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Abstract 

Nature has a tendency to evolve to a more probable state, and we regard this tendency as a force of 
probability. All fundamental interactions are transmitted by mediator particles, and their unification 
has long been attempted. However, no theory has fully unified the interactions into a single simple 
formula. Here, we show that fundamental interactions are unified by a novel “influential force” 
driven by probability under the canonical distribution of the transmitted information. This force 
affects the information distance denoting transmission difficulty, based on a universal gauge 
symmetry within information coordinate spacetime. We develop statistical mechanics of mutual 
information and reveal that the influential force exists in both physical and biological systems, 
offering clues to solve many intractable problems. In the field of physics, the influential force 
provides a coherent explanation of the spontaneous symmetry breaking of the Higgs field and its 
relationship with gravity, inflation, quantum entanglement entropy, and the hierarchy problem.   
In the field of biology, the force endows genes with huge network information, which leads to the 
development of the ab initio genetic orbital method and identification of a novel, potentially 
targetable immune checkpoint, KYNU / kynureninase. Our findings demonstrate that the influential 
force acts between highly divergent beings, thereby shaping the essential properties of nature. 

Keywords: influential force, unified theory, Higgs mechanism, exchange interaction, dark energy, 
inflation, equivalence principle, hierarchy problem, systems biology, ab initio genetic orbital method, 
bioinformatics, population genetics, immune checkpoint KYNU 
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1. Introduction 

Nature has a general tendency to evolve from a less probable to a more probable state [1], and we 

regard this tendency as a force arising from probability. All fundamental interactions (i.e., the 

electromagnetic, weak, strong, and gravitational interactions) are thought to be transmitted by 

mediator particles, and the unification of these interactions has long been attempted [2-6]. In particular, 

superstring theory has been proposed to unify gravity and the other interactions [7,8]. M-theory was 

further developed to unify five kinds of superstring theory [9]. However, no theory has fully succeeded 

in unifying the interactions into a single simple formula [10]. Notably, no supersymmetric particles 

have been discovered by the Large Hadron Collider [11]. This poses serious questions about the 

existence of supersymmetry, on which superstring theory is based. Here, we show that all fundamental 

interactions are unified by a force driven by probability under the canonical distribution of the 

transmitted information. Furthermore, we introduce an information coordinate system to establish the 

formalism of the force. The information coordinate uses the information distance that represents the 

difficulty of information transmission. The unified force, the “influential force,” originates from a 

universal gauge symmetry within this information coordinate spacetime. 

We briefly introduce the information distance between factors having information, where we call 

these factors informatons. Suppose that informatons X and Y constitute a closed composite system XY. 

Let H(X) and H(Y) be the information entropies of X and Y, respectively. The mutual information (MI) 

is MI(X; Y) = H(X) + H(Y) – H(X, Y), where H(X, Y) is the joint entropy of the composite system [12] 

(Fig. 1a). When the conventional distance between X and Y is x, the information distance 𝐼ை  is defined 

by the self-information as 𝐼ை = − log𝑝ሺ𝑥ሻ, in which 𝑝ሺ𝑥ሻ is the probability density of information 

transmission by the mediator particles along the least action path. 𝐼ை  expresses the least-action path 

length for a mediator particle traveling between the informatons. In turn, 𝐼ை  varies with MI, which 

represents the amount of transmitted information. Here, 𝐼ை  involves two kinds of information distance: 

one of external spacetime and one of internal spacetime. The two information distances constitute 𝐼ை  

in an approximately equivalent manner. We refer to this equivalence as metric symmetry. 

The composite system XY is represented by a single wave function. The change in its energy is 

proportional to that in its entropy when the Helmholtz free energy is constant. In this case, the 

probability increases in the direction in which the system's energy decreases, and its entropy also 

decreases. At this time, MI shared by X and Y follows a probability distribution 𝑝 = expሺ𝑀𝐼ሻ. This 

means ∆𝑀𝐼 > 0 ; that is, there is a tendency for information exchange to develop between the 

informatons, which we refer to as the genesis of the influential force. Notably, this force decreases the 

overall entropy of the composite system XY. As a result, the force reduces the system's total energy 

and becomes equivalent to the energetic force [13,14]. This particular force also decreases the 

information distance 𝐼ை, such that ∆𝐼ை = −∆𝑀𝐼 < 0, and is therefore an attractive force. 
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In contrast to the attractive force, by the second law of thermodynamics, a counteracting force 

arises to recover the entropy of the system. In this case, MI follows another probability distribution, 𝑝 = expሺ−2𝑀𝐼ሻ . This relationship demonstrates an additional tendency in the direction in which ∆𝑀𝐼 < 0; that is, opposite the direction of the attractive force. This second force brings about an 

increase in 𝐼ை , such that ∆𝐼ை = −∆𝑀𝐼 > 0 , and thus acts as a repulsive force. Under isothermal 

conditions, this repulsive force increases the total entropy and energy of the composite system XY and 

is classified as an entropic force [14-16]. 

On the basis of the generality of both probability and information, the influential force is applied 

to diverse interactions and thus explains a wide range of phenomena (Figs. 1b–1e). This is because 

probability and information are everywhere in the universe [17]; that is, they exist in physical, 

chemical, biological, engineering, and sociological systems, as well as in human relationships. This 

paper aims to prove the existence of the influential force systematically. For this purpose, it is desirable 

to provide evidence for more than one system using an identical formula. We therefore give examples 

in which the influential force has a considerable effect on either a physical or biological system. 

Furthermore, we demonstrate that, in either system, we can solve many long-lasting problems with 

particular importance by considering the influential force. 

 
Figure 1 | Informatons and mutual information. a, MI. H(X) and H(Y) are the Shannon entropies of 
informatons X and Y, respectively, shown as discs in the Venn diagram. MI of X and Y corresponds to the 
intersection. The information metric is r = H(X) + H(Y) − 2MI. Total entropy H(X, Y) corresponds to the 
union. b, X and Y are partial physical systems, constituting a composite physical system based on MI. c, X 
and Y are genes G1 and G2. d, Gene Gi interacting with other genes Gj through MI(Gi; Gj). e, Gene 
networks. The bottom plane represents the two-dimensional information metric space, in which six genes 
in (d) are located, with Gi at the center and the other genes on the periphery. Gi and the other genes 
interact owing to the influential force based on MI(Gi, Gj). The surface expresses the influential force 
potential, its vertex corresponds to Gi, and the other genes are located on the surface such that their 
projections on the bottom plane correspond to the genes. 
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In the physical systems described in Chapter 2, we establish an information coordinate system, 

thereby demonstrating the gauge symmetry of the unified force and explaining its mechanics within 

the information coordinate spacetime. In the following, we list examples in which we address and 

demonstrate the involvement of the influential force. 

1) Generation of the influential force through the relativistic scattering of two particles, which is 

associated with the creation of MI and potential energy 

2) Emergence of MI upon mixing two inert gases, which appears to provide stabilization energy that 

contributes to the formation of the mixed state of the gas 

3) Creation of the influential force acting between identical free particles through a novel exchange 

interaction, whose energy may be a candidate for dark matter 

4) Application of the influential force to the Higgs field to solve many problems facing the Standard 

Model, which likely provides a unified understanding of the Higgs boson, gravity, and inflation 

5) Adoption of the information coordinates to deal with the entanglement entropy 𝑆ாா, which may 

incorporate the outcome of string theory, offering clues to the gauge–gravity correspondence 

6) Application of the influential force to many-body systems to predict the repulsive force acting 

between the bodies, which may quantitatively explain the dark energy of the universe 

In 1), the scattering reduces the joint entropy of the composite system, generates MI, and thereby 

produces potential energy. In 2), the collision of gas molecules induces fluctuations in kinetic energy, 

which creates the MI of two populations of molecules. In 3), the new exchange interaction appreciably 

differs from the known interactions. This interaction energy is expected to exist in vast quantities in 

the universe and is thus a candidate for dark matter. In 4), the standard Higgs potential can be replaced 

by the influential force potential (i.e., the influential Higgs). The influential Higgs allows the 

unification of the gravitational and Higgs fields, explains spontaneous symmetry breaking, illustrates 

the equivalence of inertial and gravitational mass, and provides a clue to the hierarchy problem. In 

addition, an influential Higgs inflation model fairly reproduces the data of the cosmic microwave 

background. In 5), 𝑆ாா may cause the influential force and the gravity between spacetime quanta, 

thereby creating the Higgs boson as a blackhole dimer. In 6), we explain why dark energy occupies 

two-thirds (67%) of the mass-energy density of the universe, close to the measurement of 68%. 

In the biological systems discussed in Chapter 3, we consider the influential force in terms of 

population genetics to address the involvement of gene information in biological evolution. We 

demonstrate that the influential force acts between genes in the direction in which the biological fitness 

(i.e., the existence probability of the gene information itself) increases. This is done by generating 

order and by providing homeostasis for organisms. As listed below, we provide examples in which we 

address and illustrate the involvement of the influential force. 
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7) Generation of the influential force acting between two genes, which allows information exchange 

between the genes and thus their coordinated functions 

8) Creation of gene networks based on the influential force acting between genes (Figs. 1d and 1e), 

which likely produces a large quantity of network information 

9) Development of the network function of genes with a considerable amount of information, which 

can create a large fitness advantage and likely promotes the phenotypic evolution of organisms 

The above observations also apply to cancer biology, as in the following example. 

10) Genesis of cancer gene networks, whose abundant information can accelerate the evolution of 

cancer progenitor cells to cancer cells 

In 7), the intergenic attractive force is expected to be proportional to expሺ𝑀𝐼ሻ, as it is for physical 

systems. In 8), gene networks will encode much more information than proteins, which suggests the 

priority of the network functions of genes. In 9), the substantial fitness advantage of the network 

function will likely provide an answer to a persistent problem in evolutionary biology; that is, it has 

been difficult to explain the phenotypic evolution of organisms through the molecular evolution of 

genes. In 10), the cancer gene network will have a structure similar to that of the normal gene network. 

Of course, the cancer gene network is harmful to the host organisms. 

In Chapter 4, we describe an application of the influential force to medical informatics. As an 

inference from the above, on the basis of generating MI of genes, the influential force appears to 

endow genes with advanced network functions. To prove this, we developed an in silico strategy that 

calculates the multidimensional MI of all genes, thereby enabling a rapid computation of gene 

functions. This approach involves the development of a series of information theoretical theorems and 

informatics algorithms, identifying a candidate immune checkpoint with potential therapeutic 

targetability. 

11) Development of statistics for the microstates of MI, which allows the faster computation of MI 

and the p-value for two highly multidimensional random variables 

12) Demonstration of a theorem, the equivalence principle of information and probability, which states 

that MI for two informatons is equivalent to the p-value (especially, asymptotically equivalent to 

Fisher's exact p-value), thereby combining information theory and probability statistics 

13) Development of the ab initio genetic orbital (GO) method, which rapidly calculates the network 

function of unknown genes without performing experiments 

14) Development of STAIC (a Strategic Tool for Ab Initio Identification of Cancer genes), which 

facilitates the discovery of cancer genes by incorporating multiple informatics approaches 

15) Identification of a novel, potentially targetable immune checkpoint KYNU, which encodes a 

metabolic enzyme kynureninase 
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In 11), the algorithm uses the statistics of micro-MI at each microstate. The statistical mechanics of 

highly multidimensional informatons is necessary for analyzing the relationship between genes as well 

as that between quanta, by which we can obtain the probabilistic representation of the influential force 

between the informatons. In 12), while the theorem enables an informatic interpretation of the p-value 

between informatons, it conversely offers a probabilistic interpretation of MI. In 13), the GO 

represents the influential force in a multi-gene system, which originates from one gene and targets 

another gene. The ab initio GO method uses the same formula as the ab initio molecular orbital (MO) 

method. In 14), the combination of multiple informatic algorithms makes the identification of cancer 

genes efficient. In 15), the ab initio GO method identifies a potential immune checkpoint KYNU, which 

affects the prognosis of lung and pancreatic adenocarcinoma. Moreover, its potential therapeutic 

targetability is shown by the single-nucleotide polymorphism (SNP)-dependent prolongation of 

prognosis. 

This paper contains 31 appendices for information theoretical theorems, supplementary equations, 

and supplementary figures. 

 

2. Influential force and physics 

(a) Influential force based on MI 

MI and influential force in thermodynamics 

We define an informaton as a factor that has information. In this paper, we limit ourselves to the case 

in which information exerts an influence on the realization probability of events [18]. In physics, the 

situation in which information combines with energy is such a case [19,20]. In addition, we limit 

ourselves to considering only isothermal conditions. Let X and Y be random variables and H(X) and 

H(Y) be their respective Shannon information entropies. In this case, the mutual information MI of X 

and Y is expressed as MI = H(X) + H(Y) − H(X, Y), where H(X, Y) is the joint entropy. The information 

metric r of X and Y is then expressed [21] as 

                            (1) 
(Fig. 1). It is noted that 𝑟 satisfies the axioms of the metric space (Appendix 1). In this case, if we 

regard ℳ(X) = exp[H(X)/2] and ℳ(Y) = exp[H(Y)/2] as the information masses, then 

                         (2) 
represents the force acting between informatons X and Y. Here, ℱ represents an attractive force with 

magnitude 𝑒ெூ, which increases the probability of information transmission and thereby decreases 

the information metric 𝑟. In the following, we demonstrate that ℱ acts as the force. 
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We first consider the Shannon MI of two physical bodies, X and Y, which are regarded as physical 

informatons. We let 𝑥 and 𝑦 be the states of X and Y, while 𝑝௑ሺ𝑥ሻ and 𝑝௒ሺ𝑦ሻ are their respective 

marginal probabilities. Additionally, we let 𝑝ሺ𝑥,𝑦ሻ be the joint probability. The Shannon MI, MI, is 

then expressed as 

 ,                  (3) 
which represents the amount of information shared by physical informatons X and Y. 

We next discuss the relationship between information and energy in quantum systems. If we 

assume that energy E of a body in a closed equilibrium system follows a canonical distribution [22], 

then the realization probability 𝑝ఔ  of energy level 𝐸ఔ  satisfies 𝑝ఔ = exp(−𝛽𝐸ఔ) 𝑍⁄  , where 𝛽  is 

the inverse temperature 1 𝑘஻𝑇⁄   expressed in terms of the Boltzmann constant 𝑘஻  and absolute 

temperature T, and 𝑍 is the partition function ∑ exp(−𝛽𝐸ఔ)ఔ . We here define the information level 𝑰𝝂 of this body as the self-information of the energy level 𝐸ఔ; that is, 

 .                           (4) 

This indicates that the information and energy at each level are related through the realization 

probability. Furthermore, this relationship can be expressed at the entropy level; that is, the Shannon 

information entropy H(X) and thermodynamic entropy S(X) are connected by 𝑘஻H(X) = S(X) [19]. 

We here describe the interaction between the two physical informatons X and Y, from an 

information theoretical point of view. Concerning the two-body system, the joint thermodynamic 

entropy S(X, Y) and joint information entropy H(X, Y) satisfy S(X, Y) = 𝑘஻H(X, Y). Hence, 

 .                           (5) 

Therefore, the internal energy U is expressed as 

 ,   (6) 
where F is the Helmholtz free energy. Thus, under isothermal conditions where the free energy F is 

constant, the change in the internal energy is 

  .                        (7) 
This indicates that an increase in MI (i.e., a decrease in r) reduces the internal energy U and thereby 

stabilizes the system. Moreover, given that MI ≥ 0 (where the equality holds if and only if X and Y are 

independent), 𝑟 is more likely to decrease, which demonstrates that ℱ = 𝑒ெூ is an attractive force. 

Thus, ℱ facilitates the information transmission between the informatons, thereby affecting the mutual 

state of existence. We refer to this novel force ℱ as the influential force. 
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MI in quantum systems 

As presented above, we have obtained the connection between ∆U and ∆MI from thermodynamics. 

We now examine whether this relationship is also valid in the quantum regime. For this purpose, we 

specify the MI of quantum bodies in comparison with the quantum mutual information MIqu [23-26]. 

We then show that MI and not MIqu represents the energy produced by the quantum interaction. 

Let us assume isothermal conditions. Suppose that two quanta, X and Y, do not interact in a ground 

state that is the thermal state. This initial mutual independence is satisfied, e.g., if the quanta are created 

at a particular time point in the universe and if their probability density functions are delta functions 

at the creation. Under these conditions, we set the ground state as the time (t = 0) when both quanta 

have appeared. We further consider that X and Y constitute a composite system XY. Then, by the 

definition of MIqu, MIqu = 0 at t = 0. Moreover, when t > 0, MIqu of X and Y is obtained as 

 ,                (8) 

where ρXR and ρYR are respectively the reduced density matrices of X and Y, which are respectively 

obtained as the partial traces trY ρXY and trX ρXY of the joint density matrix ρXY. MIqu is equal to the 
quantum relative entropy Squ of ρXY and ρXR ⊗ ρYR ; that is, 

 ,                             (9) 

which is associated with the change in the free energy ΔF of the composite system XY according to 

ΔF = kBT MIqu [23]. It is noted that ΔF can be ignored as the first-order perturbation of the state [23]. 

Instead of MIqu, we will specify MI using the von Neumann entropy of non-reduced density 

matrices. We again suppose that the two subsystems X and Y are originally independent at t = 0. Then, 

by the definition of MI, MI = 0 at t = 0. Moreover, when t > 0, the MI of X and Y can be determined as 

 ,               (10) 

where ρX and ρY are the non-reduced density matrices of X and Y. 

What is important is that, whereas MIqu is linked to the change in free energy ΔF, MI is directly 

connected to the change in thermodynamic entropy ΔS; that is, 

 .   (11) 

This formula highlights the importance of the MI in quantum systems. 
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On the basis of the above distinction between the two types of MI, we further discuss their 

relevance to the internal energy U of the composite system; that is, kBT MIqu and − kB MI respectively 

correspond to the free energy ΔF and thermodynamic entropy ΔS, and therefore 

 .                     (12) 
Thus, the difference between the two types of MI is the source of energy. Moreover, ΔF = kBT MIqu 

can be ignored as a first-order perturbation of the state that is initially the thermal state [23]. This is 

because MIqu is determined for a pair of X and Y initially independent of each other. Additionally, 

because the situations thereafter are close to thermodynamic equilibrium conditions where ΔF = 0, 

 ,                               (13) 
which implies Eq. (7). Finally, the information metric r of X and Y is defined as 

               (14) 

and decreases as MI increases. This equation allows the application of the information metric 𝑟 to 

quantum systems. To summarize, the MI is the source of changes in the internal energy U and the 

information metric 𝑟 in the context of quantum and superstring theory. These observations support 

the validity of the influential force in the quantum regime. 

Attractive influential force in physical systems 

Now that we have verified the validity of MI in physical systems, we further consider the relationship 

between MI and the influential force ℱ. We first assume that the two informatons X and Y together 

constitute one composite system XY. We now express the magnitude of the force ℱ as the ratio of the 

realization probabilities before (p) and after (p′) the change in MI: 

 .              (15) 

A probabilistic representation of the influential force ℱ is then written as 

 .                              (16) 

If MI is initially zero, then ΔMI = MI, and thus ℱ = 𝑒ெூ as in Eq. (2). Here, the influential force ℱ 
represents the relative increase in the realization probability associated with MI. In turn, MI is linked 

with the decrease in the system energy by ΔU = − kBT MI. In this situation, because MI ≥ 0 is always 

true, ℱ ≥ 1  invariably holds. Therefore, the influential force ℱ facilitates both the information 

transmission and energy transfer between the physical informatons, thereby acting as the attractive 

force that decreases their information metric 𝑟. Hence, we use a scalar notation ℱatt to represent this 

attractive influential force. Finally, ℱatt is classified as energetic, according to the conventional 

distinction between energetic and entropic forces [13,14]. 
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Spontaneous probability of MI 

In contrast to the preceding case, when the change in energy is negligible, the spontaneous probability 

p(MI) that the magnitude of MI of the composite system XY becomes MI follows a canonical 

distribution: 
 ,                               (17) 

which we also call the infocanonical distribution (Appendices 2 and 17). That is to say, as MI 

increases, X and Y constrain each other, which reduces the total number of states of the composite 

system XY. This leads to a decrease in p(MI) according to the principle of equal a priori probabilities. 

Notably, p(MI) is equal to the inverse of the attractive influential force ℱatt [Eq. (A6)], implying the 

occurrence of a repulsive force. Thus, Eq. (17) is compatible with the increasing tendency of H(X, Y); 

that is, the second law of thermodynamics. 

Repulsive influential force in physical systems 

Considering the decreasing propensity of MI, we next analyze the properties of the repulsive influential 

force, which we denote as a scalar ℱrep. In contrast with the attractive force ℱatt, the repulsive force 

ℱrep is an entropic force that results from the system's statistical tendency to increase in entropy [13-

16]. Here, to characterize ℱrep only between two bodies, we assume that the closed composite system 

XY is informationally isolated from the rest of the universe. The typical examples consistent with this 

model are interatomic and intermolecular interactions, where we can ignore interference from other 

bodies. Thus, for the time being in this paper, we essentially restrict ourselves to assume an isothermal 

spacetime in which only the given bodies exist. However, we will consider more general cases in the 

section “Many-body system” at the end of this chapter, in which we will discuss the repulsive forces 

counteracting the fundamental natural forces. 

To examine the repulsive force, we here regard each physical informaton X and Y as one system. 

Then, for each of them, an increase in MI decreases the number of states and its realization probability. 

The repulsion therefore arises from both informatons. This repulsion decreases MI and thus restores 

the joint entropy S(X, Y) = 𝑘஻[H(X) + H(Y) − MI] as well as the realization probability. Given that the 

repulsion is 𝑒ெூ for each X and Y, the total repulsive force ℱrep becomes 𝑒ெூ × 𝑒ெூ = 𝑒ଶெூ, which 

is proportional to the square of the attractive force ℱatt (Appendix 2). Indeed, in physicochemical 

systems, ℱrep generally increases rapidly as the distance decreases. We will later give examples 

consistent with this model, namely the Morse potential, dispersion force, and Higgs potential. 

Basic equations of the influential force 

On the basis of the preceding discussion, we construct a composite formula for the influential force ℱ. 
If ℱatt and ℱrep act independently, the expected magnitude of ℱ becomes ℱatt∕ℱrep = 𝑒ିெூ . This 

composite probability equals p(MI) above, supporting its overall validity. However, because these 
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forces act in mutually opposing directions, we rewrite the equation for ℱ by adding the two forces 

using k1 and k2 as attractive and repulsive constants, respectively, as 

 ,                  (18) 
where the positive direction is the direction in which the probability of information transmission 

between the informatons increases. Meanwhile, ℳ is the information mass, which is specified with a 

parameter �́�, the velocity of light c, the mass of the body m, and the momentum P, such that 

 .                   (19) 
In some systems, the exponent in ℱrep can be represented as exp(−�́�଴𝑟) using another constant �́�଴. 

In addition, the force ℱ constitutes the probabilistic influential force potential φ as 

 .               (20) 
Moreover, the force generates the probabilistic influential force field ℣ that comprises an attractive 

force field ℣att and a repulsive force field ℣rep: 

 ,         (21) 
which pertain to the range of influence of the informaton. 

The influential force ℱ has a salient feature in that it exists in the information metric spacetime 

(𝑟-spacetime). Nonetheless, the above equations for ℱ are similar to those for known natural forces, 

suggesting some connection between them. Notably, the influential force represents the universal 

relationship between information and energy for natural forces. This is because the known physical 

forces generate the canonical distribution at energy levels under thermal equilibrium conditions. 

 

(b) Influential force and field theory 

This section explores the relationship between the influential force ℱ and the known natural forces. 

For this purpose, we discuss the source of MI in terms of field theory. 

MI and field theory 

We calculate the MI of two fields at points P and Q to derive an expression for the influential force ℱ 

in the conventional space. We now let 

   (22) 

be the probability density functions of φ(P) and φ(Q) that respectively represent the natural force 

potentials or the field functions at P and Q. MI of these fields is then calculated as 
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 ,   (23) 

where the integrand is the density of MI. We can derive the influential force ℱ acting between the two 

fields from Eq. (18); that is, the influential force can express all natural forces. Finally, the information 

metric 𝑟 of φ(P) and φ(Q) is calculated from Eq. (1) by setting X and Y to φ(P) and φ(Q), respectively. 

Influential force and mediator particles 

The natural forces acting between two informatons are considered to be transmitted by mediator 

particles. Their field functions satisfy the Klein–Gordon equation, and the static potential is the 

solution to the equation when the time derivative is set to zero. If the mass of the mediator particle is 
m and the distance between two informatons is x, then the Yukawa potential 𝑉௬௨௞௔௪௔(𝑥) =exp (−𝑚𝑐𝑥 ℏ⁄ ) (4𝜋𝑥)⁄  is derived, where ħ is the Planck constant divided by 2π. 

The mediator particles contribute to the sharing of energy and information between two 

informatons. It is thus conceivable that the particles mediate MI as a form of action. If we let 𝑆௔ and −𝑉(𝑥) respectively be the action and energy exerted by the mediator particle during time t, then 𝑆௔ =−𝑉(𝑥)𝑡. By analogy between quantum mechanics and statistical mechanics through the Wick rotation 

[27], 𝑖𝑡 ℏ⁄  in the path integral corresponds to β (= 1/kBT), where i is the imaginary unit. It follows 

that exp(𝑖𝑆௔ ℏ⁄ ) corresponds to exp(𝛽𝑆௔ 𝑡⁄ ) = exp [−𝛽𝑉(𝑥)], which indicates that Sa follows the 

canonical distribution. This further supports the relationship between Sa and MI because MI is linked 

to −𝛽𝑉(𝑥)  [Eq. (A14)] and follows the canonical distribution [Eq. (17)]. Finally, the four-

dimensional path length also follows the canonical distribution because it is proportional to 𝑆௔. 

