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Abstract 

Protein evolution is a major engine of biological diversification, but the selective pressures that 
determine which sequences are retained as genes remain debated. In previous work, we showed that, 
across the three domains of life, per‑protein amino‑acid residue fractions in reference proteomes
—defined here as the set of proteins encoded by the annotated coding sequences (CDS) of a 
reference genome—consistently form species‑specific, bell‑shaped distributions well approximated 
by binomial expectations for each of the 20 amino acids. If a genome can, in principle, encode a 
wide range of amino‑acid compositions yet the realized set of coding sequences occupies only a 
narrow region of that space, this would imply that amino‑acid composition itself is a target of 
selection during gene retention. Here we test this idea in Escherichia coli. Using this definition, we 
compared the distributions of per‑CDS residue fractions for the reference proteome’s native (+1) 
translations with those for genome‑encoded out‑of‑frame translations obtained by re‑parsing the 
unaltered CDS in non‑native frames (+2, +3 on the plus strand; −1, −2, −3 on the reverse 
complement). We then located the reference proteome within the composition space spanned by 
these alternatives. The reference proteome was concentrated within a markedly narrower, shifted 
region of composition space than that spanned by the out‑of‑frame translations, with especially 
strong separations for cysteine, aspartate, glutamate, and arginine. Thus, despite the genome’s 
capacity to encode diverse compositions, the reference proteome lies within a restricted subset—
consistent with amino‑acid residue composition being an important target of selection in 
coding‑sequence retention. 
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Introduction 

Protein evolution, driven by genetic mutation, is a major engine of biological diversification, yet the 
selective pressures that determine which of the resulting sequences are retained as genes remain 
debated [1,2,3,4,5]. In previous work, we showed that, across the three domains of life, per‑protein 
amino‑acid residue fractions in reference proteomes—here defined as the set of proteins encoded 
by the annotated coding sequences (CDS) of a reference genome—consistently form 
species‑specific, bell‑shaped distributions well approximated by binomial expectations for each of 
the 20 amino acids [6,7]. Notably, the modal (peak) values of these distributions differed across 
species; although not definitive, this pattern suggests species‑specific constraints on amino‑acid 
composition. If it can be established that a genome can, in principle, encode a wide range of 
amino‑acid compositions yet a species’ reference proteome occupies only a narrow region of that 
space, this would necessarily imply that amino‑acid composition is itself a target of selection 
during gene retention. 

Protein‑coding sequences are publicly available as CDS entries in genomic databases [8]. Because 
DNA is translated to amino acids via the genetic code, re‑parsing an unaltered CDS in alternative 
reading frames—including on the reverse‑complement strand—yields genome‑encoded 
out‑of‑frame translations. Although these predicted polypeptides are ordinarily not expressed, they 
provide a tractable, internally controlled proxy for the spectrum of amino‑acid compositions that the 
same genome could, in principle, produce. Comparing the composition profile realized by the 
reference proteome with that of these out‑of‑frame alternatives therefore offers a direct way to ask 
whether proteome‑level composition is constrained relative to genome‑encoded possibilities. 

Here, using Escherichia coli K‑12 as a case study, we implement this comparison [8]. We treat the 
set of proteins encoded by the annotated CDS as the reference (native +1) proteome, translate each 
CDS in its native frame, and—without altering the nucleotide sequence—generate five 
out‑of‑frame translations by re‑parsing the same sequences in the +2 and +3 frames on the plus 
strand and the −1, −2, and −3 frames on the reverse‑complement strand [9]. We then compared the 
distributions of CDS‑level amino‑acid fractions between the native translations and the 
out‑of‑frame sets, for each of the 20 amino acids. This design preserves nucleotide‑level 
composition and local sequence context while altering only the reading frame, allowing us to test 
whether the E. coli reference proteome occupies a restricted subset of the amino‑acid composition 
space accessible from its genome. 
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Materials and Methods 

Organism and CDS dataset 

As a representative species we analyzed Escherichia coli K‑12. Coding sequences (CDS) were 
obtained from NCBI RefSeq for the K‑12 reference genome assembly ASM584v2 (RefSeq assembly 
accession GCF_000005845.2). We downloaded the RefSeq “CDS from genomic” FASTA file and 
used this annotated CDS set for all analyses [8]. 

