L2 curve difference < 10−12 (normalized).

6. Stacks. Reproduce medians and IQRs in Fig. J8C with absolute error ≤ 10−12.

J.11.2 Failure modes and portability

Portability (environment, not physics). This section notes small differences that come from
the computing environment, not from the model or the physics. Even with the same code and
inputs, floating–point arithmetic can be handled slightly differently across systems, produc-
ing last–digit differences. Typical sources are: (i) linear–algebra backends (e.g., OpenBLAS
vs. MKL) that change operation order or vectorization; (ii) libm implementations of exp,
log, sin/cos; (iii) compiler optimizations (vectorization/FMA, -ffast-math) that re-
lax IEEE rules and reorder operations; (iv) non-deterministic parallel reductions. These are
computational issues; they do not alter the qualitative conclusions, but they can break bitwise
reproducibility.

Practical handling. Our practice is simple: write down the environment, and simplify when
exact replay matters. We log Python/NumPy versions, BLAS vendor, OS/architecture, and
compiler options (Appendix H). For exact replay we prefer single-threaded math (OMP_NUM_
THREADS=1, MKL_NUM_THREADS=1, OPENBLAS_NUM_THREADS=1) and avoid aggres-
sive flags (disable fast-math/FMA if needed). When reproducibility outweighs raw speed, we
use strict floating-point modes and fix seeds if any stochastic step is introduced, staying within
the tolerances of Appendix K.5.

Anchors vs. tails. The D-mix/VT enforce the 1/r2 far field but do not change near-surface
curvature. Residuals around r0 are controlled by curvature anchors (e.g., multi-center C4,
C4–3C), not by tail weight. In practice we record: the anchor locations and derivative order
(g, g′, g′′ at r0), fixed-constant tables (widths/scales), and on/off switches. The basic check is
that g, g′, g′′ near r0 stay within spec (e.g., relative error < 10−6) (Appendix J.6, Appendix J.9).

Windows and weighting. Linear vs. logarithmic sampling changes the definition of RMSE
because the sampling distribution differs. We therefore report near, global–linear, and global–log
results together and require consistency within the stated envelopes (Appendix J.7). For VT,
window changes must propagate through Deff(W). A window W specifies rmin, rmax, the
sample count N , sampling mode (linear/log), and weights w(r), and we define

RMSE(W) =

(∑
r∈W w(r)∆(r)2∑

r∈W w(r)

)1/2

.

To guarantee identical windows across machines, we record the full window configuration
alongside results.

J.11.3 Maintenance & extensions

Recommended hardening (plain language). (i) Add a third center (C4–3C). Anchor g, g′, g′′

at r0 to reduce near–field sensitivity Sr0 . Practice: list the anchors (location r0, which deriva-
tives are fixed, tolerances, on/off) and check them at startup. Keep a short checksum so later
runs use the same anchor set.
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(ii) Optional global r−3 term. A gentle r−3 correction can improve curvature without
per–target tuning. Practice: keep it registered but off by default; enable only via the policy file
and record the policy version and code commit. This avoids ad hoc switches during analysis.

(iii) Report a fused score. PublishRmix = αRnear+βRglobal+γRlog with fixed cross–window
weights. Practice: treat (α, β, γ) as policy constants (e.g., in a config file), do not allow runtime
overrides, and always report the three component scores alongside Rmix.

(iv) Ship a short manifest. Include a machine–readable note with the run: main software
versions, BLAS vendor, OS/arch, key environment variables, and checksums for windows/-
grids/fixed constants. This lets other groups confirm they used the same inputs.

(v) Basic tests for attenuation and GR near r0. Add unit tests for the |1−D| and (1−Deff)
laws (Appendix J.9), and for GR ≈ Newton at r0. Practice: test many inputs (property–based
style) with tight tolerances (relative error 10−8–10−10). When possible, run once with Open-
BLAS and once with MKL to check numerical stability.

Change management (keep it traceable). Any policy change (width sets, (rt,∆), weight-
ing) should carry a version tag and be noted in Appendix J.11. Legacy constant–D results
should be marked [Legacy--convex mix] and mapped to the target window using D ↔
Deff (cf. Appendix J.6). For each run, record three short identifiers: (a) a policy hash (poli-
cy/config files), (b) the code commit ID, and (c) an environment manifest hash. Add a small
provenance block with these IDs to the results so others can repeat the analysis exactly.
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Appendix K. C4 Cosmology: background and linear pertur-
bations

K.0 Policy, priors, and reproducibility (clarified)
Global fixed–constants policy. All cosmology analyses follow the global fixed–constants
policy of Section 2.6.2. Global declarations (no dataset–wise retuning unless a pre–registered
exception is stated):

(i) the self–sourcing constant α ≥ 0 (see Appendix C.2);

(ii) Newton’s constant G and the unit conventions;

(iii) a minimal potential family U(Φ) chosen a priori as either (a) constant U (late–time
acceleration) or (b) a one–parameter tracker (e.g. exponential).

Initial conditions follow standard radiation/matter histories. Unless explicitly stated, early–
Universe microphysics (recombination acoustics, the sound horizon rs) and the neutrino sector
are kept standard. We use MP for the reduced Planck mass.

Numerical specification (canonical references). To avoid ambiguity in the background,
Appendix K.1bis defines two canonical options that are used unchanged across probes: (i)
constant–U with priors on (H0,Ωm0); (ii) an exponential tracker,

U(Φ) = U⋆ exp
(
− λ Φ

MP

)
,

with fixed bounds on λ. Priors and integration tolerances are versioned there so runs can be
replayed byte for byte.

Background and distance mapping (shared definitions). Let E(z)≡H(z)/H0 and χ(z) =∫ z

0
c dz′

H(z′)
. With curvature kernel SK(x) and the sign convention ΩK0 > 0 (open), ΩK0 < 0

(closed),

DM(z) = SK

(
H0χ/c

)
, SK(x) =


c

H0
√
ΩK0

sinh
(√

ΩK0 x
)
, ΩK0 > 0,

c
H0
x, ΩK0 = 0,

c

H0

√
|ΩK0|

sin
(√
|ΩK0|x

)
, ΩK0 < 0,

and DA(z) = DM(z)/(1 + z), DH(z) = c/H(z). For BAO and CMB summaries we use

DV (z) =
[
(1 + z)2D2

A(z)
cz

H(z)

]1/3
, ℓA = π

DM(z∗)

rs(z∗)
, R =

√
Ωm0

H0DM(z∗)

c
,

with z∗ the recombination redshift and rs the drag–epoch sound horizon. We keep c explicit
and take H0 in km s−1Mpc−1.
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Linear response and growth (C4 mapping). On subhorizon scales we use the quasi–static
triplet (µ, η,Σ):

k2Ψ = −4πGa2 µ(a, k) ρm∆m, η(a, k) =
Φ

Ψ
, Σ(a, k) =

µ(a, k)

2
[1 + η(a, k)].

The growth factor satisfies D(1) = 1 so f(a) = d lnD/d ln a and fσ8(a) = f(a)σ8,0D(a).
Under standard linear bias/RSD conventions, EG uses the same (µ, η) and the data window/-
covariance; CMB lensing uses Σ in the Limber integral for Cϕϕ

ℓ . Quasi–static expressions are
applied only within our analysis window (e.g. k ≳ 0.01hMpc−1); see Appendix K.2.

Scope and probe mapping. Late–time C4 effects appear through H(z) (background) and
(µ, η,Σ) (perturbations). Background observables (DH , DM , DV , ℓA, R) and perturbation ob-
servables (fσ8, EG, C

ϕϕ
ℓ ) are computed with the same covariances and the same priors on

(H0,Ωm0) or (λ, U⋆) for the declared U(Φ) family. No object– or dataset–specific widths/-
tunings are introduced.

Archival and reproducibility (concise). All inputs (declared priors, model family U(Φ),
grids, code options) and all data products (masks, covariances) are archived with version identi-
fiers so any figure or table can be regenerated without dataset–wise retuning (see Appendix H).
Each figure/table carries a run identifier (run_id) that links to the exact configuration. If
execution environments differ, reproduced numbers agree within the tolerance specified in Ap-
pendix K.1bis.

K.1 Background FRW equations
Setup (flat FRW with a homogeneous curvature field). We work on a spatially flat FRW
background,

ds2 = −dt2 + a2(t) δij dx
idxj,

and assume a spatially homogeneous curvature field Φ(t). It behaves like an effective fluid,

ρΦ = 1
2
Φ̇2 + U(Φ), pΦ = 1

2
Φ̇2 − U(Φ), Φ̈ + 3HΦ̇ + U ′(Φ) = 0,

and the background expansion obeys

H2 =
8πG

3

(
ρr + ρm + ρΦ

)
, Ḣ = −4πG

(
ρm + 4

3
ρr + Φ̇2

)
.

We write wΦ ≡ pΦ/ρΦ; accelerated expansion requires wΦ < −1/3. Intuitively, Hubble fric-
tion damps Φ̇. For the constant–U family the field quickly freezes (Φ̇→ 0), so wΦ ≃ −1 at
late times. For tracker families, wΦ(z) evolves in a controlled way, bounded by the priors in
Appendix K.1bis. Throughout, MP denotes the reduced Planck mass.

K.1.1 Minimal potential families (declared, policy–consistent). Following Appendix K.0,
we predeclare two baseline options used across all probes, without dataset–wise retuning:

• Constant–U (late–time acceleration). U(Φ) = U0 > 0 drives Φ̇→ 0 and yields wΦ ≃
−1. Background inputs are (H0,Ωm0, U0); under the shared likelihood, (H0,Ωm0) and
the chosen U0 fully specify the background.
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• One–parameter tracker. A single–slope potential U(Φ;λ) that tracks the dominant
component before settling at late times. Parameters are (H0,Ωm0, λ).

In both cases we restrict background degrees of freedom to (H0,Ωm0) plus the declared U -
parameter(s), with numeric priors and integrator tolerances fixed in Appendix K.1bis for byte–level
replay.

K.1.2 Mapping to background observables (flat case). Given H(z),

DH(z) =
c

H(z)
, DM(z) =

∫ z

0

c dz′

H(z′)
, DV (z) =

[
z D2

M(z)DH(z)
]1/3

.

CMB “summary” quantities use standard pre–recombination microphysics: the acoustic scale
ℓA and shift parameter R follow standard recombination, and the drag–epoch sound horizon
rs (often rd) is kept standard unless explicitly varied. Thus late–time C4 effects are isolated
through H(z) while early physics is fixed by default. (For nonzero curvature, the general
mapping appears in Appendix K.0.) We keep c explicit and quote H0 in km s−1Mpc−1 for
clarity.

K.1.3 Candidate families for U(Φ) (physical basis, priors, admission). Common assump-
tions and guardrails. The kinetic sector is canonical (no ghosts), the homogeneous sound
speed satisfies c2s=1, and no phantom behavior is allowed (wΦ ≥ −1). The potential remains
non–negative, U(Φ) ≥ 0. To prevent undue early–time influence and late–time irregularity, the
following caps are imposed:

ΩΦ(z∗=1100) ≤ 0.02, ΩΦ(z) ≤ 0.02 (z ≥ 50),
∣∣∣ dwΦ

d ln a

∣∣∣ < 1 (z ≤ 5),

and a curvature bound to suppress spurious oscillations or divergences,

−3
2
≤ U ′′(Φ)

H2
≤ 3 (z ≤ 5).

Late–time acceleration at z ≃ 0 is required, wtot(0) < −1/3 (equivalently q0 < 0). All can-
didates inherit the numerical settings of Appendix K.1bis. These conditions are deliberately
conservative: they keep the background under control while leaving enough room to test qual-
itatively distinct potentials.

Candidate set (summary with priors).

• Constant (–like): U(Φ) = U0 > 0. Single degree of freedom (U0); delivers wΦ ≃ −1.
Priors follow (H0,Ωm0) ranges in K.1bis. A useful baseline for judging more flexible
forms.

• Exponential tracker: U(Φ) = U⋆e
−λΦ/MP . One parameter (λ). In the field–dominated

regime, wΦ = −1 + λ2/3. Prior: λ ∈ [0.30, 1.20]; U⋆ is fixed to match (H0,Ωm0). This
family interpolates smoothly between –like behavior and milder acceleration as λ grows.

• Inverse power (Ratra–Peebles): U(Φ) = M4+αRPΦ−αRP . One parameter (αRP > 0).
Prior: αRP ∈ [0.1, 2.0]. Shallower potentials thaw late; large αRP risks excessive early
fractions and is capped by the prior.

226



• Quadratic: U(Φ) = 1
2
m2

Φ(Φ − Φ0)
2. One parameter (mΦ). For mΦ ≪ H0 the field

remains nearly frozen (wΦ ≈ −1); larger mΦ damps earlier and may introduce light
oscillations. Prior: mΦ/H0 ∈ [0, 1].

• Cosine (axion–like): U(Φ) = Λ4[1− cos(Φ/f)]. One parameter (f ). Small f recovers a
quadratic limit; large displacements allow mild, bounded oscillations with average wΦ >
−1. Prior: f/MP ∈ [0.05, 1].

Adoption/exclusion rules (shared covariance). Each candidate, under a single (H0,Ωm0;
candidate parameter) with a common covariance, must match

{DH(z), DM(z), DV (z)}SNe/BAO/chronometers and {R, ℓA}CMB,

with thresholds

max
z∈ZBAO

|Dmodel
V /rs −Ddata

V /rs|
σDV /rs

≤ 1,
|R−Rdata|

σR
≤ 1,

|ℓA − ℓA,data|
σℓA

≤ 1.

Draws failing any condition are rejected; model comparison uses ∆BIC and ∆AIC. In short,
admission requires “within-one-sigma” agreement on standard background distances and CMB
summaries before any ranking.

Performance and risks (concise).

1. Exponential: λ→ 0 recovers ; λ≳
√
2 weakens acceleration. Within the adopted prior,

wΦ(z) remains monotone and respects early–fraction caps.

2. Inverse power: αRP≳2 inflates early ΩΦ and biases (R, ℓA); the prior avoids this regime.

3. Quadratic: mΦ≳H0 can trigger low–z wiggles; the prior caps such cases and keeps the
background smooth.

4. Cosine: very small f or hilltop starts enhance bounded wiggles; priors restrict f and
initial angles to keep oscillations controlled.

Summary table.

Model DoF Late-time wΦ Early behavior Declared prior
Const-U U0 ≃ −1 frozen (ΩΦ ≪ 1) K.1bis ranges
Exp. tracker λ −1 + λ2/3 scaling→ tracking λ ∈ [0.30, 1.20]

Inverse power αRP thawing ≳ −1 scaling (small fraction) αRP ∈ [0.1, 2.0]

Quadratic mΦ thawing ≈ −1 slow roll (no osc.) mΦ/H0 ∈ [0, 1]

Cosine f avg. ≳ −1 bounded oscillatory f/MP ∈ [0.05, 1]

Connection to perturbations (no retuning). Once a background is admitted, the same param-
eter set is passed to Appendix K.2–Appendix K.3:

k2Ψ = 4πGa2
[
δρm + αQΦ

]
, µ(a, k) = 1 + ∆µα(a, k),

leading to {fσ8, EG, C
ϕϕ
ℓ } under the shared covariance and priors (no probe–wise hyperpa-

rameters). This keeps background and linear growth on a single, transparent footing.
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K.1bis CanonicalU(Φ) families (numerically specified and test–ready). Conventions and
variables. The speed of light c is kept explicit unless noted; where c=1 is used, it is stated lo-
cally. The reduced Planck mass is MP = (8πG)−1/2; the e–fold is N = ln a; and the present
scale factor is a0=1. Background variables areE(z) ≡ H(z)/H0 and Ωi(z) from the continuity
equations. The homogeneous curvature field obeys

Φ̈ + 3HΦ̇ + U ′(Φ) = 0, ρΦ = 1
2
Φ̇2 + U, pΦ = 1

2
Φ̇2 − U, wΦ ≡ pΦ/ρΦ ≥ −1,

with homogeneous sound speed c2s = 1. Unless otherwise stated, spatial flatness is assumed,
Ωk = 0.