In the static setting described above, the total energy of the mediator particle equals the potential 

energy 𝑉(𝑥)  between the two informatons. Accordingly, ∆𝑀𝐼 = −𝛽∆𝑉(𝑥)  as described by 

Appendix 3. Thus, 𝑆௔ ℏ⁄  and −𝛽𝑉(𝑥) are equivalent to MI; that is, 

 .                       (24) 
Hence, for a single mediator particle that follows the least-action path, the average ratio of the 

realization probability with (p') versus without (p) the action is 

 ,                  (25) 
where we set k1 = k2 = 1 and �́� = 0.5 for simplicity. This formula indicates the relative realization 

probability of the information transmission by the particle. Again, ℱatt and ℱrep are the scalar 

representations for the magnitudes of attractive and repulsive forces, respectively. 
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In terms of quantum mechanics, Eq. (25) demonstrates that the attractive force ℱatt represents the 

fold increase in the bidirectional transition amplitude for mediator particles to move between two 

informatons following the least-action pathway. Given that ∆𝑀𝐼 = −∆𝑟 2⁄ , ℱatt = exp(MI) = 

ℳ(X)ℳ(Y)exp(−𝑟/2), and ℱatt is thus a Slater-type real wave function in the information metric 

spacetime (𝑟-spacetime). Meanwhile, the repulsive force ℱrep [= (ℱatt )2] is another Slater-type function, 

which indicates the enhancement of the two bidirectional transition amplitudes. Combining the two 

forces, ℱ = ℱatt −  ℱrep provides the relative probability amplitude of composite information 

transmission at the particle level. Finally, ℱ indicates the fold increase in the probability of 

unidirectional information transmission. 

Influential force and path integral 

In addition to the static setting above, the influential force ℱ is related to the path integral in the 

dynamic setting, assuming the canonical distribution of action 𝑆௔. In this case, the path length again 

follows the canonical distribution. The propagator of the mediator particle is then described as 

 ,             (26) 
where Dx is the path integral in the conventional coordinate spacetime (𝑥-spacetime) and K is the 

unidirectional transition amplitude from the point x' at t = 0 to the point x at time t. Furthermore, 

considering the least-action principle, the attractive and repulsive forces are expressed using the 

bidirectional propagator 𝐾௜௡௙൫𝑥,𝑥′; 𝑡൯ ∶= ൣ𝐾൫𝑥,𝑥′; 𝑡൯൧ଶ as 

 .          (27) 
Thus, the influential force is formulated using the path integral of information transmission. 

We finally consider the path integral in the 𝑟-spacetime. If both informatons X and Y have unit 

information mass ℳ = 1, then the path integral of exp(𝑖𝑟 2⁄ ) from the origin O with the coordinate 𝑟 = 𝑟ᇱ = 0 at 𝑡 = 0 to the point P with 𝑟 = 𝑟 at 𝑡 = 𝑡 is given by the least-action principle as 

 ,                     (28) 
where 𝐷𝑟 indicates the path integral in the 𝑟-spacetime. Again, using the bidirectional propagator 𝐾௜௡௙൫𝑟, 𝑟′; 𝑡൯ ∶= ൣ𝐾൫𝑟, 𝑟′; 𝑡൯൧ଶ, the basic attractive force and basic repulsive force in the 𝑟-spacetime 
are respectively written as 

 .         (29) 

The information metric 𝑟 equals the shortest path length and is expressed as 

 .                             (30) 
Thus, the influential force is directly linked to the path integral formalism in the 𝑟-spacetime. 
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Scattering and influential force 

We next give an example of the above discussion by considering the relativistic scattering of two 

particles, X and Y. In scattering, the particles exchange information of momentum and position. Let x 

and y be the four-vectors of X and Y, respectively. The scattering amplitude at x and y mediated by 

scalar mediator particles is expressed as 

 .                    (31) 
Here, p1 and p3 are respectively the four-momenta of X before and after the scattering, p2 and p4 are 

respectively the four-momenta of Y before and after the scattering, g is the coupling constant of the 

mediator particle and both of X and Y, and ∆ி(𝑥 − 𝑦) represents the Feynman propagator; that is, 

 ,                     (32) 
where m is the mass of the mediator particle, and q is the change in the four-momentum such that 𝑞 =𝑝ଷ − 𝑝ଵ = 𝑝ଶ − 𝑝ସ. 

To avoid the divergence problem of the scattering amplitude, we here use the measurement of g. 

The scattering probability is then expressed as p(x, y), which is the joint probability density function 

of X and Y: 

,   (33) 
where C is the normalization constant. Meanwhile, the respective existence probabilities of X and Y 

are given by p(x) and p(y), which are the marginal probability density functions of p(x, y): 

                  (34) 
where p(x) and p(y) are equal and constant. 

The joint information entropy of the composite system XY is given as 

 .         (35) 
The information entropies of X and Y are written as 

          (36) 
where H(X) and H(Y) are equal and constant. This implies that when the mediator particles’ energy is 

also summed, the energies of X and Y are preserved throughout the scattering. Thus, 

               (37) 
where Ex and Ey are respectively the energies of X and Y. 
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We next introduce a fluctuation factor 𝜀௫௬, which is the ratio of the joint probability density to 

the product of the marginal probability densities. We also adopt an MI density at x and y, 𝑀𝐼ௗ. Then, 

 .                   (38) 
The MI of X and Y is now expressed as 

             (39) 
Given that H(X) and H(Y) are constant, the MI difference before and after scattering, 𝑀𝐼௙௜, is 

 ,     (40) 
which is always positive, thus demonstrating the reduction in the total entropy of the composite system. 

Moreover, the third line of the above equation provides a statistical description of the action 𝑆ி of 
the Feynman propagator, which is proportional to the Yukawa potential 𝑉௬௨௞௔௪௔. Thus, 

 .                        (41) 
Therefore, despite preserving the energies of X and Y, the scattering reduces the joint entropy and 

energy of the composite system XY. This is accompanied by the generation of potential energy, which 

marks the advent of the influential force. 

 

(c) Influential force and physical forces 

We discuss gauge transformations in an information coordinate spacetime, which we will initially 

define in this section. All the forces in the conventional coordinate spacetime are transformed into a 

constant force in the information coordinate spacetime. This constant force is the equivalent of the 

influential force and is invariant under the transformations of all the gauge groups. Hence, the natural 

forces are uniformly described by the influential force. 

One-dimensional local information coordinate 

We revisit field theory from an information theoretical point of view to transform the conventional 

distance into the information distance. Specifically, we consider the characteristics of the spacetime 

as a mediator of information. As descrbed below, we will newly construct the local information 

coordinate so that it reflects the information distance that represents the difficulty of information 
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transmission. By applying this difficulty to remeasure the distance in the spacetime, we define the 

local information coordinate. The information is transmitted by the mediator particles, and thus the 

coordinate should reflect the probability density function of the particles, which follows a canonical 

distribution in terms of both the quantum path length and potential energy, as described below. 

First, we discuss the one-dimensional space without considering the potential energy explicitly. 

Let 𝑝(𝑥) = 𝛼exp(−𝛼𝑥) be the probability density of the mediator particle along the least action path, 

where x is the conventional distance from the origin without gravity while 𝛼 is a parameter of the 

distribution. 𝛼 is set to 𝐸 ℏ𝑣⁄ , where E and v are respectively the energy and velocity of the particle 

in the conventional coordinate spacetime (𝑥 -spacetime). Then 𝐸𝑡 ℏ⁄ =  𝛼𝑥 is the dimensionless 
action of the particle, Sa /ℏ, which we regard as the quantum path length measured in the 𝑥-spacetime. 

Eventually, within the one-dimensional space, the self-information of the probability density of the 

particle is 𝐼(𝑥) = −log 𝑝(𝑥) = 𝛼𝑥 − log 𝛼. This formula directly relates the conventional distance to 

the difficulty of information transmission. Thus, we regard |𝐼(𝑥) − 𝐼(0)| as the information distance 

between the origin and point x in the absence of a potential. 

Second, we consider the potential energy 𝑉(𝑥). The probability density function 𝑝′(𝑥) of the 

particle under the canonical distribution of the potential becomes 𝑝′(𝑥) = exp[−𝛽𝑉(𝑥)]/𝑍, where 𝑍 = ׬ exp [−𝛽𝑉(𝑥)]𝑑𝑥ஶ଴  is the partition function. Here, 𝛽𝑉(𝑥) = 𝑟 2⁄  expresses the quantum path 

length Sa /ℏ of the mediator particle measured in the information metric spacetime (𝑟-spacetime). 

Third, we construct another probability density 𝑝′′(𝑥), which is the product of 𝑝(𝑥) and 𝑝′(𝑥) 

up to a constant. For this purpose, we define another potential 𝑉′(𝑥) = 𝑉(𝑥) + 𝛼𝑥/𝛽, and determine 𝑝′′(𝑥)  as 𝑝′′(𝑥) = exp[−𝛽𝑉′(𝑥)]/𝑍′ , where 𝑍′ = ׬ exp [−𝛽𝑉′(𝑥)]𝑑𝑥ஶ଴  is the second partition 

function. In the above definition for 𝑉′(𝑥) = 𝑉(𝑥) + 𝛼𝑥/𝛽, not only 𝑉(𝑥) but also 𝛼𝑥/𝛽, which is 

the information level required to carry the mediator particle from the origin to the target at distance x, 

is regarded as a potential. In turn, the particle reaching the target generates a potential that is equal to 𝛼𝑥/𝛽 and appended to the potential 𝑉(𝑥). 

Finally, we define the one-dimensional local information coordinate 𝑰𝑶(𝒙) as 

 .                 (42) 

In differential form, 

 .             (43) 

In conclusion, not only the conventional distance x but also the potential 𝑉(𝑥) affects the information 

transmission. Equation (42) further demonstrates that 𝑉(𝑥)  alters the information distance and 

thereby deforms the information coordinate spacetime. In addition, 𝐼ை(x) approaches 𝛼𝑥 as x goes to 

infinity because the other two terms on the right-hand side of Eq. (42) become negligible. Hence, from 
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a global point of view, the information coordinate 𝐼ை (x) becomes nearly proportional to the 

conventional coordinate 𝑥. 

Framework and deformation of the information coordinate spacetime 

In the static setting described in the preceding section, the potential 𝑉(𝑥) in Eq. (42) can be replaced 

by the information metric 𝑟 such that 𝛽𝑉(𝑥) = 𝑟 2⁄ ; that is,  

 ,                          (44) 
where log𝑍′ is set to zero, such that 𝐼ை(0,0) = 0 at the origin O. Here, we let the interval of x, dx, 

be small enough such that 𝑝′′(𝑥) ≤ 1 and thus 𝐼ை(𝑥, 𝑟) ≥ 0. Again, 𝛼𝑥 and 𝑟 2⁄  represent the path 

length 𝐸𝑡 ℏ⁄   in the conventional spacetime (𝑥-spacetime) and information metric spacetime (𝑟-

spacetime), respectively. Equation (44) combines the conventional distance 𝑥 and information metric 𝑟 as a unified coordinate 𝐼ை(𝑥, 𝑟). In this expression, the information distance between the origin O 

and a point P at the conventional coordinate x and information metric r is denoted 𝐼ை(𝑥, 𝑟). This is an 

informational representation of the distance between the points O and P, in which the number of 

states is proportional to exp[−𝐼ை(𝑥, 𝑟)]. As described later, this distance provides an information 

theoretical basis for constructing higher-dimensional coordinate systems centered on the origin. 

In contrast to conventional coordinates, 𝐼ை(𝑥, 𝑟) = 𝛼𝑥 + 𝑟/2 has remarkable properties of the 

information coordinate spacetime. Above all, 𝐼ை(𝑥, 𝑟) involves the information metric 𝑟, which is 

lacking in the previous coordinate system. This 𝑟 denotes a difference in the state associated with 

that of the potential 𝑉(𝑥) between the informatons. Therefore, if the difference in 𝑉(𝑥) is high, the 

second term 𝑟/2  becomes much larger than the first term 𝛼𝑥 . This implies that 𝑉(𝑥)  strongly 

deforms the information coordinate spacetime, especially at a microscopic scale. 

In the case of the electromagnetic force acting between the proton and electron in a hydrogen 

atom, the distance is the Bohr radius 𝑎଴  = 5.3 × 10−11 m and the Coulomb potential 𝑉஼  is 4.4 × 10−18 J. 

If this 𝑉஼ is mediated by a photon with a wavelength of 4 × 10−7 m, then 𝛼 is 1.6 × 107 m−1, leading 

to a ratio of 𝑟/2 = 𝛽𝑉஼ to 𝛼𝑥 = 𝛼𝑎଴ of 1.3 × 106. This indicates that, at the atomic level, the effect 

of 𝑟/2 on 𝐼ை(𝑥, 𝑟) far exceeds that of 𝛼𝑥 with the electromagnetic force. Furthermore, the strong 

interaction is much more powerful at the nuclear level. According to Inoue’s quantum 

chromodynamics calculation [28], the potential of the strong interaction between two nucleons 

increases to a maximum of 2800 MeV as the separation decreases from 0.5 to 0 fm. Inoue supposed 

that a pseudo-scalar meson of 469 MeV mediates the strong interaction. In this instance, 𝛼 is 2.4 × 

1013 m−1 while the ratio of 𝑟/2 to 𝛼𝑥 is as much as 9.1 × 1012. The effect of 𝑟/2 is thus much 

greater than that of 𝛼𝑥 in the strong interaction as well. Meanwhile, when 𝑥 is sufficiently large 

such as in the interaction between celestial bodies, the effect of 𝛼𝑥 is larger than that of 𝑟/2, because 

interactions other than those of gravity are negligible in this case. These examples thus demonstrate 
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that the information metric 𝑟 has an immense effect on the structure of the information coordinate 

spacetime at the nuclear level (10−15 to 10−11 m) as well as at the subnuclear level (10−35 to 10−15 m), 

whereas the conventional distance is compatible with the information distance in larger systems. 

Metric symmetry 

Despite the above inequivalence of 𝛼𝑥 and 𝑟/2, because 𝐼ை(𝑥, 𝑟) is a linear function of both x and r, 𝛼𝑥  and 𝑟/2 contribute to 𝐼ை(𝑥, 𝑟) in a qualitatively similar manner. Therefore, with respect to 

physical equations in the information coordinate spacetime (𝐼𝑂-spacetime), this similarity indicates an 
approximate symmetry between the variables 𝑥 and 𝑟; that is, these variables become apparently 

interchangeable if their interdependence can be ignored. More specifically, the related but distinct 

physical phenomena within either the conventional coordinate spacetime (𝑥 -spacetime) or the 

information metric spacetime ( 𝑟 -spacetime) can be identically formulated by either 𝑥  or 𝑟 , 

respectively. We designate this putative phenomenon the metric symmetry. We will describe relevant 

cases in the following sections. These cases include the Higgs field, where the metric symmetry 

illustrates the connection between the internal and external spaces, a prerequisite for explaining gravity. 

Influential force in one-dimensional information coordinate spacetime 

Within one-dimensional information coordinate spacetime, we define the influential force ℱ ʹ acting 

between the origin O and a point P at which the information distance from the origin is 𝐼ை. Given that 𝐼ை(𝑥, 𝑟) = 𝛼𝑥 + 𝑟/2, 𝐼ை corresponds to an extension of the information metric r by the conventional 

distance x. Hence, substituting 𝐼𝑂 for �́�r in Eq. (18) yields 

 ,                (45) 

which is a probabilistic representation of the influential force ℱ ʹ in the one-dimensional information 

coordinate spacetime. Similar to the case for Eq. (18), the attractive force ℱ ʹatt and the repulsive force 

ℱ ʹrep are respectively energetic and entropic forces. Here, k1 and k2 are respectively the attractive and 

repulsive constants. 

The force ℱ ʹ generates the motion of a body in this spacetime, where the attractive force ℱ ʹatt 

and repulsive force ℱ ʹrep determine the direction and magnitude of ℱ ʹ. Under the conditions, ℳ(X) = 

ℳ(Y) = 1 and k1 = k2 = 1, the attractive term and repulsive term are expressed by 

 ,                         (46) 
which are probabilistic representations of the basic attractive and basic repulsive forces, respectively. 
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Path integral in one-dimensional information coordinate spacetime 𝐼ை represents the difficulty for a mediator particle to go from one spacetime coordinate to another. 

The propagator in the one-dimensional conventional spacetime (𝑥-spacetime) is given as 

 .    (47) 
Here, we introduce 𝛼𝑥, which represents the information exchange between the mediator particle and 

spacetime. Δ𝛽𝑉(𝑥) is then replaced with Δ[𝛼𝑥 + 𝛽𝑉(𝑥)] = Δ𝐼ை. We have 

 .                   (48) 
Hence, 

 .         (49) 
The information distance 𝐼𝑂  equals the shortest path length and is written using the bidirectional 
propagator 𝐾௜௡௙ as 

 ,                           (50) 
where A is a constant. This equation directly relates 𝐼ை  to the path integral formalism. 

Four-dimensional polar local information coordinates 

We now extend our discussion to four-dimensional spacetime. We define the four-dimensional polar 

local information coordinate system based on the one-dimensional information coordinate. We first 

suppose the four-dimensional conventional polar coordinates (ct, rp, θp, φp), where the radial 

component rp corresponds to the one-dimensional conventional coordinate x. We next define the four-

dimensional polar local information coordinates (𝛼𝑐𝐼ை(𝑡), 𝐼ை൫𝑟௣൯, 𝐼ை൫𝜃௣൯, 𝐼ை൫𝜑௣൯) as 

 .              (51) 

The time coordinate 𝛼𝑐𝐼ை(𝑡)  is then defined analogously to the one-dimensional case by 𝛼𝑐𝐼ை(𝑡) = 𝛽𝑉(𝑡, 𝑟௣,𝜃௣,𝜑௣) + 𝛼𝑐𝑡 + log 𝑍(𝑡), in which 𝑉(𝑡, 𝑟௣, 𝜃௣,𝜑௣) is the potential at the point (𝑟௣,𝜃௣,𝜑௣)  at time t within the three-dimensional conventional polar coordinate spacetime, and 𝑍(𝑡) = ׬ ׬ ׬ expൣ−𝛽𝑉൫𝑡, 𝑟௣,𝜃௣,𝜑௣൯൧ 𝑟௣ ଶsin𝜃௣ 𝑑𝑟௣𝑑𝜃௣𝑑𝜑௣ଶగ଴గ଴ஶ଴ . Similarly, the coordinate 𝐼ை൫𝑟௣൯ is 
defined by 𝐼ை൫𝑟௣൯ = 𝛽𝑉(𝑡, 𝑟௣,𝜃௣,𝜑௣) + 𝛼𝑟௣ + log 𝑍௥ , where 𝑍௥ = ׬ exp [−𝛽𝑉(𝑡, 𝑟௣,𝜃௣,𝜑௣) −ஶ଴𝛼𝑟௣]𝑑𝑟௣. 𝐼ை൫𝜃௣൯ and 𝐼ை൫𝜑௣൯ are defined in a similar manner. 

The difference 𝑟௠௧ᇱ  between 𝛼𝑐𝐼ை(𝑡 + 𝛥𝑡)  and 𝛼𝑐𝐼ை(𝑡)  for small Δt is then calculated as 𝑟௠௧ᇱ = 𝛼𝑐[𝐼ை(𝑡 + 𝛥𝑡) − 𝐼ை(𝑡)] = 𝛼𝑐𝛥𝐼ை(𝑡) ≃ 𝛼𝑐(∂𝐼ை(𝑡) ∂𝑡⁄ )𝛥𝑡 ≃ (𝛽 ∂𝑉 ∂𝑡⁄ + 𝛼𝑐)𝛥𝑡. Additionally, 

the difference 𝑟௠௥ᇱ  between 𝐼ை൫𝑟௣ + 𝛥𝑟௣൯  and 𝐼ை൫𝑟௣൯  for small Δ 𝑟௣  is expressed as 𝑟௠௥ᇱ ≃(∂𝐼ை൫𝑟௣൯ ∂𝑟௣ൗ )Δ𝑟௣ = (𝛽 ∂𝑉 ∂𝑟௣⁄ + 𝛼)Δ𝑟௣. Similarly, the differences 𝑟௠ఏᇱ  and 𝑟௠ఝᇱ  are respectively 
calculated as 𝑟௠ఏᇱ ≃ (𝛽 ∂𝑉 ∂𝜃௣⁄ + 𝛼𝑟௣)Δ𝜃௣  and 𝑟௠ఝᇱ ≃ (𝛽 ∂𝑉 ∂𝜑௣⁄ + 𝛼𝑟௣sin𝜃௣)Δ𝜑௣ . We finally 

define a distance 𝑟௠ᇱ  between the point (𝛼𝑐𝐼ை(𝑡 + Δ𝑡), 𝐼ை൫𝑟௣ + Δ𝑟௣൯, 𝐼ை൫𝜃௣ + Δ𝜃௣൯, 𝐼ை൫𝜑௣ + Δ𝜑௣൯) 

and the point (𝛼𝑐𝐼ை(𝑡), 𝐼ை൫𝑟௣൯, 𝐼ை൫𝜃௣൯, 𝐼ை൫𝜑௣൯) in the information coordinate spacetime as 
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(52) 
where g00 , g11 , g22, and g33 are respectively the coefficients of (cΔt)2, (Δ𝑟௣)2, (Δ𝜃௣)2, and (Δ𝜑௣)2. 

These are the diagonal entries of the metric tensor gij of the information coordinate spacetime. If we 

denote (cΔt)2, (Δ𝑟௣)2, (Δ𝜃௣)2, and (Δ𝜑௣)2 by (Δx0)2, (Δx1)2, (Δx2)2, and (Δx3)2 respectively, then 𝑟௠ᇱ ଶ = ∑𝑔௜௜(Δ𝑥௜)ଶ. As an example, 

 ,            (53) 

where 𝐹൫𝑟௣൯ is the force in the conventional coordinate spacetime (described below). This indicates 

that the force 𝐹൫𝑟௣൯ is linked with the deformation of spacetime. 

Relationship between the radial coordinate and information metric 

In the above static setting, the potential 𝑉(𝑡, 𝑟௣,𝜃௣,𝜑௣) can be replaced by the information metric 𝑟 

such that 𝛽𝑉൫𝑡, 𝑟௣,𝜃௣,𝜑௣൯ = 𝑟 2⁄ . Therefore, 𝐼ை൫𝑟௣, 𝑟൯ is represented as 

 ,                           (54) 
where log 𝑍௥ is set to zero, such that 𝐼ை(0,0) = 0 at the origin O. We let the interval of 𝑟௣, 𝑑𝑟௣, be 

small enough such that 𝐼ை൫𝑟௣, 𝑟൯ ≥ 0. In this expression, the information distance between the origin 

O and a point P at the conventional polar coordinate 𝑟௣ and information metric r equals 𝐼ை൫𝑟௣, 𝑟൯. 
The potential at the point P is 𝑉′(𝑟௣, 𝑟) = 𝑉(𝑟௣) + 𝛼𝑟௣/𝛽. Finally, Eq. (54) predicts that there is also 

metric symmetry between 𝑟௣ and 𝑟 in the four-dimensional spacetime. 

Influential force in the four-dimensional information coordinate spacetime 

Within the four-dimensional polar local information coordinate spacetime, the probabilistic 

representation of the influential force ℱ  ʹ is expressed as 

 ,                  (55) 
which is identical to Eq. (45). The attractive force ℱ ʹatt and repulsive force ℱ ʹrep are respectively 

energetic and entropic forces. Here, k1 and k2 are respectively the attractive and repulsive constants. 

Finally, under the conditions ℳ(X) = ℳ(Y) = 1 and k1 = k2 = 1, the basic attractive and basic 

repulsive forces are expressed as 

 ,                      (56, 57) 
which are identical to the expressions in Eq. (46). 
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Constant attractive force in the information coordinate spacetime 

When we employ the information coordinate system, the basic forces within the conventional 

coordinate system are transformed into a new form. The dimensionless potential 𝛷ᇱ(𝐼ை)  in the 

information coordinate spacetime is 𝛷ᇱ(𝐼ை) = 𝛽𝑉′(𝐼ை) = 𝐼ை, in terms of 𝐼ை = 𝐼ை൫𝑟௣, 𝑟൯. Therefore, 

within this particular spacetime, all basic natural forces in the conventional coordinate spacetime are 

transformed into a universal attractive force 𝑭′(𝑰𝑶): 

  ,                     (58) 
where the positive direction is the direction in which the informaton moves away from the origin. This 

is the constant force that operates everywhere in the 𝐼ை-spacetime. Notably, this equation expresses 
both attractive and repulsive forces when the conventional radial coordinate 𝑟௣ is considered as a 

reference. In contrast, when the information coordinate 𝐼ை is used as in the above equation, both 

forces are transformed into an attractive force. Eventually, 𝐹′(𝐼ை) is a symmetric central force with 

a constant magnitude −1 within this polar local information coordinate spacetime. 

Gauge invariance in the information coordinate spacetime 

We now discuss gauge transformations of the basic natural forces in the four-dimensional polar local 

information coordinate spacetime (𝐼ை -spacetime). The equation 𝐹′(𝐼ை) = −1  always holds, and 𝐹′(𝐼ை)  is thus invariant under any gauge transformation as shown below. Let 𝛬  be a gauge 

transformation, let rp1 be the transformed radial coordinate 𝛬rp, and let 𝑉ଵ൫𝑟௣ଵ൯ be the transformed 

potential 𝛬𝑉൫𝑟௣൯. Then, 𝐼ை൫𝑟௣൯ is transformed into 

 ,              (59) 

where 𝑉ଵᇱ൫𝑟௣ଵ൯ = 𝑉ଵ൫𝑟௣ଵ൯ + 𝛼𝑟௣ଵ 𝛽⁄  and 𝑍ଵᇱ = ׬ exp [−𝛽𝑉ଵ(𝑟௣ଵ) − 𝛼𝑟௣ଵ]𝑑𝑟௣ଵஶ଴  . The transformed 

potential 𝛷ᇱ(𝐼ଵ)  in the 𝐼ை-spacetime is thus expressed as 𝛷ᇱ(𝐼ଵ) = 𝛽𝑉ଵᇱ(𝐼ଵ) = 𝐼ଵ– log 𝑍ଵᇱ , and the 

force derived from it is 𝐹′(𝐼ଵ) = −𝑑𝛷ᇱ(𝐼ଵ) 𝑑𝐼ଵ⁄ = 𝐹′(𝐼ை). Thus, 𝐹′(𝐼ை) = −1 is invariant under the 

transformations of all gauge groups, such as U(1), SU(2), SU(3), and O(3, 1). In conclusion, 𝐹′(𝐼ை) 

is a universal gauge force that arises from these general gauge symmetries. These observations 

highlight an important and unusual aspect of the information coordinate spacetime. 