Construction of reading‑frame alternatives 

We adopted the conventional six‑frame nomenclature: +1, +2, +3 denote the three frames on the plus 
strand (starting at nucleotide positions 1, 2, and 3 of the CDS), and −1, −2, −3 denote the three 
frames on the reverse‑complement strand (starting at positions 1, 2, and 3 of the reverse‑complement 
sequence) [9]. 

For each annotated CDS, the native frame was treated as +1. The five non‑native frames (+2, +3, 
−1, −2, −3) were generated by re‑parsing the unaltered nucleotide sequence in the specified strand/
frame. No insertions or deletions were introduced; only strand and frame were changed. Terminal 
overhangs shorter than a full codon were discarded so that only complete, non‑overlapping triplets 
were counted. Throughout, “reference proteome” refers to the +1 translations, and “out‑of‑frame 
sets” to the +2, +3, −1, −2, and −3 translations. 

Translation mapping and counting 

Triplets were mapped to amino acids using NCBI translation table 1 (the Standard Code) [10]. For 
E. coli K‑12, the customary choice is NCBI translation table 11 (Bacterial, Archaeal, and Plant 
Plastid Code), whose only relevant difference here is the optional start‑codon recoding: at the 
initiation position certain alternative starts are translated as Met (e.g., GTG/GUG, TTG/UUG, and 
occasionally CTG/CUG). In our dataset, the vast majority of CDS began with AUG/ATG 
(n = 3,893 of 4,318), with smaller numbers beginning with GUG/GTG (n = 338) or UUG/TTG 
(n = 80). Because start‑codon recoding affects at most one residue per CDS, and to apply a uniform 
rule across native and out‑of‑frame readings (which lack an initiation context), we did not apply 
start‑specific recoding: initial GUG/GTG and UUG/TTG were mapped to Val and Leu, 
respectively, just as at internal positions. Functionally, this choice is equivalent to using table 11 with 
start‑codon recoding disabled. 

The three termination codons (TAA, TAG, TGA) were treated as stops and excluded from counts. 
Recoding events such as selenocysteine (UGA) and programmed frameshifting were not modeled. 
For each CDS in each frame set, we counted occurrences of the 20 canonical amino acids across all 
complete, non‑overlapping codons. 
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Amino‑acid composition per CDS 

CDS‑level amino‑acid composition was computed as fractions. For amino acid a in CDS i, 

 , 

yielding a 20‑component composition vector that sums to 1 for every CDS under the native frame 
and under each non‑native frame. (Stops were excluded from both numerator and denominator.) 

Software and comparisons 

Initial parsing of the FASTA file and generation of frame‑specific codon counts were performed in 
Microsoft Excel® for Mac (v16.100.4). Composition vectors were imported into JMP® Pro 18.2.0 
(SAS Institute) for tabulation and visualization. For each residue, we compared the distributions of 
per‑CDS residue fractions for the native reference proteome (+1 frame) with those for each 
out‑of‑frame set (+2, +3, −1, −2, −3). Within each panel, density curves were normalized to unit 
area to enable cross‑frame comparison of distributional shape and location. Apart from the exclusion 
of stops and the omission of CDS–frame combinations with no sense codons (see above), no 
additional filtering was applied; software defaults were used unless otherwise noted. 

fi,a =
counti(a)

∑b∈{20 amino acids} counti(b)
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Results 

Reference‑proteome–wide per‑CDS residue‑fraction distributions under native and 
out‑of‑frame readings 

The Escherichia coli K‑12 dataset comprised 4,318 annotated coding sequences (CDS; mean length 
932.6 bp, median 825 bp). For each CDS, we computed the per‑CDS fraction of each of the 20 
amino acids in the native frame (+1) and in the five non‑native frames (+2, +3, −1, −2, −3) by 
re‑parsing the unaltered nucleotide sequence. For every residue, we visualized the distribution of 
these per‑CDS fractions for the native reference proteome (solid red line; Figure  1) overlaid with 
those for each out‑of‑frame set (distinct dashed lines; Figure  1). Within each panel, curves were 
normalized to unit area to facilitate cross‑frame comparison of distributional shape and location. 