(i) Constant-U family (late acceleration).

U(Φ) = U0, U0 ≡ 3H2
0M

2
P ΩΛ, ΩΛ ≡ 1− Ωm0.

Flat priors (for tests and cross–probes):

H0 ∈ [60, 75] km s−1Mpc−1, Ωm0 ∈ [0.25, 0.35].

Hubble friction freezes the field (Φ̇→ 0), giving wΦ ≃ −1 at late times; this serves as a clean
reference model.

(ii) One–parameter tracker (exponential).

U(Φ) = U⋆ exp
(
− λ Φ

MP

)
, λ ∈ [0.30, 1.20], lnU⋆ ∈ R.

Regimes (for constant background wb): (a) field–dominated and accelerating if λ2 < 2 with
wΦ → −1 + λ2/3; (b) scaling if λ2 > 3(1 + wb) (excluded by our prior). Thus wΦ(z→ 0) ∈
[−1,−0.52] across the adopted λ range.

Initial conditions (deterministic recipe). Set zini = 3000 (matter era). For constant–U , take
Φ̇(zini) = 0 and treat Φ(zini) as irrelevant (shift symmetry). For the exponential family, use a
freeze–then–thaw start:

Φ̇(zini) = 0, Φ(zini) = Φ⋆ (free),

then shoot on U⋆ (with λ fixed) so that the integrated background matches the target (H0,Ωm0)
at z = 0. This produces a unique background for each draw (H0,Ωm0, λ) without dataset–wise
retuning.

Early–time caps (pre–recombination preserved). To keep baseline pre–recombination mi-
crophysics intact,

ΩΦ(z∗) ≤ 0.02 (z∗ = 1100), ΩΦ(z) ≤ 0.02 (∀z ≥ 50), ρΦ(z) > 0 (∀z).

Draws violating any cap are discarded before distance/growth evaluation.

Numerics (grids, tolerances, normalization). ODEs are integrated in N = ln a with an
adaptive step controller (embedded RK) and relative/absolute tolerances

rtol = 10−8, atol = 10−10,

on {Φ, Φ̇, E} unless a stricter probe demands tighter values (in which case the same stricter
values are used for all probes). The growth factor is normalized as D(a=1) = 1, implying
fσ8(z) = f(z)σ8,0D(z).
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Background observables (fixed mapping). Using c = 1 here for compactness,

DH(z) =
1

H(z)
, DM(z) =

∫ z

0

dz′

H(z′)
, DV (z) =

[
z D2

M(z)DH(z)
]1/3

.

Pre–recombination physics is kept standard. The drag–epoch sound horizon rs (often rd) and
the CMB summaries (ℓA, R) are evaluated with baseline baryon/neutrino priors

Ωbh
2 ∈ [0.021, 0.024],

∑
mν = 0.06 eV (fixed), Ωk = 0.

Explorations beyond this baseline (e.g. varying Ωbh
2 or

∑
mν) are logged as separate scenar-

ios.

Global constants propagated to perturbations. The self–sourcing constant α ≥ 0 is global
(no per–dataset fit). Linear perturbations use

k2Ψ = 4πGa2
[
δρm + αQΦ(k, a)

]
, µ(a, k) = 1 + ∆µα(a, k),

and feed into {fσ8, EG, C
ϕϕ
ℓ } under a shared covariance without probe–wise hyperparameters

(Appendix K.2– Appendix K.3).

Consistency filters (admission thresholds). Each parameter draw must satisfy, prior to like-
lihood evaluation:

1. Positivity/stability: ρΦ > 0, wΦ ≥ −1, and |dwΦ/d ln a| < 1 for z ≤ 5.

2. Late acceleration: wtot(0) < −1/3 (equivalently q0 < 0).

3. Early fraction: ΩΦ(z∗) ≤ 0.02 at z∗ = 1100 and for all z ≥ 50.

Any violation leads to rejection without further processing.

Audit trail (minimal yet sufficient). For each accepted draw, record: the parameter tuple
(H0,Ωm0;U0) or (H0,Ωm0, λ;U⋆); the initial condition (Φ(zini), Φ̇(zini)); integrator tolerances
and the redshift grid used; and the computed {DH , DM , DV , ℓA, R}. Each run is tagged with
a configuration hash (run_id) to enable byte–level reruns in line with the ledger rules of
Appendix K.0.

K.1ter Well-posedness, energy conditions, and stability (Einstein–scalar)

Admissible sector. Assume U ∈ C2, U ′′(Φ) ≥ 0 (convex), and the effective kinetic factor
Keff(Φ̄) ≡ Z(Φ̄) > 0 with Z ≡ 1 in the baseline. Let initial data (Σ, hij, Kij; Φ0,Π0) satisfy
the Einstein constraints with Π0 ≡ nµ∂µΦ. Then, in harmonic gauge, the Einstein–scalar
system admits a unique local solution (gµν ,Φ) of class Hs, s > 5/2, depending continuously
on the data (quasilinear hyperbolic well-posedness).

Stress tensor and energy conditions. With Z = 1 and U ≥ 0, the scalar stress

T (Φ)
µν = ∇µΦ∇νΦ−

1

2
gµν
(
∇Φ·∇Φ + 2U

)
satisfies the weak and null energy conditions. In the static, spherically symmetric sector, the
anisotropic stress π = pr − p⊥ is O(Φ′2) and is kept below 1PN by the isotropy policy (atail =
ctail).
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Linear mode stability (static backgrounds). Let (ḡ, Φ̄) be a static solution with Ā(r), C̄(r)
and Ū ′′(Φ̄) ≥ 0. The scalar perturbation δΦ on (ḡ) obeys a Schrödinger-type radial equation

−d
2Ψ

dr2∗
+ Veff(r)Ψ = ω2Ψ, Ψ ∼ r δΦ,

dr∗
dr

= Ā−1/2C̄1/2.

For Ū ′′ ≥ 0 and the PPN-safe tail, Veff ≥ 0 outside the photon sphere, precluding exponentially
growing modes (ω2 < 0) in the weak/medium field.

Yukawa → Padé continuation (outer tail). In the vacuum exterior and for slowly varying
Ū ′′ ≡ m2

Φ ≥ 0,

Φ′′ +
2

r
Φ′ −m2

ΦΦ ≃ 0,

whose leading solution is Yukawa-like. On the Solar window x = r/r0 ∈ [xmin, 3], the normal-
ized residual Ξ is represented by the Padé profile

p(x) =
Cn

x2(1 + αx)n
, (n, α) = (3, 1

4
),

matching (value,slope) while guaranteeing Ξ = o(r−2) and preserving asymptotic flatness.

1PN isotropy and metric embedding. Under atail = ctail one has δγ = δβ = 0 at 1PN, so
the optical response remains isotropic to this order; any residue is 2PN and audited separately.
This justifies using the same Ξ in A and C within the declared budgets.

K.2ter Sensitivity and Identifiability of the Tail under Scalar–Gravity Cou-
pling (English)
Aim. We quantify how the strong–gravity invariants (R,Θ) respond to a restricted, physically
motivated parameter family for the scalar–gravity sector. The goal is to turn the qualitative
“few–percent shifts” into reproducible response curves and an identifiability test that separates
tail–driven effects from confounders (spin, plasma, geometry).

Model family (parameters and domains). We adopt the minimal convex potential and an
isotropic, PPN–safe tail (cf. Section 3.1, Appendix C.8):

U(Φ) = 1
2
m2

ΦΦ
2 + λ4

4
Φ4, JNL = α (∇Φ)2, Ξ(r) = 2 εγ UN(r) p(r/r0),

with mΦr0 ≤ 1/4, λ4 ≥ 0, α ≥ 0, and a monotone profile 0 < p(x) ≤ 1, p′(x) ≤ 0 chosen
from the closed family

p(x) =
Cn

x2(1 + αtx)n
, Cn = (1 + αtxmin)

nx2min, n ∈ {2, 3, 4}, αt > 0.

The metric reads (isotropic, 1PN)

A(r) = 1−2U(r)+2βU(r)2+δC4 Ξ(r)+O(U3), C(r) = 1+2γU(r)+δC4 Ξ(r)+O(U2),

with the isotropy condition atail = ctail ≡ Ξ enforcing δγ = δβ = 0 at 1PN.
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Observables. We use the joint invariant O = (R,Θ) with

R =
b3π − bπ
bπ − bph

, Θ =
c∆t3π,π
2π rph

,

where bph = rph/
√
A(rph) and rph satisfies rphA′(rph) = 2A(rph) (Appendix G.6).

Local response (sensitivities). For a parameter vector θ = (δC4, α,mΦ, λ4, αt, n)
⊤ we define

logarithmic sensitivities

S
(R)
θj

=
∂ lnR

∂ ln θj
, S

(Θ)
θj

=
∂ lnΘ

∂ ln θj
, (334)

estimated by symmetric finite differences around a fiducial θ⋆ that respects Solar–window PPN
budgets and the far–zone bound (Appendix C.8.1). Jointness of the motion is summarized by

Jθj =

∣∣S(R)
θj
− S(Θ)

θj

∣∣
max

(
|S(R)

θj
|, |S(Θ)

θj
|
) . (335)

A tail–like disturbance yields Jθj ≪ 1 (near–diagonal motion in the logR–log Θ plane),
whereas common confounders give J = O(1) (Section 7).

Fiducial point and step sizes. Unless otherwise stated we use

δC4,⋆ = 0.01, α⋆ = 0.0, mΦ,⋆r0 = 0.20, λ4,⋆ = 0.0, (n⋆, αt,⋆) = (3, 0.25),

with relative steps ∆ ln θj = ±0.1 (10%) except n ∈ {2, 3, 4} (discrete). Steps are reduced if
any budget is violated.

Closed–form audits near rph. Expanding A(r) = A0(r) + δA(r) with δA(r) = δC4 Ξ(r) +
. . ., the near–critical proxy gives

δΘ

Θ
≃ −1

2

δA

A

∣∣∣
rph
,

δR

R
≃ −1

2

δA

A

∣∣∣
rph
, (336)

so that, to first order, S(R)
θj
≈ S

(Θ)
θj
∝ ∂ln θj

[
Ξ(rph)

]
. This identity is used only as a diag-

nostic check; production values come from full geodesic/timing integrals (Appendix G.2, Ap-
pendix G.6).

Identifiability metric. Define the diagonal unit vector u = (1, 1)⊤ in (logR, log Θ) space
and the orthogonal v = (1,−1)⊤/

√
2. Let ∆η = (∆ lnR,∆ lnΘ)⊤. Tail dominance is

certified if ∣∣v⊤∆η
∣∣ ≤ ϵjoint

∣∣u⊤∆η
∣∣, ϵjoint ∈ [0.2, 0.3], (337)

and ∆η passes a non–central χ2
1 power test along u (Appx. M.2a).

Representative sensitivity table. Illustrative (dimensionless) responses at θ⋆ respecting bud-
gets:
Reading guide. (i) δC4 drives a near–diagonal motion (J ≪ 1); (ii) increasing mΦ steep-
ens the decay and reduces both R,Θ; (iii) self–sourcing α can introduce differential motion
(larger J ), flagging degeneracy with plasma/spin unless bounded by the 1PN isotropy audit
(Appendix C.8).
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Table 99: Illustrative logarithmic sensitivities at the fiducial point θ⋆. Signs and relative mag-
nitudes follow the near–critical audit (336) and full integrations.

Parameter S(R) S(Θ) J
δC4 (tail amplitude) +0.98± 0.05 +0.95± 0.06 0.03

mΦr0 (mass scale) −0.22± 0.06 −0.19± 0.07 0.14

λ4 (quartic) +0.05± 0.03 +0.04± 0.03 0.20

α (self–sourcing) +0.08± 0.04 +0.02± 0.05 0.75

αt (profile slope) −0.30± 0.07 −0.27± 0.08 0.10

n (profile order, 2→4) −0.11± 0.05 −0.09± 0.05 0.18

0.03 0.02 0.01 0.00 0.01 0.02 0.03
ln R

0.03

0.02

0.01

0.00

0.01

0.02

0.03

ln

-sweep sensitivity scatter

Figure 31: θ–sweep sensitivity scatter. The gray diagonal band marks ∆ lnR ≃ ∆ lnΘ (45◦)
joint motion; points illustrate sample responses to variations in δC4, α, mΦ, and λ4 under fixed
PPN budgets and the far–zone bound.
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Figure (diagnostic scatter).

Stability & well–posedness (summary hooks). For the adopted family: (i) U ′′(Φ) = m2
Φ +

λ4Φ
2 ≥ 0 (convex; no tachyonic instabilities about Φ = 0); (ii) the scalar sector satisfies

the weak energy condition in the static window (Appendix C.8); (iii) with atail = ctail the
1PN mapping preserves PPN safety; (iv) the exterior penalty implements Robin→Dirichlet
matching, conserving ADM mass and ensuring 1PN consistency of gtt (Appendix M.2b).

Outcome. A restricted, physically controlled parameter family yields reproducible (R,Θ)
response curves. Diagonal co–motion (J ≪ 1) is a robust signature of tail amplitude/profile
changes, while sizeable J flags non–tail physics. This elevates the qualitative “few–percent
shifts” into a falsifiable, data–anchored sensitivity analysis that can be repeated with public
pipelines.

K.2 Linear scalar perturbations (Newtonian gauge)
Gauge and baseline equations (policy–consistent). We adopt the Newtonian gauge with
scalar potentials (Ψ,ΦN), where the subscript distinguishes the metric potential from the back-
ground curvature field Φ. Including the self–sourcing correction (Appendix C.2), the effective
Poisson equation and the matter–growth equation read

k2Ψ = 4πGa2[δρm + αQΦ(k, a)] , δ′′m +
(
2 +

H ′

H

)
δ′m −

3

2
µ(a, k) Ωm(a) δm = 0,

where a prime denotes d/d ln a. The termQΦ captures the linearized gradient–energy contribu-
tion of Φ–perturbations. Cold–matter continuity and Euler equations are used in their standard
form.

Response functions and lensing combination (explicit). Define the effective response triplet

µ(a, k) ≡ k2Ψ

4πGa2 δρm
= 1 +∆µα(a, k),

η(a, k) ≡ ΦN

Ψ
,

Σ(a, k) ≡ k2 (Ψ + ΦN)

8πGa2 δρm
=

µ (1 + η)

2
.

In the minimal anisotropic–stress limit η ≃ 1, one has Σ ≃ µ. The same set (µ, η,Σ) enters
the late–ISW signal and all lensing kernels consistently.

Derived observables (quasi–static, sub–horizon). LetD(a) be the linear growth factor with
D(1) = 1, and f ≡ d lnD/d ln a the growth rate. With σ8(z) = σ8,0D(z), it follows that
fσ8(z) = f(z)σ8,0D(z). The lensing–clustering statistic EG is

EG(k, z) =
c2 k2 [ΦN +Ψ]

3H2
0 a

−1 f(a) δm
≃ Σ(a, k) Ωm(a)

f(a)
,

where the right–hand side is the standard QS approximation under linear bias/RSD conventions.
The CMB lensing–potential power spectrum (Limber) reads

Cϕϕ
ℓ =

∫ χ∗

0

dχ

χ2
W 2

ϕ(χ) PΦN+Ψ

(
k =

ℓ

χ
, z(χ)

)
, Wϕ(χ) = −2

χ∗ − χ
χ∗ χ

,
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with χ∗ the comoving distance to last scattering.

Applicability (QS domain). The results in this subsection hold in the quasi–static, sub–horizon
regime k ≫ aH . Very large scales (late–ISW dominated) and deeply non–linear small scales
require extended kernels and non–linear corrections, handled by the numerical conventions
in Appendix K.5. As a practical analysis window aligned with the data vector, we use k ≳
0.01hMpc−1, z ≲ 2.

Numerical settings and initial conditions (shared). Under the global fixed–constants policy
(Appendix K.0), the k–grid, the redshift grid, and the integrator tolerances are shared across
probes (Appendix K.5). The growth ODE is initialized at zini≫ 1 with EdS–like conditions
δm ∝ a, δ′m ≈ 1, and normalized by D(1) = 1. The same σ8 prior/covariance is used when
reporting fσ8, EG, and Cϕϕ

ℓ .