Equation (58) also implies that the potential 𝛷ᇱ(𝐼ை) is a gauge potential. In general, gauge 

potentials have degrees of freedom that allow gauge transformations. Indeed, the potential 𝛷ᇱ(𝐼ை) 

has degrees of freedom derived from those of 𝑉(𝑥), which is a gauge field in the conventional 

spacetime (𝑥-spacetime). Given that 𝑉(𝑥) = −kBT logℱ, the influential force ℱ in the information 

metric spacetime (𝑟-spacetime) is associated with 𝛷ᇱ(𝐼ை) as the source of degrees of freedom. This 

indicates that there is a close interconnection between 𝐹′(𝐼ை) in the 𝐼𝑂-spacetime and ℱ in the 𝑟-
spacetime. 
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Mechanistic force and probabilistic force 

In addition to the above relationships, the constant force 𝐹′(𝐼ை) = −1  can be connected to the 

probabilistic influential force ℱ  ʹ in the 𝐼𝑂-spacetime. Let us consider the potential difference 𝛷′ௗ 
between the origin O and a point P with radial coordinates of 𝐼ை(0,0) = 0 and 𝐼ை൫𝑟௣, 𝑟൯ = 𝐼ை , 

respectively. In this case, 𝛷′ௗ = 𝛷ᇱൣ𝐼ை൫𝑟௣, 𝑟൯൧ − 𝛷ᇱ[𝐼ை(0,0)] = 𝐼ை൫𝑟௣, 𝑟൯ − 𝐼ை(0,0) = 𝐼ை . The 

probability density function of 𝛷′ௗ is expressed as 𝑝(𝛷′ௗ)  = 𝑒ିூೀ. Considering that this expression 

is identical to that of the basic attractive force ℱ ʹatt = 𝑒ିூೀ  given as Eq. (56), we regard that 𝑭′(𝑰𝑶) 

is an equivalent of, and is a mechanistic representation of, the probabilistic attractive force ℱ ʹatt . 

The attractive influential force ℱ ʹatt is a Slater-type function that represents the bidirectional 

transition amplitude between two informatons along the least-action path. The propagator in the four-

dimensional polar local information coordinate spacetime (𝐼𝑂-spacetime) can be derived from that in 
the one-dimensional conventional coordinate spacetime (𝑥-spacetime) given as Eq. (47). The path 

integral of exp(𝑖𝐼ை) from the origin O with the radial coordinate 𝐼ை(0,0) = 𝐼ைᇱ = 0 at 𝑡 = 0 to the 

point P with 𝐼ை൫𝑟௣, 𝑟൯ = 𝐼ை at 𝑡 = 𝑡 is given by the least-action principle as 

 ,                  (60) 
where 𝐷𝐼ை  indicates the path integral in the 𝐼𝑂 -spacetime. Again, we introduce the bidirectional 

propagator 𝐾௜௡௙൫𝐼𝑂, 𝐼𝑂′; 𝑡൯ ∶= ൣ𝐾൫𝐼𝑂, 𝐼𝑂′; 𝑡൯൧ଶ. The basic attractive force ℱ ʹatt is then written as 

 .                        (61) 

The information distance 𝐼𝑂 equals the shortest path length and is derived as 

 .                           (62) 
This equation directly relates 𝐼ை to the path integral formalism in the 𝐼𝑂-spacetime, where the path 
integration is performed over the whole space. Regarding the propagator 𝐾௜௡௙(𝐼ை, 𝐼′ை; 𝑡) , it is 

noteworthy that its phase angle, potential, and path length all have the same single value, 𝐼ை. Moreover, 

this coherence is conserved among all four natural forces. In summary, the constant mechanistic force 𝐹ᇱ(𝐼ை) = −𝑑Φ′(𝐼௢) 𝑑𝐼௢⁄ = −1 is derived from this remarkable uniformity. 

The main difference between 𝐹′(𝐼ை) and conventional natural forces is that the strengths of most 

of the latter follow an inverse-square law. This law is explained as the dilution effect of point-source 

radiation into a three-dimensional sphere whose surface area is proportional to the square of its radius. 

In contrast, 𝐼ை and its equivalence 𝛷ᇱ(𝐼ை) are derived from the shortest path length described above, 

where the path integral is determined in view of the diffusion effect over the entire space. Moreover, 𝛷ᇱ(𝐼ை) = 𝐼ை = 𝛼𝑟௣ + 𝑟 2⁄  is invariant irrespective of the four-dimensional path lengths, 𝑟௣ and 𝑟. 

The three-dimensional dilution effect thus no longer needs to be considered in obtaining 𝐹′(𝐼ை). 
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Uniform description of natural forces 

We again use x instead of rp to deal with the conventional coordinate spacetime (𝑥-spacetime). From 

the gauge force 𝐹′(𝐼ை) in the information coordinate spacetime (𝐼ை-spacetime), we derive a general 

force 𝐹(𝑥) in the 𝑥-spacetime as 𝐹(𝑥) = −𝜕𝑉(𝑥) 𝜕𝑥⁄ = 𝑘஻𝑇[𝛼 + 𝐹′(𝐼ை) · 𝜕𝐼ை(𝑥) 𝜕𝑥⁄ ] . In other 

words, 𝐹(𝑥) originates from 𝑉(𝑥), representing all the natural force potentials in the 𝑥-spacetime. 

In turn, 𝑉(𝑥)  is derived from the mechanistic influential force 𝐹′(𝐼ை)  in the 𝐼ை -spacetime. 

Moreover, the versatility of 𝐹(𝑥) is consistent with the universality of the influential force, which 

has been deduced from Eq. (23). In summary, the observable force 𝐹(𝑥)  in the 𝑥 -spacetime 

represents all four basic forces and is essentially an expression of the mechanistic influential force 𝐹′(𝐼ை) in the 𝐼ை-spacetime. 

On the basis of the above discussions, we can describe all the natural interactions in terms of 

information transmission. When 𝑉(𝑥) is a static potential, Δ𝑉(𝑥) = −𝑘஻𝑇ΔMI according to Eq. 

(A14). Then, 

.                          (63) 

This formula demonstrates that all the natural forces are uniformly described with MI. Together with 

the universal gauge symmetry explained by the influential force 𝐹′(𝐼ை), and with the equivalence 

between 𝐹′(𝐼ை) and 𝐹(𝑥), this equation provides a plausible description of a Unified Theory. This 

concept would serve as a basis for expanding our knowledge of the relationship between energy, 

information, and the universe. The following section focuses on the mechanistic aspect of the 

influential force, whereby we discuss the manner in how informatons are forced to move under the 

influential force. 

 

(d) Motion generated by the influential force 

This section considers the motion generated by the influential force ℱ ʹ. ℱ ʹ in the information 

coordinate spacetime is determined by 𝐼ை = 𝛼𝑥 + 𝑟/2, and the motion is thus characterized by 𝐼ை 

and its relationship with 𝑥  and 𝑟 . We here describe several equations of motion using different 

coordinates. We then demonstrate that ℱ ʹ is a ‘mechanistic force’ in terms of the probability 𝑝, and 

that it plays a pivotal role in various physical systems. We finally discuss the significance of the 

repulsive force. 

Uniform acceleration in the information metric spacetime 

We first discuss the relationship between a uniform acceleration in the information metric spacetime 

(𝑟 -spacetime) and motion in the conventional coordinate spacetime (𝑥 -spacetime). Let 𝑟  be the 
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information metric of two informatons and 𝑟(0)  be its initial value. Let 𝑥  be the conventional 

distance between the bodies in the conventional spacetime and 𝑥(0) be its initial value. We here 

consider the case in which the internal energy U is approximated by the potential energy 𝑉. We then 

have 𝑑𝑉 ≃ 𝑑𝑈 = ଵଶ 𝑘஻𝑇𝑑𝑟. Thus, 

                (64) 
This equation indicates that 𝑟 and 𝑥 have a linear relationship. If we let αinf (< 0) be the acceleration 

in the 𝑟-spacetime, then 

,         (65) 
where m is the reduced mass in the 𝑥-spacetime. The right-hand equation shows that the motion in 

the 𝑟-spacetime also generates the motion of uniform acceleration in the 𝑥-spacetime. This motion 

resembles that in classical mechanics under constant gravitational and electromagnetic forces. 

Equation of motion along the 𝒓-axis in the information metric spacetime 

We next examine the more general movement in the information metric spacetime (𝑟-spacetime). We 

derive Newton’s equation of motion from Lagrange’s equation of motion in this spacetime. Let 𝑉 be 

the potential difference between the informatons. The change in the Lagrangian 𝑑ℒ of an informaton 

is represented as 𝑑ℒ = 𝑑𝑇௄ − 𝑑𝑉 , where 𝑑𝑇௄  and 𝑑𝑉  are respectively changes in the kinetic 

energy and potential energy. We here consider only static settings, such as the static potential 

generated by mediator particles. Then, as in the preceding case, 𝑑𝑇௄ is negligible relative to 𝑑𝑉. The 

change in the information metric becomes 𝑑𝑟 = 2𝛽(𝑑𝑉 + 𝑑𝑇௄) = 2𝛽𝑑𝑉. We then have 

 ,                    (66) 

where m is the reduced mass of the informaton. Substituting this expression into Lagrange’s equation 

of motion 𝑑 𝑑𝑡⁄ [∂ℒ ∂(𝑑𝑟/𝑑𝑡)⁄ ] − ∂ℒ ∂𝑟⁄ = 0, we derive Newton’s equation of motion as 

 ,                      (67) 

where Fr is the force in the 𝑟-spacetime along the 𝑟-axis. This equation demonstrates that Fr in the 𝑟-spacetime is constant, as is the case for the mechanistic attractive force 𝐹′(𝐼ை) in the information 

coordinate spacetime (𝐼ை-spacetime) [Eq. (58)]. Conversely, Fr is related to ℱatt by 

 .                    (68) 

Thus, a body in the 𝑟 -spacetime moves under the constant force Fr, which is derived from the 

attractive force ℱatt. This results in uniform acceleration toward the origin, which leads to uniform 

acceleration also in the conventional coordinate spacetime (𝑥-spacetime), as mentioned above. 
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We finally extend Eq. (68) with ℱ = ℱatt − ℱrep. Let r be the information metric of two informatons 

G1 and G2, and let their information masses be ℳ(G1) and ℳ(G2), respectively. The macroscopic 

equation of motion is then described using the information metric 𝑟 as 

   (69) 

In this paper, if the antilogarithm is negative, then the logarithm is interpreted as that of the absolute 

value of the antilogarithm. The above equation expresses the direction and magnitude of Fr along the 𝑟-axis, which is derived from the influential force ℱ. 

Equation of motion along the 𝒑-axis in the information metric spacetime 

In addition to motion along the 𝑟-axis, we consider movement in terms of the probability density 𝑝. 

When the system follows the canonical distribution for the potential difference 𝑉, the informatons 

move in the direction in which 𝑝 increases. We formulate another equation of motion by performing 

a coordinate transformation from 𝑟 to 𝑝 (Appendix 1). As described in Appendix 22, the probability 

density of MI becoming MI, 𝑝(𝑀𝐼), should be balanced with that of the potential difference, 𝑝(𝑉); 

that is, 𝑝 = exp(−𝑀𝐼) = exp(−𝛽𝑉) 𝑍⁄ . Thus, 𝑑𝑉 = −𝑑𝑝 (𝛽𝑝)⁄ . We have 

 .                   (70) 

We now apply Lagrange’s equation of motion 𝑑 𝑑𝑡⁄ [∂ℒ ∂(𝑑𝑝/𝑑𝑡)⁄ ] − ∂ℒ ∂𝑝⁄ = 0 . Given that 𝑝ିଵ = 𝑝(𝑀𝐼)ିଵ = ℱatt [Eqs. (A5, A6)], we obtain an equation of motion of Newton’s type as 

 ,                     (71) 
where Fp is the force in the information metric spacetime (𝑟-spacetime) in terms of the probability. 

While ℱatt increases the relative probability of information transmission as a probabilistic force, the 

above equation shows that ℱatt can also be regarded as a mechanistic force acting along the 𝑝-axis. 

This notion supports the previous discussion in Section (c) that the influential force can be formulated 

from both probabilistic and mechanistic points of view. 

We further extend Eq. (71) with ℱ = ℱatt − ℱrep. We employ the same parameters used for Eq. 

(69). In this case, the equation of motion is written using the probability density 𝑝 of information 

transmission as 

 .            (72) 
This equation expresses the direction and magnitude of the force Fp acting along the 𝑝-axis, which is 
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derived from the influential force ℱ. The two formulas for Fr and Fp complement each other and 

together indicate the motion of informatons in the 𝑟-spacetime for a canonical distribution. 

In summary, the influential force ℱ increases the probability of information transmission between 

physical informatons, which generates the mechanistic force in the conventional coordinate spacetime 

(𝑥-spacetime). The force 𝐹(𝑥) in the 𝑥-spacetime is then related to ℱ in the 𝑟-spacetime by 

 .                      (73) 
Thus, as a mechanistic force acting along the 𝑝-axis, ℱ becomes the common source of physical forces 

in our spacetime. Furthermore, the probability is a general measure, and the influential force ℱ thus 

acts in a wide variety of systems other than physical systems, as discussed in later sections. 

Equation of motion along the 𝑰𝑶-axis in the information coordinate spacetime 

We next derive equations of motion in the information coordinate spacetime (𝐼ை-spacetime), where 

the conventional distance 𝑥 and the information metric 𝑟 together constitute a unified coordinate 𝐼ை 

according to 𝐼ை = 𝛼𝑥 + 𝑟/2. With the probabilistic influential force ℱ ʹ = ℱ ʹatt − ℱ ʹrep, we write a 

mechanistic equation of motion of Newton’s type as 

     (74) 
which is the same as Eq. (69) for Fr, except that 𝐼ை is used instead of 𝑟. This equation is an extension 

of 𝐹ᇱ(𝐼ை) = −𝑑𝛷ᇱ(𝐼଴) 𝑑𝐼଴⁄ = −1 [Eq. (58)] in that it also contains a repulsive term. 

We here rewrite the preceding equations using the attractive and repulsive terms. We set ℳ(X) = 

ℳ(Y) = 1 and k1 = k2 = 1 so that the mechanistic influential force potential 𝛷ᇱ(𝐼ை) at the origin is 

zero. The probabilistic forces ℱ ́ att and ℱ ́ rep then express the basic attractive force 𝑒ିூೀ and the basic 

repulsive force 𝑒ିଶூೀ, respectively. 𝛷ᇱ(𝐼ை) is now rewritten as 

 ,                      (75) 
where 𝛷௔௧௧ᇱ (𝐼ை) =  logℱ ʹatt = −𝐼ை  and 𝛷௥௘௣ᇱ (𝐼ை) = −  logℱ ʹrep = 2𝐼ை  are respectively the basic 

attractive and basic repulsive potentials. Meanwhile, 𝑘ଵᇱ  and 𝑘ଶᇱ  are respectively the attractive and 

repulsive coefficients. As detailed later in this chapter, 𝑘ଶᇱ  is statistically determined as 

 ,                                (76) 
where 𝑁 is the total number of bodies in the system, and 𝑘଴ᇱ  is the coefficient for a two-body system. 

The mechanistic influential force 𝐹ᇱ(𝐼ை) is also rewritten using the above 𝑘ଵᇱ  and 𝑘ଶᇱ  as 

 ,                      (77) 
where 𝐹௔௧௧ᇱ (𝐼ை)  and 𝐹௥௘௣ᇱ (𝐼ை)  are respectively the basic attractive and basic repulsive forces. 
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𝐹௔௧௧ᇱ (𝐼ை) was previously denoted 𝐹ᇱ(𝐼ை)  and is a mechanistic representation of the probabilistic 

attractive force ℱ ʹatt. It is a constant attractive force acting toward the origin: 

 .            (78) 
This is universally invariant upon gauge transformations, which allows the representation of all basic 
forces. While 𝐹௔௧௧ᇱ (𝐼ை)  is an energetic attractive force, 𝐹௥௘௣ᇱ (𝐼ை)  is an entropic repulsion acting 

against 𝐹௔௧௧ᇱ (𝐼ை)  and is a mechanistic representation of the probabilistic repulsive force ℱ ʹrep. 𝐹௥௘௣ᇱ (𝐼ை) is a constant repulsive force acting from the origin: 

 .            (79) 
This is again universally invariant upon gauge transformations, which suggests a certain generality of 𝐹௥௘௣ᇱ (𝐼ை), as will be discussed later. 

Equation of motion along the 𝒑-axis in the information coordinate spacetime 

As in the 𝑟-spacetime, another equation of motion is derived in the 𝐼ை-spacetime through a coordinate 

transformation from 𝐼ை  to 𝑝 (Appendix 1). We consider that MI tends to zero when 𝐼ை  → ∞. Then, 

the probability density of MI being MI, 𝑝(𝑀𝐼), should balance with the probability density of the 

information distance, 𝑝(𝐼ை); that is, 𝑝 = exp(−𝑀𝐼) = exp(−𝐼ை). We thus have 

 ,            (80) 
where 𝐹௉ᇱ(𝐼ை) is the force in the 𝐼ை-spacetime in terms of probability of information transmission. 𝐹ᇱ(𝐼ை) and 𝐹௉ᇱ(𝐼ை) together indicate the motion of informatons within this specific spacetime. 

Despite this complementarity, however, 𝐹௉ᇱ(𝐼ை) = ℱ ʹ demonstrates that the influential force ℱ ʹ is 

originally the mechanistic force 𝐹௉ᇱ(𝐼ை) acting along the 𝑝-axis and drives to increase the probability 

of the information transmission. Accordingly, ℱ ʹ is related to the observable force 𝐹(𝑥) within the 

conventional coordinate spacetime (𝑥-spacetime) by 

 ,                         (81) 
which includes the term 𝛼, representing the effect of mediator particles. This equation is identical to 

Eq. (73) when 𝛼 tends to zero, and these equations together imply the critical role of probability in 

physics. Given the universality of the probability, this leads to an understanding that all the bodies in 

the universe move under the influential force ℱ ʹ = 𝐹௉ᇱ(𝐼ை) of probability. 

In addition to the force ℱ ʹ, the probabilistic influential force potential 𝝋′(𝑰𝑶), which is an 

integration of ℱ ʹ, is a mechanistic potential along the 𝑝-axis. When the metric symmetry is applied, 𝜑′(𝐼ை) takes shape as real potentials in both the 𝑟-spacetime and 𝑥-spacetime. In summary, the 

influential force ℱ ʹ resides in the 𝐼ை-spacetime, where it exhibits its most distinctive properties. 



30 
 

Attractive and repulsive forces in the information coordinate spacetime 

The configuration of the mechanistic influential force 𝐹ᇱ(𝐼ை) comprises both the attractive force 𝐹௔௧௧ᇱ (𝐼ை) and repulsive force 𝐹௥௘௣ᇱ (𝐼ை). As described in the next section, 𝐹ᇱ(𝐼ை) is well compatible 

with physicochemical interactions, such as the Morse oscillator (MO) potential. In addition to these 

composite forces, the basic natural forces are assigned to 𝐹௔௧௧ᇱ (𝐼ை). However, whether there exists a 

repulsive force that counteracts these basic natural forces is unknown. We here discuss the need to 
consider a repulsive force associated with the basic forces. We suggest that this particular 𝐹௥௘௣ᇱ (𝐼ை) 

can be measured by paying attention to its statistical properties. 

Two major problems arise as important consequences of the attractive force 𝐹௔௧௧ᇱ (𝐼ை). First, as 

Einstein anticipated, a universal attractive force should contract the universe and lead to its collapse. 

This assumption also applies to the 𝐼ை -spacetime because the information distance 𝐼ை  is 

macroscopically equivalent to the conventional distance 𝑥. While Einstein introduced a cosmological 

constant that counteracts gravity, recent studies have shown that 68% of the mass-energy density of 

the universe can be attributed to “dark energy” [29], a cosmological repulsive force. 

Second, from an information theoretical point of view, attractive motion under the effect of 𝐹௔௧௧ᇱ (𝐼ை) will reduce the entropy of a system by ∆𝐼ை൫𝑟௣, 𝑟൯ because of information transmission. We 

emphasize that the energy transfer is coupled with the sharing of information as ∆MI = −∆𝐼ை, which 

decreases the joint entropy, such that ∆S(G1,G2) = 𝑘஻[H(G1) + H(G2) − ∆MI] for two informatons, G1 

and G2. Therefore, at least locally, all the fundamental forces appear to act against the second law of 

thermodynamics. It is then expected that a repulsive force will be generated to restore the joint entropy. 
Taken together, these two issues strongly suggest the existence of a universal repulsive force 𝐹௥௘௣ᇱ (𝐼ை) 

that opposes 𝐹௔௧௧ᇱ (𝐼ை). 

Despite the indications of 𝐹௥௘௣ᇱ (𝐼ை), however, the existence of 𝐹௥௘௣ᇱ (𝐼ை) is not consistent from 

system to system. 𝐹௥௘௣ᇱ (𝐼ை) is evident in some physicochemical interactions (e.g., interatomic and 

intermolecular forces). However, 𝐹௥௘௣ᇱ (𝐼ை) acting against the four basic forces (e.g., antigravity) has 

not been identified. In clarifying these contradictory observations, it is noted that there is a statistical 
difference among the systems because 𝐹௥௘௣ᇱ (𝐼ை) reflects a statistical tendency to increase the entropy. 

We propose that the inconsistency between systems can be explained by considering the number 𝑁 

of information-sharing bodies in each statistical ensemble. 

Two-body system and many-body system 

In the first category mentioned above, the systems typically comprise only two bodies, as exemplified 

by the MO and the dispersion force. It could be regarded that these systems are virtually isolated from 
the rest of the universe in terms of information transmission. 𝐹௥௘௣ᇱ (𝐼ை) results from the statistical 
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tendency of the whole system, and it thus most typically emerges within such isolated systems with 𝑁 = 2 bodies, in which the two informatons share the repulsive information. 

As an example of the two-body system, we discuss the Higgs field later in this chapter. We argue 

that the Higgs field is an excellent example of the influential force field in that it is expressed by 𝜑′(𝐼ை) and comprises both the attractive and repulsive terms. We then show that this field is an 
equivalent of the gravitational field. 𝐹௥௘௣ᇱ (𝐼ை) acting against 𝐹௔௧௧ᇱ (𝐼ை) in this case is thus antigravity. 

However, this repulsive force has a very short effective range, which has allowed its evasion from 

investigations. 

In the second category, the basic forces act within systems comprising a large number 𝑁 of 

bodies (e.g., the universe). The change in entropy ΔH(G1) becomes shared by the many bodies in the 

system. This particular information sharing occurs through a mechanism detailed in the “Many-body 

system” section. When H(G1) is decreased by Δ𝐼ை(G1, G2) upon information transmission with G2, the 

information distances between G1 and the other bodies tend to expand to restore H(G1). The metric 

symmetry then works and expands the conventional distances between bodies. The average repulsion 

at each interaction is then proportional to 1 (𝑁 − 1)⁄ . 

Description of the composite force 𝑭ᇱ(𝑰𝑶) 

We finally revisit the equation for 𝐹ᇱ(𝐼ை). Given the uncertainty regarding the consistent existence of 

the repulsive force, we use coefficients 𝑘ଵᇱ  and 𝑘ଶᇱ  to describe the composite force 𝐹ᇱ(𝐼ை) as 

 ,                     (82) 

where 𝑘ଶᇱ  is the statistical factor that expresses the average degree of shared information distributed 

to each informaton. Specifically, in a two-body system, 𝑘ଶᇱ  takes its maximum value. Conversely, in 

the many-body system with a very large number 𝑁  of bodies, 𝑘ଶᇱ  becomes 1 (𝑁 − 1)⁄  of the 

maximum value, which is almost zero. 𝑘ଶᇱ  is thus determined as 

 ,                              (83) 
where 𝑘଴ᇱ  is the coefficient for the two-body system. 

Regarding the interatomic and intermolecular forces acting between two bodies, 𝑘ଵᇱ  and 𝑘ଶᇱ  vary 

with distance, and 𝐹ᇱ(𝐼ை) thus changes with 𝐼ை . Conversely, concerning the basic forces, 𝑘ଵᇱ  is 

constant while 𝑘ଶᇱ ≃ 0. Regarding the whereabouts of the repulsive force, we will find an answer in 

the section “Many-body system,” and this answer possibly explains the origin of dark energy. In 
summary, despite being unfamiliar to most scientists, the repulsive force 𝐹௥௘௣ᇱ (𝐼ை) is present in almost 

every case, which suggests the universality of the entropic repulsion counteracting the energetic 

attractive force 𝐹௔௧௧ᇱ (𝐼ை). 
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(e) Influential force and quantum oscillators 

The influential force ℱ ʹ is a superposition of Slater-type functions ℱ ʹatt and ℱ ʹrep in the 𝐼ை-spacetime. 

In this canonical spacetime, the radial coordinate 𝐼ை is symmetric with respect to the origin, where 
the potential 𝛷ᇱ(𝐼ை)  is also symmetric such that 𝐹௔௧௧ᇱ (𝐼ை) = −1 and 𝐹௥௘௣ᇱ (𝐼ை) = 2 are constant. 

This symmetry in the potential leads one to assume that ℱ ʹ is associated with quantum oscillators. 

Moreover, given that ℱ ʹ is involved in the generation of physical forces, it is natural that ℱ ʹ is closely 

linked to the essential constituents of spacetime. In this connection, many of those constituents (i.e., 

quantum fields [30] and superstrings [8]) are composed of harmonic oscillators. Here, we suggest that 

ℱ ʹ likely represents an anharmonic oscillator comprising the superposition of harmonic oscillators. 