Across residues, distributions were broadly bell‑shaped, yet systematic, frame‑dependent shifts were 
evident. Notably, the native reference proteome exhibited consistently lower cysteine and arginine 
fractions than any of the five out‑of‑frame sets, whereas glutamate and aspartate were consistently 
higher than in all alternatives. Although several residues showed only minor frame dependence, the 
overall pattern indicates that the native reference proteome occupies a restricted region of 
composition space relative to that spanned by its genome‑encoded reading‑frame alternatives. 
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Figures 

Figure 1. Per‑CDS residue‑fraction distributions for the native reference proteome versus 
out‑of‑frame translations in Escherichia coli K‑12 

Legend. Each panel corresponds to one of the 20 genetically encoded amino acids. Within a panel, 
curves show the distribution of per‑CDS residue fractions in the native reference proteome (solid 
red, +1 frame) overlaid with those for the five non‑native frames (distinct dashed lines; +2, +3, −1, 
−2, −3). Non‑native sets were generated by re‑parsing the unaltered CDS nucleotide sequences in 
the specified strand/frame; no insertions or deletions were introduced. Curves are normalized to 
unit area within each panel to facilitate cross‑frame comparison of distributional shape and location. 
X‑axis: residue fraction per CDS (0–0.3). Y‑axis: density (unit area). Dataset: 4,318 CDS (mean 
length 932.6 bp, median 825 bp). Consistent with prior work, the reference‑proteome curves (solid 
red) are bell‑shaped for all 20 residues [6,7]. Notable trends include lower cysteine and arginine 
and higher glutamate and aspartate in the native reference proteome relative to all out‑of‑frame 
sets. 

 / 6 9

0 0.1 0.2 0.3
Ala

0 0.1 0.2 0.3
Cys

0 0.1 0.2 0.3
Asp

0 0.1 0.2 0.3
Glu

0 0.1 0.2 0.3
Phe

0 0.1 0.2 0.3
Gly

0 0.1 0.2 0.3
His

0 0.1 0.2 0.3
Ile

0 0.1 0.2 0.3
Lys

0 0.1 0.2 0.3
Leu

0 0.1 0.2 0.3
Met

0 0.1 0.2 0.3
Asn

0 0.1 0.2 0.3
Pro

0 0.1 0.2 0.3
Gln

0 0.1 0.2 0.3
Arg

0 0.1 0.2 0.3
Ser

0 0.1 0.2 0.3
Thr

0 0.1 0.2 0.3
Val

0 0.1 0.2 0.3
Trp

0 0.1 0.2 0.3
Tyr

+1
+2
+3
-1
-2
-3



Discussion 

Recent work on de novo genes suggests that the emergence of coding sequences from previously 
noncoding DNA is not uncommon in evolution [1,2,3]. Yet the selective filters that allow such 
sequences—and variants arising from mutations of existing genes—to persist as genes remain 
debated [1,4,5]. Proposed criteria range from molecular properties (e.g., biosynthetic costs, toxicity, 
aggregation propensity) to systems‑level requirements (e.g., functional integration and maturation) 
[4,5,11,12,13]. However, whether amino‑acid composition per se constitutes a direct target of 
selection has not, to our knowledge, been systematically assessed. 

In previous work, we analyzed reference proteomes from 81 species spanning the three domains of 
life and showed that, for each of the 20 genetically encoded amino acids, per‑protein residue 
fractions form bell‑shaped, species‑specific distributions well approximated by binomial 
expectations [6,7]. To our knowledge, this reference‑proteome–level regularity had not been 
previously documented. One natural implication is that proteomes are subject to proteome‑scale 
constraints on amino‑acid composition. An alternative, however, is that such patterns simply 
mirror features of the genetic code (e.g., unequal codon degeneracy) or reflect non‑random 
properties of genomes (GC content, codon usage, k-mer structure) [10,14,15], without invoking 
selection on amino‑acid composition per se. Discriminating among these possibilities requires asking 
whether the composition space actually realized by a reference proteome is restricted relative to 
the composition space that the genome could in principle encode. 