Guardrails (physical and numerical). (1) Monitor ∂µ/∂k to exclude unphysical small–scale
growth; excise k–grids with rapid oscillations.
(2) Priors forbid ρΦ < 0 and sign–flipping lensing combinations (Σ < 0).
(3) Exclude parameter regions where the implied enclosed massMeff(r) becomes non–monotonic.
(4) Fix and log numeric ranges, sampling, and tolerances (including an environment fingerprint)
as in Appendix K.5.

Consistency checks (GR/standard limit). In the limit α→0 (or ∆µα→0),

µ→ 1, η → 1, Σ→ 1,

recovering the GR/Newtonian case. Then EG ≃ Ωm/f , and fσ8 reduces to the standard lin-
ear–growth prediction. All pipelines include this GR–recovery test as a required validation
step.

K.3 Observable mapping, datasets, and tests
From parameters to observables (single pipeline, shared settings). Given the global pa-
rameter set ϑ ≡ (H0,Ωm0, U, α), we assemble the model vector

m(ϑ) ≡
{
DM(z), DH(z), DV (z), ℓA, R, fσ8(z), EG(k, z), C

ϕϕ
ℓ

}
.

We use the background integrator from Appendix K.1/K.1bis and the linear–response mapping
of Appendix K.2. All probes share the same cosmological parameters, priors, windows, and
numerical tolerances; no probe– or dataset–wise retuning is allowed (Appendix K.0). Unless
stated otherwise, c is explicit and H0 is in km s−1Mpc−1. For the sound horizon, we consis-
tently use rs (drag epoch; often rd).

Data vector, covariance, and likelihood (block–structured). Let d denote the concatenated
data vector (SNe Ia distances; BAO DM , DH , DV /rs; CMB summaries ℓA, R; growth/lensing
fσ8, EG, C

ϕϕ
ℓ ). With a shared block covariance Σ (including published cross–covariances and

zero–padding where absent), we evaluate

χ2(ϑ) =
[
d−m(ϑ)

]⊤
Σ−1

[
d−m(ϑ)

]
, L(ϑ) ∝ exp

(
− 1

2
χ2(ϑ)

)
.
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All masks, redshift/multipole cuts, window functions, and nuisance–marginalization choices
(e.g., calibration offsets, RSD/bias templates used in EG) are logged under the ledger rules of
Appendix H.

Validation protocol (phase structure; no retuning).

1. Phase I — background. Fit SNe Ia + BAO + cosmic chronometers to constrain (H0,Ωm0)
and the declared U parameter(s), using only H(z), DM , DH , DV (cf. Appendix K.1).

2. Phase II — perturbations. With (H0,Ωm0, U) fixed from Phase I, constrain α and the
implied wΦ(z) using fσ8(z), EG(k, z), C

ϕϕ
ℓ , and CMB (R, ℓA), evaluated with the same

numerics (Appendix K.2).

3. Scenario comparison (like–for–like). Benchmark C4+ΛCDM (minimal coupling) against
a reduced dark–sector case where late–time acceleration is driven by U(Φ) and growth is
modified by α > 0. Run both under identical priors, masks, windows, and covariances;
compare using ∆χ2, ∆AIC, ∆BIC.

Pass/fail criteria (pre–declared thresholds). A single (α, U) must simultaneously satisfy:

(i) CMB acoustic/shift:
∣∣R−Rdata

∣∣/σR ≤ 1 and
∣∣ℓA − ℓA,data

∣∣/σℓA ≤ 1.

(ii) BAO distances: max
z∈ZBAO

|Dmodel
V /rs −Ddata

V /rs|
σDV /rs

≤ 1, with DM , DH posteriors consis-

tent with the BAO block.

(iii) Low–z growth/lensing: fσ8 and EG residuals consistent within 1σ in their published
covariance (no single bin dominating χ2); Cϕϕ

ℓ within a 1σ envelope over the analysis
multipole range.

Failure of any two items implies model–level rejection.

Diagnostics and guardrails (required checks).

• GR recovery. In the limit α→ 0 (or ∆µα → 0), verify µ → 1, η → 1, Σ → 1 and
consistency with ΛCDM for fσ8, EG, Cϕϕ

ℓ .

• Whitened residuals. Check r ≡ Σ−1/2
[
d −m(ϑ̂)

]
for Gaussianity and the absence of

survey–wise structure (runs/drifts).

• Leave–one–survey–out. Refit after dropping each survey block; require parameter shifts
≤ 1σ (joint) and stable χ2/dof.

• Physical priors. Enforce the positivity/stability caps of Appendix K.1; exclude regions
implying non–monotonic enclosed mass or sign–flipping Σ (see Appendix K.2).

• Numerical convergence. Doubling the resolution in k and redshift grids and tightening
tolerances must shift any entry of m(ϑ) by < 0.1σ of its data uncertainty.
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Dataset handling (windows, nuisance, consistency).

• Windows/masks. All redshift and multipole windows used to compress survey data to d
are reapplied to m(ϑ) (no reweighting differences across probes).

• Nuisance. Calibration offsets and survey–specific nuisance parameters are fixed to pub-
lished posteriors or analytically marginalized; choices are common across scenarios.

• Units/definitions. Use of rs (drag epoch),DV , and theEG convention follows the survey
pipeline; any alternate conventions are registered as separate scenarios.

Reproducibility notes (ledger hooks). All catalog versions, masks, priors, numerical grids/-
tolerances, and environment fingerprints (BLAS/libm/compiler flags) are hashed and archived
(Appendix H; numerics in Appendix K.5). Captions and footnotes include a run_id to enable
byte–level reruns; any deviation should be traceable to environment drift, not stochasticity.

K.4 Stress tests, caveats, and falsification set
Falsifiable targets (pre–declared, fixed–policy). C4 cosmology is admitted only if a single
global pair (α, U) that passes Phase I (background; Appendix K.3) also reproduces—without
any per–probe retuning and within joint uncertainties—the following:

(i) CMB acoustic locations and relative heights consistent with the (R, ℓA) constraints (base-
line pre–recombination microphysics),

(ii) BAO distancesDV /rs (with mutually consistentDM , DH) together with cosmic–chronometer
H(z),

(iii) low–z growth fσ8 and the lensing–clustering statisticEG, plus consistency with the CMB
lensing band Cϕϕ

ℓ .

Failure of any two items constitutes model–level rejection under the fixed–constants policy
(Appendix K.0). Throughout we adopt rs (drag epoch; often rd) for BAO normalization.

Early–Universe baseline (scope control). Unless explicitly stated, pre–recombination mi-
crophysics (baryon drag scale rs, recombination acoustics, neutrino background) remain stan-
dard as in Appendix K.1/K.1bis. Late–time C4 effects are cleanly isolated through the back-
ground H(z) and the linear–response triplet (µ, η,Σ) (Appendix K.2). If early–time modifi-
cations are explored, they must be predeclared as a distinct scenario and evaluated under the
same guardrails and windows.

Identifiability and degeneracies (stability checks). We track the joint posteriors of
(α, U–parameter) across probe subsets (e.g., BAO–only, growth–only, lensing–only). Pos-
terior bifurcation, multimodality, or systematic drift under leave–one–survey–out indicates
over–flexibility and triggers rejection per the fixed–policy rules. Parameter shifts must remain
≤ 1σ (joint) when any single survey block is removed.
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Scale dependence and physicality (QS vs. full linear). We monitor ∂µ/∂k to exclude spuri-
ous small–scale growth and require a monotonic enclosed mass Meff(r). The quasi–static (QS)
formulas are used only on sub–horizon modes; for super–horizon or transition scales we solve
the full linear system. Continuity is enforced at a matching scale ksw∼O(aH) with a tolerance
fixed in Appendix K.5; the QS solution must agree with the full system within that tolerance
for k≳5 aH . Hard priors forbid ρΦ < 0 and sign–flipping lensing combinations (Σ < 0).

Numerical soundness (well–posedness tests). We log condition numbers of Fisher/Hessian
blocks, enforce step–stable ODE integration (no bursts of step rejection), and verify that small
prior shifts do not cause divergent condition numbers. Results must be smooth across the
k–grid (no ringing) and reproducible under the pinned numerics of Appendix K.5 (environment
fingerprint, tolerances, grids). A double–resolution check in both k and redshift must shift any
entry of the model vector by < 0.1σ of its data uncertainty.

Cross–probe consistency (closure tests). The (α, U) pair inferred from lensing (via Σ) must
be consistent with growth (µ) and the background H(z) at the reported covariance level (Ap-
pendix K.3). We require GR recovery in the α→ 0 limit (µ, η,Σ→ 1) and agreement with
ΛCDM predictions for fσ8, EG, and Cϕϕ

ℓ .

Falsification table (triggers and actions).

Trigger Symptom (diagnostic) Action
CMB mismatch |R−Rdata| > σR or |ℓA−ℓA,data| > σℓA Reject scenario
BAO/H(z) tension Any BAO bin with |∆(DV /rs)| > σ or inconsistent

DM , DH posteriors
Reject scenario

Growth/lensing tension fσ8 or EG residuals > 1σ in multiple bins; Σ–µ in-
consistency; Cϕϕ

ℓ outside envelope
Reject scenario

Nonphysical response ρΦ < 0, Σ < 0, non–monotonic Meff(r), or large
spurious +∂µ/∂k

Exclude parameter
region

QS/full mismatch Discontinuity at ksw beyond Appendix K.5 tolerance Tighten numerics or
reject

Numerical ill–posedness Divergent condition numbers; step–rejection bursts;
k–ringing

Fix numerics or in-
validate fit

Identifiability failure Posteriors bifurcate/drift under survey removal; pa-
rameter shifts > 1σ

Reject
(over–flexible)

GR limit failure α→0 does not recover µ=η=Σ=1 Invalidate imple-
mentation

Caveats (scope and interpretation). (i) QS predictions are never used on super–horizon
modes; results there rely on the full linear system. (ii) Deeply nonlinear scales are excluded
by construction; including them would require dedicated bias/EFT–like modeling, beyond the
fixed–policy scope. (iii) Early–time deviations (if declared) must be analyzed as separate sce-
narios; otherwise, late–time claims are conditioned on standard pre–recombination physics.
(iv) All windows/masks used to form the data vector are reapplied to the model predictions (no
probe–dependent reweighting).
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Outcome. A scenario that passes all stress tests is retained for quantitative comparison in
Appendix K.3; any failure state above either prunes parameter regions or falsifies the scenario
class under the fixed–constants policy.

K.5 Numerical settings and reproducibility ledger
Grids (ranges, spacing, and guards). The redshift grid is z ∈ [0, 1100], with linear spacing
for z ≤ 3 and logarithmic densification for z > 3 to stabilize the drag–scale integral rs (often
denoted rd). The comoving–wavenumber grid is k ∈ [10−4, 1] hMpc−1 with IR/UV guards
and spline–safe sampling (a Nyquist margin on all resampled kernels) to ensure stable Cϕϕ

ℓ

projections. All grid nodes and spacing rules are written to the run manifest to enable bitwise
replay.

Integrators and tolerances (recorded; no per–probe retuning). Background ODEs are
solved with an adaptive Runge–Kutta scheme; the growth ODE is integrated in N ≡ ln a using
a stiffness–aware solver with event checks at matter–radiation equality and at z=0. Projection
kernels (lensing/ISW) use Gauss–Kronrod or Clenshaw–Curtis quadrature with logged conver-
gence tests. Relative/absolute tolerances (εrel, εabs) and maximum step fractions are globally
fixed and recorded in the configuration; dataset–wise retuning is not allowed.

Units, conventions, and windows. Unless otherwise noted we adopt c=1 (explicitly rein-
stated when unit conversion is shown) and the reduced Planck mass MP = (8πG)−1/2. Back-
ground distance mappings follow Appendix K.1/K.1bis. Perturbations use the quasi–static,
sub–horizon window of Appendix K.2, with matching to the full linear system at ksw∼O(aH).
All radial/angle cuts, the multipole range for Cϕϕ

ℓ , and k–cuts for fσ8 and EG are versioned for
transparency.

Priors, masks, and exclusions (archived). We archive all priors, including α ≥ 0, positivity
ρΦ > 0, stability |dwΦ/d ln a| < 1 for z ≤ 5, and the early–time caps ΩΦ(z∗) ≤ 0.02 at
z∗=1100 (see Appendix K.1). Survey masks (SNe Ia/BAO/growth/lensing), scale cuts (e.g.,
removal of non–linear k), and any outlier exclusions are stored with rationale and version tags.
No probe–specific hyperparameters are introduced.

Artifacts and hashes (byte–level replay). For each run we store the computed observables

{H(z), DM , DH , DV /rs, ℓA, R, fσ8, EG, C
ϕϕ
ℓ },

together with posterior chains, whitened residuals, and configuration files (grids, toler-
ances, priors, masks). We record code/data hashes and the environment fingerprint—e.g.,
python-VV; BLAS/LAPACK vendor; numpy.show_config(); libm; compiler flags—per
the ledger practice of Appendix H.

Sanity checks (must pass). We validate the pipeline on limiting cases: (i) α=0 with constant–U
reproduces Λ–like late–time background distances; (ii) matter–only growth recovers GR with
µ=1 and EdS–like f(a); (iii) lensing–growth consistency Σ ≃ µ holds in the minimal anisotropic–
stress limit η ≃ 1 (Appendix K.2); (iv) QS/full–linear matching at ksw ∼ O(aH) lies within
the declared tolerance. Any deviation beyond tolerances halts the run and emits a reproducible
failure report.
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Determinism and seeds. All forward–model computations are deterministic in IEEE–754
double precision; random seeds are used/logged only for sampling (e.g., MCMC or optimiza-
tion restarts). Any non–bitwise replay must be attributable to environment drift, not stochastic-
ity (cf. Appendix J.11).

Numerical defaults (declarations).

Quantity Declaration (recorded in manifest)
Redshift grid z ∈ [0, 1100]; linear for z ≤ 3, log–dense for z > 3

Wavenumber grid k ∈ [10−4, 1] hMpc−1; IR/UV guards; spline–safe sampling
Integrators RK (background), stiffness–aware in ln a (growth), GK/CC (projections)
Tolerances (εrel, εabs) fixed globally; logged per run
Windows/cuts QS sub–horizon domain; versioned k/ℓ cuts and masks
Environment Python/BLAS/LAPACK/libm/compiler flags hashed

Convergence and robustness checks (quantitative rule). Doubling the resolution of the
redshift and k grids and tightening tolerances must change each component of the model vector
by < 0.1σ of its data uncertainty. The same criterion applies when switching between GK and
CC quadrature rules. Rapid sign/magnitude flips in ∂µ/∂k or visible k–ringing trigger sample
exclusion, with rationale logged in the ledger.

Failure reporting (reproducibility note). If a run exceeds the declared numerical tolerances
or violates guardrails, it is halted and a structured, machine–readable failure report is emitted.
The report records which stage failed, the tested quantity and its observed value versus thresh-
old, and the configuration/environment fingerprints required to re–execute the run. The exact
schema and an illustrative example are provided in the reproducibility ledger (Appendix H).

As a closing attitude, the ledger is more than bookkeeping: it is a promise to show our
working, to let the numbers be rerun by other hands, and to accept that a model earns trust only
when it survives being checked from the ground up.

K.6 Synthesis
Appendix K lays out a reproducible, fixed–policy C4 cosmology pipeline with a strict param-
eter budget, shared covariances, and pre–declared pass/fail criteria. Background dynamics
follow the minimal U(Φ) families in Appendix K.1/K.1bis; linear growth and lensing are or-
ganized through the response triplet (µ, η,Σ) in Appendix K.2; probe mapping, likelihoods,
and tests are collected in Appendix K.3; robustness guardrails and falsification triggers are en-
forced in Appendix K.4; and numerical/archival practice is codified in Appendix K.5. Through-
out, there is no per–probe retuning and no dataset–specific hyperparameters; the pair (α, U) is
global. The aim is simple: the same assumptions carry across all probes, so that what holds in
one corner of the data does not quietly change its meaning in another.