Accommodating coordinate system 

At the subatomic level, the effect of the dimensionless potential 𝛽𝑉(𝑥) far exceeds that of the 

conventional distance 𝛼𝑥. We then have 𝐼ை = 𝛼𝑥 + 𝑟/2 ≃ 𝑟/2, where 𝑟/2 = 𝛽𝑉(𝑥) in the above 

static setting. For now, we tentatively assume that ℱ ʹ in the 𝐼ை-spacetime equals ℱ in the information 

metric spacetime (𝑟-spacetime). In this situation, on the basis of the ubiquitous nature of harmonic 

oscillators, we discuss the possibility that ℱ ʹ has connections with such oscillators. We thus assume 

that a mass point with mass m performs a harmonic oscillation with angular frequency ω and the origin 

at the center of the conventional coordinate spacetime (𝑥-spacetime). The oscillator potential 𝑉(𝑥) is 

proportional to the square of the conventional distance x, while the information metric r is proportional 

to 𝑉(𝑥). Then, ℱ can be linked to 𝑟 ∝ 𝑉(𝑥) ∝ 𝑥ଶ in any energy state. 

We begin by considering the ground state of the harmonic oscillators. The wave function 𝜙଴(𝑥) 

in the 𝑥-spacetime is then expressed as 

 .                       (84) 
If we set 𝑟 = 𝜋𝑚𝜔𝑥ଶ (�́�ℎ)⁄  and k1ℳ(G1)ℳ(G2) = (2𝑚𝜔 ℎ⁄ )ଵ ସ⁄ , then ℱatt = 𝜙଴(𝑥). Meanwhile, 

because ℱrep ∝ (ℱatt)2, ℱrep can be expressed as another wave function 𝜙෨଴(𝑥) of a harmonic oscillator 
with angular frequency 2ω: 

 .                     (85) 

We additionally set k2[ℳ(G1)ℳ(G2)]2 = (4𝑚𝜔 ℎ⁄ )ଵ ସ⁄ . We then have ℱrep = −𝜙෨଴(𝑥). Thus, 

 .                      (86) 

This suggests a new point of view regarding the properties of the influential force ℱ in the 𝑟-spacetime. 

That is to say, ℱ can be expressed as the difference between ground-state wave functions of harmonic 

oscillators in the 𝑥-spacetime. In addition, because the oscillators 𝜙଴(𝑥) and 𝜙෨଴(𝑥) have different 
angular frequencies, ℱ represents an anharmonic oscillator in the ground state. Thus, the possible 

relationship between ℱ and the harmonic oscillators conforms to our initial assumption. 
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Oscillators in the information metric spacetime 

Despite the consistency with the original model, the influential force ℱ described until now does not 

represent oscillators in the higher energy states. Hence, to meet the wider configurations of wave 

functions in the information metric spacetime (𝑟-spacetime), we extend the format of the influential 

force ℱ. Generally, in the n-th excited state, the wave function 𝜙௡(𝑥) of the harmonic oscillator is 

expressed as 𝜙௡(𝑥) = 𝐴௡𝐻௡(𝜉)exp(−𝜉ଶ 2⁄ ) , where 𝜉 = (2𝜋𝑚𝜔 ℎ⁄ )ଵ ଶ⁄ 𝑥  and 𝐴௡ =(2𝑚𝜔)ଵ ସ⁄ ൣ2௡ ଶ⁄ (𝑛!)ଵ ଶ⁄ ൧ൗ . 𝐻௡(𝜉)  is the Hermite polynomial defined as 𝐻௡(𝜉) =(−1)௡exp(𝜉ଶ)(𝑑௡ 𝑑𝜉௡⁄ )[exp(−𝜉ଶ)] . In this case, 𝜉  is the dimensionless form of conventional 

coordinate 𝑥, and 𝑟 = 𝜉ଶ (2�́�)⁄ . If we set �́� = 1 2⁄  as has been the default in this paper, then 

 .                                  (87) 

Therefore, the information metric 𝑟 can be set to coincide with the square of the dimensionless 

coordinate 𝜉 , which supports a close relationship between the 𝑟 -spacetime and conventional 

coordinate spacetime (𝑥-spacetime). Using this relationship, ℱatt in energy state n is defined as 

 .                   (88) 
Meanwhile, ℱrep in energy state n is determined as another wave function 𝜙෨௡(𝑥) of a harmonic 
oscillator with angular frequency 2ω as 

 .                   (89) 

Together, ℱ in any state n is represented as 

 .                     (90) 
This is an extended definition of the so-far-described influential force ℱ in the 𝑟-spacetime. Although 

the definition involves a set of wave functions in excited states, the above arguments for the ground 

state also hold. Thus, considering the coupling between 𝑟 and 𝜉, it is plausible that ℱ represents an 

anharmonic oscillator as the superposition of harmonic oscillators in the 𝑥-spacetime. 

By integrating Eq. (86) with respect to 𝑟, the probabilistic influential force potential 𝜑(𝑟) is 

written in a decomposed form as 

 ,                 (91) 
where 𝜑௔௧௧(𝑟) and 𝜑௥௘௣(𝑟) are respectively the attractive and repulsive terms of 𝜑(𝑟). In turn, 𝜑(𝑟) is determined by 𝑉(𝑥) = 𝑚𝜔ଶ𝑥ଶ 2⁄  and is applied to all energy states despite the extension of 

the formalism for ℱ. This further supports the correspondence between ℱ and the symmetric parabolic 

potential 𝑉(𝑥) in the 𝑥-spacetime. In summary, the above findings suggest that ℱ represents an 

anharmonic oscillator of information in the 𝑟-spacetime, which can be related to the anharmonic 

oscillator in the 𝑥-spacetime via the coordinate transformation between 𝑟 and 𝑥. 
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Oscillators in the information coordinate spacetime 

We return to the discussion on the influential force ℱ ʹ in the information coordinate spacetime (𝐼ை-

spacetime). We here consider the effect of the conventional distance 𝛼𝑥 within the dimensionless 

potential 𝐼ை = 𝛼𝑥 + 𝑟/2. Now, by replacing 𝑟/2 with 𝐼ை, the above equations in the information 

metric spacetime (𝑟-spacetime) can be transformed into their counterparts in the 𝐼ை-spacetime: 

                (92) 
and 

 .               (93) 
Together, ℱ ʹ in energy state n is represented as 

 .                     (94) 

This is an extended definition of the influential force ℱ ʹ in the 𝐼ை -spacetime. This formula 

demonstrates that ℱ ʹ also represents an anharmonic oscillator, which is approximately equal to the 

superposition of harmonic oscillators in the conventional coordinate spacetime ( 𝑥 -spacetime). 

Moreover, the probabilistic influential force potential 𝜑′(𝐼ை) in the 𝐼ை-spacetime is defined as 

 ,              (95) 
where 𝜑௔௧௧ᇱ (𝐼ை) and 𝜑௥௘௣ᇱ (𝐼ை) are respectively the attractive and repulsive terms of 𝜑′(𝐼ை). Again, 𝜑′(𝐼ை)  is approximately equal to 𝜑(𝑟) , which corresponds to an anharmonic oscillator. These 

formulas demonstrate the close relationship between ℱ ́  in the 𝐼ை-spacetime and ℱ in the 𝑟-spacetime, 

which is in turn tightly coupled to the anharmonic oscillator in the 𝑥-spacetime. 

Despite the preceding argument, however, the transformed formulas in the 𝐼ை-spacetime are no 

longer exactly equivalent to their parental formulas in the 𝑟 -spacetime. This is because the 

transformation equation 𝐼ை = 𝛼𝑥 + 𝑟/2 has the term 𝛼𝑥, which represents the action of mediator 

particles. As far as the subatomic scale is considered, 𝛼𝑥 ≪ 𝑟/2. Nevertheless, 𝛼𝑥 is essential to 
preserve the potential symmetry of 𝛷௔௧௧ᇱ (𝐼ை)  and 𝛷௥௘௣ᇱ (𝐼ை) , which underlies the constant forces 𝐹௔௧௧ᇱ (𝐼ை) = −1 and 𝐹௥௘௣ᇱ (𝐼ை) = 2. The gauge invariance comes from this symmetry, and it is thus 

conceivable that oscillation occurs under 𝛷ᇱ(𝐼ை) in the 𝐼ை-spacetime but not under 𝑉(𝑥) in the 𝑥-

spacetime. Therefore, it is suggested that the oscillation in the 𝑥-spacetime is an extremely close 

approximation to that in the 𝐼ை-spacetime, which signifies the priority of the 𝐼ை-spacetime. 

In contrast, when the supra atomic scale is considered, 𝛼𝑥 ≫ 𝑟/2 becomes true as 𝑥 increases, 

which makes the contribution of 𝑟/2 negligible. Then, 𝐼ை = 𝛼𝑥 is substantially accurate, and a vast 

discrepancy between ℱ ʹ and ℱ arises. In this case, however, the metric symmetry becomes apparent. 

Because 𝜑ᇱ(𝐼ை) = 𝜑′(𝛼𝑥)  is a function of the conventional coordinate 𝑥 , 𝜑ᇱ(𝐼ை)  after all 

represents an anharmonic oscillator in the 𝑥-spacetime. Once again, this implies the priority of the 𝐼ை-spacetime, which is corroborated in the following subsections. 
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Metric symmetry and oscillators 

To demonstrate the validity of our model, we provide evidence that supports the concept of metric 

symmetry. The probabilistic influential force potential 𝜑ᇱ(𝐼ை) in the 𝐼ை-spacetime is a function of 𝐼ை(𝑥, 𝑟): 

 ,              (96) 
which is suggested to represent an anharmonic oscillator. Here, the first term and second term on the 
right-hand side respectively correspond to 𝜑′௔௧௧(𝐼ை) and 𝜑′௥௘௣(𝐼ை). The equation 𝐼ை(𝑥, 𝑟) = 𝛼𝑥 +𝑟/2 is linear with respect to both 𝑟 and 𝑥, and these coordinates thus contribute to the potential 𝜑ᇱ(𝐼ை) in a similar fashion. A physical formula concerning the potential 𝜑ᇱ(𝐼ை) would therefore 

have a symmetrical appearance with regard to 𝑟  and 𝑥 ; that is, these variables are apparently 

interchangeable. The two examples below show that this metric symmetry is expected to work between 

the equations that represent related but distinct phenomena. In contrast, for harmonic oscillators 

satisfying 𝑟 ∝ 𝑥ଶ, the identical phenomenon can be described by either 𝑟 or 𝑥 but with different 

formulas, where the metric symmetry does not hold. 

We here present examples that illustrate this symmetry, thereby demonstrating the existence of a 

group of related oscillators in the 𝑟-spacetime and 𝑥-spacetime. In the first place, the probabilistic 

influential force potential 𝜑(𝑟) in the 𝑟-spacetime is described as 

 ,              (97) 
which can be written as 

  
(98) 

(Fig. 2). We then examine the metric symmetry described above to find the correspondence of 𝜑(𝑟). 

We substitute 𝑥 for 𝑟 instead of using the aforementioned relation 𝑟 = 𝜋𝑚𝜔𝑥ଶ (�́�ℎ)⁄ . If we adopt 

the replacements of 𝜑(𝑟) as 𝑟 = 𝑥, 𝑘ଵଶ (2�́�𝑘ଶ)ൗ = 𝐷 and H(X) + H(Y) + 1 �́�⁄ log(𝑘ଶ 𝑘ଵ⁄ ) = 𝑥௘, 
then the MO potential 𝑉ெ(𝑥) [31] for a diatomic molecule is obtained as 

 ,               (99) 

where D is the dissociation energy and xe is the equilibrium distance (Appendix 4). This implies a 

formal connection between the probabilistic influential force potential 𝜑(𝑟) in the 𝑟-spacetime and 

the MO potential 𝑉ெ(𝑥)  in the 𝑥 -spacetime; that is, 𝜑(𝑟) = 𝑉ெ(𝑥) . The observed symmetry 

suggests that the MO potential and 𝜑(𝑟)  have the same background; that is, the probabilistic 

influential force potential 𝜑ᇱ(𝐼ை) in the 𝐼ை-spacetime. 
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Figure 2 | Influential force potential and gas molecules. a, Information metric r of two informatons G1 
and G2 under the influential force. r represents an anharmonic oscillation around the equilibrium metric 
re. b, Influential force potential φ(r) conforming to the Morse potential V(x) between the two nuclei in a 
hydrogen molecule. c, d, Potential energy between helium atoms for a short (c) and a wide (d) range of 
interatomic distances. The influential force potential (blue line) fits the reported potentials (purple [32] 
and yellow [33] circles) better than the Lennard–Jones potential (red). 

In addition to the above relevance to 𝜑(𝑟), the MO has universality in that its wave function is 

related to that of the two-dimensional isotropic harmonic oscillator (2DIHO) [34]. Here, x is used as 

the coordinate of the conventional distance spacetime, while 𝑟′ is used as that of the radial component 

of the canonical coordinates of the 2DIHO. If we set 𝑧 = 2𝜋(8𝑚𝐷)ଵ ଶ⁄ exp[−�́�(𝑥 − 𝑥௘)] (�́�ℎ)⁄  and 𝜌 = (2𝜋𝜔 ℎ⁄ )ଵ ଶ⁄ 𝑟′, then 𝑧 = 𝜌ଶ. Notably, the wave function of the MO in terms of 𝑧 coincides with 

that of the radial part of the 2DIHO in terms of 𝜌ଶ. Given that 𝑥ଶ ∝ 𝑟, we can remap 𝑧 and 𝜌2 onto 
the 𝑥- and 𝑟-coordinates, respectively, which allows us to consider that the MO and the radial part of 

the 2DIHO reside in the 𝑥 - and 𝑟 -spacetime, respectively. It is then regarded that the radial 

component of the wave equation of the 2DIHO has an anharmonic oscillation in the 𝑟-spacetime. This 

case thus illustrates the second example of the metric symmetry between the oscillators in the 𝑟- and 𝑥-spacetime. Furthermore, the potential for the radial component of the 2DIHO conforms to the 

formula for 𝜑(𝑟). 

In summary, the probabilistic influential force potential 𝜑(𝑟) in the 𝑟-spacetime constitutes a 

group of anharmonic oscillators, together with the MO and the radial component of the 2DIHO. This 

coherence suggests that the group has a background identical to that of 𝜑ᇱ(𝐼ை) in the 𝐼ை-spacetime, 

which supports metric symmetry and thus the framework of our theory. 
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Oscillation under the influential force 

The probabilistic influential force potential 𝜑′(𝐼ை)  is an entirely abstract representation of the 

interaction between any objects having information. On the basis of the universality of information 

and probability, the action of the influential force ℱ ʹ is inherently ubiquitous. Therefore, 𝜑′(𝐼ை) 

allows the description of a wide variety of phenomena. Specifically, taking the limit of 𝛼 to zero, the 

application scope of Eq. (96) may be broad and not confined to physics. Nevertheless, 𝜑′(𝐼ை) has 

distinct properties of the anharmonic oscillator. Indeed, 𝜑′(𝐼ை) represents the MO potential and 

2DIHO potential, which are putative examples of metric symmetry in the 𝑥 -spacetime and 𝑟 -

spacetime, respectively. We here focus on the correspondence between 𝜑′(𝐼ை)  and its direct 

transformation, the MO potential. 

We assume that two informatons X and Y oscillate under the probabilistic influential force 

potential 𝜑′(𝐼ை). For the oscillation of informatons, we use the reduced information distance newly 

set as 𝐼ை: = (𝛼𝑥 + 𝑟 2⁄ ) 2⁄ , which corresponds to the reduced mass-energy of the quantum. Then, 𝜑′(𝐼ை) is a minimum when 𝐼ை is 𝐼௘ = 𝐻(𝑋) + 𝐻(𝑌) + log(𝑘ଶ 𝑘ଵ⁄ ) (Fig. 2b). 𝐼௘ is defined as the 

equilibrium information distance between the informatons, where the state probability takes a 

maximum value. Unless the repulsion coefficient k2 is zero, 𝐼𝑒 > 0, and the vibration is anharmonic. 

In this case, 𝜑′(𝐼ை) increases rapidly when 𝐼𝑂 becomes smaller than Ie, increases moderately when 𝐼𝑂 becomes larger than Ie, and becomes zero asymptotically at large 𝐼𝑂. Following deformation into 
the MO potential using Eq. (94), these characteristics of 𝜑′(𝐼ை) are completely reproduced as features 

of the MO potential. In addition to these rises and falls, 𝜑௥௘௣ᇱ ∝ 𝜑௔௧௧ᇱ ଶ. Therefore, 𝜑௥௘௣ᇱ  increases 

rapidly as the distance decreases, which indicates a strong repulsive force in the vicinity of the origin. 

This feature again effectively reproduces the exponential repulsive wall in the MO potential. 

We next examine the oscillation equation to decipher the physical reality of 𝜑′(𝐼ை). When two 

informatons X and Y oscillate under the probabilistic influential force potential 𝜑′(𝐼ை), the wave 

equation is written as 

 ,                  (100) 
where μm is the reduced mass, 𝜒(𝐼ை) is the wave function, and 𝐼௡  is the information level. The 

solution to this equation is 

 ,                       (101) 

where 𝐼௡ = −𝐷 + ℏ𝜔(𝑛 + 1 2⁄ ) − [ℏ𝜔(𝑛 + 1 2⁄ )ଶ]/4𝐷 , 𝑧 = (8𝜇௠𝐷)ଵ ଶ⁄ exp(𝐼௘ − 𝐼ை)/ℏ , 𝑏 =(−8𝜇௠𝐼௡)ଵ ଶ⁄ /ℏ , 𝐷 = 𝑘ଵଶ (2𝑘ଶ)ൗ , and 𝐼௘ = 𝐻(𝑋) + 𝐻(𝑌) + log(𝑘ଶ 𝑘ଵ⁄ ) . 𝐿௡(௕)(𝑧)  is the 
generalized Laguerre polynomial. 𝜒(𝐼ை)  has n nodes, and it takes a maximum value at 𝐼ை = 𝐼௘ . 

These features are typical of anharmonic quantum oscillators and are consistent with those of the wave 

function of the MO. 
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The classical equation of motion of the above oscillation is next written as 

 ,               (102) 
where 𝐼ை is the reduced information distance between X and Y in the 𝐼ை-spacetime while μm is the 

reduced mass. The solution to this equation is 

 ,    (103) 
where E is the total energy expressed as 𝐸 =  𝐷(expሼ−2[𝐼ை(0) − 𝐼௘]– 2exp{−[𝐼ை(0) − 𝐼௘]ሽ), which 

takes a negative value. This equation presents the classical motion of the anharmonic oscillator. The 

oscillation is around 𝐼ை = 𝐼௘, which is similar to the case of the MO. When t is sufficiently small, 𝐼ை 

can be approximated by a quadratic function of t as 

              (104) 
This motion can be considered uniform acceleration within a sufficiently narrow time window. More 

specifically, if the repulsive constant 𝑘ଶ in Eq. (102) equals zero, then the acceleration 𝑑ଶ𝐼ை 𝑑𝑡ଶ⁄  is 

constant, resulting in uniform acceleration without a time limitation. 

Despite these remarkable coincidences, there is a difference in the known generation mechanism 

between 𝜑′(𝐼ை) and the MO potential. While 𝜑′(𝐼ை) arises from the changes in entropy associated 

with the information transmission, the Morse potential arises from the electromagnetic force. Although 

these two mechanisms appear to be different, the influential force provides a basis for the unification 

of gauge fields, to which the electromagnetic field belongs. This suggests that the MO potential is 

created by informatic mechanisms behind the electromagnetic interaction. In summary, the above 

observations demonstrate a substantial unity between 𝜑′(𝐼ை)  and the MO potential. To our 

knowledge, this is the first example where information theory has been successfully applied in 

predicting a quantum interaction. 

It will be meaningful to ascertain whether 𝜑ᇱ(𝐼ை) is a cause of the MO potential. In this case, 

the information shared by the two atoms is that of the positions and momenta of the nuclei and 

electrons. In previous work [35], the ionicity of the valence bond was calculated using MI for the states 

of two hydrogen atoms and that of a hydrogen molecule. However, the methodology differed from 

ours in that it calculated the MI of electron assignments using atomic orbitals. 

Probabilistic influential force potential and dispersion force 

In addition to the MO potential, the interaction between two helium molecules follows the probabilistic 

influential force potential 𝜑′(𝐼ை)  as described below. Helium atoms form a dimer based on the 
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dispersion force at low temperatures. Hellmann [32] and others [33] calculated the potential energy of 

helium atoms as a function of the interatomic distance using the ab initio molecular orbital method. 

According to them, the potential takes a minimum value of 11.01 K or 1.520 × 10−22 J at an interatomic 

distance of 5.60 Bohr (= 2.964 × 10−10 m). We then fit the probabilistic influential force potential 𝜑′(𝐼ை) to their calculation results and estimate �́� = 1.109 Bohr−1 = 2.096 × 1010 m−1 (Figs. 2c and 

2d). The potential curve of the influential force fits their results well. In particular, when the 

interatomic distance is short, the fit is much better than the Lennard–Jones potential (Appendix 5). 

According to the above observations, the interaction between the two helium atoms forming a 

dimer can also be explained by 𝜑′(𝐼ை), and the atoms are considered to have an anharmonic oscillation. 

Thus, the above two examples of the MO potential and helium dimer illustrate the possibility of 

applying the influential force to other physicochemical bonds. We expect that, in future work, various 

intramolecular as well as intermolecular interactions will be explained from an information theoretical 

point of view. 

Prediction of motion in non-physical systems from metric symmetry 

In addition to motion in the 𝑥-spacetime, motion is predicted with an equivalent formula in the 𝑟-

spacetime from metric symmetry. In such cases, Eqs. (20) and (96) should work through the 

replacement of 𝑥 by 𝑟. From a general point of view, this concept can be extended to deal with 

systems other than physical systems. This is done by taking the limit 𝛼𝑥 → 0 and obtaining 𝐼ை =𝛼𝑥 + 𝑟/2 = 𝑟/2. If we assume a system of two informatons in which the probability of information 

transmission follows the infocanonical distribution [Eq. (17) , Appendix 17] (i.e., 𝑝 = 𝑒ିூೀ = 𝑒ି௥ ଶ⁄ ), 
then the influential force ℱatt = 𝑒ெூ decreases the information metric 𝑟. Under these conditions, the 

above Eqs. (20) and (96) also hold in the r-spacetime when changing the variable and constant as 𝑟 =𝑥 and 𝑘ଵଶ (2�́�𝑘ଶ)ൗ = 𝐷. As a result, even if the system is not a physical one, the informatons undergo 
an anharmonic oscillation in the 𝑟 -spacetime. In the second half of this paper, we discuss the 

interaction between informatons from this point of view unless otherwise stated. 

 

(f) Time evolution of MI in classical systems 

The preceding sections discussed information transmission related to energy transfer. We concluded 

that the MI describes all fundamental interactions. However, the basic mechanisms underlying the 

genesis of MI can be understood only if the statistical mechanics are sufficiently improved, such that 

we can analyze the extremely high-dimensional MI of informatons. This is because all the constituents 

of our spacetime (e.g., quantum fields and superstrings) are supposed to have information with a large 

number of dimensions. 
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To address the above issue, we begin an exploration to clarify the mechanisms underlying the 

emergence of very multidimensional MI. We adopt two strategies for this purpose. First, we tentatively 

ignore the mass of the mediator particle and consider the limit 𝛼𝑥 → 0. This strategy assumes that the 

information metric 𝑟 of the informatons is large and that the interaction between mediator particles 

and conventional 𝑥 -spacetime is negligible. The influential force ℱ ʹ in the 𝐼ை -spacetime then 

becomes equal to ℱ in the 𝑟-spacetime. Second, we consider microstates of informatons and seek a 

rationale that generates MI at the microscopic level. Given that the working principle of the influential 

force ℱ is based on statistical mechanics, ℱ can also be defined by employing a microscopic method. 

Adopting this strategy, we demonstrate that MI evolves between informatons through fluctuations in 

their microstates followed by changes in the joint probability distribution. 

Microscopic method 

Let X and Y be the information levels of informatons GX and GY, which can be evenly split into m and 

n levels and discretely distinguished by indices k (1 ≤ k ≤ m) and l (1 ≤ l ≤ n), respectively. This section 

considers that m and n are sufficiently large. Let 𝑝(𝑋௞) and 𝑝(𝑌௟) be the realization probabilities of 

information levels 𝑋௞ and 𝑌௟, respectively, and let 𝐼௞ = − log𝑝(𝑋௞) and 𝐼௟ = − log𝑝(𝑌௟) be their 

self-information. Additionally, we let 𝑝(𝑋௞ ,𝑌௟) be the joint probability of 𝑋௞ and 𝑌௟ and we refer 

to 𝑰𝒌𝒍 = − log𝑝(𝑋௞ ,𝑌௟) as the joint self-information. Furthermore, let the micromutual information 
MIkl be MI for X and Y shared at the specific microstate (k, l). We compute MIkl as the MI of the m × 

n contingency table with respect to a cell (k, l) (Appendix 6). We finally introduce a fluctuation factor 𝜺𝒌𝒍 = 𝒑(𝑿𝒌,𝒀𝒍) [𝒑(𝑿𝒌)𝒑(𝒀𝒍)]⁄   as the ratio of the joint probability to the product of marginal 

probabilities, while its logarithm log(𝜀௞௟) is referred to as the pointwise MI [36]. 

According to the above definitions, we can construct equations expressing microscopic 

interactions between informatons. We first describe the joint self-information  𝐼௞௟  and define the 

microinformation metric 𝒓𝒌𝒍 by 

 ,             (105) 
respectively. 𝐼௞௟ and 𝑟௞௟ are respectively the microscopic counterparts of the joint entropy 𝐻(𝑋,𝑌) 

and the information metric 𝑟. Accordingly, if we multiply these two formulas by 𝑝(𝑋௞ ,𝑌௟) and take 

the sum concerning k and l, then we obtain the macroscopic equations 

             (106) 

(Appendix 24). Similarly, we can define the influential forces working in microstates. Using the 

infocanonical distribution (Appendix 17), we obtain the attractive microforce ℱkl_att and repulsive 

microforce ℱkl_rep for each microstate as 

 .        (107) 
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Then, by multiplying these two expressions by 𝑝(𝑋௞ ,𝑌௟) and taking the sum with respect to k and l, 

we get the macroscopic attractive and repulsive forces as 

, 
(108) 

respectively. 