A brute‑force enumeration of all potential de novo open reading frames (ORFs) is computationally 
onerous and depends on operational choices. As a tractable proxy, we re‑parsed each annotated CDS 
in the five non‑native reading frames to generate genome‑encoded reading‑frame alternatives, 
without modifying the underlying nucleotide sequence. This construction preserves base 
composition and local sequence context while altering only the mapping from triplets to amino 
acids, thereby providing a conservative comparison set for the reference proteome’s native (+1) 
translations. 

In Escherichia coli K‑12, the native reference proteome occupied a narrow, displaced subset of the 
composition landscape spanned by these frame alternatives. Thus, the native reference proteome is 
unlikely to be a typical sample from the genome‑encoded alternatives. Instead, the results support a 
model in which coding sequences are preferentially retained when their amino‑acid compositions 
approximate a species‑typical profile—a macro‑scale “reference‑proteome–conformance” 
constraint that operates alongside, and upstream of, functional selection. 

We next ask why protein and reference‑proteome amino‑acid compositions are constrained—by 
what forces, and toward what profile. If reference‑proteome composition is constrained in this 
way, then the cellular proteome—the abundance‑weighted set of actually expressed proteins—will 
be indirectly constrained as well, because it is drawn from, and limited by, the reference set. In 
previous work (preprint), we proposed a mutual‑constraint hypothesis: the largest immediate 
resource for proteome synthesis is the cell’s own proteome‑derived amino‑acid pool (recycling of 
degradation products) [6]. Consequently, (i) the reference proteome constrains the feasible 
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composition of the cellular proteome, while (ii) the cellular proteome, through turnover and 
recycling, constrains the effective amino‑acid supply that feeds back on which coding sequences are 
sustainable over time. The external compositional constraint documented here—namely, that 
native translations lie within a restricted subset of genome‑encoded composition space—provides an 
anchoring boundary condition for this mutual‑constraint framework. Thus, we suspect that the 
observed constraint on amino‑acid composition reflects a mutual constraint between the cellular 
proteome’s abundance‑weighted amino‑acid composition and the reference proteome’s per‑CDS 
residue‑composition profile. 

An immediate next question concerns the strength of this constraint. Intuitively, stronger 
constraint should manifest as sharper (less dispersed) per‑residue distributions around the 
species‑specific mode. Consistent with our prior observation, the empirical distributions are well 
approximated by binomial forms. Although we do not quantify the strength here, the fact that a 
binomial distribution arises when sampling n residues at random from a population with fixed 
residue frequency p suggests a simple interpretation: the reference‑proteome distributions may 
reflect sampling around a target composition p set by the cellular proteome—that is, by the 
abundance‑weighted amino‑acid profile of the recycled resource pool generated by proteome 
turnover. Under this reading, the reference proteome is constrained by (and in turn constrains) the 
cellular proteome’s composition, consistent with the mutual‑constraint hypothesis. This 
interpretation remains provisional; future work should explicitly account for gene‑length 
heterogeneity and test for (over)dispersion relative to binomial expectations (e.g., via beta‑binomial 
fits) across conditions and taxa. 

Taken together with our earlier observation that reference proteomes across 81 species exhibit 
similar bell‑shaped per‑protein distributions [6,7], the present results suggest that amino‑acid 
composition is a general target of selection that constrains gene retention across lineages. While 
code‑level structure and genome‑level supply biases undoubtedly contribute, the consistent 
restriction of the realized composition space relative to genome‑encoded alternatives points to a 
widespread, upstream compositional filter shaping which sequences ultimately persist as genes. 

Conclusion 

By comparing genome‑encoded, unexpressed out‑of‑frame translations with the native (+1) 
translations that constitute the reference proteome, we show that in Escherichia coli K‑12 the 
reference‑proteome composition occupies a narrow subset of the amino‑acid composition space 
accessible from the genome. Amino‑acid composition therefore represents a previously 
underappreciated upstream requirement, constraining the emergence and persistence of 
protein‑coding genes and, by extension, the species’ reference proteome. 
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