Acceptance rule (single–shot, fixed–policy). C4 is provisionally viable only if a single
(α, U) that passes Phase I (background) simultaneously matches, within joint uncertainties:
(i) CMB acoustic scales and relative peak heights via (R, ℓA); (ii) BAO DV /rs (with consistent
DM , DH) and cosmic–chronometer H(z); (iii) low–z growth amplitude fσ8 together with the
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lensing–clustering statistic EG (and consistency with Cϕϕ
ℓ ). Failure of any two items implies

model–level rejection. This rule is intentionally spare: if a claim leans on adjustment, it should
fail here rather than later; a result that survives without special pleading needs fewer words to
defend it.

At–a–glance checklist (must pass).

• GR limit: α→ 0 ⇒ µ, η,Σ→ 1 and ΛCDM–level agreement for fσ8, EG, C
ϕϕ
ℓ (Ap-

pendix K.2).

• QS domain validity: QS vs. full–linear agreement at ksw ∼ O(aH) within declared
tolerance (Appendix K.2, Appendix K.5).

• Cross–probe closure: The same (α, U) explains background H(z), growth µ, and lens-
ing Σ under the shared covariance (Appendix K.3).

• Physicality: ρΦ > 0; no sign–flipping Σ; monotonic Meff(r); controlled ∂µ/∂k (Ap-
pendix K.4).

• Reproducibility: Bitwise–replayable grids/tolerances; hashed artifacts; environment fin-
gerprint (Appendix K.5).

These checks do not aspire to be clever; they aspire to be clear. When the scaffolding is visible,
others can test where the structure bends and where it holds.

Scope and non–scope (baseline vs. scenarios). Early–Universe microphysics (drag scale
rs, recombination acoustics, neutrinos) is standard by default; late–time C4 effects are isolated
throughH(z) and (µ, η,Σ). Any early–time modification is treated as a separate scenario class
with the same guardrails and reporting rules (Appendix K.3, Appendix K.4). This separation
is less a constraint than a courtesy to the reader: different bets are declared upfront, so the
evidence has a clean target.

Reporting format (minimal, auditable). Accepted runs report a compact table of best–fit
(H0,Ωm0, U, α), χ2/dof, and ∆AIC/BIC for the compared scenarios, together with links (hashes)
to archived artifacts:

{H(z), DM , DH , DV /rs, ℓA, R, fσ8, EG, C
ϕϕ
ℓ },

residual diagnostics, and configuration manifests (Appendix K.5). In practice this amounts to
a modest promise: anyone can follow the same trail and arrive at the same clearing.

This synthesis closes the roadmap introduced in Section 11.1. The framework is designed
to be maximally testable: success or failure is auditable through the artifacts, guardrails, and
pre–declared criteria in Appendix K.1–Appendix K.5. If there is a quiet lesson here, it is that
restraint is a form of explanation: one set of parameters, one set of rules, and the courage to let
the data answer without our help.
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Appendix L. C4 wave sector: linearized dynamics, polariza-
tions, and GW tests
L.0 Policy, priors, and scope (deduplicated). The GW sector inherits the global fixed–constants
policy (Section 2.6.2); no event– or probe–level retuning is allowed. Numerical defaults (grids,
tolerances, sampling) follow Appendix K.5. Reproducibility and logging conventions follow
Appendix H (details consolidated in Appendix L.0.3). The guiding attitude is sobriety over
flourish: state assumptions once, carry them everywhere, and let consistency do the talking.

Field content (axioms). Two tensor polarizations h+, h× propagate at speed c by definition
(with no free tensor–speed or dispersion degrees of freedom). Optionally, a single curva-
ture–coupled scalar mode φ is admitted under a global coupling ζ (and fixed ppE exponents
if used). Vector modes are not part of the baseline. Early–time and strong–curvature mi-
crophysics remain standard unless declared as a separate scenario class. Parsimony here is
deliberate: every extra freedom must earn its place in the ledger.

Global declarations (GW parameters).

ΘGW =
{
ζ (≥ 0), m2

φ(≥ 0), c2φ∈ [0, 1], ppE (αppE, βppE; a, b)
}
.

Only a subset needs to be active in a given run; all are global and shared across events.

Guardrails (admission). Luminal tensors cT = c; stability/causality for φ (m2
φ≥ 0, 0≤ c2φ≤

1); ppE exponents (a, b) fixed a priori to the tested hypothesis; non–tensor polarization power
controlled by a single global parameter (derived from ζ). These guardrails are not decoration;
they are the rails that keep inference from drifting into story–telling.

Linearized dynamics (schematic). On sub–horizon scales with conformal time η and H ≡
aH ,

h′′A+2H h′A+k2hA = SA(η, k) (A ∈ {+,×}), φ′′+2Hφ′+(c2φk
2+a2m2

φ)φ = Sφ(η, k; ζ).

Tensor propagation is strictly luminal; any phase/amplitude deformation is encoded only via
global ppE coefficients. In short: the background sets the stage, sources set the cues, and the
same rules apply to every act.

Observables and tests (overview). Catalog–level tests cover speed/dispersion, polarization
content, and standard–siren coherence. Quantitative thresholds and procedures are stated in
Appendix L.0.1; anticipated critiques and mitigations in Appendix L.0.2; reporting/ledger de-
tails in Appendix L.0.3.

L.0.1 Validation loop (pre–declared, reproducible).

1. Sanity and invariance (null) tests. Off–source windows, sky–scrambles, and phase–
randomized templates must yield overlaps consistent with noise (e.g., residual–correlation
two–sample KS test with p > 0.05), with null–stream consistency and stability under de-
tector–subset removal. On failure: treat as residual systematics, halt, and emit a failure
log per Appendix H. A quiet check first; then proceed.

2. Injection–recovery (forward model). Inject a single global (ζ;αppE, βppE) into GR–EOB/NR
waveforms, synthesize detector–network responses, and recover with the same priors
(global–only, per Appendix L.0). Acceptance thresholds: band–integrated overlap O ≥
0.99, mismatch ≤ 1%, unbiased phase residuals, and no spurious Bayes–factor prefer-
ence for over–parameterized models (e.g., ∆logB ≤ 0 or below Jeffreys’ boundary).
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3. Observational fit (backward inference). Fit LIGO/Virgo/KAGRA catalogs with a
common likelihood and covariance; posteriors for (ζ;αppE, βppE) must be consistent
across event subsets and network configurations (rank). Acceptance: posterior–median
drift within Appendix K.5 tolerances and posterior–shape homogeneity (two–sample KS
p > 0.05).

4. Cross–checks. (i) Polarization rank: network pattern–matrix rank ≥ 2 for tensor–only
tests and ≥ 3 when including a breathing mode; (ii) Calibration & PSD stability: repeat
fits across calibration curves and PSD realizations; (iii) Robustness: re–fit with expand-
ed/contracted data–quality vetoes; posterior drift beyond tolerance flags model fragility.

L.0.2 Anticipated critiques and mitigations.
• Over–flexibility: forbid event–level ppE retuning; restrict to global constants. Additional

dof are penalized via BIC/AIC in the ledger.

• Scalar false positives: require multi–detector coherence and polarization separation;
breathing–mode claims must survive sky–scrambles and detector–subset removals.

• Speed/dispersion ambiguity: tensor speed is fixed to c by design (see Appendix L.0); any
arrival–time residual bias is attributed to pipelines or noise, not to extra tensor dof.

• Inclination–polarization degeneracy: jointly sample (ι, ψ) with polarization response;
breathing–mode posteriors must remain non–degenerate after marginalizing over (ι, ψ).

L.0.3 Reporting and ledger (concise, auditable). For each run, archive frequency grids,
windowing, template banks, priors, masks, seeds, calibration versions, PSDs, and all configura-
tion files with hashes. Publish (O,mismatch) distributions, residual spectra, and Bayes–factor
tables to enable byte–level reproducibility and external auditing. All failures are recorded as
machine–readable YAML logs with fields stage, test, observed, threshold, config
_hash, env_fingerprint, repro_cmd; schema and examples follow Appendix H.

L.1 Linearized wave equations and gauge (with consistency and flux)
Conventions. We linearize about Minkowski spacetime,
gµν = ηµν +hµν with ηµν = diag(−,+,+,+), and write Φ = Φ0+δΦ. We work in units c = 1
unless explicitly stated (restore c by dimensional analysis). Indices are raised and lowered with
ηµν , and equalities hold to linear order unless noted. The aim is to keep the scaffolding visible:
simple rules first, then consequences.

Field content and gauge. Adopt the de Donder (Lorenz) gauge ∂µh̄µν = 0, with h̄µν ≡
hµν − 1

2
ηµνh. The linearized equations are

□ h̄µν = −16πG
(
Tµν + τ (Φ)

µν

)
, □ δΦ + m2

Φ δΦ = SΦ[Tµν ], (338)

where τ (Φ)
µν is the effective (curvature–field) stress contribution. Source consistency requires

∂µ
(
Tµν + τ (Φ)

µν

)
= 0, ∂µh̄µν = 0 (numerically enforced to solver tolerance).

Remark. At strictly linear order about Φ0 = const, τ (Φ)
µν = O(δΦ2) and thus contributes at

leading non–vanishing order only after short–wavelength averaging; we keep it here to maintain
uniform notation with the flux bookkeeping below.
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Tensor projection and solution structure. Project to the transverse–traceless sector by

Λij,kl(n̂) = PikPjl − 1
2
PijPkl, Pij = δij − n̂in̂j,

to obtain
□hTT

ij = −16πGTTT
ij , hTT

ij (t,x) ≃ 2G

R
Q̈TT

ij

(
t−R

)
, (339)

for a localized source at distance R (retarded time t − R in c=1 units), where Qij is the
trace–free quadrupole built from Tµν + τ

(Φ)
µν . (With c restored, hTT

ij ≃ 2G
c4R

Q̈TT
ij (t − R/c).)

The message is standard: far from the source, the quadrupole rules the waveform.

Scalar sector and dispersion. The scalar mode obeys

□δΦ +m2
ΦδΦ = SΦ[Tµν ],

with group velocity vg = ∂ω/∂k =
√
1−m2

Φ/ω
2. To avoid dispersion/superluminality in the

baseline we take mΦ = 0 (or effectively m2
Φ ≪ ω2 over the analysis band), hence vg ≃ 1.

Any mΦ > 0 run is treated as a separate scenario class under the same guardrails. When
assumptions change, we say so and test them on their own terms.

Energy flux and positivity (Isaacson). In the short–wavelength/averaged limit the effective
GW energy–momentum is

TGW
µν =

1

32πG

〈
∂µh

TT
ij ∂νh

TT
ij

〉
+
〈
∂µδΦ ∂νδΦ − 1

2
ηµν
[
(∂δΦ)2 −m2

Φ (δΦ)2
]〉
, (340)

which is positive–definite for the tensor piece and, for a canonical scalar, enforces positivity
via the hard priors m2

Φ ≥ 0 and the correct kinetic sign. Negative flux realizations in the scalar
channel trigger rejection in the validation loop (Appendix L.0.1). Energy should not be created
by notation; this is where the bookkeeping earns its keep.

Curved background extension (consistency). On a slowly varying background,

□h̄µν + 2Rµρνσ h
ρσ = −16πG

(
Tµν + τ (Φ)

µν

)
+ O

(
h∇R

)
,

and the Minkowski results are recovered when the curvature length greatly exceeds the GW
wavelength (λGW ≪ R−1/2). Baseline tests assume Minkowski (or weakly curved) propaga-
tion; any strong–curvature extension is declared and tested separately.

Consistency checks (pass/fail hooks).

• Gauge and conservation: residuals ∥∂µh̄µν∥/∥∂h̄∥ and ∥∂µ(Tµν + τ (Φ)
µν )∥/∥∂T∥must lie

within solver tolerances (declared in Appendix K.5); violation⇒ run failure.

• Luminal tensor speed: the retarded time in (339) is t − R (or t − R/c with c restored).
Any fitted tensor speed ̸= 1 indicates pipeline/systematic error (per Appendix L.0) rather
than extra tensor dof.

• Scalar stability: no ghosts (positive kinetic term), no tachyons (m2
Φ ≥ 0), and real vg

across the analysis band.

• Flux positivity: the Isaacson flux from (340) must be non–negative to numerical preci-
sion; negative bins flag the fit for rejection.

Small rules, clearly stated, keep the analysis honest: when the checks pass, the rest follows
without adornment.
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L.1.1 Self–sourcing channel J [Φ] = α(∇Φ)2: stability, causality, and energy conditions

Setup and conventions. On a static (or slowly varying) background Φ̄(t, r) ≈ Φ̄(r), write
Φ = Φ̄ + ϕ with |ϕ| ≪ |Φ̄|. In the dynamical baseline we set β = 0 and λΞ = 0 (cf. static
regulators in Appendix C.8). The PCFE source term is J [Φ] Φ = αΦ(∇Φ)2, so expanding to
quadratic order in ϕ gives, up to total derivatives,

L(2)
kin = −1

2
(∇ϕ)2 + α Φ̄ (∇ϕ)2 + 2αϕ∇µΦ̄∇µϕ︸ ︷︷ ︸

subleading; integrates to O(ϕ2∇2Φ̄)

+ . . . (341)

We keep the canonical (∇ϕ)2 terms explicitly and treat the mixed term ϕ∇Φ̄ · ∇ϕ as a sup-
pressed background–gradient correction. The rule of thumb is plain: state the leading structure,
track the rest, and let the hierarchy speak for itself.

Principal quadratic form and effective kinetic coefficient. Collecting the leading–derivative
pieces,

L(2)
prin = −1

2
Keff(Φ̄) g

µν∇µϕ∇νϕ + O
(
∇Φ̄ ·ϕ∇ϕ

)
, Keff(Φ̄) = 1− 2α Φ̄ + O

(
(∇Φ̄)2

)
.

(342)
Equivalently, one may write S(2)

prin = 1
2

∫√
−g Zµν∇µϕ∇νϕ with Zµν = −Keffg

µν . Back-
ground–gradient remainders are tracked but do not alter the principal cone at leading order.

High–frequency cone and wave speed. On ds2 = −A(r) dt2 + C(r) dr2 + r2dΩ2 and a
WKB ansatz ϕ ∼ eiΘ/ϵ, the principal symbol is P(ω, k) = Keff(A

−1ω2 − C k2) + . . ., so the
local signal speed is

c2s =
Zrr/C

ZttA−1
= 1 + O

(
(∇Φ̄)2

)
, (343)

i.e. any anisotropy/dispersion induced by∇Φ̄ enters at subleading order. Clarity here is protec-
tive: the cone is set by the principal form, and small gradients only perturb it.

Ghost/gradient stability and hyperbolicity.

• No ghost: Keff(Φ̄) > 0 ensures a positive time–like quadratic form (canonical sign of ϕ̇2

in (342)).

• No gradient instability: from (343), c2s ≥ 0 when Keff > 0.

• Hyperbolicity: Ztt > 0 and Zrr > 0 (equivalently Keff > 0) give a strictly hyperbolic
principal operator.

Higher–derivative regulators (EFT regime; optional). Static–sector regulators β(□Φ)2

and λΞ ΞµνΞ
µν (Appendix C.8) are off in dynamical runs. If enabled for diagnostics, they

must lie below the EFT cutoff Λ so that fourth–order modes do not contaminate the principal
sector:

| β | k2 ≪ Keff , |λΞ | k2 ≪ Keff . (344)

In other words: keep the cure weaker than the ailment, or it becomes the model.
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Energy condition (WEC for perturbations). In the isotropic leading limit,

ρϕ = 1
2
Keff

(
A−1ϕ̇2 + C (∂rϕ)

2
)

+ . . . ≥ 0 whenever Keff > 0, (345)

with background scalar stress handled as in Appendix C.8. Positivity is not merely a preference;
it is the minimal bill a perturbation must pay to be physical.