In addition to the description with MI, we can calculate the microscopic influential force using 

the microinformation metric 𝑟௞௟. Let 𝑊(𝑋௞) and 𝑊(𝑌௟) be the number of microstates 𝑋௞ and 𝑌௟, 
respectively. Then, given that exp(𝐼௞) = 𝑊(𝑋௞)  and exp(𝐼௟) = 𝑊(𝑌௟) , the microforces are 

represented with 𝑟௞௟ as 

 ,           (109) 
respectively. Then, for each microstate, a composite microforce ℱkl is derived from the attractive and 

repulsive microforces as ℱkl = ℱkl_att − ℱkl_rep; that is, 

 .    (110) 

We now write the equation of motion for each microstate as 

 
, (111) 

where pkl = exp(−log𝜀𝑘𝑙) = 1/𝜀𝑘𝑙. If we multiply both sides of this equation by 𝑝(𝑋௞ ,𝑌௟) and sum over 
all k and l, then we obtain the macroscopic equation of motion given as Eq. (72). In summary, the 

influential force can be defined from both microscopic and macroscopic points of view. 

MI generated through fluctuations in classical physicochemical systems 

Using the microscopic method above, we propose a fluctuation-induced mechanism in the generation 

of MI. When two types of inert gas—X and Y—are combined under isothermal conditions, mutual 

diffusion occurs. An inelastic collision then arises, and the gas mixture begins to behave as if a single 

gas. At this time, the average kinetic energy is constant for each molecule X and Y. However, it is noted 

that inelastic collisions reduce the average relative velocity between the two molecules. In this case, 

the collision heat is transferred to the heat bath, maintaining the isothermal condition. Thus, the 

emergence of cooperative movement indicates that the collision increases MI(X; Y), thereby reducing 

the kinetic energy associated with the joint entropy H(X, Y) relative to that linked with H(X) + H(Y). 

The inelastic collision between gas molecules affects their mutual Brownian motion. Therefore, 

for the information levels of X and Y, the joint probability after the collision is generally different from 

the product of the marginal probabilities, which implies the generation of MI. The information shared 

between the two types of gas molecules is their positions and momenta, as well as their Hamiltonians. 
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We assume that the potential energy is negligible, and the information levels of the kinetic energy then 

follow an exponential distribution, which we call an infocanonical distribution (Appendix 17). 

We now return to a general discussion. With regard to the informatons X and Y, we assume that 

the realization probability of the k-th information level of 𝑋 , 𝑋௞ , follows the infocanonical 

distribution 𝑝(𝑋௞) = [exp (1/𝜆) − 1]exp (−𝑘/𝜆), whereas that of the l-th level of 𝑌, 𝑌௟, follows 

the infocanonical distribution 𝑝(𝑌௟) = [exp (1/𝜈) − 1]exp (−𝑙/𝜈), where λ and ν are respectively 

the mean index values of 𝑋௞  and 𝑌௟ . We suppose that 𝜀௞௟ = 𝑝(𝑋௞ ,𝑌௟) [𝑝(𝑋௞)𝑝(𝑌௟)]⁄   fluctuates 

close to a value of 1. We also suppose that 𝜀௞௟ is represented by 𝜀௞௟ = 𝛾௞௟𝛿௞௟ using the two factors 𝛾௞௟  and 𝛿௞௟ , which independently fluctuate owing to the properties of X and Y, respectively. In 

addition, we let 𝛾 and 𝛿 be the averages of 𝛾௞௟ and 𝛿௞௟ over k and l, respectively, and we assume 

that both 𝛾 and 𝛿 follow a normal distribution with a mean of 1 and variance of 𝜎ଶ. As defined 

earlier, we will let the micromutual information MIkl be MI for X and Y shared at the specific microstate 

(k, l) (Appendix 6). Now that the maximal information levels m and n are sufficiently large, MI of X 

and Y is obtained as 

                       (112) 

(Appendix 7). This demonstrates that MI arises because of fluctuations in the realization probability 

of each microstate, and its magnitude is determined by the numbers of information levels of X and Y. 

In the above example, X and Y are two gas molecules, and Xk and Yl correspond to their 

information levels of kinetic energy. The mixing of two gases initiates collisions, where we letτbe 

the average time between collisions of X and Y. As the molecules repeatedly collide, their information 

levels are subject to Brownian fluctuations, which are depicted as two-dimensional spreading in the 

contingency table (Fig. 3). Most changes are within the neighborhood of the original state. These 

fluctuations result in the spreading of their information levels, which approximately approaches a two-

dimensional normal distribution under m, n → ∞. Conversely, 𝑝(𝑋௞ ,𝑌௟) at a particular state (k, l) 

becomes a complex superposition of nearly normal distributions originating from many other states. 

As a result, 𝜀௞௟ fluctuates as the model above, leading to the change in MIkl at each microstate. Finally, 

MI(X; Y) increases as the summation of all MIkl. 

Along with the increase in MI(X; Y), the average relative kinetic entropy between X and Y 

decreases, which implies the generation of the coordinated motions of X and Y. Thus, on the basis of 

the shared information, the two gases come to act together. This discussion leads to the general 

conclusion that a collision is a form of information exchange between physical informatons. Here, in 

the above description, probabilistic indices such as 𝑝(𝑋௞ ,𝑌௟) and 𝜀௞௟ at time t are defined for the 

pair of X and Y that caused a collision within a period between t −τand t. 
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Figure 3 | Brownian fluctuations in an m  ×  n contingency table for a pair of molecules X and Y. 
Initially, X takes the state Xk while Y takes the state Yl (red rectangle), with a joint probability 𝑝(𝑋௞ ,𝑌௟) 
and marginal probabilities 𝑝(𝑋௞) and 𝑝(𝑌௟), respectively. Repeated collisions occur with an average 
interval ofτ, enhancing Brownian state fluctuations (blue arrows). 

Finally, we examine the time course of MI. We assume that the distributions of 𝛾 and 𝛿 are 

represented by the diffusion equation with diffusion coefficient D and that both γ and δ follow a normal 

distribution having a mean of 1 and variance 𝜎2 ≃ 2𝐷𝑡 at time t after initiation. Because 𝑚/𝜆 and 𝑛/𝜈 are constant under isothermal conditions, there is fluctuation in the joint probability 𝑝(𝑋௞ ,𝑌௟) 

without changes in the marginal probabilities 𝑝(𝑋௞) and 𝑝(𝑌௟). Thus, the translational entropies of 

X and Y are constant throughout the process. The expectation value of ΔMI is then 

 .                   (113) 

Of note is that 〈Δ𝑀𝐼〉 increases with time irrespective of whether 𝛾𝛿 increases or decreases. The 

expectation value of the information metric  〈𝑟〉  of X and Y then decreases spontaneously and 

monotonously as a quadratic function of t. Thus, when t is sufficiently small, there is motion with 

nearly uniform acceleration in the information metric spacetime (𝑟-spacetime). 

Stabilization of the combined classical system through MI 

With respect to the above example of gas mixing, the fluctuations in the kinetic energies generate MI 

for the two populations of gas molecules. The generated MI is expected to provide a stabilization 

energy Ustab that contributes to the formation of the mixed state of the gases; that is, 

 .                              (114) 
To the best of our knowledge, this is novel energy related to the statistical mechanics of composite 

systems, which provides a clue for elucidating the interactions between informatons with many 

different states, such as superstrings. We propose that this is the basic manner by which the attractive 
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influential force ℱatt in the 𝑟-spacetime is generated between bodies as 

,                                (115) 
where the repulsive force is for now not considered. In summary, the microscopic interaction that 

affects the Brownian fluctuation of informatons is the source of macroscopic MI. For the initial period, 

this causes movement under an almost constant attractive force ℱatt in the 𝑟-spacetime. 

 

(g) Time evolution of MI in quantum systems 

This section explores whether MI is generated through fluctuations also in quantum systems. Here, by 

observing the state change after the generation of two particles constituting a composite system, we 

will demonstrate the occurrence of the MI of the particles. According to the discussion thus far, the 

generated MI can contribute to the shortening of the information metric 𝑟  between the particles, 

implying the emergence of the attractive influential force ℱatt. 

Generation of MI in composite systems 

Let us assume a composite quantum system XY that comprises two particles, X and Y, under isothermal 

conditions. Suppose that X and Y appear respectively at times tX ≤ 0 and tY = 0 and that their probability 

density functions are delta functions at their emergence. They are independent at t = 0, which can be 

regarded as corresponding to the ground state of the composite system. By the definition of MI, 

MI(X;Y) = 0 at t = 0. 

When t > 0, we can calculate MI as below to represent the information exchange in the quantum 

system. Let 𝑟ଵሬሬሬ⃗  and 𝑟ଶሬሬሬ⃗  be the position vectors of X and Y, respectively. Let 𝑝(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) be the joint 

probability density function of XY, which represents the coexistence probability of the particles. Let 𝑝(𝑟ଵሬሬሬ⃗ , 𝑡) and 𝑝(𝑟ଶሬሬሬ⃗ , 𝑡) be respectively the marginal probability density functions of X and Y, which 

represent the existence probability of each particle. We show that if there is mutual interference 

between X and Y, then MI(X; Y) increases. This MI(X; Y) is described using a time parameter t: 

    (116) 
which follows the formula for MI, given by Eq. (10). Taken together, we obtain the MI of the particles 

X and Y at any time t ≥ 0. 
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Influential force in composite systems 

We can now define the information metric 𝑟 of X and Y using MI(X; Y). The change in 𝑟 satisfies ∆𝑟 =  −2∆𝑀𝐼 = 2∆𝑆௔ ℏ⁄ . We can then express the probability amplitude of information 

propagating from X to Y as 

 .             (117) 𝑟 is therefore proportional not only to the action 𝑆௔ but also to the path length between X and Y. 

Additionally, 𝑟 represents the phase difference between X and Y. Here, we initially assume that 𝛼𝑥 =0, and the information distance then becomes 𝐼ை = 𝑟 2⁄ . As described earlier, we obtain a constant 

force Fr in the information metric spacetime (𝑟-spacetime); that is, 

 ,                          (118) 
where V is the potential difference between X and Y. This equation is invariant irrespective of V and 𝑟, demonstrating the gauge symmetry in the r-spacetime. It shows that Fr is a constant attractive force 

acting toward the origin. If we define ℱatt as described in this paper, the above formula indicates that 

ℱatt is a probabilistic representation of a gauge force Fr in the 𝑟-spacetime. Then, 

 .             (119) 

This attractive influential force ℱatt decreases the information metric r of X and Y and expresses the 

action that diminishes their phase difference. 

Diffusion of free quantum particles 

We next discuss the MI generated through the exchange interaction between two free quantum 

particles. The exchange interaction is a quantum mechanical effect that occurs between identical 

particles. It has no classical analog and is not considered a true force. However, by introducing 

probability density functions, we can identify the MI of identical free particles, which suggests the 

generation of the attractive influential force ℱatt. For the quantitative analysis of MI over time, we will 

deal with the propagator of the free particles under diffusion processes. 

We first mention the similarity between the diffusion equation and the Schrӧdinger equation. The 

diffusion equation is written as 

 ,                          (120) 
where u(x, t) is the probability density function of the particle at position x and time t. Meanwhile, the 

Schrӧdinger equation of a free particle is written as 

 ,                        (121) 
where ψ(x, t) is the wave function and m is the mass of the particle. 
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If we set the diffusion coefficient to iħ/(2m), then the diffusion equation coincides with the 

Schrӧdinger equation. This coincidence suggests a general analogy between Brownian motion and 

quantum mechanics [27]. The analogy becomes clearer when we consider the propagator of the free 

particle; that is, 

 .                 (122) 

The propagator of the free particle also satisfies the Schrӧdinger equation and again follows a diffusion 

equation with the diffusion coefficient iħ/(2m). 𝑝(𝑥, 𝑥′, 𝑡) = |𝐾(𝑥, 𝑥′; 𝑡)|ଶ  is then the probability 

density function for the particle initially located at x' at t = 0 being found at x at time t. 

Analytical calculation of the MI of identical free particles 

We next examine the MI of the exchange interaction between two free particles. We assume that 

particles X and Y are simultaneously created in three-dimensional space at t = 0 and start diffusing. 

When they are created, their probability density functions are expressed by delta functions. The 

position vectors of the two particles 𝑟ଵሬሬሬ⃗  = (x1, y1, z1) and 𝑟ଶሬሬሬ⃗  = (x2, y2, z2) take the values (d, 0, 0) and 

(–d, 0, 0) at t = 0, respectively. Nearer bounds of the diffusion region approach each other and cross 

at the origin. We assume that X and Y have the same mass m and that this mass is similar to the mass 

of an electron me. The propagators are then 

            (123) 
and 

 .        (124) 

Using the propagators 𝐾ଵ(𝑟ଵሬሬሬ⃗ ,𝑑; 𝑡) and 𝐾ଶ(𝑟ଶሬሬሬ⃗ ,−𝑑; 𝑡), the existence probability densities are obtained 

as described below. 

To analyze the MI of free particles, we first calculate the joint probability density that represents 

the coexistence of the particles. We consider the case in which the two particles are identical bosons 

of spin zero. Meanwhile, when the two particles are identical fermions, similar arguments hold except 

for the sign (Appendix 8). We here let 𝜓(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) be the composite wave function of X and Y, and 

suppose that it is expressed as 

 ,       (125) 

where A is a normalization constant. This A is calculated by setting the integral of |𝜓(𝑥,𝑦, 𝑡)|ଶ to 1 

on the integration region, which is defined by |𝑥ଵ − 𝑑| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ , |𝑦ଵ| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ ,|𝑧ଵ| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ , |𝑥ଶ + 𝑑| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ , |𝑦ଶ| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ , and |𝑧ଶ| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ . 
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The normalization constant A is then expressed as 

.      (126) 

Using this A, we now obtain the joint probability density function 𝑝(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) as 

 ,     (127) 

which represents the joint existence probability of X and Y (Fig. 4d). Although 𝑝(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) changes 

periodically with respect to x1 − x2, it always takes a maximum value at x1 = x2. This tendency of 

colocalization conforms to the known features of the exchange interaction between identical bosons. 

In addition to the joint probability density function, the marginal probability density functions 

are expressed as 

       (128) 
and 

 ,      (129) 

which respectively express the existence probability of X and Y within each diffusion region. On the 

right side of each equation, the second term in the braces is the interference term. The interference 

term causes an oscillation of each probability density, in a time- and position-dependent manner. 

Figures 4a and 4b show 𝑝(𝑟ଵሬሬሬ⃗ , 𝑡)  and 𝑝(𝑟ଶሬሬሬ⃗ , 𝑡) , respectively, while Figure 4c depicts their product 𝑝(𝑟ଵሬሬሬ⃗ , 𝑡)𝑝(𝑟ଶሬሬሬ⃗ , 𝑡). 

We next introduce a fluctuation factor 𝜀௥భሬሬሬ⃗ ,௥మሬሬሬ⃗ = 𝑝(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) [𝑝(𝑟ଵሬሬሬ⃗ , 𝑡)𝑝(𝑟ଶሬሬሬ⃗ , 𝑡)]⁄ , which is the ratio 

of the joint probability density to the product of the marginal probability densities. This 𝜀௥భሬሬሬ⃗ ,௥మሬሬሬ⃗  is the 

equivalent of 𝜀௞௟ in the preceding section and is expressed as 

 .         (130) 

This formula indicates that 𝜀௥భሬሬሬ⃗ ,௥మሬሬሬ⃗  fluctuates with the phase difference between 𝑝(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) and the 

product of 𝑝(𝑟ଵሬሬሬ⃗ , 𝑡) and 𝑝(𝑟ଶሬሬሬ⃗ , 𝑡) (Fig. 4e). This situation is similar to that in the preceding section, 

where the fluctuations in microstates generate MI. Indeed, MI again originates as described below. 



48 
 

In the current model, MId, the density of MI at time t, is expressed as 

 .        (131) 

This MId also fluctuates in a time- and position-dependent manner (Fig. 4f), which leads to a positive 

value of MI. 

Finally, we obtain MI by integrating MId with respect to 𝑟ଵሬሬሬ⃗  and 𝑟ଶሬሬሬ⃗  over the integration region; 

that is, 

 ,              (132) 
where the integration ranges increase with time through the diffusion of the bosons. Compared with 

the model in the prior section, the integration of MId is the nearly equivalent operation of taking the 

sum of micromutual information MIkl. 

 
Figure 4 | Generation of MI of identical bosons X and Y in three-dimensional space. a, Marginal 
probability density function of X. b, Marginal probability density function of Y. c, Product of the marginal 
probability density functions of X and Y. d, Joint probability density function of X and Y. e, Fluctuation 
factor. f, Density of MI. Parameters are d = 1 m, t = 6,000 s, and m = me. 
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MI of identical particles 

The above observations show that MI arises from the exchange interaction of identical free bosons at 

any time t > 0. The interference term in the composite wave function 𝜓(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) causes the phase 

difference between the joint probability density function 𝑝(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) and both the marginal probability 
density functions 𝑝(𝑟ଵሬሬሬ⃗ , 𝑡) and 𝑝(𝑟ଶሬሬሬ⃗ , 𝑡), which generates the fluctuation of 𝜀௥భሬሬሬ⃗ ,௥మሬሬሬ⃗ , and MI thus arises. 

At the limit t→0, the interference terms in the expressions for 𝑝(𝑟ଵሬሬሬ⃗ , 𝑡)  and 𝑝(𝑟ଶሬሬሬ⃗ , 𝑡)  in Eqs. 
(128) and (129) become zero. Then, MI(X;Y) = 0, because 𝜀௥భሬሬሬ⃗ ,௥మሬሬሬ⃗  = 1. For this reason, at the very time 

that X and Y appear in the space, they are mutually independent. This satisfies the ground state 

condition discussed in the preceding Section (a) and allows MI to represent the information exchange 

in a quantum system. 

When t > 0, because the interference terms are not zero, MI(X; Y) > 0. As a result, 

                            (133) 
holds at any time t > 0. For the closed composite system under isothermal conditions, the change in 

free energy is ΔF = 0 [23]. Therefore, the internal energy U decreases owing to the mutual interference 

between X and Y as 
 .                       (134) 

Hence, the equilibrium tends to proceed to the right-hand side of Eq. (133), forming the interaction 

between X and Y. At this time, the information metric 𝑟 of the particles is shortened, indicating the 

emergence of the attractive influential force ℱatt. 

In addition to the shortening of 𝑟, the phase difference 𝜃 = 𝑟 2⁄  between X and Y decreases. 

Moreover, from Eq. (131), when MId takes a maximum value, x1 and x2 approach one another, and 

their respective velocities 𝑣ଵ ≃ (𝑥ଵ + 𝑑) 𝑡⁄  and 𝑣ଶ ≃ (𝑥ଶ − 𝑑) 𝑡⁄  converge. Additionally, the 

individual kinetic energies 𝐸௄ଵ and 𝐸௄ଶ approach one another. In summary, the exchange interaction 

reduces the conventional distance 𝑥, information metric 𝑟, phase difference 𝜃, and the difference in 

kinetic energies 𝐸௄ between the identical free bosons. 

Unique features of the MI of identical particles 

The preceding observations revealed that MI(X; Y) should be relevant to statistical energy. As written 

above, the internal energy of the closed composite system is reduced as ΔU = −kBT ΔMI < 0. Notably, 

this expression for ΔU is independent of the Hamiltonian ℋ  of the system. Conversely, the 

previously known exchange interactions depend on the exchange integral ׬𝜓∗ℋ𝜓𝑑𝜏 , where ℋ 

corresponds to the Coulomb potential when electrons are exchanged, τdenotes the coordinates, and 

* indicates the complex conjugate. Thus, ΔU = −kBT ΔMI expresses a new interaction in that it purely 

reflects the information exchange between quanta. 
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On the basis of the differences presented above, the statistical energy of MI has five distinct 

features. First, the generated ΔU = −kBT ΔMI is overwhelmingly smaller than the exchange integral. 

For example, the exchange integral between atoms is on the order of 1 eV, which is much larger than 

the generated ΔU = −kBT ΔMI calculated as 2.59 × 10−5 eV. Therefore, it is suggested that the effect of 

MI becomes apparent only as a massive statistical effect of exchange interaction among a vast number 

of identical particles. Second, the time dependence of MI is weak because MI changes at approximately 

the zeroth power of t. MI thus remains almost constant for a long time. Third, owing to this time 

stability, the maximum value of MI is virtually independent of the initial distance between X and Y. 

Even if the two identical particles are far apart in the universe, the maximum value of MI is almost the 

same. This long-range effect is in stark contrast to the exchange integral that is effective only for very 

close bodies. Fourth, the interference term in 𝑝(𝑟ଵሬሬሬ⃗ , 𝑟ଶሬሬሬ⃗ , 𝑡) appears immediately after the emergence of 

the particles, even if the diffusion of the particles with mass m takes a long time depending on the 

distance. Therefore, it is likely that this new exchange interaction propagates at nearly the speed of 

light. This immediate action at a distance is highly characteristic, suggesting that the found exchange 

interaction is a non-local quantum mechanical effect. Fifth, MI is independent of the masses of the 

identical particles, indicating its universality within the quantum regime. Thus, these observations 

imply that ΔU = −kBT ΔMI is appreciably different from the previously known exchange interactions. 

Generality of the MI of identical particles 

It is expected that there is always MI for identical particles, even if the particles are not generated 

simultaneously. The only requirement is that their probability density functions are delta functions at 

the creation. Then, MI = 0 at the appearance of the composite system, and MI > 0 thereafter. In such 

cases, our arguments hold for any pair of identical particles. Moreover, this kind of information 

exchange occurs irrespective of spins. 

Our study considered the orbital wave functions of bosons of spin zero, and we concluded the 

emergence of the attractive force ℱatt. This conclusion is unaffected even if we consider the spin wave 

functions. Therefore, regardless of whether the particles are bosons or fermions, it is conceivable that 

interaction effects among a huge number of distant identical particles will be newly discovered. In the 

case of bosons, because they tend to have the same position in the phase space, ℱatt is expected to 

induce Bose–Einstein condensation. Moreover, considering the occurrence of phase synchronization 

between bosons of spin zero, it is plausible that this mechanism explains Higgs condensation. 

In addition to bosons, the above discussion can be applied to the case of identical free fermions 

except for the sign (Appendix 8). Thus, the exchange interaction causes MI not only between identical 

free bosons but also between identical free fermions. The fact that MI(X; Y) > 0 even for identical 

fermions implies that, although the fermions avoid the same position, ℱatt arises statistically via a 

mechanism analogous to that for identical bosons. 
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Stabilization of the composite quantum system through MI 

In summarizing the above, a considerable fraction of identical particles exchanges information as MI. 

Moreover, from the inherent analogy between the Schrödinger and diffusion equations, it is expected 

that the emergence of MI is a universal phenomenon occurring for identical quantum particles of any 

combination. In turn, the originating MI is anticipated to provide stabilization energy Ustab that 

statistically contributes to the formation of the composite system; that is, 

.                              (114) 
We propose that this creation of MI is the basic manner by which the influential force ℱatt acting 

between identical quanta universally arises in the information metric spacetime (𝑟-spacetime) as 

,                                (115) 
where the repulsive force is for now not considered. ℱatt decreases the phase and velocity differences 

between the identical particles, allowing the coordinated movement of the particles. In conclusion, the 

attractive force ℱatt in the 𝑟-spacetime is acting between virtually all identical quantum bodies based 

on the newly identified exchange interaction, thereby contributing to the stabilization of the universe. 

Exchange interactions in the information coordinate spacetime 

We now extend our discussion to the information coordinate spacetime (𝐼ை -spacetime). The new 

exchange interaction we found is non-local in the conventional coordinate spacetime (𝑥-spacetime), 

in contrast to the previously known exchange interactions. Indeed, the above calculated MI does not 

depend on the conventional distance x. This distance independence has been observed because we 

have assumed 𝛼𝑥 = 0 in this section. Thus, until now, the information distance has been 𝐼ை = 𝑟 2⁄ . 

However, the universal gauge symmetry in the 𝐼ை-spacetime requires the term 𝛼𝑥 (> 0) to formulate 𝐼ை = 𝛼𝑥 + 𝑟 2⁄  . Therefore, we again introduce 𝛼𝑥  to preserve the gauge symmetry, which 

characterizes the canonicality of the 𝐼ை-spacetime. 

Traditionally, the exchange interaction has been regarded as a quantum mechanical "effect" and 

has not been considered a true force. However, the introduction of 𝛼𝑥 allows us to deal with a non-

local interaction effect within the 𝑥-spacetime as a gauge force within the 𝐼ை-spacetime. In using 𝛼𝑥, 

we hypothesize that a particular mediator particle carries MI and that 𝛼𝑥 expresses the information 

exchange between this imaginary particle and the 𝐼ை-spacetime. As written above, the MI of identical 

particles can be derived from the interference between the wave functions as 𝑀𝐼 = ∬𝑀𝐼ௗ𝑑𝑟ଵሬሬሬ⃗ 𝑑𝑟ଶሬሬሬ⃗ . 

This MI is then transformed into the information distance according to 𝐼ை = 𝛼𝑥 + 𝑟 2⁄ = 𝛼𝑥 −𝑀𝐼. 
Eventually, both MI and 𝛼𝑥  contribute to the generation of the attractive force as ℱ ʹatt =exp(−𝛼𝑥 + 𝑀𝐼) = exp[−(𝛼𝑥 + 𝑟 2⁄ )]. Finally, we suppose the occurrence of repulsive force ℱ ʹrep. 

The identical particles then undergo an anharmonic oscillation [Eq. (101)]. Thus, applying the 

influential force leads to a revision of the paradigms for exchange interaction and non-locality. 



52 
 

Hypothetical consideration: a possible origin of dark matter 

The information coordinate system uses 𝐼ை = 𝛼𝑥 + 𝑟 2⁄ , which supposes metric symmetry between 

the conventional distance 𝑥 and the information metric 𝑟. If we consider this symmetry, the effects 

of MI are predicted to be observable also within the 𝑥-spacetime. Specifically, relevant phenomena 

would become apparent when the energy of MI is converted to mass (i.e., becomes non-relativistic). 

This will be especially the case for the MI of identical particles with mass. 

We conducted a numerical calculation to obtain MI. When the diffusion region of each free 

particle crosses the origin at 𝑡 = 4𝑑ଶ𝑚 ℎ⁄ , MI is 0.30685 nat, which is equivalent to Ustab = 4.238 × 

10−24 J at 1 K. We hypothesize that this energy corresponds to the putative mediator particle mentioned 

above, which would mediate the MI of identical particles. We therefore name this hypothetical boson 

the mion. If the mion has mass, it would be as small as 2.645 × 10−5 eV/c2 (= 4.715 × 10−41 kg), and 

the mion would thus be much less massive than the neutrino. However, the mion might constitute a 

large fraction of energy in the spacetime because it would exist in vast quantities in the universe. This 

energy may account for dark matter, which is thought to produce gravity and occupy approximately 

85% of the matter and 27% of the mass–energy of the universe. This hypothesis requires further study. 

 

(h) Influential force and quantum entanglement 

We here investigate MI arising from the entanglement of two quanta. Although we have considered 

the generation of MI by the fluctuations of microstates in previous sections, we will demonstrate that 

MI and the influential force arise also from the entanglement of quantum superposition. 

We suppose that the entanglement arises between two initially independent quanta X and Y of the 

mixed states, and the composite system XY in the pure state arises. Let X0 and Y0 be X and Y before 

the entanglement, respectively, and X1 and Y1 be X and Y after the entanglement, respectively. We let 
S(X) = −tr(ρXRlogρXR) be the von Neumann entropy for the reduced density matrix ρXR of X using the 

partial trace. Meanwhile, we let H(X) = −tr(ρXlogρX) be that for the density matrix ρX without using 

the partial trace. Then, whereas S(X0) = S(Y0) = 0 in the initial state, H(X0) > 0 and H(Y0) > 0. In the 

composite system after the entanglement, S(X1,Y1) =H(X1,Y1) = 0. The entanglement entropy SEE 

satisfies SEE = S(X1) = S(Y1). 

The change in the free energy ΔF before and after the entanglement is expressed as 

 .              (135) 
Meanwhile, the change in the thermodynamic entropy ΔS satisfies 

.              (136) 
The MI shared by the two entangled quanta is 

 ,                           (137) 
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and the change in the energy ΔU before and after the entanglement is therefore expressed as 

 .               (138) 
This demonstrates that the energy 

                                (139) 
is generated per one quantum based on the entanglement entropy. The total energy is preserved because 

for the total energy U, 

                (140) 
holds before and after the entanglement. 

In the above scenario, the interaction energy ΔU of the entanglement becomes large, seeing that 

the energy of the composite system is kBT･S(X1, Y1) = kBT･H(X1, Y1) = 0. This significant energy 

difference suggests that the entanglement is likely to occur. Indeed, the entanglement exists universally 

and is thus supposed to occur spontaneously. At this time, because 

 ,                            (141) 
an attractive influential force arises in the information coordinate spacetime (𝐼ை-spacetime) as 

 .                             (142) 
Applying the metric symmetry, it is implied that the attractive force also emerges in the conventional 

coordinate spacetime (x-spacetime), which corresponds to gravity in the anti-de Sitter/conformal field 

theory correspondence. Meanwhile, the repulsive influential force is generated in the direction 

preserving entropy as 
 .                            (143) 

Under the equivalence of energy and entropy represented as ΔU = −2kBT･SEE, this ℱ ʹrep is equivalent 

to the level repulsion counteracting the attractive potential. Finally, on the basis of the above discussion, 

an anharmonic oscillation will occur within the 𝐼ை-spacetime. Taken together, we have incorporated 

the quantum gravity of superstring theory into the framework of the influential force. In the next 

section, we investigate the relationship between the Higgs field and gravity using these findings. 

 

(i) Influential force field and the Higgs field 

The influential force uniformly represents the natural forces, which include gravity caused by mass. 

Its formula reveals that the quantum field generally accompanies the repulsive field. As a candidate 

of the quantum field with this property, we consider the Higgs field involved in the generation of mass. 

We start our research by investigating the relationship between the influential force, Higgs field, and 

gravity. According to the Standard Model, the Higgs field has a non-zero vacuum expectation value 

arising from spontaneous symmetry breaking and produces mass in proportion to the expectation value. 

However, the mechanism of symmetry breaking itself remains unknown. Moreover, the relationship 

between the Higgs mechanism and gravity is poorly understood. 
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Here, we apply the equation of the influential force to the Higgs field and demonstrate that the 

repulsive term breaks the gauge symmetry of the influential force field, producing the vacuum 

expectation value and the Higgs boson. The influential force field can express the gravity and Higgs 

fields and explains the equivalence of gravitational and inertial mass. The relationship between the 

influential force and gravity is supported by an inflation model using the influential-force-explained 

Higgs field (i.e., the influential Higgs), which provides a good fit to the cosmic microwave background 

data. In addition, the entanglement entropy is linked with the influential Higgs and the Higgs mass. 

Thus, the influential force unifies the Higgs mechanism, gravity, inflation, and entanglement entropy. 

Formula for the influential force field and Higgs field 

In the Standard Model, the Higgs field is expressed by a complex scalar field 𝜙  and codes for the 

Higgs boson with spin zero. The standard Higgs potential VH is expressed as 

 ,                          (144) 

where μ and λ are arbitrary constants. The equation was established by considering renormalizability 

based on 𝜙 ସ theory. In the Standard Model, 𝜇ଶ becomes positive at the phase transition of a vacuum, 
and the Higgs field gives a non-zero vacuum expectation value. Thereby, the electroweak symmetry 

is broken spontaneously, and the weak bosons and fermions obtain mass. However, the mechanism of 

the phase transition itself remains unknown. Moreover, the relationship between the Higgs field and 

the gravity field remains obscure, clearly demonstrating the need for physics beyond the Standard 

Model. Furthermore, the relationship between gravity, inflation theory, and entanglement entropy is 

currently under intense investigation, highlighting the importance of clarifying the association 

between the Higgs field and these gravity-related issues. 

First, let us compare the formulas of the standard Higgs potential VH and the influential force 

potential 𝜑′(𝐼ை). For example, if we replace |𝜙| 2 in the expression for VH by 𝑒ିூೀ, then the equation 

is isomorphic to that of the probabilistic influential force potential, 

 ,                        (145) 
which is the inverse superposition of the two potentials generated by two vacuum field quanta having 

a unit information mass, one of which has the ground state energy whereas the other has twice that 

energy. In comparison, 𝜑′(𝐼ை) and VH are similar in that the second term is opposite the first term 

and its magnitude is proportional to the square of the first term. Therefore, both formulas consist of an 

attractive term and a repulsive term, although their order is reversed. Despite the similarities, because 𝜑′(𝐼ை) has a finite magnitude, unlike the case for VH, divergence does not occur, and renormalization 

is unnecessary. This lack of divergence may provide a promising solution to the hierarchy problem. 

There is thus merit to expressing the Higgs field using the influential force field. 
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Inspired by the similarities mentioned above, we examine whether the influential force field can 

represent the Higgs field. Suppose that the Higgs field is a complex scalar field with a modulus 𝐼ை 

and a potential 𝜑′(𝐼ை). From the preceding discussion, 𝜑′(𝐼ை) resides in the 𝐼ை-spacetime, encoding 
the anharmonic oscillator with the attractive term 𝜑′௔௧௧(𝐼ை) and repulsive term 𝜑′௥௘௣(𝐼ை). 𝐼ை  is a 

coordinate expressing both the position and energy, and 𝜑′(𝐼ை) thus represents the energy vibration 

of the 𝐼ை -spacetime itself. Under the above supposition, this oscillator will represent a quantum 

particle associated with the Higgs field. We will explore the validity of these considerations. 

Application of Nambu theory 

The universality of the Higgs field suggests that its origin is the quantum of the vacuum field. We first 

consider the situation where the two quanta of the zero-point oscillation interact under the influential 

force field. We assume the superconductive state of the vacuum according to Nambu–Higgs theory 

and investigate a model considering the influential force. Nambu–Higgs theory explains electroweak 

symmetry breaking by analogy to Bardeen–Cooper–Schrieffer (BCS) theory on superconductivity. 

Nambu proposed a composite Higgs model in which the Higgs boson is composed of a pair of top and 

anti-top quarks. However, there is no evidence on the identity of the phonon and the Cooper pair (i.e., 

the Higgs boson). We revisit this Nambu theory, with a modification that the pair is made up of 

spacetime quanta in the vacuum. 

On the basis of the canonicality of 𝐼ை-spacetime, we here consider the interaction between two 

quantized 𝐼ை-spacetimes as a candidate for the origin of the Cooper pair and suppose that the vibration 

of the background x-spacetime corresponds to the phonon. In this case, if the quantized 𝐼ை-spacetime 

is a fermion, then there will be an interaction with another spacetime fermion with opposite spin via 

the oscillation of the background spacetime. The complex thus generated can be a boson corresponding 

to the Cooper pair, namely the Higgs boson, which will undergo Bose–Einstein condensation. 

We initially perform a thought experiment where the classical BCS theory is applied to the 

conventional coordinate spacetime (x-spacetime), and the interaction arises between the spacetime 

quanta. The Bose–Einstein condensation is supposed to lead to superconductivity in the vacuum and 

is represented by the BCS wave function 

 
,                     (146) 

where 𝑐௞ᇱ↑ற  and 𝑐ି௞ᇱ↓ற  are generators of quanta in the vacuum with momentum k′ and −k′, respectively 

having up and down spin. Here 𝑢௞ᇱ and 𝑣௞ᇱ are the variational parameters satisfying 𝑢௞ᇱଶ + 𝑣௞ᇱଶ = 1. 

In this discussion of the influential Higgs field, the vacuum state |0⟩ corresponds to the Fermi surface, 

the lowest energy state in the normal conduction state without condensation. Adopting BCS theory, if 

there is an attractive force due to the interaction of quanta, then |𝜙୆ୌ⟩ has lower energy than |0⟩ 
and the Cooper pair forms. 
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Energy gap and influential force field 

According to BCS theory, the energy of the attraction between the quanta forming the Cooper pair is 

the order parameter Δ, which is the attractive pair potential. This energy corresponds to the decrease 

in energy from the vacuum state (i.e., the Fermi energy EF). The order parameter Δk for momentum k 

is expressed as 

 ,                       (147) 
where 𝑉𝑘𝑘′ is the magnitude of the interaction. The attractive force acts within a small energy range, 

and we thus consider that 𝑉𝑘𝑘′ is constant in this range and thus Δk = Δ. Therefore, a new ground 
state arises near EF – Δ owing to the superconductivity. Then, through the level repulsion, the energy 

gap 2Δ opens in the range EF ± Δ. 

The level repulsion implies the extension of the information distance between above and below 

the gap, and the application of information theory is thus valuable for understanding the phenomenon. 

Let X and Y be two interacting fermions, let H(X) and H(Y) be their respective entropies, and also let 

H(X, Y) be their joint entropy. The magnitude of attraction due to the BCS pair potential is 

 ,                       (148) 
and we can thus regard 𝛽Δ = 𝑀𝐼. The attractive influential force then acts between X and Y, and 

 .                                 (149) 
In contrast, the magnitude of the energy gap due to the level repulsion is 

 .                      (150) 
This implies that a repulsive influential force also acts between X and Y, and 

 .                                (151) 
Therefore, when the Cooper pair forms, not only does the attractive force ℱatt based on Δ act between 

the quanta but also there is the repulsive force ℱrep resulting from 2Δ. The composite force is 

 .                             (152) 

According to Nambu theory, the vacuum expectation value 〈𝜙〉଴  is generated based on the 

energy gap 2Δ, and the elementary particles are endowed with mass. In other words, the generation 

mechanism of the repulsive force ℱrep, which acts between the spacetime quanta within the Higgs 

boson as the Cooper pair, is expected to lead to symmetry breaking. Thus, the above demonstrates that 

the BCS phenomenon is a typical example of the influential force proposed in this paper. 

Oscillation of spacetime 

We next explore how the lattice oscillation, the phonon, described by BCS theory, is related to the 

spacetime vibration. We note that while both the attractive force ℱ ʹatt and repulsive force ℱ ʹrep take 

maximum values at 𝐼ை = 0, the spacetime oscillation becomes intense beyond the Planck scale. This 
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concordance at an extremely close proximity suggests that the influential force originates from the 

spacetime vibration within the world shorter than the Planck length. 

To focus on the phonon generated by the spacetime vibration, we introduce asymptotic 

background-free quantum gravity with BRST conformal symmetry proposed by Hamada [37]. The 

world beyond the Planck scale has a large quantum fluctuation of gravity and is a background-free 

world. Hamada constructed conformal field theory with BRST conformal symmetry and quantized 
this ultra-fine spacetime. The metric field 𝑔𝜇𝜈is decomposed as 

 ,                          (153) 
where 𝜙 is the conformal factor field, 𝑔ොఓఔ is the background metric, and ℎఓఔ is the traceless tensor 

field. Additionally, t is the dimensionless gravity coupling constant, representing a deviation from the 

conformal invariance. Because t→0 beyond the Planck scale, the background-free dynamics are 
realized on this scale. The above 𝑔ఓఔ  is therefore the metric that uniquely holds at any scale. In the 

following, we will adopt this particular 𝑔ఓఔ  as the metric of spacetime. 

While Hamada’s theory succeeded in the quantization of Einstein gravity, Hamada did not 

mention the Higgs field, which is expected to be associated with gravity. Hence, with BCS theory in 
mind, we focus on the oscillation of the metric field 𝑔ఓఔ to elucidate the characteristics of the phonon 

causing the interaction between the vacuum fermions. As noted above, both the attractive and 

repulsive influential forces strengthen as 𝐼ை approaches zero, and we thus deal with the limit t→0. 
When we fix the original metric field 𝑔ைఓఔ, the metric field relative to 𝑔ைఓఔ  is expressed as 

 .                         (154) 
Thus, the metric field 𝑔ఓఔ   oscillates, reflecting vibrations of the background metric 𝑔ොఓఔ  and the 
conformal field 𝜙. The Liouville Hamiltonian HL of this quantized metric 𝑔ఓఔ  in 𝑅 × 𝑆ଵ is then 

                      (155) 
where �̂� is the momentum, 𝑏 2⁄  represents the Casimir effect, 𝛼ା and 𝛼ି respectively represent 
the left-moving and right-moving modes [37], 𝐻ை = �̂�ଶ + 𝑏 2⁄  and 𝐻ொ = 𝐻௅ − 𝐻ை. 

Here, HL in the ground state represents a harmonic oscillation around the original metric 𝑔ைఓఔ, 

and its angular frequency is the eigenvalue of 2𝐻୐ ℏ⁄ . At this time, HL involves the repulsive force, 
which moves 𝑔ఓఔ  away from 𝑔ைఓఔ . Meanwhile, Eq. (154) expresses how 𝑔ఓఔ  and 𝑔ைఓఔ  are 

associated with each other via the vibrating background metric 𝑔ොఓఔ, revealing a causal relationship. 

In other words, the probabilistic attractive force also acts between the spacetime quanta 𝑔ఓఔ  and 𝑔ைఓఔ. We therefore regard the background vibration as the equivalence of the lattice oscillation of the 

BCS theory and consider it as the phonon. In this way, we have obtained a clue as to how to connect 

the vibration of the background spacetime with that of the influential force field. 
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Cooper pair and Bogoliubov quasiparticle 

BCS theory predicts the appearance of the Bogoliubov quasiparticle, which is the excitation mode 

under Cooper pair condensation. We examine the emergence of the quasiparticle as follows. The 
quantized metric field 𝑔𝜇𝜈  can be regarded as a fermion because 𝛼௡± satisfies the anti-commutation 

relationship. To clarify the interrelationship between the spacetime quanta, we perform an inverse 

Bogoliubov transformation of HQ on the right-hand side of Eq. (155). Then, a pair of interacting 

fermions emerges according to 

 ,   (156A) 
which is just the BCS Hamiltonian. We here let 𝜉௡ be the energy of a spacetime quantum with respect 

to the Fermi energy 𝐸ி and let 𝐸௡ = ඥ𝜉௡ଶ + Δଶ be the energy of the Bogoliubov quasiparticle and 

make the replacements 𝜉௞ = 𝜉௡ 𝐸௡⁄ , Δ ≔ Δ 𝐸௡⁄ , 𝑛 = 𝑘, 𝐶ை = 2∑ (1 − 𝜉௡ 𝐸௡⁄ )ஶ௡ୀଵ ,  𝑐௞↑ = 𝛼௡ାඥ(𝐸௡ + 𝜉௡) 2𝐸௡⁄ + 𝛼௡ିறඥ(𝐸௡ − 𝜉௡) 2𝐸௡⁄ , and  𝑐ି௞↓ = −𝛼௡ାறඥ(𝐸௡ − 𝜉௡) 2𝐸௡⁄ +𝛼௡ିඥ(𝐸௡ + 𝜉௡) 2𝐸௡⁄ . 

Adopting the inverse Bogoliubov transformation, it is shown that an interacting pair of metric 

fermions is generated below the Planck length. According to Nambu theory, this pair of fermions can 

form a complex and undergo Bose–Einstein condensation as a boson. This complex is formed by the 

attractive pair potential Δ (or the attractive order parameter Δ) acting between the spacetime quanta, 

and the condensate is regarded as the Higgs field. It is important that Δ represents gravity, which 

allows us to connect the Higgs field with gravity. 

Meanwhile, the above transformation implies that the pair of spacetime quanta 𝑔ఓఔ and 𝑔ைఓఔ 

can be regarded as one Bogoliubov quasiparticle; that is, 

 ,                           (156B) 
where 𝛾௡± = 𝛼௡±. The excitation energy of the quasiparticle equals the energy gap 2Δ due to the level 
repulsion, supporting the expectation that the repulsive force also acts between the pair of fermions. 

The emergence of this particular quasiparticle thus supports the involvement of both the attractive 

potential Δ and the repulsive potential 2Δ. Accordingly, the above findings suggest the origin of the 

influential force ℱ ʹ with attractive and repulsive terms and the association of this force with gravity. 

Order parameters and information distance 

The magnitude of the order parameter Δ, which represents the attractive force as gravity acting 

between the spacetime quanta within the Higgs complex, varies depending on the distance between 

the quanta and is supposed to follow a canonical distribution. Notably, the 1: 2 ratio between the 
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attractive potential Δ and the repulsive potential 2Δ, which characterizes Nambu theory, coincides 

with the ratio 𝐼ை: 2𝐼ை  between the resource energy of the attractive term ℱ ʹatt = 𝑘ଵ𝑒ିூೀ  and the 

repulsive term ℱ ʹrep = 𝑘ଶ𝑒ିଶூೀ of the influential force. Together with the probability distribution, 

this particular energy ratio supports the validity of applying the influential force to the Higgs field. 

From the above point of view, we now connect the order parameters to the influential force in the 𝐼ை-spacetime. We first express the conventional distance 𝑥 using the metric. When the metric is 𝑔ఓఔ, 

the distance x varies from the original metric 𝑔ைఓఔ by 

 .                     (157) 

If we set x = dx in terms of the origin, then the information distance 𝐼ை ≥ 0 between the spacetime 

quanta is expressed as 
 ,                              (158) 

where 𝛼 = 𝐸 ℏ𝑣⁄  is a parameter of the distribution of the particle mediating information. Meanwhile, 

the Higgs field 𝜙 is an order parameter representing the breaking of electroweak symmetry and 𝜙 =2Δ. The relationship with the information distance 𝐼ை ≥ 0 is described as 

 .                            (159) 
Thus, we have linked Hamada’s quantum gravity to the 𝐼ை-spacetime. If we neglect the spread in the 

conventional four-dimensional spacetime and set x = 0, then 𝐼𝑂 = 𝛽𝜙 2⁄  is proportional to 𝜙 and 
inversely proportional to the absolute temperature T. 

Metric symmetry combining internal spacetime and external spacetime 

A theory linking general relativity and quantum mechanics requires a symmetry that combines the 

internal spacetime and external spacetime. When spontaneous symmetry breaking occurs, the phase 

coherence of the Higgs field emerges. The internal spacetime representing the spin dynamics of 

spacetime quanta is then linked to the order-parameter collective mode of the Higgs condensate. 

Meanwhile, in terms of 𝐼ை = 𝛼𝑥 + 𝑟/2 , Eqs. (158) and (159) regard the order parameters as the 

information metric 𝑟 of the spacetime quanta and associate them with the conventional distance x. 

Here, the principle of least action will lead to phase coherence, which connects the internal and 

external spacetime in the context of the Higgs mechanism. Thus, the combination of the internal and 

external coordinates within the Higgs field illustrates how the metric symmetry plays a role in the 

unification of natural forces by the influential force. 

Order parameters and influential force potential 

As we initially envisioned, we consider the complex scalar field with modulus 𝐼ை in the 𝐼ை-spacetime. 

Let the potential of the field be the probabilistic influential force potential 𝜑′(𝐼ை) between two 

spacetime quanta X and Y. We again use the reduced information distance for oscillation potentials. 
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Within this polar local information coordinate spacetime, the use of the reduced information distance 

supposes that one of the two spacetime quanta is fixed at the origin. At this time, the reduced 

information distance corresponds to the reduced mass-energy of the other oscillating quantum. This is 

because 𝐼ை is a special coordinate expressing both position and energy. Then, 

 .             (160) 
Suppose both spacetime quanta have unit information mass ℳ = 1. In that case, 𝜑′(𝐼ை) can be 

expressed as 𝜑ᇱ(𝐼ை) = 𝜑ᇱ௔௧௧(𝐼ை) + 𝜑ᇱ௥௘௣(𝐼ை), where 𝜑ᇱ௔௧௧(𝐼ை) = −𝑘ଵ𝑒ିூೀ  is the attractive force 

potential, which has the information distance 𝐼ை corresponding to the attractive pair potential Δ, and 𝜑′௥௘௣(𝐼ை) = ଵଶ 𝑘ଶ𝑒ିଶூೀ  is the repulsive force potential, which has the information distance 2𝐼ை 

corresponding to the repulsive pair potential 𝜙 = 2Δ. The existence probability of the Higgs boson is 

then determined by 𝜑′(𝐼ை). Thus, we have obtained the Higgs potential represented by the influential 

force potential. Hereafter, we set the unit information mass ℳ = 1 as that corresponding to the vacuum 

expectation value 〈𝜙〉଴ = 246 GeV. Additionally, we set the magnitude of the attractive potential Δ 

corresponding to 〈𝜙〉଴ as Δ଴: = 〈𝜙〉଴ 2⁄  = 123 GeV. 𝜑ᇱ௔௧௧(𝐼ை)  and  𝜑′௥௘௣(𝐼ை)  are respectively the probabilistic influential force potentials 

corresponding to the spacetime quanta 𝜙଴(𝑥) and 𝜙෨଴(𝑥) in the conventional x-spacetime with the 
metric 𝑔ఓఔ . The energy ratio 1: 2 between the attractive term and repulsive term of 𝜑′(𝐼ை) also 

coincides with that of 𝜙଴(𝑥) and 𝜙෨଴(𝑥), which are respectively wave functions of the zero-point 
oscillation and double-frequency oscillation. These characteristics are again consistent with the 

discussion presented in this paper. 

Taken together, the influential force potential 𝜑′(𝐼ை)  is well compatible with both order 

parameters Δ and 𝜙 of Nambu theory. This supports the involvement of the phonon-based influential 

force ℱ ́  in the Higgs mechanism. Furthermore, it is conceivable that the exchange interaction between 

the generated identical Higgs bosons causes another ℱ ʹ acting between them, thereby producing the 

Higgs condensate with phase coherence. 

Probabilistic influential force potential and energetic potential 

The probabilistic influential force potential 𝜑′(𝐼ை)  is the cumulative probability amplitude of 

exchanging information between the origin and a point at the information distance 𝐼ை. Meanwhile, 

consistent with the energy ratio characterizing Nambu theory, 𝜑′(𝐼ை)  represents the potential 

constructed by probabilistically distributing the energy between the two energy levels of 𝐼ை and 2𝐼ை. 

This composition is similar to that of the Morse potential VM that expresses the interatomic interaction 

of a diatomic molecule. Therefore, 𝜑′(𝐼ை) can be converted into the potential 𝑉ு′ according to 

 ,                            (161) 
which has the dimension of energy. 
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Influential force field and gravity 

Peter Higgs himself denied the association of gravity with the Higgs field in the Standard Model. 

However, we have demonstrated that the influential force field 𝜑′(𝐼ை) explains the Higgs field and is 

associated with gravity on the quantum level. In addition, we here demonstrate the relevance between 

the influential force field 𝜑′(𝐼ை) and the gravity field Vg on the macroscopic level. If we let ℱ ʹ be the 

influential force and let Fg(x) be gravity, then 

 .         (162) 
If 𝑘ଵ ≫ 2𝑘ଶℳ(G1) ℳ(G2)𝑒ିூೀ, then 

 .                              (163) 
Therefore, as far as the repulsive force can be neglected, the influential force ℱ ʹ represents 

conventional gravity. This suggests that the influential force ℱ ʹ expresses both the Higgs field and 

gravity in a unified manner. Moreover, the repulsive force is expected to arise at the unobservable 

ultramicroscopic level, which in turn conforms to the anticipation of inflation theory. 

Visualization of the influential Higgs potential 

As the influential Higgs potential, we visualize the probabilistic influential force potential 𝜑′(𝐼ை) 
between the pair of spacetime quanta 𝑔ఓఔ and 𝑔ைఓఔ (Fig. 5). Assuming that the spacetime fermions 

have energy corresponding to the unit mass ℳ = 1, we consider the potential between them. The 

potential equals the lowest excitation energy of the Bogoliubov quasiparticle expressed by HQ in Eq. 

(156B). According to Nambu theory, its energy is the gap energy 2Δ଴, which is the vacuum expectation 

value 〈𝜙〉଴ = 246 GeV. However, if we consider that the one spacetime fermion is fixed at the origin, 

then we can use the reduced mass (i.e., 〈𝜙〉଴ 2⁄ =  123 GeV) for the other. In this case, both the 

attractive potential Δ଴ and the repulsive potential 2Δ଴ are halved to Δ଴ 2⁄  and Δ଴, respectively. In 

addition, the reduced information distance 𝐼ை = (𝛼𝑥 − 𝛽∆) 2⁄  is applied again. The application of 

this distance allows the focusing on one of the two spacetime quanta; that is, a quantum that oscillates 

around the origin of the information coordinate spacetime (𝐼ை-spacetime). 