Operating bounds (Solar–System window). On [r0, 3r0] we impose the quantitative bounds

0 < Keff(Φ̄) = 1− 2α Φ̄ ≤ 1, c2s ≤ 1, |α| (∇Φ̄)
2

c2
≤ ηconeK

2
eff , (346)

with default ηcone = 10−2, enforced jointly with the external PPN budgets in Section 3.5.4.
These bounds make the intent explicit: respect local tests first, then ask for novelty.

External linkage and reporting. (1) PPN linkage: verify compliance with fixed budgets
(εγ, εβ) (Section 3.5.4).
(2) Optical causality: corroborate cs ≤ 1 using the ring–delay observable Θ and its uncertain-
ties (main text, Section 7).
(3) Time–domain constraint: report upper bounds on propagation speed from high–cadence
EHT/ngEHT light curves.
For reproducibility, publish Φ̄(r) and Keff(r) profiles, the maximal c2s(r) on [r0, 3r0], any regu-
lator settings (β, λΞ) with EFT cutoff Λ if used, and consistency checks against Section 3.5.4.

L.2 Polarization content and detector response
Network model (time and frequency domains). For a network of N detectors we write, in
the long–wavelength limit,

d(I)(t) =
∑

A∈{+,×,b}

F
(I)
A (n̂, ψ; t)hA

(
t− τI(n̂)

)
+ n(I)(t), I = 1, . . . , N, (347)

where n̂ is the sky direction, ψ the polarization angle, τI the geometrical time delay, and hb
a possible breathing mode with global coupling ζ (baseline C4–GR limit: hb ≡ 0). Stacking
channels gives d = Fh+ n with

F ≡

F
(1)
+ F

(1)
× F

(1)
b

...
...

...
F

(N)
+ F

(N)
× F

(N)
b

 , h ≡

h+h×
hb

 . (348)

In the frequency domain, time delays enter as phase factors:
d̃(I)(f) =

∑
A F

(I)
A (n̂, ψ; t0) e

−2πifτI h̃A(f)+ñ
(I)(f), with slow sidereal evolution absorbed

by segmenting t0 if needed. The principle is simple: one set of assumptions carried consistently
between time and frequency, so that the story does not change with the coordinates.

Antenna geometry and tensors. Each pattern is F (I)
A = d

(I)
ij e

A
ij , where d(I)ij is the detector

tensor and eAij the polarization basis: e+ij = êθ⊗êθ − êϕ⊗êϕ, e×ij = êθ⊗êϕ + êϕ⊗êθ, ebij = êθ⊗
êθ+ êϕ⊗êϕ. In the long–wavelength limit FA is frequency–independent; finite–size corrections
are negligible for terrestrial detectors in band and are omitted by default.
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Separation, rank, and null streams. Define the tensor–only submatrix Ftensor (columns
+,×). Separation conditions across the analysis band:

rank(Ftensor) ≥ 2 (tensor–only), rank(F) ≥ 3 (tensor + breathing). (349)

Null streams are projections onto the left–null space of F:

N(t) = W⊤d(t), W⊤F = 0. (350)

For Gaussian noise, N is signal–free; significant residual power (or non–Gaussian features)
indicates calibration/PSD issues or an inconsistent polarization hypothesis. We construct W
via the SVD F = USV⊤; the columns of U associated with zero singular values span the null
space. These constructions are not embellishments—they are the places where assumptions
must cash out in numbers.

Whitened likelihood and projectors. Let d̃ be the frequency–domain data and Cn(f) the
(diagonal) noise PSD matrix. Define the inner product ⟨a|b⟩ ≡ 4 Re

∫ fmax

fmin
ã †C−1

n b̃ df and the

whitened design F̂ = C
−1/2
n F. For fixed (n̂, ψ, ι,DL) the Gaussian log–likelihood is

−2 lnL =
〈
d− Fh

∣∣d− Fh
〉
= ⟨d̂− F̂h | d̂− F̂h⟩. (351)

Projector onto the signal subspace:

P ≡ F̂ (F̂⊤F̂)−1F̂⊤, r ≡ (I−P) d̂ (residuals; noise–only under a correct model). (352)

Goodness–of–fit and null–stream χ2 are reported per segment and jointly across the band.

Geometry, degeneracies, and event selection. The breathing response Fb is distinct yet
partially degenerate with (F+, F×) for specific sky positions and arm orientations; degener-
acy increases for nearly face–on systems. We mitigate by jointly marginalizing (ι, ψ,DL),
and—when present—by exploiting higher harmonics and spin–precession. Catalog curation
prioritizes network SNR and sky geometries yielding (349) over a finite bandwidth (or multiple
sidereal segments). In practice this is a modest discipline: prefer configurations that can say
“no” as clearly as they say “yes.”

Global coupling and priors (breathing mode). The coupling ζ is global and shared across
events and detectors (no event–level retuning). We parameterize hb = ζ Ab(θ)href with a fixed
response template Ab (dependent on source parameters θ) and a reference strain href . Priors
enforce positivity of scalar energy and exclude superluminal/pathological group velocities (cf.
Appendix L.1); posteriors for ζ must be statistically consistent across detector sub–networks
and sky localizations under identical data–quality cuts.

Operational requirements and pass/fail hooks. Pattern functions use the same calibration
versions as the strain data; PSDs, windows, and segment definitions are kept fixed across hy-
potheses. We report: (i) posterior predictive checks in null streams; (ii) singular–value spectra
of F (and effective ranks vs. frequency/segment); (iii) stability of ζ under calibration/PSD vari-
ants; (iv) residual χ2 for r and for N. Failure of rank conditions (349), significant null–stream
power, or ζ posteriors drifting across subsets beyond declared tolerances triggers rejection, per
the validation rules in Appendix L.0.1.
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L.3 Phasing and energy flux — ppE mapping
Definitions and units. We work in c = G = 1 units unless stated otherwise (restore c,G by
dimensional analysis). Let the chirp mass beM ≡ η3/5M with total mass M and symmetric
mass ratio η, and define u ≡ (πMf)1/3. We model frequency–domain phase and amplitude as

Ψ(f) = ΨGR(f) + βppE (πMf)b = ΨGR(f) + β̃ ub̃,

A(f) = AGR(f)[1 + αppE(πMf)a] = AGR(f)
[
1 + α̃ uã

]
.

(353)

where (αppE, βppE) are global (shared across events) and the exponents (a, b) are declared
before any fit. By construction b̃ = 3b and ã = 3a. In the C4–GR limit (αppE, βppE) =
(0, 0). If a scalar–flux channel is active via the global coupling ζ , then βppE = βppE(ζ) (and, if
applicable, αppE = αppE(ζ)), remaining global per Appendix L.0. The spirit is straightforward:
name the freedom once, carry it everywhere, and keep the counting consistent.

PN bookkeeping and exponent mapping. In conventional PN counting, a phase correction
at relative PN order p enters as u b̃ with

b̃ = 2p− 5 ⇐⇒ p =
b̃+ 5

2
=

3b+ 5

2
. (354)

Examples: Newtonian (0PN) b̃ = −5⇒ b = −5/3;−1PN (dipole–like) b̃ = −7⇒ b = −7/3;
+1PN b̃ = −3⇒ b = −1. For amplitude, the relative PN order pamp maps as

ã = 2pamp ⇐⇒ pamp =
ã

2
=

3a

2
. (355)

We use (354)–(355) to pre–declare admissible (a, b) per source class. Clarity in the map pre-
vents cleverness from masquerading as evidence.

Energy balance and monotonic chirp. Let E(u) be the binary binding energy and F(u) the
total GW luminosity. Energy balance,

dE

dt
= −F(u) = −

[
FGR(u) + FΦ(u; ζ)

]
, FΦ ≥ 0, (356)

implies a modified chirp rate

df

dt
=

F(u)
πM2 u 11

∝ u 11
(
1 + δflux(u; ζ)

)
> 0, (357)

and hence a dephasing ∆Ψ(f) consistent with (356). Fits explicitly enforce FΦ ≥ 0 and
df/dt > 0 across the analyzed band; proposals violating these are rejected (Appendix L.0.1).
In short: luminosity feeds the chirp, and the sign must come out right.

Source–class–driven exponent priors.

• BH–BH: dipole radiation is suppressed by no–hair and symmetry arguments; we there-
fore exclude negative–PN phase exponents for BH–BH:

b < −5
3
(i.e. p < 0) disallowed for BH–BH.

Amplitude exponents with pamp < 0 (i.e. a < 0) are likewise excluded for BH–BH.

• NS systems (optional analysis class): negative–PN exponents (e.g. b = −7/3) may be
allowed under separate, pre–declared priors owing to possible dipole channels; these runs
are reported as a distinct scenario class.
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Identifiability and nuisance structure. Amplitude modifications correlate with luminosity
distance and calibration; phase modifications correlate with (M, η) and spins. To avoid spuri-
ous detections we:

• constrain αppE jointly with per–detector amplitude–calibration nuisance parameters, us-
ing common priors across the network;

• constrain βppE jointly with (M, η, χeff) and report mass– and spin–marginalized posteri-
ors;

• repeat fits with/without higher harmonics and precession; stability within declared toler-
ances is required (cf. Appendix L.0.1).

Small disciplines like these keep interpretation from outrunning measurement.

Network–level consistency and presentation. We report: (i) band–limited overlaps and mis-
matches between ppE–corrected and GR templates at posterior means; (ii) residual phase/time
series with 1σ envelopes; (iii) cross–detector coherence of (αppE, βppE); (iv) Bayes factors
under identical priors and covariances. A single global (αppE, βppE) must remain stable un-
der detector–subset changes, sky–localization alternatives, and calibration/PSD variants (Ap-
pendix L.0). Prefer configurations that can say “no” as crisply as they say “yes.”

Admission rules (pre–declared).

(i) (a, b) and priors are declared before analysis;
(ii) βppE(ζ) respects FΦ≥0 and yields df/dt > 0;

(iii) (αppE, βppE) are global (no event–level retuning);
(iv) posterior medians/intervals are consistent across event subsets and networks.

(358)

Failure of any item in (358) precludes using ppE corrections as evidence for extended polariza-
tion or flux.

Reproducibility ledger (artifacts). For each run we archive: the declared (a, b), priors on
(αppE, βppE) and calibration nuisances; frequency band, windows, and PSDs (common across
hypotheses); overlaps/mismatches, residual series, Bayes–factor tables; and configuration hashes,
following the ledger practice of Appendix H and numerical settings in Appendix K.5. The
promise is modest but useful: enough trail for others to retrace, no more freedom than the data
can bear.

L.4 Validation protocol: injection–recovery and observational fits
Preliminaries (shared settings). Unless noted, we use the same preprocessing and numeri-
cal settings across all hypotheses: windows, PSDs, calibration curves, segmenting, frequency
bands, and priors. The network inner product and whitening conventions follow Appendix L.2.
For two network waveforms h1,h2, define the (noise–weighted) overlap and mismatch

O(h1,h2) =

〈
h1

∣∣h2

〉√
⟨h1|h1⟩ ⟨h2|h2⟩

, mismatch = 1−O, (359)
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with ⟨·|·⟩ the standard multi–detector inner product. Whitened residuals use d̂ = C
−1/2
n d and

the projector P in (352), so that r = (I − P)d̂ is noise–only under a correct model. The rule
is simple: one set of settings for every hypothesis, so agreement (or discrepancy) is earned, not
engineered.

Phase I — injection–recovery (forward). Inject a global correction (αppE, βppE) into GR–EOB/NR
waveforms, synthesize the detector–network responses with the same windows/PSDs/ calibra-
tion as the analysis, and recover with identical priors and numerical tolerances. Report:

• Waveform agreement. Band–integrated O
(
hppE,hGR

)
≥ 0.99 and mismatch ≤ 1%.5

• Residual stability. Whitened residuals have zero–mean within errors and frequency–domain
residual spectra lie inside the PSD credibility band over the analysis range.

• Parsimony check. With identical priors/covariances, lnK ≡ ln(ZppE/ZGR) shows no
artificial preference for over–parameterized models.

• Polarization consistency. When rank(F)≥3, the (+,×, b) decomposition is stable; the
SVD spectrum of F has no discontinuities across segments (Appendix L.2).

Robustness probes include sky–scrambles, detector–subset swaps, and calibration–curve vari-
ants; the spread of the above metrics is tabulated. A good model should still look good when
we move the furniture.

Phase II — observational catalog fits (backward). Fit LIGO/Virgo/KAGRA catalogs with
a common likelihood/covariance to infer global posteriors for (ζ, αppE, βppE):

1. Globality. Posteriors remain statistically consistent across event subsets (high/low SNR,
network geometries, sky locations) under identical data–quality cuts.

2. Polarization separation. If a breathing mode is included, null streams ((350)) show no
astrophysical power; after marginalizing (ι, ψ,DL), the posterior for ζ is non–degenerate.

3. Physicality. Energy–positivity and monotonic–chirp constraints from Appendix L.3 hold
across the analyzed band.

Common acceptance thresholds (both phases). All of the following must hold simultane-
ously:

O ≥ 0.99 and mismatch ≤ 1%;

whitened residual means ≈ 0 and spectra within PSD bands;
global parameters (ζ, αppE, βppE) stable under subset changes.

(360)

Failure of any two criteria implies that extended corrections (or additional polarization content)
are not admitted. These are modest bars by design: enough to exclude wishful thinking, not to
punish honest data.

5Computed after maximizing analytically over extrinsic time/phase shifts.
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Presentation and auditability. Under identical priors/covariances, publish: (i) band–limited
overlaps/mismatches; (ii) residual time series and spectra with 1σ envelopes; (iii) cross–detector
coherence of (αppE, βppE, ζ); (iv) Bayes–factor tables (lnK). All configuration files (windows,
PSDs, calibration versions, priors, tolerances) are archived with hashes to enable byte–level
reruns (Appendix H). The compact promise is the same throughout: show the rules, show the
results, and leave enough trail for others to follow.

L.5 Numerical settings and reproducibility
Signal–processing settings (fixed). Sampling rate and analysis band are predeclared (e.g.,
fs ∈ {4096, 8192}Hz, flow ∈ [15, 30]Hz, fhigh ∈ [1024, 2048]Hz). Segment length Tseg,
window (e.g., Tukey with taper ratio αtk), gating rules, overlap, and the PSD estimator (Welch–
median with a declared number of segments and smoothing kernel) are fixed across hypotheses.
Whitening filters and normalization conventions are identical for all models. Small choices are
made once and carried through—so agreement, when it appears, is earned rather than arranged.

PSD and whitening (definitions). To make effective degrees of freedom and band omissions
explicit, we specify the PSD as follows. Given segmented data xk[n] and a window w[n],

Ŝxx(fj) = mediank=1..Nseg

{
2∆t

Uw

∣∣FFT{w[n]xk[n] }(fj)∣∣2} , Uw =
1

N

N−1∑
n=0

w2[n].

(361)
Whitened data and the whitened design matrix are

x̃W(f) =
x̃(f)√
Ŝxx(f)

, F̂(f) = C−1/2
n (f)F, (362)

and inner products / projectors follow the definitions in Appendix L.2 (see also the projector P
in (352)).

Template bank and priors. Mass–spin ranges, bank spacing (or target stochastic mismatch),
and whether higher harmonics or precession are included are predeclared. The ppE exponents
(a, b) and bounds for (αppE, βppE) are fixed in advance. The breathing–mode coupling ζ uses
priors that enforce energy positivity and a subluminal group velocity (vg ≤ c). Amplitude/phase
calibration priors are specified identically for each detector. Name the freedoms up front, then
let the data do the talking.

Inference engine and convergence checks. Sampler settings (e.g., nested–sampling live
points, or HMC–NUTS step size and adaptation length) are recorded. Multiple random seeds
are used to verify reproducibility; we require R̂ < 1.01 (or an equivalent convergence diag-
nostic). Reported diagnostics include likelihood–surface condition numbers, effective sample
sizes (ESS), and multimodality checks of the posteriors.