Then, 𝜑′(𝐼ை) in the two-dimensional figure resembles the Morse potential VM. 𝜑′(𝐼ை) takes the 

minimum 𝜑ᇱ(𝐼௘) = −ቀඥ(𝜋)𝑐𝜇ு 2ℎ⁄ ቁଵ ଶ⁄
 (i.e., 𝑉ு′ = −108.8 GeV) at the equilibrium information 

distance 𝐼௘ = (log 2) 4⁄  (Fig. 5a). The standard Higgs potential VH also takes a minimum here, where 𝜙  becomes 〈𝜙〉଴ . As 𝐼ை  becomes smaller than 𝐼௘ , 𝜑′(𝐼ை) increases, which indicates the strong 

repulsive force near the origin. Meanwhile, as 𝐼ை  becomes larger than 𝐼௘ , 𝜑′(𝐼ை)  increases 

moderately and limூೀ→ஶ𝜑ᇱ(𝐼ை) = 0. 
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As shown in Figure 5a, the influential Higgs potential 𝜑′(𝐼ை) is flat in the high-energy region. 

Its shape is not that of a Mexican hat or a wine bottle like that of the standard Higgs potential VH. The 

difference from the Morse potential lies in the attractive and repulsive coefficients; thus, the potential 

at the origin 𝜑ᇱ(0) (i.e., 𝑉ு′ = −101.1 GeV) is lower than that at the Fermi surface 𝜑ᇱ = 0. This is 

consistent with the fact that the attractive force is dominant for gravity in the observable universe. 

 

 
Figure 5. | Influential Higgs potential. a, Probabilistic influential force potential representing the Higgs 
potential as a function of 𝐼ை. The upper abscissa expresses the corresponding field, while the right 
ordinate represents the corresponding potential energy. The inset magnifies the neighborhood of the 
minimal point. b, Three-dimensional figure of the potential in the vicinity of the minimal point. 
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Figure 5b shows a three-dimensional plot of the influential Higgs potential 𝜑′(𝐼ை)  in the 

neighborhood of the origin and the minimal points. The standard Higgs potential VH diverges rapidly 

as 𝜙 increases, and its shape is that of a Mexican hat. In contrast, 𝜑′(𝐼ை) is finite. Therefore, there 

is no divergence even if 𝐼ை approaches zero or goes to infinity. Because divergence does not occur, 

renormalization is unnecessary, and we can use the same formula continuously from below the 

electroweak scale to beyond the Planck scale. This is a large difference from the case of the standard 

Higgs potential VH. Simultaneously, this property is critical in terms of the potential that represents 

gravity. The most significant difficulty in quantizing gravity has been that the gravity potential 

diverges. In contrast, when expressing gravity by the influential force ℱ ʹ, the quantum gravity theory 

will be much easier to establish because the scattering amplitude does not diverge. 

From the spacetime quantum to the Higgs sea 

The influential Higgs potential 𝜑′(𝐼ை) is a Morse-like potential and is a central force that allows us 

to reduce the two-body problem of the interacting spacetime quanta to a one-body problem. In this 

case, the mass of the quantum that oscillates at the bottom of the potential is obtained by applying the 

harmonic approximation and then transforming the result into energy. We thus get a mass of 〈𝜙〉଴ 2⁄ = 123 GeV, which can be referred to as the reduced unit mass 𝜇ு. In the influential force 

potential [Eq. (145)], this 𝜇ு corresponds to the dissociation energy and is close to the Higgs mass 

of 125 GeV observed by the Large Hadron Collider. We are thus justified in regarding this quantum 

oscillator as the Higgs boson. Therefore, the spacetime quanta in Hamada theory constitute Higgs 

bosons. They will undergo Bose–Einstein condensation probably through the exchange interactions 

that we described in Section (g). This process results in the coherent Higgs condensate, the Higgs sea. 

Importance of the equilibrium information distance 

The probabilistic influential force ℱ ʹatt and the repulsive force ℱ ʹrep are balanced at the equilibrium 

information distance 𝐼௘. The minimum of 𝜑′(𝐼ை) corresponds to −7.7 GeV relative to 𝜑ᇱ(0). This 

shallowness of the potential bottom is consistent with the observed small mass of the Higgs boson. 

Notably, the value of 𝐼௘ = (log2)/4 is constant irrespective of the masses of the interacting quanta or 

their distance in the x-spacetime, and 𝐼௘ can therefore be regarded as a unit of quantum information 

(Appendix 23). This particular equilibrium point has a special meaning within the 𝐼ை-spacetime as 

well as within the conventional x-spacetime, as described below. 

The distance 𝐼௘  corresponds to the point where the attractive force and repulsive force are 

balanced in the 𝐼ை-spacetime and thus corresponds to the Schwarzschild radius 𝑟௦ = 2𝐺𝑚 𝑐ଶ⁄  in the 

x-spacetime, where G is the gravity constant and m is the mass of the particle. Moreover, the spacetime 

quantum located at the origin of the information coordinates is a black hole, and 𝐼௘ = (log2)/4 is its 
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radius in the 𝐼ை-spacetime. This black hole has entropy 𝑆஻ு = 𝐼௘. Moreover, because the attractive 

pair potential is Δ଴ 2⁄ , the energy of the black hole is 𝜇஻ு = 𝑘஻𝑇 ∙ 𝐼௘ = 𝜇ு − Δ଴ 2⁄ = 〈𝜙〉଴ 4⁄ . 

Although the background freedom holds on the scale of 𝑟௦ in general, the expectation value of 

the unique metric field 𝑔𝜇𝜈 can be expressed as 

 .                         (164) 
By calculating the x-coordinate using the metric as mentioned above, we obtain the expectation value 

of 𝑟௦  as 〈𝑟௦〉 = 〈𝑟௦ෝ〉 , where 〈𝑟௦ෝ〉  is the expectation value of 𝑟௦  in the background metric. On this 

basis, 〈𝑟௦〉 = 3.24 × 10−52 m for the spacetime quantum with a mass of 123 GeV. The parameter of 

the distribution of the influential force is then 𝛼 = 𝐼௘ 〈𝑟௦〉⁄  = 5.35 × 1050 m−1. This 𝛼 is much larger 

than 𝛼 = 2.4 × 1013 m−1, which is the value calculated adopting lattice quantum chromodynamics [see 

Section (c)]. The large value of 𝛼 for gravity demonstrates that the strong repulsive force acts inside 

the Schwarzschild radius, showing the huge magnitude of the Hamiltonian HQ of the Bogoliubov 

quasiparticle generated by the spacetime vibration. 

Influential Higgs inflation 

The influential force in the 𝐼ை-spacetime predicts the strong repulsive force on the ultramicroscopic 

scale. This coincides with the inflation theory of the early universe. Bezrukov proposed a Higgs 

inflation model in which the standard Higgs boson is the inflaton [38]. This model assumes a non-

minimal coupling between the standard Higgs potential VH and gravity. Following Bezrukov’s Higgs 

inflation, we consider a model in which the influential Higgs is the inflaton (i.e., influential Higgs 

inflation). The shape of the curve in Figure 5a highly resembles that of the Higgs inflation potential 

except for the region inside 𝐼௘. However, the influential Higgs potential is 𝜑′(𝐼ை), which directly 

represents the gravity from the very first, and non-minimal coupling with gravity is thus not required. 

Similarly, 𝜑′(𝐼ை) does not have the square of the Ricci scalar, which is included in Starobinsky’s R2 

inflation model [39] to allow the coupling of gravity with quantum fields. Contrary to the above two 

models, the Lagrangian and the action in the influential Higgs inflation model are respectively 

expressed as 

 ,                     (165) 
which do not include any artificial interaction terms with gravity. 

If we suppose that the inflation began at 𝐼ை = 4.97 = 28.7𝐼௘, then the e-fold is N = 60. The slow 

roll parameters are 𝜀 =  1.375×10-4 ≪  1 and |𝜂| =  0.0164 ≪  1, which satisfy the slow-roll 

conditions. The calculated values of quantum fluctuation are then the spectral index ns = 0.966 and the 
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tensor-to-scalar ratio r = 0.0022, which are compatible with the observations of the Wilkinson 

Microwave Anisotropy Probe [40] and Planck spacecraft [41]. The good reproduction of the satellite 

observation data by the calculated values supports the validity of the influential Higgs inflation model, 

in which the universal force potential 𝜑′(𝐼ை)  inherently expresses gravity. Notably, the models 

proposed by both Bezrukov and Starobinsky predicted that r = 0.003, which is appreciably higher than 

our prediction. In the future, it will be desirable to examine observations of the polarized cosmic 

microwave background made by the next-generation satellite LiteBIRD [42]. 

Breaking of influential force gauge symmetry 

If the inflaton is the influential Higgs, then 𝐼ை  decreased as the inflation proceeded. In the early 

universe at high temperature, spacetime quanta formed the Higgs field based on the gauge symmetry 

of the attractive term of the mechanistic influential force, which is expressed by 𝐹௔௧௧ᇱ (𝐼ை) =−𝑑𝛷௔௧௧ᇱ (𝐼ை) 𝑑𝐼ை⁄ = −1. According to the Standard Model, the phase transition of the field occurred 

at the transition to the low-temperature state. At that time, the relative strength of the repulsive term ห 𝐹௥௘௣ᇱ (𝐼ை)ห = 𝑑𝛷௥௘௣ᇱ (𝐼ை) 𝑑𝐼ை⁄ = 2 to the attractive term |𝐹௔௧௧ᇱ (𝐼ை)| = 1 was greatly increased by the 

decrease in 𝐼𝑂. As a result, it appears that 𝐹ᇱ(𝐼ை) = 𝐹௔௧௧ᇱ (𝐼ை) spontaneously changed to 𝐹ᇱ(𝐼ை) =𝑘ଵᇱ𝐹௔௧௧ᇱ (𝐼ை) + 𝑘ଶᇱ 𝐹௥௘௣ᇱ (𝐼ை). 

 
Figure 6. | Ratio between the repulsive influential force and attractive influential force as a 
function of IO . The inset expresses the neighborhood of the equilibrium point Ie. 
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We now evaluate the weight of the repulsive force. If we calculate the ratio of the repulsive term 

to the attractive term in the force ℱ ′ acting between two spacetime quanta, then ℱ ′rep/ℱ ′att =√2ర 𝑒ିூೀ (Fig. 6). This ratio is invariant irrespective of either the masses of the quanta or the distance 
between the quanta in the 𝑥-spacetime. 𝐼ை was sufficiently large at the beginning of the inflation, 

and the repulsive term was negligible. However, with the progression of inflation, the weight of the 

repulsive term increased as 𝐼ை decreased. When 𝐼ை = 𝐼௘, the ratio became 1, and the repulsive force 

balanced with the attractive force. This means that the strong repulsive force ℱ ′rep acting between the 

spacetime quanta broke the influential gauge symmetry spontaneously. 

Influential force and the hierarchy problem 

The hierarchy problem asks why the Higgs mass is much smaller than expected from renormalization. 

To solve this issue, we focus on an example in which a matter particle M with zero mass collides with 

the Higgs boson H with mass 𝑚ு  and obtains mass 𝑚′ெ . The scattering causes an exchange of 

information on momentum and position between the two particles, and MI arises as in Eq. (41). The 

energy difference between before and after the information sharing is expressed as 

  .        (166) 

This means that the information distance between the particles decreases by Δ𝐼ை, and the energy 𝑈 

of the composite system decreases by −𝑘஻𝑇 ∙ Δ𝐼ை = 𝑘஻𝑇 ∙ Δ𝑀𝐼 . If we now set the conventional 

distance at the collision as 𝑥 = 0, then the influential force 

                            (167) 
acts between the particles. The information distance 𝐼ை(𝑀,𝐻) is symmetric with respect to the two 

particles, and the action of the influential force is thus also symmetric. Therefore, the total energy U 

lost is (𝑘஻𝑇 ∙ Δ𝑀𝐼)/2 for each particle. The influential force ℱ ′att decreases the phase difference 

between the two particles because Δ𝑀𝐼 = −Δ𝐼ை = −Δ𝑆௔ ℏ⁄ . 

If we let 𝑇௜  (𝑖 = 𝑀 𝑜𝑟 𝐻)   and 𝑉௜  be the kinetic energy and potential energy of the two 

particles, respectively, then the Lagrangian 𝐿௜ before the scattering is 

 .                              (168) 

After the scattering, however, this 𝐿௜ changes to 

 .                     (169) 

This shows that the potential energy increases by (𝑘஻𝑇 ∙ Δ𝑀𝐼)/2. Then, according to Nambu theory, 

this increase in potential implies that the particle M obtains the mass 𝑚′ெ = (𝑘஻𝑇 ∙ Δ𝑀𝐼)/2𝑐ଶ. 

As the matter particle M gains mass, by the symmetry of the influential force, the potential energy 

of the Higgs boson H increases by the same amount (𝑘஻𝑇 ∙ Δ𝑀𝐼)/2𝑐ଶ. This increase in the potential 
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indicates that the minimum value of the influential Higgs potential converted to energy decreases from 𝑉′ு(𝐼௘) to 𝑉′ு(𝐼௘) − (𝑘஻𝑇 ∙ Δ𝑀𝐼)/2, and the Higgs mass thus increases. The Higgs mass 𝑚′ு after 

the increase is 

 .               (170) 
That is to say, the Higgs mass increases by the mass 𝑚′ெ, which is the same mass that the matter 

particle obtains. Notably, the influential force potential 𝜑′(𝐼ை) does not diverge; thus, even if 𝑚′ெ 

is very large, there is no need to correct the Higgs mass by renormalization. Therefore, applying the 

influential force ℱ ′ can lead to the solution of the hierarchy problem. 

Equivalence of gravitational and inertial mass 

The equivalence principle states the equivalence of gravitational and inertial mass. Supposing the same 

scattering as supposed in the previous subsection, we now explain the mechanisms underlying the 

generation of gravity in proportion to the particle mass. When the mass of Higgs boson is 𝑚ு, the 

Higgs potential 𝜑ᇱ(𝑚ு) due to the influential force is expressed as 

 .                   (171) 
If we set 

 ,                     (172) 
then after the increase in mass by 𝑚′ு, 

 .              (173) 

This means that 𝑟 = 2𝛽𝑉௚(𝑥) increases, and the gravity potential thus increases from 𝑉௚(𝑥) to 𝑉௚′(𝑥) = 𝑉௚(𝑥)(1 + 𝑚′ெ 𝑚ு⁄ ). Hence, the gravity force 𝑑𝑉௚(𝑥) 𝑑𝑥⁄  also increases in proportion to 

the mass obtained by the material particle. If we define the gravitational mass as 𝑚′ீெ =൛ൣ𝑉௚′(𝑥) 𝑉௚(𝑥)⁄ ൧ − 1ൟ𝑚ு, then it coincides with the inertial mass 𝑚′ெ: 

 .                              (174) 
Thus, the equivalence of gravitational and inertial mass is proved, demonstrating the solution to a 

central mystery in modern physics once again. 

Entanglement entropy and the Higgs field 

In this section, we have applied BCS theory to spacetime quanta and described how the MI of the 

spacetime quanta forms the Higgs field. Section (h) showed that MI = 2SEE if the entanglement holds 

between two spacetime quanta. Meanwhile, the MI explained by BCS theory satisfies MI = βΔ. These 

results suggest a close relationship between SEE and Δ. Here, we derive the relationship between 𝑆𝐸𝐸 

and the Higgs field by considering the entanglement of spacetime quanta. 
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The electrons that form Cooper pairs in the BCS theory of superconductivity are entangled with 

each other. The entanglement entropy is proportional to the pairing energy Δ [43,44]. We apply the 

BCS theory to spacetime quanta, and therefore the entanglement is also supposed to hold between the 

spacetime quanta by a similar argument. We then ask, even in the case of entanglement between 

spacetime quanta, does a proportional relationship hold between SEE and Δ? We here consider the 

following two points. 

1) Our model of the Higgs boson is a combination of two spacetime quanta via the phonon, which is 

the oscillation of the background x-spacetime. The equilibrium information distance 𝐼௘ =(𝛼𝑥 − 𝛽∆଴) 2⁄ = (log 2) 4⁄   is the reduced information distance at which the attractive and 

repulsive forces are balanced. The use of the reduced information distance corresponds to tracing 

out one of the two subsystems. This distance 𝐼௘ corresponds to the Schwarzschild radius within 

the x-spacetime when we regard the spacetime quantum as a black hole. Here, the black hole has 

entropy 𝑆஻ு = 𝐼௘ = (log 2) 4⁄  and energy 𝜇஻ு = 𝑘஻𝑇･𝐼௘ = Δ଴ 2⁄ = 〈𝜙〉଴ 4⁄ . 

2) According to the Bekenstein–Hawking formula, the black hole entropy is 𝐴 4⁄ , where A is the 

area of the event horizon. This entropy is equal to the entanglement entropy 𝑆𝐸𝐸 according to the 

Ryu–Takayanagi formula, and A corresponds to the number of Bell pairs (or EPR states). The 

spacetime quanta in Hamada’s theory are the quantized version of Einstein gravity, and it is thus 

appropriate to apply the Ryu–Takayanagi formula to the entropy calculation of quantum 

interactions. If we use this formula, the area A represents the number of one-qubit entanglements 

per one spacetime quantum. The positive minimum of A is one Bell pair (i.e., 𝑚𝑖𝑛(𝐴) = log 2), 

and then 𝑆ாா = (log 2) 4⁄  . This value is equal to 𝑆஻ு = 𝐼௘ = (log 2) 4⁄  ; that is, 𝐼௘  is the 

entropy of the minimum black hole. The energy of this black hole is 𝜇஻ு = 𝑘஻𝑇･𝑆ாா. 

It follows from 1) and 2) that at the equilibrium information distance, 

 .                             (175) 

More generally, there is a proportional relationship between 𝑆ாா, the pairing energy Δ, and the Higgs 

field strength 𝜙: 

 .                          (176) 

In this way, 𝑆ாா expresses the interaction between spacetime quanta, which explains the Higgs field. 

Furthermore, Δ = 2𝑘஻𝑇･𝑆ாா expresses the energy ∆U of the gravitational interaction, which satisfies 

 .                          (177) 

Moreover, the relationship with the Higgs mass is expressed as 

 ,                    (178) 

and the source of mass is thus created according to 𝑆𝐸𝐸. 
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As noted above, we have related 𝑆𝐸𝐸 to the Higgs field as well as the gravitational field, which 
is an application of the gauge–gravity correspondence. The obtained picture of the Higgs boson is a 

combination of two black holes separated from each other by their Schwarzschild radii. We will call 

this arrangement a black hole dimer. Given that the dimers are all identical, the above-discovered 

exchange interaction will induce Bose–Einstein condensation to form the Higgs condensate. However, 

it is noted that, unlike superstring theory, we deal with a scale much smaller than the Planck scale. 

Unification of diverse fields of physics 

By replacing the standard Higgs potential VH with the probabilistic influential force potential 𝜑′(𝐼ை), 

we provided a clue to understanding the principle underlying spontaneous symmetry breaking. We 

also obtained findings that can lead to the comprehensive unification of the Higgs potential, gravity, 

inflation, and entanglement entropy. The predicted Higgs mass and the inflation parameters reproduce 

observations well. Moreover, we presented a plausible explanation for the equivalence of gravitational 

and inertial mass and provided a possible solution to the hierarchy problem. Thus, applying 𝜑′(𝐼ை) 

has offered explanations for a variety of the issues that exist in modern physics. 

 

(j) Many-body system 

This section discusses the influential force in a many-body system, using the information distance 𝐼ை = 𝛼𝑥 + 𝑟/2. Each physical body shares MI with many other bodies in the universe. In other words, 

a state change in a single informaton has the possibility of affecting the states of all other informatons, 

and vice versa. Such information transmission affects 𝐼ை of informatons. According to the metric 

symmetry, this change in 𝐼ை affects both the information metric 𝑟 and conventional distance 𝑥. We 

here discuss the outcome of these events from the information theoretical point of view. 

Linear combination of influential orbitals (LCIO) 

The attractive influential force 𝜙௜௝ that acts between two bodies Gi and Gj is expressed as a function 

of the information distance 𝐼ை(Gi, Gj) between the bodies: 

 .                    (179) 

This equation has the same form as the Slater-type wave function used in the molecular orbital method. 
We here refer to 𝝌𝒊𝒋(𝑰𝑶) =  ൫𝝓𝒊𝒋(𝑰𝑶), [𝝓𝒊𝒋(𝑰𝑶)]𝟐൯ as the influential force orbital. If we let k1ij be the 

attractive coefficient, k2ij be the repulsive coefficient, and cij be the weight coefficient vector defined 

as cij := ൫𝑘ଵ௜௝ , −𝑘ଶ௜௝൯, then the influential force acting between Gi and Gj is expressed as 

 .                            (180) 
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The influential force φ of Gi in the many-body system is now expressed by the combination of 

influential force orbitals as 

 .                         (181) 
We designate this φ as the information orbital of Gi. Equation (181) shows that the information orbital 

can be represented by the LCIO with all other bodies. Furthermore, 𝐼ை is the entropic representation 

of the distance, and the LCIO has a relationship with the information entropy of the many-body system. 

Genesis of the repulsive force in a many-body system 

We now consider a closed many-body system that comprises N bodies, G1 to GN, and examine the 

outcome of the four fundamental forces in this system. This system can be regarded as a subsystem of 

the universe. We initially assume that isothermal conditions are maintained and that the entropy of the 

system Hsys := H(G1,…, GN) is constant. Hsys is then expressed as 

  .                    (182) 

Similar to the discussion of the two-body system, when the mediator particles’ energy is also summed, 

we consider that each body’s entropy H(Gi) remains constant irrespective of the change in MI(Gi, Gj). 

Here, if the attractive force 𝐹௔௧௧ᇱ (𝐼ை) acts between the two bodies Gi and Gj, then MI(Gi, Gj) increases 

while 𝐼ை(Gi, Gj) decreases. Because Hsys is assumed to be constant, both ΣMI(Gi, Gk) and ΣMI(Gj, Gk) 

decrease while both  Σ𝐼ை (Gi, Gk) and Σ𝐼ை (Gj, Gk) increase, where the summations are taken with 

respect to k running from 1 to N excepting i and j. This implies that repulsive forces arise both between 

Gi and Gk and between Gj and Gk in the information coordinate spacetime (𝐼ை-spacetime). Thus, 𝐹௔௧௧ᇱ (𝐼ை) for only a single pair of bodies affects the distribution of 𝐼ை. Furthermore, from a global 

point of view, the action of 𝐹௔௧௧ᇱ (𝐼ை) is generally regarded as local. Nonetheless, 𝐹௔௧௧ᇱ (𝐼ை) affects the 

global distribution of 𝐼ை in the many-body system. 

Metric symmetry explaining the repulsive force in a many-body system 

To extend beyond the above discussion, we next consider the overall effect of 𝐹௔௧௧ᇱ (𝐼ை) that acts 

between bodies in the system. We now apply the concept of metric symmetry to address this issue. 

Then, using equations 𝐼ை = 𝛼𝑥 + 𝑟/2 and 𝑀𝐼 = −𝐼ை, the system entropy Hsys is expressed as 

 .          (183) 
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This equation indicates that Hsys equals the total of the sum of each entropy H(Gi) and the sum of each 

information distance 𝐼ை(Gi, Gj). The latter equals the sum of two terms representing the effects of the 

conventional distance 𝑥 and the information metric 𝑟. Thus, the metric symmetry between 𝑥 and 𝑟 

also holds in the many-body system. 

We here perform a thought experiment in which 𝐹௔௧௧ᇱ (𝐼ை)  begins to act on bodies before 

initiating the movement within the conventional coordinate spacetime (𝑥-spacetime). In this case, ∑ ∑ 𝑟ே௝ୀ௜ାଵேିଵ௜ୀଵ (Gi, Gj) first decreases, indicating that the average information metric 〈𝑟〉 of the bodies 

contracts. Then, because Hsys is constant, ∑ ∑ 𝑥ே௝ୀ௜ାଵேିଵ௜ୀଵ (Gi, Gj) tends to increase, owing to the metric 

symmetry. This implies that the average conventional distance 〈𝑥〉 between bodies is prone to expand. 
This observation again shows that the repulsive force 𝐹௥௘௣ᇱ (𝐼ை) arises in the many-body system. After 

that, according to 𝐹௔௧௧ᇱ (𝐼ை), the distance 𝑥 between bodies begins to decrease locally, which causes 

an additional decrease in Hsys, thereby inducing further repulsion and fluctuation. 

We next extend our discussion to the universe by applying the above argument. We consider that 

the universe is an isolated many-body system, in which we assume that the isothermal conditions 

prevail. We here set Huniv as the total entropy of the universe. Then, ∆Huniv ≥ 0 always holds. 

Accordingly, Huniv generally increases through the action of 𝐹௔௧௧ᇱ (𝐼ை) . Therefore, in a thought 

experiment similar to that described above, 〈𝑥〉 in the universe tends to expand even more rapidly 

than that in the aforementioned many-body subsystem. This observation reinforces the production of 
the repulsive force 𝐹௥௘௣ᇱ (𝐼ை), which is consistent with the currently observed expansion of the universe. 

Finally, we present an overview of the counteracting forces; that is, 𝐹௔௧௧ᇱ (𝐼ை) and 𝐹௥௘௣ᇱ (𝐼ை). 

Regarding every two-body interaction, their absolute proportion is 𝐹௔௧௧ᇱ (𝐼ை) ∶ 𝐹௥௘௣ᇱ (𝐼ை) =  𝛷௔௧௧ᇱ (𝐼ை) ∶ 𝛷௥௘௣ᇱ (𝐼ை) = 1: 2 , which holds everywhere in the 𝐼ை -spacetime. Thus, 𝐹௔௧௧ᇱ (𝐼ை) and 𝐹௥௘௣ᇱ (𝐼ை) may 

respectively constitute 33% and 67% of the cosmic energy, which likely explains the observation that 

the total energy of the universe contains 32% ordinary and dark matter and 68% dark energy. 