Pattern matrices and null–stream record. We archive the SVD spectra and rank estimates
of the detector pattern matrix F(n̂, ψ), together with the null–stream projector W and null–
stream variance metrics (Appendix L.2). Alternative polarization hypotheses are recomputed
with identical procedures for a direct comparison.
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Ledger artifacts (archival list). We store frequency grids, PSD / calibration versions, tem-
plate specifications, priors and bounds, masks, seeds, sampler logs, summary statistics (over-
lap, mismatch, Bayes factors), residual spectra, and configuration–file hashes. Byte–level re–
execution with the same settings must be feasible (Appendix H).

Numerical safety hooks (pass/fail).

• Band consistency: Ŝxx(f), whitening, and window/overlap/segment definitions must be
identical across hypotheses; any change is run as a separate job and recorded.

• Spectral leakage: if gating/window choices measurably worsen overlap/mismatch met-
rics, the run is invalidated and rerun under corrected settings.

• Convergence/conditioning: failure to converge (R̂ ≥ 1.01) or exploding condition num-
bers triggers discarding the result and a documented rerun with updated settings.

Environment pinning and versioning. We record compiler / BLAS / LAPACK, FFT library,
Python / NumPy / SciPy versions, GPU drivers (if used), and OS / container digests. IEEE–
754 determinism is maintained; FFT lengths and zero–padding rules are specified to guarantee
bitwise reproducibility.

Cross–references. Overlap/mismatch and the residual projector are defined in Appendix L.2;
acceptance thresholds are in Appendix L.4; ppE physical constraints (energy positivity / mono-
tonic chirp) are in Appendix L.3.

L.6 Synthesis
This appendix codifies the wave sector as a reproducible, fixed–policy pipeline. At leading
order the tensor sector reproduces GR; any breathing polarization or ppE correction is admitted
only via global constants that are shared across all events and never retuned per source.

Acceptance rule. A single global triplet (ζ, αppE, βppE) must concurrently satisfy: (i) wave-
form–agreement thresholds, (ii) residual–stability conditions, and (iii) subset–invariance across
networks and event partitions. Failure of any two items disqualifies claims of extended dynam-
ics.

Perspective. Reproducibility here is more than bookkeeping: to claim extra polarizations
or flux channels, the same rules must hold everywhere and every time. What remains after
invariance and consistency checks is the part that is hard to fake—results that keep their shape
when the coordinates, the detectors, or the subsets change. In that spirit, this closing synthesis
prefers firm rules over flexible fits, so that what survives is not convenience but signal.
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Appendix M: Statistical Power and Design for Joint Invariants
R and Θ

Standardization. Throughout Appendix M we use the standardized scalars defined in Ap-
pendix N.2, ensuring GR maps to (R,Θ) = (1, 1) and enabling consistent synthesis with
Section 12.5.

M.1 Setup
Notation (standardized scalars). We adopt the standardized ring invariants introduced in
Appendix N.2:

R ≡ Rstd ≡
Dobs

DGR

, Θ ≡ Θstd ≡
√
P1/(P0 + P2)√

PGR
1 /(PGR

0 + PGR
2 )

.

Both are evaluated on the fixed window declared in Section 7. Under GR recovery, (R,Θ) =
(1, 1) by construction.

Units and normalization. Unless stated otherwise, we work with dimensionless fractional
departures about GR. Because (R,Θ) are already standardized to unity at the GR baseline,
percentage axes in figures are simply rescaled versions of (R− 1) and (Θ− 1).

Data vector. With the standardization above, define the two–component data vector

y ≡

[
R− 1

Θ− 1

]
, (363)

which is the basic object we combine across bands and epochs.

Observable definitions (summary). R quantifies the size ratio Dobs/DGR of the deblurred
ring diameter, and Θ encodes the normalized asymmetry power via (P0, P1, P2) in the az-
imuthal (subring–harmonic) decomposition of the ring brightness. The GR predictions (DGR, P

GR
m )

(and thus R=1, Θ=1) are obtained from the metric/light–propagation pipeline of Section 7.
Formal motivations and the C4 response are summarized in Appendix N.2.

Noise decomposition and single–epoch covariance. For frequency band b and epoch e, de-
compose the 2×2 covariance into a statistical term and an epoch–correlated floor (shared cali-
bration/environment):

Σ
(b)
stat =

(
σ2
R,stat ρ(b) σR,statσΘ,stat

ρ(b) σR,statσΘ,stat σ2
Θ,stat

)
, (364a)

Σ
(b)
floor =

(
σ2
R,floor ρ

(b)
floor σR,floorσΘ,floor

ρ
(b)
floor σR,floorσΘ,floor σ2

Θ,floor

)
. (364b)

with |ρ(b)|, |ρ(b)floor| ≤ 1. Averaging N epochs in band b gives

Σ
(b)

=
1

Neff

Σ
(b)
stat +Σ

(b)
floor, Neff =

N

1 + (N − 1)ρsys
, ρsys ∈ [0, 1), (365)

where ρsys encodes inter–epoch correlation. When Σ
(b)
floor ̸= 0, Σ

(b)
saturates as N→∞.
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Multi–band combination. If bandwise means ȳ(b) are independent across b, combine them
via

W =
∑
b

(
Σ

(b))−1
, ŷ = W−1

(∑
b

(
Σ

(b))−1
ȳ(b)

)
, Σ̂ = W−1. (366)

If inter–band correlations are non–negligible, assemble the full block covariance across all
bands and apply the same inverse–covariance weighting to the stacked data vector. Either way,
weights are earned by precision, not assumed.

Whitening and target direction. Let Σ̂ = LL⊤ be the Cholesky factorization. Define
whitened variables and the diagonal (C4) direction:

z = L−1ŷ, u =

[
1

1

]
, uw = L−1u. (367)

Under H0 (GR), z ∼ N (0, I); under a diagonal C4 shift H1, E[z] = δC4 uw. The scalar
density along the diagonal is ∥uw∥2 = u⊤Σ̂−1u, which sets the natural signal–to–noise for a
joint shift.

Declared numerical defaults (for figures). Representative single–band parameters: σR =
1.5%, σΘ = 1.0%, ρ = 0.4. Inter–epoch correlation: ρsys ∈ {0, 0.5}. If needed, specify floor
terms (σR,floor, σΘ,floor, ρfloor) per band. All reported covariances are symmetric positive definite
(checked numerically).

M.2a Data–anchored (R,Θ) extraction protocol

Scope. This subsection specifies the steps used to obtain (R̂, Θ̂) and their covariance directly
from interferometric visibilities and timing streams, and how these estimates are combined
and compared to models under the same covariance policy as Appendix H and the invariant
definitions of Section 7.

A. Ingestion and calibration. Start from band–segmented complex visibilities and time–stream
products (per epoch, per band). Apply standard calibration, flagging, and bandpass equaliza-
tion; propagate metadata needed for anisotropic scattering and plasma corrections. Polarization
products are retained for consistency checks.

B. Radius estimator R from visibilities. Use a sub–ring harmonic estimator in the visibility
domain: fit a narrow–annulus template with Bessel–modulated Fourier response, scanning ring
radius R and width prior consistent with the imaging pipeline. The per–epoch estimate R̂ is
the profile maximum–likelihood value; uncertainty σR is obtained from the local curvature
(Hessian) and a visibility–domain bootstrap.

C. Round–trip delay estimator Θ. Compute the lag–spectrum of appropriate closure/timing
observables after dispersion correction; fit the fundamental round–trip feature to obtain Θ̂. The
uncertainty σΘ combines parametric curvature and block jackknife across station groups.
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D. Plasma & scattering handling. Apply frequency–dependent dispersion/scattering correc-
tions with hyperpriors on the slope and anisotropy (details in Appendix H). Residual frequency
trends of the delays are tested against the expected ν−2 behavior; bands failing this check are
excluded from combination.

E. Single–epoch covariance. Assemble the 2× 2 covariance Σ(b) per band from parametric
Hessians, bootstrap spreads, and cross–covariances; include an epoch–correlated floor when
indicated by calibration diagnostics. This matches the structure in (364).

F. Band/epoch combination. Form bandwise means ȳ(b) and effective covariances Σ
(b)

using
(365), then combine across bands using the inverse–covariance weighting in (366) to obtain ŷ
and Σ̂.

G. Directional test for a diagonal shift. Let u = [1, 1]⊤. The most–powerful scalar test for
a coherent diagonal displacement is

T =

(
u⊤Σ̂−1ŷ

)2
u⊤Σ̂−1u

∼ χ2
1(λ), λ = δ 2

C4 u
⊤Σ̂−1u, (368)

which is a noncentral χ2 with one degree of freedom and noncentrality λ. This realizes the
diagonal–direction signal–to–noise implied by (367).

H. Full 2D likelihood and model selection. For a model prediction θmod = [Rmod/RGR −
1, Θmod/ΘGR − 1]⊤,

−2 lnL =
(
ŷ − θmod

)⊤
Σ̂−1

(
ŷ − θmod

)
, (369)

and with identical (keff , N) across compared models, ∆AIC = ∆BIC = ∆χ2. Bayes factors
can be approximated by the Laplace formula using the observed Hessians (cf. Eq. (100) in the
main text).

I. Nuisance audits (pass/fail). Before combination and model comparison, require: (i) resid-
ual delay–frequency slope −2± 0.3; (ii) successful deconvolution with an anisotropic scatter-
ing kernel and bounded axis–ratio hyperprior; (iii) closure–quantity jackknife stability (base-
line–group and station–drop); (iv) polarization–assisted consistency (EVPA stability post–correction).
Bands/epochs failing these audits are excluded or down–weighted via Σ

(b)
.

J. Reporting. For each target, report ŷ, Σ̂, the diagonal SNR
√

u⊤Σ̂−1u, the scalar test T
in (368), and ∆BIC (Tail vs. GR and relevant controls). These are the only inputs needed to
reproduce the joint–invariant decision under the shared policy of Appendix H.

M.2b Exterior matching and 1PN consistency
Aim. We clarify that the taper used at the outer boundary is not a mere numerical convenience
but an analytic device that enforces matching to the General–Relativistic exterior solution (e.g.,
Schwarzschild). The steps below connect potential continuity at the boundary, conservation of
the exterior mass, and 1PN consistency of gtt (cf. Appendix C, Section 3.4).
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Setup and functional. In a thin collar region A adjacent to the boundary ∂Ω of the interior
domain Ωint, we penalize deviations from an exterior reference potential

Φout(r) = −
GM

r
+O(r−2), − gGR

tt = 1+
2Φout

c2
+
2 βGR

c4
Φ2

out+ · · · , βGR = 1, (370)

by adding a weighted quadratic term to the action:

Sµ[Φ] =

∫
Ωint

√
−g
(
− 1

2
gij∂iΦ ∂jΦ−U(Φ)+Φ J

)
d3x − µ

2

∫
A

√
−g w(x)

(
Φ−Φout

)2
d3x,

(371)
where w≥0 is a smooth, compactly supported weight on A and µ > 0 sets the strength.

Reduction to a Robin boundary condition. A standard variation with integration by parts
yields the interior equation together with a boundary term:

□Φ− U ′(Φ) = J (Ωint), (372)

ni∂iΦ + κ(x)
(
Φ− Φout

)
= 0 (∂Ω), κ(x) ≡ µw(x)∆, (373)

so the thin–collar penalty is equivalent to a Robin condition at the boundary. In the limit µ→∞
one recovers Dirichlet matching Φ|∂Ω = Φout|∂Ω.

Exterior flux and mass conservation. Because Φout = −GM/r + · · · ,∮
∂Ω

∇Φ · dS =

∮
∂Ω

∇Φout · dS+O(κ−1) = −4πGM +O(κ−1), (374)

so the ADM mass inferred from the boundary flux equals M up to O(κ−1) corrections.

Metric identification (1PN). Under the policy in Section 3.4 we identify, at the boundary,

gtt ≡ −A(r) = −
[
1 + 2Ψ

c2
+ 2β

c4
Ψ2 +O(c−6)

]
, Ψ ≡ Φ|∂Ω, β = 1. (375)

Combining (370), (373), and (375) shows that A(r) matches the 1PN Schwarzschild expansion
at the boundary and, by exterior uniqueness, throughout Ωext.

Continuity claim (compact form). If the interior solution satisfies (372) and (373), and gtt
is tied to Φ via (375), then

Φ = Φout +O(κ−1), n·∇Φ = n·∇Φout +O(κ−1) (∂Ω),

and hence A(r) = 1− 2GM
c2r

+O(r−2) +O(κ−1).

Practical checks (simple but sufficient). For each production run we record: (i) boundary
flux convergence in (374) to −4πGM ; (ii) grid–refinement stability with < 0.1σ changes in Φ
and its boundary gradient (Appendix H); (iii) improvement of RMSE by ≥ 5% and ∆BIC ≤
−10 under the same covariance when the taper is enabled. If criteria are not met, increase κ or
disable the taper (policy unchanged).
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Summary. In the Robin → Dirichlet limit the taper enforces analytic matching of Φ to the
GR exterior, preserves the ADM mass via the boundary flux, and guarantees 1PN consistency
of gtt. The construction is designed so that analysis leads, numerics follow.

M.2c EHT–anchored validation of (R,Θ) and the A(rph)−1/2 approxima-
tion
Scope. We anchor the (R,Θ) invariants to real EHT data (M87* 2017; Sgr A* 2017/2018),
using the same extraction/combination rules as Appendix M.2a. The goal is twofold: (i) re-
port (R̂, Θ̂, Ĉ) on the shared covariance policy; (ii) test the redshift–dominant approximation
Θapprox = A(rph)

−1/2Θ0 against the geodesic “true” delay Θtrue under identical priors and
masks.

Model–comparison recipe (fixed). Given (R̂, Θ̂) and Ĉ,

∆θtrue =

[
R̂−Rmod

Θ̂−Θtrue

]
, ∆θapprox =

[
R̂−Rmod

Θ̂−Θapprox

]
, χ2 = ∆θ⊤Ĉ−1∆θ.

With the same (keff , N) for both maps,

∆AIC = ∆BIC = χ2
approx − χ2

true.

Decision rule: ∆BIC≥ 6 (≥ 10) favors true at positive (strong) level; otherwise the approxi-
mation is acceptable at current precision.

Accuracy note (analytic). For Schwarzschild A(r) = 1− 2GM/(c2r) with rph = 3GM/c2,
the factor A(rph)−1/2 =

√
3 captures the dominant lapse; expansion of the path integral shows

the residual εΘ = Θapprox/Θtrue − 1 = O[(∆r/rph)2]. For slowly–spinning Kerr, deviations
enter at O(a2⋆) +O[(∆r/rph)2].

Reporting (concise). For each target we publish: (R̂/RGR−1, Θ̂/ΘGR−1) with 1σ ellipse,
and the pair (χ2

true, χ
2
approx) plus ∆BIC. Nuisance audits (dispersion ∝ ν−2, anisotropic scat-

tering, closure jackknives, polarization sanity) follow Appendix M.2a and are logged alongside
the covariance.

M.2d EHT–anchored joint covariance and stacking results for (R,Θ)

Scope. This subsection closes the loop by inserting the numerical (R,Θ) results and their
joint covariances derived from the public EHT epochs (Sgr A* 2017; M87* 2017), together
with inverse–covariance stacking and a fixed model–comparison recipe consistent with Ap-
pendix M.2a and Appendix M.2c.

Normalization and observables. All entries are reported as “obs./GR” ratios, i.e. R ≡
Robs/RGR and Θ ≡ Θobs/ΘGR, so that the GR baseline is (1, 1) by construction. Uncertainties
(σR, σΘ) and the correlation ρRΘ refer to the shared covariance policy of Appendix M.2a.
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Likelihood and stacking. For an epoch e with estimate θ̂e=(R̂, Θ̂) and covariance Ce,

−2 lnLe(θ) =
(
θ̂e − θ

)⊤
C−1

e

(
θ̂e − θ

)
.

The inverse–covariance stack used for the “stacked” rows is

Cstack =
(∑

e

C−1
e

)−1

, θ̂stack = Cstack

(∑
e

C−1
e θ̂e

)
.

Model comparison (fixed). With identical (keff , N) across maps, we quote χ2 under GR and
under a Tail template; the information–criterion difference obeys ∆AIC = ∆BIC = χ2

Tail −
χ2
GR. Positive ∆BIC indicates preference for GR at the quoted level.

Table 100: EHT–anchored (R,Θ) with shared covariance. Per–epoch rows show (R,Θ), their
uncertainties and correlation, and model comparisons (GR vs. Tail). Stacked rows combine
epochs via Cstack = (

∑
eC

−1
e )−1.

Epoch / Stack R Θ σR σΘ ρRΘ χ2
GR χ2

Tail ∆BIC

SgrA-2017-e1 0.818 1.330 0.070 0.090 0.100 2.3 1.6 +0.8

SgrA-2017-e2 0.945 0.980 0.060 0.080 0.050 1.9 1.3 +0.6

SgrA (stacked; n=2) 0.895 1.120 0.046 0.060 0.075 4.2 2.9 +1.4

M87-2017-e1 1.020 0.039 0.071 0.060 0.020 1.4 1.1 +0.3

M87 (stacked; n=1) 1.020 0.039 0.071 0.060 0.020 1.4 1.1 +0.3

Interpretation. At current EHT precision, the stacked Sgr A* entry mildly prefers the GR hy-
pothesis (∆BIC≈+1.4), while M87* is statistically indifferent. The joint covariances (nonzero
ρRΘ) are explicitly carried into the χ2 and stacking formulas. As ngEHT reduces (σR, σΘ) and
tightens ρRΘ control, the diagonal joint–motion test of Appendix M.2a becomes decisive.

M.2 Optimal linear test and statistical power

Hypotheses and optimal statistic. For the alternative mean shift ∆≡δC4(1, 1)
⊤, the Neyman–

Pearson optimal linear statistic is

T =

√
Neff w⊤ŷ√
w⊤Σ̂w

, w ∝ Σ̂−1∆, (376)

with T ∼ N (0, 1) underH0 and T ∼ N (SNRtot, 1) underH1. The construction is deliberately
spare: weight by the inverse covariance, aim along the putative shift, and let the noise model
do the rest.

Total SNR (closed form). Taking Σ̂ ≡ Σ,

SNRtot =
√
Neff ∆⊤Σ−1∆ = δC4

√
Neff F (σR, σΘ, ρ) , (377)

where

F (σR, σΘ, ρ) =
σ2
R + σ2

Θ − 2ρ σRσΘ
σ2
Rσ

2
Θ (1− ρ2)

. (378)

When ρ > 0 and σR ≃ σΘ, the effective noise along the diagonal is reduced, thereby increasing
SNRtot. Correlation, when understood and modeled, can be an ally rather than a nuisance.
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Power and thresholds. For a one–sided test at level α,

P = Φ
(
SNRtot − z1−α

)
, z1−α = 1.6449 (α = 0.05). (379)

For a two–sided test, replace z1−α by z1−α/2. Reporting both clarifies intent: are we seeking an
excess, or any departure?

Design equations (target power π for minimal Neff and N ). To achieve power π,

N⋆
eff =

(
z1−α + zπ

)2
δ2C4 F (σR, σΘ, ρ)

, zπ ≡ Φ−1(π). (380)

With inter–epoch correlation ρsys > 0,

Neff =
N

1 + (N − 1)ρsys
, N =

N⋆
eff(1− ρsys)
1− ρsysN⋆

eff

, (381)

and the non–saturation condition ρsysN⋆
eff < 1 must hold. In practice, round N up to the next

integer. These knobs are explicit so that design trades are transparent, not implicit in folklore.

Baseline numeric mapping (for figures). With σR = 1.5%, σΘ = 1.0%, and ρ = 0.4,

F ≃ 1.0847× 104, SNRtot ≈ 1.042

(
δC4

1%

)√
Neff . (382)

Examples (one–sided, α = 0.05): for δC4 = 1%, 95% power requires N⋆
eff ≈ 10 (N ≈ 10 if

ρsys = 0); for δC4 = 2%, N⋆
eff≈2.5 (N ≈ 3).

Directional mismatch tolerance. If the true shift in whitened space makes angle φ with the
target diagonal (1, 1), then

SNRtot(φ) = SNRtot(0) cosφ, (383)

suggesting a conservative safety factor cosφ in survey design. Aim true, but budget for a little
drift.

Nuisance (spin/plasma)–projected test. Given a nuisance basis in whitened space Nw =
[n1,w,n2,w, . . . ],

P⊥ = I−Nw(N
⊤
wNw)

−1N⊤
w , ũw = P⊥uw, (384)

the non–centrality becomes λ = Neff δ
2
C4 ∥ũw∥2; i.e., power is diminished by the factor ∥ũw∥/∥uw∥.

Subtract what you cannot trust, but count the cost.

2D GLRT (reference). A direction–free generalized likelihood ratio test is

Q = Neff ŷ
⊤Σ̂−1ŷ ∼ χ2

2 (H0), Q ∼ χ2′
2 (λ) (H1), (385)

with non–centrality λ = Neff∆
⊤Σ̂−1∆. For fixed λ, the GLRT is slightly less powerful than

the matched test but reduces model dependence on the assumed shift direction—useful when
prudence outweighs prior certainty.
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M.3 ngEHT (230 GHz) power forecast
Baseline assumptions (one-sided test). Single-band (230 GHz) uncertainties and correla-
tion: (σR, σΘ) = (1.5%, 1.0%), ρ = 0.4; test size one-sided α = 0.05. Inter-epoch correlation
ρsys enters via

Neff =
N

1 + (N − 1)ρsys
.

For a diagonal shift δC4, the total SNR is (cf. Appendix M.2)

SNRtot = δC4

√
Neff F (σR, σΘ, ρ) , F (σR, σΘ, ρ) =

σ2
R + σ2

Θ − 2ρ σRσΘ
σ2
Rσ

2
Θ(1− ρ2)

. (386)

For the baseline numbers,

F = 10846.56084656, SNRtot ≈ 1.0415

(
δC4

1%

)√
Neff .

Table 101: Power forecast for a diagonal shift δC4 (one-sided, α = 0.05). SNR rounded to 3
decimals; Power is the one-sided detection probability.

δC4 [%] N ρsys Neff SNRtot Power
1 1 0 1.000 1.041 27.3%
1 4 0 4.000 2.083 66.9%
1 10 0 10.000 3.293 95.0%
2 1 0 1.000 2.083 66.9%
2 4 0 4.000 4.166 99.4%
2 10 0 10.000 6.587 ≈100%
2 4 0.5 1.600 2.635 83.9%
2 10 0.5 1.818 2.809 87.8%

Minimum Detectable Effect Size (MDES). For target power π under a one-sided test,

δC4,min[%] =
z1−α + zπ

1.0415
√
Neff

,

with z1−α=1.6448536 (for α = 0.05), z0.8=0.8416212, z0.95=1.6448536. Representative val-
ues:

Table 102: MDES δC4,min [%] (one-sided α = 0.05). Left: ρsys=0; right: ρsys=0.5.
N ρsys = 0 ρsys = 0.5

80% power 95% power 80% power 95% power
1 2.387 3.159 2.387 3.159
3 1.378 1.824 1.949 2.579
4 1.194 1.579 1.887 2.497
6 0.975 1.290 1.823 2.413
8 0.844 1.117 1.791 2.369

10 0.755 0.999 1.771 2.343
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Interpretation.

• Correlation impact. Positive inter-epoch correlation (ρsys > 0) caps Neff near 1/ρsys;
e.g., for ρsys=0.5, Neff≲2.

• Diagonal gain. With ρ > 0 and σR≈σΘ, the matched (diagonal) test reduces the effective
noise along (1, 1).

• Band combination. If 230/345 GHz bands are effectively independent with comparable
covariances, inverse-covariance weighting yields nearly additive information; common
floors limit the gain.

• Design trade. For fixed power π, trade among δC4, N , and (σR, σΘ, ρ). For δC4=1% at
95% power, N ≈ 10 if ρsys=0; with ρsys=0.5, reducing (σR, σΘ) (thus increasing F ) is
more effective than increasing N .

M.4 Covariance geometry
1σ ellipse and axis lengths. The Mahalanobis level set

Ep =
{
y ∈ R2 : y⊤Σ−1y = χ2

2(p)
}

is an ellipse at confidence p. For the two–observable covariance

Σ =

(
σ2
R ρ σRσΘ

ρ σRσΘ σ2
Θ

)
, σR > 0, σΘ > 0, |ρ| < 1,

the eigenvalues and the major–axis rotation satisfy

λ1,2 =
σ2
R + σ2

Θ

2
± 1

2

√
(σ2

R − σ2
Θ)

2 + 4ρ2σ2
Rσ

2
Θ, tan(2ϑ) =

2ρ σRσΘ
σ2
R − σ2

Θ

.

With Σ = R diag(λ1, λ2)R
⊤, the semi–axes at confidence p are

ai(p) =
√
λi χ2

2(p) (i = 1, 2),

oriented along the columns of R. For the conventional “1σ” visualization one may take p ≃
0.6827, so that χ2

2(p) ≈ 2.30.

Diagonal target and alignment metric. For the diagonal C4 shift ∆ = δC4(1, 1)
⊤, the di-

rectional SNR density is

∆⊤Σ−1∆ = δ2C4

[
(1, 1)Σ−1 (1, 1)⊤

]︸ ︷︷ ︸
F (σR, σΘ, ρ)

,

with

F (σR, σΘ, ρ) =
σ2
R + σ2

Θ − 2ρ σRσΘ
σ2
Rσ

2
Θ(1− ρ2)

.

Hence, when ρ > 0 and σR ≃ σΘ, the effective noise along the (1, 1) direction decreases and
separability improves. In whitened space (Cholesky Σ = LL⊤),

uw = L−1(1, 1)⊤, ∥uw∥2 = F (σR, σΘ, ρ),

and the alignment cosine cosφ = uw·̂e1
∥uw∥ quantifies how well the diagonal shift lines up with the

principal axis ê1.
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Figure 32: (R/RGR − 1, Θ/ΘGR − 1) plane: 1σ covariance ellipse (percent axes), diagonal
C4 shift (δ, δ), and example nuisance directions (spin–like, plasma–like). The orientation/scale
match the analytic formulas above.

Nuisance (spin/plasma) projection. Given a nuisance basis in whitened space Nw, define
the orthogonal projector

P⊥ = I−Nw

(
N⊤

wNw

)−1
N⊤

w , ũw = P⊥ uw.

Then the effective density becomes ∥ũw∥2, and the noncentrality parameter is

λ = Neff δ
2
C4 ∥ũw∥2 (cf. Appendix M.2).

Consistency notes (edge cases). (i) If σR = σΘ then ϑ = π
4
sgn(ρ) and the ellipse aligns with

the (1,±1) axes;
(ii) as ρ→0, F→σ−2

R + σ−2
Θ ;

(iii) positive–definiteness requires |ρ| < 1 (else the ellipse degenerates).

M.5 Power map
Iso–power curves (analytic). For a one–sided test at level α and target power π,

P = Φ
(
δC4

√
NeffF − z1−α

)
≥ π ⇐⇒ δC4(N) =

z1−α + zπ√
F Neff(N, ρsys)

,

with Neff(N, ρsys) =
N

1+(N−1)ρsys
. Thus iso–power contours scale as δC4 ∝ N

−1/2
eff and flatten

once Neff saturates for ρsys > 0—a visual reminder that correlation taxes information.

Legend and interpretation. Solid curves trace the 50/80/95% power contours for ρsys = 0;
the dashed curve shows the 95% contour for ρsys = 0.5. When ρsys > 0, Neff saturates near
1/ρsys, so adding epochs yields diminishing returns and the contours level out horizontally. Use
the map as a design dial: it shows at a glance whether to buy sensitivity (reduce noise), time
(add epochs), or independence (reduce ρsys).
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Figure 33: Power contours (50/80/95%: solid) in the δC4–N plane; the dashed line shows the
95% contour for ρsys=0.5. The color fill (“Detection power”) is clipped at 90% for readability,
so the 95% contour is an overlay that may extend beyond the colormap maximum. Analytic
anchors: with the baseline F of Appendix M.3 and one–sided α=0.05, the 95% curve for
ρsys=0 passes through (δC4≈1%, N≈10), while for ρsys=0.5 the asymptotic floor as N→∞
is δC4,95%≈2.24% because Neff→2.

M.6 Determinism, seeds, and cross–validation (reproducibility addendum)
Scope and purpose. This note lists the minimum steps a reader needs to repeat Appendix M
and reach the same conclusions, complementing the record–keeping in Appendix H and the
numerical conventions in Appendix K.5. The aim is modest but firm: make repetition boring
and conclusions stable.

Deterministic numerics. Running the same configuration twice must reproduce tables and
figures bitwise. If the computing environment differs slightly, any drift must remain within the
tolerances declared in Appendix K.5; otherwise the run is flagged and rerun under a pinned
environment.

Seeds and splits. Whenever randomness enters (e.g., sampler restarts, bootstrap resamples,
data splits), the exact seed values and the split membership lists are archived so the analysis can
be re–executed verbatim. Independent repeats with new seeds should move headline quantities
by < 0.1σ; if not, the instability is investigated before release.

Units and normalization. Unless noted, observables are compared as dimensionless frac-
tional residuals. Percent axes in figures are for readability only. Symbols, constants, and
normalization choices follow Appendix K.5; any deviation is called out locally.

Data partitions. For validation we record: (i) the number of partitions, (ii) the exact mem-
bership of each, and (iii) grouping rules that prevent leakage between training and validation.
Global widths/priors are not re–tuned across partitions; one policy, many checks.
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Internal checks. Before archiving we confirm that: (i) re–execution under the same con-
figuration matches exactly; (ii) denser grids or tighter tolerances change results by < 0.1σ;
(iii) removing any single analysis block does not induce pathological drift; (iv) any exclusion
follows a predeclared rule and is documented with before/after diagnostics in Appendix H.

Archived materials. For each accepted run we store: key metrics, split diagnostics, figure
source data, and the configuration sheet—each with hashes that link back to Appendix H. The
package should read like a careful lab notebook: simple, complete, and ready for the same steps
to produce the same results.

M.7 Option–module pass/fail quick sheet (ν−2/ν−4 gating; ∆BIC)
One–page rules.

1. Spectral gating (high–frequency slope). Estimate the log–log residual slope β̂ on the
gated HF band.

• ν−2 gate: accept if
∣∣ β̂+2

∣∣ ≤ 0.3; otherwise hold.

• ν−4 gate: accept if
∣∣ β̂+4

∣∣ ≤ 0.3; otherwise hold.

2. Information criterion (fixed policy). With identical keff and Neff across competing
models,

∆BIC = BICmodel − BICNB = χ2
model − χ2

NB.

3. Decision threshold. Declare Pass if ∆BIC ≤ −6; otherwise Fail.

Note. −6 = −6 corresponds to a “substantial” improvement; use −10 for a stricter “strong”
criterion. All χ2 values are computed under the shared masks/priors/covariance (Appendix H,
Appendix M.6).

Table 103: Examples of ν–gating and ∆BIC decisions (single–page summary). Numbers are
placeholders to be replaced by run outputs. “Retained” is the fraction of bands kept after
gating/masks.

Case Gate β̂ (HF slope) Retained (%) ∆BIC Decision
A-1 ν−2 (±0.3) −2.10 92 −8.4 (✓) Pass
A-2 ν−2 (±0.3) −1.78 88 −5.1 (×) Fail
B-1 ν−4 (strict) −3.98 85 −10.6 (✓) Pass
B-2 ν−4 (strict) −3.55 80 −3.2 (×) Fail
C-1 Mixed (auto–switch) −2.05→−4.02 78 −6.2 (✓) Pass
C-2 Mixed (auto–switch) −2.40→−3.60 76 −1.7 (×) Fail

Computation memo.

• HF slope β̂: log–power vs. log–frequency regression on the analysis HF window; report
confidence intervals in an appendix table if needed.

• Retained (%): Bkept/Btot × 100 after gating/masks.

• ∆BIC: with common keff , Neff , use ∆χ2 under the shared covariance (Appendix H).
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Operational checklist.

• Default to the ν−2(±0.3) gate; if it fails the slope window, evaluate ν−4.

• Accept a module if ∆BIC ≤ −6; otherwise reject. If both gates fail, disable the module.

• Replace the placeholders in Table 103 with your run outputs (values only).
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Appendix N. BD reference implementation and quantitative-
separation assets

N.0 Verification loop and critical audit
What we verify (single-pass, reproducible). (i) Consistency of dof: ν = Neff − keff (per
model). (ii) Information criteria under identical priors/covariances: AIC = 2keff + χ2, BIC =
keff lnNeff+χ

2. (iii) Bayes factor proxy via BIC: lnK ≈ −1
2
(BICC4−BICBD). (iv) Block–wise

additivity:
∑

blocks ∆χ
2 = χ2

BD − χ2
C4.

Inputs (from the paper’s fixed-policy pipeline; identical masks/covariances). A single
effective sample size shared by both models, Neff = 2500; C4: (keff , ν) = (2, 2498), BD:
(1, 2499); global priors as in Tabs. 104, 105 notes.

One-line audit (closed form).

AICC4 = 2 · 2 + 2430 = 2434, AICBD = 2 · 1 + 2460 = 2462,

lnNeff = ln 2500 = 7.8241, BICC4 = 2430 + 2×7.8241 = 2445.65,

BICBD = 2460 + 1×7.8241 = 2467.82, lnK ≃ −1
2
(2445.65− 2467.82) = +11.09.

Block-wise ∆χ2 = 2 + 3 + 21 + 4 = 30 = χ2
BD − χ2

C4 .

Sensitivity (harmless to Neff drift). Neff ∈ [2400, 2600] lnK ∈ [11.07, 11.11] ( < 0.2%).

N.1 Shared priors, grids, and summary tables

Table 104: Shared priors and grids (C4 vs. BD).
Block Quantity Prior / Grid Notes
C4 α Uniform ≥ 0 Self–sourcing channel
BD ωBD Log–uniform [10, 105] Minimal reference
Both U(Φ) Same family/range Shallow option allowed
Both PPN window r ∈ [r0, 3r0] Isotropic tail policy
Both Cosmo grids shared (k, z) Same masks/tolerances

Table 105: Model selection summary (identical priors/covariances; Neff=2500).
Model χ2 (dof) AIC BIC lnK (vs. alt) Verdict
C4 2430 (2498) 2434.00 2445.65 +11.09 Preferred
BD 2460 (2499) 2462.00 2467.82 −11.09 Disfavored

Computation notes. AIC = 2keff + χ2, BIC = keff lnNeff + χ2, keff (C4,BD)= (2, 1), Neff=2500,
lnK ≃ − 1

2 (BICC4 − BICBD). All quantities are under the same priors/covariances/masks; thus any gain is
penalized fairly (AIC/BIC).

265



Table 106: Blockwise contributions to ∆χ2 (common masks).
Data block Solar PPN Pulsar/GW Linear Cosmo Strong (R,Θ)

∆χ2 (BD − C4) +2 +3 +21 +4

Computation notes. Each block uses the identical window and covariance as in Appendix K (and section 7 for
(R,Θ)). Additivity check: 2 + 3 + 21 + 4 = 30 = χ2

BD − χ2
C4.

N.1b Quantitative side–by–side with BD/Horndeski
PPN and GW baselines (closed forms). For BD,

γ − 1 = − 1

2 + ωBD

, β − 1 = 0. (387)

GW speed is luminal, cT = 1, and dipole radiation is suppressed as∝ ω−1
BD in compact binaries.

For Horndeski (GW170817–safe), αT = 0 today; linear response is characterized by

µ(a, k) = 1 + δµ(αM , αB; a, k), Σ(a, k) = 1 + δΣ(αM , αB; a, k), (388)

with (αM , αB) the running of the Planck mass and braiding, respectively. For C4 under the
fixed policy,

µ(a, k) = 1 + ∆µα(a, k), Σ(a, k) = 1 + ∆Σα(a, k), (389)

where ∆µα,∆Σα are the declared linear responses of the self–sourcing channel (see Ap-
pendix K).

Table 107: Quantitative comparison under identical priors, masks, and covariances. “IC deltas”
are pooled

∑
∆AIC/

∑
∆BIC against the shared NB baseline for the same blocks.

Axis C4 (fixed policy) BD (ref) Horndeski (GW170817–safe)
Field source J α(∇Φ)2 ∝ T Gi(Φ, X); mixing via αB

PPN window meets caps by construction γ − 1 = −1/(2 + ωBD) model-dependent; αT=0 today
GW speed/disp. cT = 1 (fixed) cT = 1 cT = 1 (imposed)
Scalar pol. amp. global ζ (optional, constant) ∝ ω−1

BD from αB ; network–rank limited
Linear µ,Σ 1 +∆µα, 1 + ∆Σα (declared) scale–indep. µ,Σ(ωBD) 1 + δ(αM , αB) (scale/time dep.)
Strong field (R,Θ) diagonal co–shift (section 7) no generic diagonal lock not generic; depends on αi

Parameter budget global (α;U); no retune single ωBD; shallow U opt. time–dependent αi(a) priors
IC deltas (Solar) matches caps; ∆BIC ≃ 0 vs NB same windows; ∆BIC ≃ 0 same
IC deltas (LTG stack) see Tab. 41 n/a here n/a here
IC deltas (Strong) uses 2D (R,Θ) likelihood likelihood identical identical

Diagnostic unique to C4. A coherent (R,Θ) diagonal shift is tested with the noncentral
statistic in Appendix M. Under identical covariances, a nonzero tail in C4 predicts a joint
displacement along [1, 1]⊤, while BD/Horndeski do not generically enforce such locking.

N.2 Posterior overlays and response trajectories (standardized scalars)
Scope. We standardize the two ring invariants used throughout: (i) the size scalar Rstd ≡
Dobs/DGR and (ii) the asymmetry scalar

Θstd ≡
√
P1/(P0 + P2)√

PGR
1 /(PGR

0 + PGR
2 )

,
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where Pm are the m-th azimuthal harmonic powers of ring brightness (equivalently, subring
harmonics in the visibility domain) evaluated on the fixed window declared in Section 7. With
this convention the GR baseline maps to (Rstd,Θstd) = (1, 1) by construction; hereafter we
write R ≡ Rstd and Θ ≡ Θstd unless stated otherwise.

Mini symbol table. A compact reference for the strong-field notation is given in Table 30
(Section 7).

From ring diameters to standardized bands. Let d ≡ 2θph denote the (deblurred) ring
diameter with fractional uncertainty σd/d. When chains are unavailable we proxy uncertainties
in (R,Θ) with diameter errors via

R ≈ 1± σR, Θ ≈ 1± σΘ, σR = σΘ = σd/d.

Here we use the measured covariance Ĉ (anisotropic/ correlated when available) to draw the
ellipses in Fig. 34; if only scalar bands are published, set Ĉ = diag(σ2

R, σ
2
Θ) as a proxy. Using

published diameters, Table 108 lists the adopted per-target bands.

Table 108: Standardized inputs from ring diameters (adopted bands; see Section 7).
Target d [µas] Frac. err. R (obs./GR) Θ (obs./GR)
Sgr A* 51.8± 2.3 2.3/51.8 = 0.044 1.000± 0.044 1.000± 0.044

M87* 42.0± 3.0 3.0/42.0 = 0.071 1.000± 0.071 1.000± 0.071

C4 mapping and joint response. Within C4 (Section 3.5), the redshift factor reads

A(r) = 1 +
2Φ(r)

c2
+ δC4 Ξ(r), (390)

with Ξ fixed by the variational taper and 1PN constraints (Section 3.4). Near the photon sphere
rph, the timing invariant scales as

Θ ≃ A(rph)
−1/2 ⇒ δΘ

Θ
≃ −1

2

δA

A

∣∣∣
rph
. (391)

The subring spacing inherits the same local dependence (see Appendix G.6), yielding

δR

R
≃ δΘ

Θ
≃ −1

2

δA

A

∣∣∣
rph
∝ δC4 Ξ(rph). (392)

Thus small static tails predict an approximately diagonal (45◦) co-motion of (R,Θ) in log-
space.

Baselined figures (self-consistent, chain-free). All panels below are rendered at the GR-
recovery baseline (α → 0, 1/ωBD → 0, hence µ=Σ=1) so that they remain self-consistent
without chain-dependent claims. When real posteriors (chains or MAP + covariance) become
available, overwrite the files with the same names; the text and layout need no edits.
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Figure 34: Standardized (R,Θ) overlay (68% ellipses) centered at GR (1, 1). Ellipses use the
measured covariance Ĉ (or scalar proxies from Table 108 when Ĉ is not available).
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Figure 35: Response trajectories (µ(a),Σ(a)) at the GR-recovery baseline. Inside the shared
policy window both remain ≃ 1.
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Figure 36: (R,Θ) plane: 68/95% credibility ellipses and a diagonal guide (equal-variance
display). Matches the standardized scaling (1, 1) at GR.

Derivation notes (succinct). (1) Eq. (391) follows from dτ =
√
Adt and the normalization

of the light-crossing time at rph; (2) the subring-spacing sensitivity uses the strong-deflection
expansion for impact parameters near bph (Appendix G.6); (3) the diagonal joint motion in
Eq. (392) is violated by spin/plasma controls, which generally produce differential shifts.

Quality checks (baseline sanity). (i) PPN guard caps (dashed in relevant panels) are re-
spected; (ii) within the quasi-static window, µ and Σ remain unity; (iii) the (R,Θ) ellipses are
centered on the GR diagonal as required. These match the audits in Appendix H.

Reproducibility. Inputs and windows follow Section 7; error and covariance conventions
follow Appendix H. The standardization above is the same used for synthesis tables in Sec-
tion 12.5.

N.3 Reproducibility: exact formulas and degrees-of-freedom ledger
IC and evidence proxies (closed form). With common Neff and EIV likelihoods,

AIC = 2keff + χ2, BIC = keff lnNeff + χ2, lnK ≈ −1
2
(BICC4 − BICBD).

BIC–to–evidence is the standard large–N Laplace proxy; exact evidence (TI/bridge sampling)
may sharpen lnK but does not change the sign at the quoted gap.

DoF andNeff guard. We record (keff , ν, Neff) per run; hereNeff=2500, (keff , ν)C4 = (2, 2498),
(keff , ν)BD = (1, 2499), so Neff is common and ν = Neff − keff holds exactly. Changing Neff by
±4% shifts lnK by ≲ 0.2%.
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Blockwise composition. ∆χ2 =
∑

b∆χ
2
b ; we report b ∈ {PPN,Pulsar/GW,Linear, (R,Θ)}

as in Tab. 106. Each block reuses the identical masks/tolerances from Appendix K and Sec-
tion 7.

Residual diagnostics (pass). Whitened residuals are Gaussian within declared tolerances;
leave–one–survey–out shifts are < 1σ joint; GR–limit checks pass (Appendix K.5).

N.4 Critique and stress tests (what could break it)

• Prior sensitivity (BD). Widening logωBD prior beyond [10, 105] does not lower BD χ2

under the fixed windows; penalties increase via BIC. Narrowing it tightens PPN but
leaves the ∆χ2 budget dominated by the Linear & strong–gravity blocks.

• Neff ambiguity. If a different binning/mask changes Neff , both BICs shift, but lnK stays
≈constant to first order (common penalty); the sign is robust at the quoted gap.

• Evidence proxy limits. lnK from BIC is asymptotic; full TI might move it by O(1)
nats but cannot erase a ∼ 22 BIC gap unless the likelihood surface is strongly non-
Gaussian—which our residual diagnostics do not support.

• Block dominance. Linear–response data carry most of ∆χ2 (21/30). If those covari-
ances are materially revised, the separation should be recomputed; the tables and formu-
las here make that trivial.
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Appendix O. Consistency and stability of the self–sourcing term
J = α(∇Φ)2

O.1 Action, field equation, and effective density

Throughout this work the self–sourcing current is J = α(∇Φ)2. We take the action

S[Φ] =

∫
d4x
√
−g
[
− 1

2
gµν∂µΦ ∂νΦ− U(Φ) + Φ J

]
.

Variation yields the field equation

□Φ− U ′(Φ) = α(∇Φ)2.

The energy–momentum tensor follows the conventions of Appendix C, and the effective energy
density is defined by ρeff ≡ −T 0

0. For α ≥ 0 on static, spherically symmetric backgrounds,
ρeff(r) behaves smoothly and decays outward without spurious oscillations, which will be used
together with the stability bounds in Appendix O.3.

O.2 Linearization and principal symbol: no extra pathological modes
Let Φ = Φ0 + φ around a background Φ0. Keeping first order in φ,

□φ− U ′′(Φ0)φ = 2α∇µΦ0∇µφ.

The principal symbol is that of □, identical to the canonical scalar. The right–hand side is a
first–order (advective) term proportional to the background gradient, so characteristics remain
on the light cone and neither ghosts nor over–determined structures appear.

On a flat background gµν = ηµν with constant ∇µΦ0, a plane–wave ansatz φ ∝ ei(k·x−ωt)

gives
−ω2 + k2 −m2

eff = 2α
(
Φ̇0(−ω) +∇Φ0 ·k

)
,

hence
ω = v·k±

√
k2 +m2

eff + α2Φ̇ 2
0 , v ≡ 2α∇Φ0.

The radical is positive, so ω ∈ R. The self–sourcing term adds a small drift (v ·k) while leaving
the leading wave propagation intact.

O.3 Energy conditions and a practical stability region
For applications we adopt the following sufficient conditions:

α ≥ 0, U ′′(Φ0) ≥ −µ2
min, 2α |∇Φ0| ≤ ϵadv. (393)

Here ϵadv is a fixed policy constant that keeps the advective term subdominant in linear re-
sponse; it is recorded together with the numerical grid/tolerance settings of Appendix K.5.
Within this region the weak and dominant energy conditions hold in the standard sense, and the
energy flux does not exceed the energy density (|S| ≤ ρ). In short, keeping α moderate and the
background gradient controlled (≤ ϵadv) secures a well–behaved response.
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O.4 Numerical well–posedness: time stepping and convergence
Numerics follow the shared settings of Appendix K.5. On a uniform grid with second–order
central differences and a leapfrog update, the usual CFL bound ∆t ≤ C∆x is refined to

∆t ≤ min
(
C∆x,

∆x

|v|

)
, v = 2α∇Φ0.

We require that doubling grid resolution and tightening tolerances change each component of
the model vector by< 0.1σ of the data uncertainty (Appendix K.5), and that whitened residuals
show stationarity with no survey–wise drift (Appendix H). Under these rules the self–sourcing
term does not trigger numerical blow–up.

O.5 Linear modes on a spherical background

For a static spherical background Φ0(r), write φℓm(t, r) = e−iωtRℓ(r)Yℓm. The radial equation
can be cast as [

∂2r + Ω2
ℓ(r)

]
Rℓ = i 2αΦ′

0(r) ∂rRℓ + (lower–order terms),

where Ω2
ℓ(r) includes the usual effective potential. Regularity at the origin and decay at infinity

are imposed. Within the bound 2α|∇Φ0| ≤ ϵadv, eigenfrequencies ω remain on the real axis;
we do not observe unphysical runaways. Operationally, staying inside the same bound is the
simplest way to keep the spectrum orderly.

O.6 Summary and practical checklist

The self–sourcing term J = α(∇Φ)2 is consistent with the pipeline used in the main text: (i)
the principal symbol matches the canonical wave operator, (ii) the flat–background dispersion
relation is regular up to a small drift, (iii) the energy conditions and numerical stability are
secured by the simple bounds in (393). In practice:

• keep α ≥ 0 and record the product 2α|∇Φ0|,

• enforce 2α|∇Φ0| ≤ ϵadv in the run manifest,

• verify < 0.1σ model–vector shifts under grid/tolerance doubling (Appendix K.5),

• check whitened residuals for Gaussianity and lack of drift (Appendix H).

When these are met, the same operators, normalizations, and tolerances used elsewhere in the
paper apply here without additional caveats, and the self–sourcing term behaves consistently
and stably.
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