Chapter summary 

The influential force unifies all natural forces and exists in diverse physical systems. First, we found 

that the influential force arises from the fluctuation of microstates. Next, a novel exchange interaction 

was discovered, which is caused by the MI of identical quanta. We then explained spontaneous 

symmetry breaking for the Higgs field, accounted for the equivalence of inertial and gravitational mass, 

and obtained a possible resolution to the hierarchy problem. The influential Higgs effectively 

reproduced the data of the cosmic microwave background even without a non-minimal coupling with 

gravity. The Higgs field, gravity, inflation, and entanglement entropy were all explained in a unified 

manner. Finally, we estimated the magnitude of the dark energy as 67% of the cosmic energy density. 

The influential force thus offers a starting point for a variety of next-generation physics research. 
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3. Influential force and biology 

(a) Gene information and life 

Life is the mode of existence of information, whereas a gene is a representative informaton. The 

purpose of the presence of genes is to contribute to the fitness of organisms; that is, the existence 

probability of the informaton itself. For this purpose, genes encode molecular structures of gene 

products by which they control materials and energy, thereby regulating organisms' architectures and 

functions. After 4 billion years of evolution, genes have acquired profound capabilities. Genes now 

have the ability to construct complex body plans and establish higher functions represented by the 

nervous system and immune system. The evolution of gene information has played a central role in 

this remarkable progress. 

Enormity of gene information 

Genes encode a vast amount of information, and hence the entire picture is difficult to understand. 

Primarily, gene information is expressed at a molecular level; that is, it determines the state of 

biomolecules in many ways. These include quantitative change, structural alteration, chemical 

modification, control of degradation, a shift in localization, complex formation, and chromatin 

regulation. Moreover, the expression profiles of genes are heterogeneous, being either continuous or 

discrete. Genes are simultaneously expressed in many different forms, in multiple subcellular 

components, and in diverse types of cells that compose various organs. With these characteristic 

expression patterns, the information is represented as the morphological and physiological properties 

of organisms with sociobiological phenotypes and is subject to natural selection through them [45]. 

Because of the extreme complexity of gene information, it has been challenging to understand 

the broad totality of gene information using a unified measure. To address this issue, we employ a 

statistical approach as follows. 

Measure of gene information 

We consider gene information as an extremely high-dimensional random variable. To deal with the 

large complexity, we introduce a linear index that allows us to treat the information as if it were one-

dimensional (Appendix 9). Let the gene GX be an informaton that expresses at most n different 

observable states. With a linear index k (1 ≤ k ≤ n), we can arrange the states according to their 

likelihood. For the k-th observable state, the realization probability p(Ik) of the self-information Ik 

follows an exponential distribution, which we call the infocanonical distribution (Appendix 17): 

 ,                              (184) 



73 
 

where the information level of the observable state is Ik. This is the basic equation applied to all self-

information. However, because of a substantial number of observable states, the realization probability 

can be represented by a continuous random variable, as detailed below. 

The observable states expressed by GX depend on the deoxyribonucleic acid (DNA) sequence. 

Because the average length of human protein-coding genes is approximately 50 kb [46], the total 

number of states per haploid (ntot) is ntot = 450,000 = 9.99 × 1030,102, which is incomparably larger than 

the Avogadro number 6.022 × 1023 in the physical system. Although the number of constituent particles 

in the physical system is enormous, we cannot distinguish the particles from one another. In contrast, 

although there are few constituent components in the biological system, the permutation becomes the 

source of information, thus allowing the generation of an immense amount of highly multidimensional 

information. However, even if GX takes a set of n (≤ ntot) observable states in a multidimensional space, 

each state can be distinguished by the linear index k (1 ≤ k ≤ n). Furthermore, because n is immensely 

large, the information levels of the observable states can be divided in an extremely fine manner and 

sufficiently represented by a one-dimensional continuous random variable X. 

On the basis of the preceding discussion, we propose that the realization probability of the 

information level X of the observable state follows the infocanonical distribution (Appendix 17): 

 ,                             (185) 
where I is the expectation value of X that represents the likelihood that X has a more unlikely 

information level (Fig. 7). When I = 1, this equation always holds because it is equivalent to that of 

self-information [Eq. (184)]. The use of I allows us to contrast a pair of genes with particularly closely 

related properties, such as a wild type and its mutant. In general, most mutants have characteristics 

very similar to those of their wild-type counterparts in the context of neutral or nearly neutral theory. 

 
Figure 7 | Probability distribution of the observable information level of genes. 
The realization probability of the observable information level X of a gene G follows the infocanonical 
distribution. Blue and red lines respectively represent the probability density functions for Gwt and Gmut. 
Iwt and Imut are thus set to 1 and 1.2, respectively. 
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In such cases, I is a valuable measure with which to compare the relative ability to express the same 

set of states. We denote the wild-type and mutant values of I by Iwt and Imut, respectively, and we set 

Iwt = 1. At this time, ΔI = Imut − Iwt represents the average increase in the relative ability accompanying 

the mutation. We refer to this I as the effective self-information and X as the observable information 

level. 

Besides the continuous representation, X can be evenly split into n levels and distinguished by 

the linear index k (1 ≤ k ≤ n). The realization probability p(Xk) of the k-th information level Xk is 

obtained as an infocanonical distribution (Appendix 17) by integrating p(X) from (k – 1)/n to k/n as 

 ,                            (186) 

where λ = nI is the mean index value of Xk. Finally, if the gene GX evolves to have large λ, then the 

information entropy H(GX) is expressed with the same λ as (Appendix 25) 

 .               (187) 

 

(b) Gene information and the influential force 

In physics, the influential force generates the MI of informatons, thereby affecting the existence 

probability of the system. In a biological system, genes encode the information that affects the 

existence probability of the organism. Therefore, similar to the case for physical informatons, genes 

may produce MI and exert the influential force on the whole body, including other genes. Indeed, 

many functional interactions exist between genes. Specifically, the complex function of a gene is 

exerted not only by the gene itself but also by collaborations with many other genes. Such an ability 

to achieve an appropriate partnership has evolved in the long history of life. Genes thus encode not 

only molecular structures but also mutual relationships among themselves. 

MI of the gene and body 

If a gene G affects other parts of the body B, then the information of G alters the state of B, and vice 

versa. If we regard the states of both G and B as extremely high-dimensional random variables, then 

the information entropy of the whole body H(G, B) is 

 ,                   (188) 
which demonstrates that an increase in MI(G; B) reduces the overall entropy of the organism. Therefore, 

as in the physical system, genes exert an influential force on the body, thereby decreasing the 

uncertainty, bringing order to the biological system, and ultimately achieving homeostasis in the 

organism. In this manner, genes increase the fitness; that is, the probability of the existence of a living 

thing. We propose that this is the most essential function of genes. 
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We can ignore changes in energy and temperature during the evolution of the probability 

distribution of MI(G; B). Thus, under natural conditions, MI(G; B) follows an infocanonical distribution 

(Appendix 2, 17): 

 .                         (189) 

MI of genes 

When a gene Gi functions in an organism, it exchanges information with other genes. As an example, 

we consider a case in which the products of two genes Gi and Gj function through the formation of a 

dimer. In this instance, the functional complex cannot form if the two genes are expressed in different 

tissues at different times. Therefore, selective pressure favors their information sharing regarding 

spatiotemporal expression, and MI evolves between genes. The increase in MI(Gi; Gj) leads to an 

ordered state within the biological system, which is advantageous to the organism's survival. The 

probability of co-expression of two genes increases with time, and the influential force is thus 

regarded as acting between the genes. The important thing is that the influential force manifests itself 

in the process of evolution. 

In the present case, the joint information entropy H(Gi, Gj) of the two-gene system is 

 .                 (190) 
We can again ignore changes in energy and temperature during evolution. Therefore, under natural 

conditions, the magnitude of MI(Gi; Gj) follows an infocanonical distribution (Appendix 2, 17): 

 .                          (191) 
If we let Gj be the gene whose MI(Gi; Gj) with Gi is of j-th strength, then MI(Gi; Gj) follows the 

logarithmic distribution of magnitude rank j: 

 ,                    (192) 
where A and B are constants (Appendix 2). 

 

(c) Relationship between gene information and fitness 

To address the role of gene information, we should consider the evolutionary process of genes in light 

of information theory. During evolution, base substitutions in DNA occur at the rate of approximately 

1E−9/year·base; that is, mutations arise at a frequency of approximately 5E−5/year on average per 

gene of length 50 kb (or once in approximately 20,000 years). With these mutations, the gene 

information changes stochastically both at the individual and population levels. We here consider this 

process from a statistical and probabilistic point of view, applying the analogy of the ergodic 

hypothesis in statistical mechanics. 
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Gene information and fitness 

We consider a large population of haploid organisms and initially discuss a single gene. We assume 

that the population is under sufficiently stable conditions. Let X be the continuous random variable for 

the observable information level of a gene G. Then, X follows an infocanonical distribution at the 

individual level [Eq. (185), Appendix 17]. Meanwhile, at the population level, the population 

frequency of X is supposed to follow a distribution according to its realization probability in each 

organism. This is an analogy to the ergodic hypothesis. In this case, X is expected to follow an 

infocanonical distribution within the population. Such individual variance arises stochastically, such 

as through differences in the genetic background and developmental environment. Moreover, at the 

individual level, gene information makes unlikely (preferred) physiological states more likely to occur. 

From a macroscopic point of view, gene information increases the frequency of individuals with 

unlikely (desirable) states. These gene activities are represented by the effective self-information I. 

We now discuss the relationship between gene information and fitness. For the meantime, we 

ignore the time-lapse and adverse effects of mutations. We initially consider cases in which mutations 

are advantageous for survival unless stated otherwise. We assume that a wild-type Gwt of gene G can 

mutate into a mutant Gmut, thereby increasing the relative fitness from rwt = 1 to rmut = 1 + s, where s 

is the selection coefficient. Given that Gwt and Gmut generally have very closely related properties, 

they are assumed to take virtually the same set of observable states. If we let Iwt and Imut be the effective 

self-information I of Gwt and Gmut, respectively, the change in I through the mutation is ΔI = Imut − Iwt. 

If we assume that all the mutations contribute to positive fitness and if 0 <ΔI ≪ 1, then 

                      (193) 

(Appendix 10). These formulas demonstrate that the gene information is linked to fitness; that is, to 

the probability of the existence of the gene itself after one generation. A change in gene information 

thus contributes to the evolutionary process. 

Major problem in evolutionary biology 

We next discuss the evolution of protein-coding genes, considering deleterious mutations. Selection 

coefficient s is a factor that determines the probability of the ultimate fixation of Gmut in the population 

[47]. When the product Ne s of the effective population size Ne and s is greater than 1, the fixation 

probability increases owing to positive selection. However, Ne s takes a negative value far more 

frequently than a positive value. Moreover, in negative cases, most mutations are excluded from the 

population because they are deleterious. Hence, the mutants with Ne s < 0 are not fixed, except where 

|Ne s| is sufficiently small (|Ne s| <1) and thus nearly neutral. For these reasons, a single amino acid 

substitution arises at a rate of only 5E−6/year to 2E−7/year per 100 amino acid residues. Moreover, 

even when mutations occur, most substitutions are conservative, such that there are no appreciable 



77 
 

changes in the structures and functions of proteins [45]. These observations indicate that protein 

evolution is highly conservative. 

In contrast to the preceding discussion, the evolution of phenotypes is, in some cases, much more 

rapid than that of proteins. The first example is the Cambrian explosion, which is the most important 

evolutionary event in the history of life on Earth. Approximately 542 million years ago in the Cambrian 

period, complex animals suddenly appeared in the fossil record [48]. However, despite conspicuous 

morphological evolution, extensive gene evolution did not occur during this period. Conversely, large-

scale gene evolution took place as many as 300 million years before the Cambrian explosion [49]. 

The second example is the evolution of the human nervous system, which was accompanied by 

the establishment of a highly organized neuronal network. The human genus has evolved for 

approximately 2 million years. Nevertheless, Homo sapiens with excellent brain function emerged 

only 250,000 years ago. Furthermore, the remarkable cultural progress called the great leap forwards 

began merely 50,000 years ago [50]. 

For the above examples, it is difficult to fully explain phenotypic evolution based on the 

traditional theory that depends on the mutations in a protein sequence. Thus, there may be another 

mechanism underlying evolution. 

Temporal dynamics of exonic gene information 

To solve the serious problem presented so far, it is necessary to focus on the amount of information 

that a gene can express. Hence, from the perspective of information theory, we consider temporal 

changes in the fitness associated with mutations in coding sequences. We assume that the information 

expressed from a gene G, whose total length of the exon is L bases, takes at most N (≤ 4L) observable 

states as multidimensional random variable X (Appendix 25). Suppose X is the information level of X 

that can be evenly split into n levels and distinguished by a linear index k (1 ≤ k ≤ n). Let p(Xk) be the 

realization probability of the k-th information level Xk. Then, Xk follows the infocanonical distribution 𝑝(𝑋௞) = [exp (1/𝜆) − 1]exp (−𝑘/𝜆), where λ is the mean index value of 𝑋௞ [Eq. (186)]. 

Moreover, we assume a situation in which stochastic mutations cause fluctuations in each 

occurrence probability of gene information. Let the realization probability p(Xk) of each level Xk 

change 𝛾௞-fold at time t, owing to mutations in the entire region of gene G, including non-coding 

sequences. We assume that 𝛾, the average value of 𝛾௞, is expressed by the diffusion equation with 

diffusion coefficient D and follows a normal distribution with a mean of 1 and variance of 𝜎ଶ ≃ 2𝐷𝑡. 
The absolute expectation value of ΔI is then expressed as 

 ,                            (194) 

which increases in proportion to the square root of t (Appendix 26). 
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Figure 8 | Temporal change in the effective self-information of a gene. The mean of |ΔI| at time t 
increases as a square-root function of t. D = 1E−7. 

Figure 8 depicts a simulation of the temporal profile of 〈|Δ𝐼|〉  corresponding to Eq. (194) 

(Appendix 26). It is indicated that, even if the biological effect of each mutation is subtle, the 

information changes accumulate with time and can generate more information and thus greater fitness. 

We propose that this is the fundamental mechanism by which mutations in a single gene lead to novel 

phenotypes. However, considering the difficulty of fully explaining phenotypic evolution by mutations 

in exonic sequences, it is probable that 〈|Δ𝐼|〉 does not necessarily increase efficiently. We will thus 

explore other mechanisms that facilitate the evolution of organisms. 

Temporal dynamics of non-exonic gene information 

We next examine whether |ΔI| becomes sufficient to account for the evolution of phenotypes when we 

also consider mutations in the non-coding regions. We consider a medium-sized gene of 50 kb [46] 

that contains 1.5 kb exons. When the non-coding region is considered in addition to the exons, the 

mutable sequence is expected to become 30 times longer. It is known that the mutation rate in non-

coding regions is approximately 3 times the rate of non-synonymous substitutions in exons [51]. We 

assume that the magnitude of the fitness generated by a mutation in the non-coding region is s0 times 

that generated by a non-synonymous substitution in an exon. The expected ratio of the change in 

fitness due to the non-coding region snc (:= ΔInc) to that due to the non-synonymous substitution in the 

exon sex (:= ΔIex) is 

 .                        (195) 
In Eq. (195), however, it is known that the non-coding sequence contributes much less than the exon 

sequence to the fitness. If we estimate s0 as 1E−4 or 1E−3, then ΔInc is 0.9% or 9% of ΔIex, respectively. 

These values are much less than those of the fitness associated with protein evolution. In conclusion, 

even if we consider the non-coding regions as well as the coding regions, it is difficult to fully explain 

phenotypic evolution only by changes in a single gene. 
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(d) Relationship between intergenic MI and fitness 

This section considers a two-gene system instead of the single-gene system that can hardly explain the 

evolutionary process of organisms. Specifically, we focus on the interaction between genes from the 

perspective of information theory. We consider the MI and attractive influential force ℱatt acting 

between genes as in the physical system. Here, again adopting the analogy of the ergodic hypothesis, 

we suggest that ℱatt likely contributes to the fitness of organisms. 

Two-gene system without MI 

Regarding the organismal population described in the preceding section, we consider two genes, G1 

and G2, whose linkage can be neglected. The wild types G1wt and G2wt of the genes can mutate into 

G1mut and G2mut, respectively. Let the relative fitness of the wild-type combination be r0 = 1. Let the 

increase in the fitness due to the single mutation G1wt→G1mut be s1 with the relative fitness r1 = 1 + s1. 

Let the rise in the fitness due to the mutation G2wt→G2mut be s2 with the relative fitness r2 = 1 + s2. 

The relative fitness of the double mutant is then expressed as r3 = 1 + s1 + s2 (Table 1, where we set 

the epistatic coefficient εtwo = 0) [47]. However, from the aforementioned observations of a single gene 

mutation, s1 < 0, s2 < 0, and thus r3 < 1 in most cases. Therefore, it is unlikely that changes in each 

gene readily lead to phenotypic evolution. 

Two-gene system with MI 

We next consider a scenario in which, between two mutants, a new interaction is formed, accompanied 

by an increase in fitness. Let εtwo (>0) be the epistatic coefficient of the mutants, which is the increase 

in fitness due to the interaction of the mutants. The relative fitness of the double mutant is then 

expressed as r3 = 1 + s1 + s2 + εtwo (Table 1) [52]. Let MIwt be MI of the two wild-types G1wt and G2wt, 

and MImut be MI of the two mutants G1mut and G2mut. The increase in mean MI due to the double 

mutation is then ΔMI = MImut − MIwt. This shift in MI reflects changes in gene relationships that 

accompany all possible heritable changes in the genome. The changes include structural alterations in 

DNA that range from both gene regions to the entire genome; structural changes in the chromatin; 

epigenetic alterations; changes in the spatiotemporal expression; quantitative and qualitative changes; 

modifications and degradations; shifts in localization; and the complex formation of gene products, 

such as proteins and RNA (including miRNA and lncRNA). 

We initially consider the case that the change in intergenic MI provides a fitness advantage. We 

assume that, in each organism, the spontaneous probability p(MI) that the magnitude of MI becomes 

MI follows an infocanonical distribution 𝑝(𝑀𝐼) = 𝑒ିெூ [Eq. (17), Appendix 17] (Fig. 9a, blue line). 

The population frequency of MI is supposed to follow a distribution according to the realization 

probability in each organism. Again, this is an analogy to the ergodic hypothesis. As a result, MI is 

expected to follow an infocanonical distribution within the population of organisms. 
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We assume that ΔMI > 0 and that all new interactions between the mutants contribute to the 

positive fitness. We then have 

                                 (196) 
(Appendix 11). Keeping in mind that most mutations are nearly neutral, if we consider s1 ≃ 0 and s2 ≃ 0, we have r3 ≃ 1+ εtwo. Moreover, if 0 < Δ𝑀𝐼 ≪ 1, then 

 .                           (197) 

The above discussion of a haploid population also applies to a diploid population as long as the 

change in fitness is sufficiently small [45]. The positive fitness values for most mutations are extremely 

small, and this requirement is thus satisfied in most cases. 

When compared with a quantum system, MIwt and MImut correspond to MI of physical bodies 

when the information metric r is large and small, respectively. Meanwhile, the fitness corresponds to 

the realization probability of each state. These correspondences respectively coincide mathematically: 

MImut - MIwt = ∆𝑀𝐼 = −∆𝑟/2  and r3 ≃ 𝑒∆ெூ = 𝑒ି∆௥/ଶ = 𝑒ିఉ∆௎ . These equations support the 
notion that the attractive force ℱatt acts similarly in the biological and quantum systems. 

 

(e) Influential force acting between two genes 

According to the discussion presented thus far, εtwo = ΔMI is expected to generate an attractive force 

ℱatt between genes, facilitating the biological evolution. The present section considers this possibility 

by adopting a probabilistic model and simulations. 

Simultaneous mutation model 

Suppose that the mutations of two genes arise simultaneously. In that case, the ultimate fixation 

probability of the double mutant is calculated by substituting r3 = 1 + s1 + s2 + εtwo into the solution to 

the Kolmogorov backward equation [53] obtained by Kimura [47]. Let Ne be the effective population 

size, s0 = 0 be the selection coefficient of the neutral gene, and u0 be the ultimate fixation probability 
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of the neutral gene. When ΔMI is zero, if we let s = s1 + s2 be the selection coefficient of the double 

mutant and u be its fixation probability, then the relative fixation probability u/u0 is 

 .                           (198) 
In contrast, when εtwo = ΔMI (> 0) is generated, if we let u′ be the fixation probability, then its relative 

fixation probability u′/u0 is 

 .                        (199) 

The graph of u′/u0 is a translation of εtwo towards the left of the graph of u/u0 (Fig. 9b). In the 

latter graph, the fixation probability increases with εtwo. When s > 0, the effect of εtwo is subsidiary. 

When s ≃ 0, however, if εtwo > 1/Ne, then u′/u0 ≃ Ne·εtwo > 1. This indicates that εtwo = ΔMI determines 

the fixation of the nearly neutral mutants. More remarkably, in the region s < 0, which covers most 

cases, εtwo has a large multiplication effect on the fixation probability (Fig. 9c); that is, compensatory 

effects for deleterious mutations are observed depending on εtwo. Thus, under an ideal condition where 

the two mutations arise simultaneously, εtwo = ΔMI is critical for the fixation. 

Moran process model 

We now discuss the more general case in which the two mutations occur independently. To explore 

the effects of εtwo = ΔMI, we examine the temporal changes in genotype frequencies adopting the 

Moran process model [54]. Using Kolmogorov forward equations [53], we explore how the 

combination of mutant genes spreads and becomes fixed in a haploid population of N individuals. 

Whereas a randomly chosen individual proliferates in proportion to the fitness r at time t, another 

randomly chosen individual dies; thus, the population remains constant. Moreover, mutations arise 

with probabilities u1–u4 defined as follows. We assume backward mutations do not occur. Let u1 and 

u2 be the probabilities that G1wt and G2wt mutate into G1mut and G2mut at time t, respectively. Let u3 be 

the probability that G1wt→G1mut arises under the condition of G2wt→G2mut, and let u4 be the probability 

that G2wt→G2mut occurs under the condition of G1wt→G1mut. We refer to individuals whose genotypes 

(G1, G2) are (wt, wt), (mut, wt), (wt, mut), and (mut, mut) as types 0, 1, 2, and 3, respectively, and let 

r0, r1, r2, and r3 be their relative fitness values. 

Under the above conditions, the probabilities X0–X3 that the entire population is occupied by 

individuals of types 0 ––3, respectively, are expressed by Kolmogorov forward equations [55]: 

 ,     (200) 
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where a(t), b(t), d(t), and e(t) are respectively the transition rates of type 0→1, type 0→2, type 1→3, 

and type 2→3 at time t, and c(t) is the tunneling rate at which the transition type 0→3 occurs directly 

through the two mutations without remaining in middle stages [56]. If a(t) to e(t) are constant, then 

the solutions to these equations are (Appendix 12) 

 (201) 

Next, after defining the influential force acting between genes, we will examine the effect of the force 

on these genotype frequencies. 

 
Figure 9 | Fitness and MI. a, Distribution of MI for G1 and G2. The curves represent the probability 
density functions of MI in the wild-type (blue line) and mutant populations (red). b, Relative fixation 
probability of mutant to neutral genes. Ne is the effective population size set to 1E5, and s (= s1 + s2) is 
the selective coefficient. u0 and u are the ultimate fixation probabilities of neutral and mutant genes, 
respectively. The epistatic fitness εtwo is set to 0 (green line), 1E−5 (light blue), 2E−5 (blue), or 3E−5 
(purple). c, Ratios of the relative fixation probabilities. Green, light blue, blue, purple, and red lines 
represent the ratios in the cases that εtwo = 0, 7E−5, 8E−5, 9E−5, and 1E−4 to that of εtwo = 0, respectively. 
d, Relationship between (d + e)/(a + b) and r3 ≃ ℱatt when s1 ≃ 0 and s2 ≃ 0 in the Moran process. r1 and r2 
are (1–5E−6) (red line), 1 (purple), or (1+5E−6) (blue). 
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Influential force acting between genes 

To address the involvement of the intergenic MI in evolution, we determine the attractive force ℱatt in 

terms of population genetics. We here define MI inherent (MIinh) as the true value of MI(G1; G2) and 

MI observed (MIobs) as the apparent value calculated from genotype frequencies. We hereafter 

formulate the influential force acting between genes, evaluate its relationship with MIinh and MIobs, 

and show that the attractive force ℱatt decreases the information metric 𝑟 of G1 and G2. 

As previously described in this section, we assume a new interaction between the mutated states 

of genes. ∆MIinh for two genes is then equal to ∆MI for their mutants. To define the influential force 

acting between genes, we again employ the probabilistic definition in Eq. (16), which has been used 

for the force acting between physical bodies. Considering that the fitness represents the existence 

probability of a gene after one generation, the attractive force acting between genes is viewed as the 

ratio of the fitness value with the epistatic fitness εtwo to that without it. Instead of physics, however, 

we here apply population genetics that deals with the allele frequency in a given population. The 

attractive force ℱatt acting between two genes is therefore defined as the ratio of the genotype 

frequency of double mutants with (p′) and without (p) εtwo in the next generation, where p′ + p = 1 and 

the initial ratio of frequency is set to 1 : 1. 

In focusing on the effects of εtwo, we consider the case that both mutations G1mut and G2mut are 

neutral; that is, s1 = s2 = 0. The selection coefficient of the double mutant is then s1 + s2 + εtwo = εtwo. 

Unless the selection is strong, 𝑑𝑝ᇱ 𝑑𝑡⁄ = 𝜀௧௪௢𝑝ᇱ𝑝  is sufficiently accurate [45], where t is the 

generation number. The solution to this differential equation is 𝑝௧ᇱ 𝑝௧⁄ = 𝑝଴ᇱ 𝑝଴⁄  exp(εtwo･t), where 𝑝଴ᇱ 𝑝଴⁄  is the initial ratio of frequency and takes a value of 1 at t = 0. We finally obtain ℱatt by setting 

t = 1 as 

 ,                        (202) 

which holds irrespective of s1 and s2 [Eq. (A72), Appendix 13]. If we regard the wild types as ground 

states and if we let the initial MI = MIinh (G1wt; G2wt) be zero, then the attractive force acting between 

genes is formulated as ℱatt = 𝑒ெூ. This equation is identical to that acting between physical bodies. 

Moran process model, influential force, and MI inherent (MIinh) 

We apply the Moran model to evaluate the effects of the influential force on evolutionary processes. 

As t increases, owing to the population's finite size, dynamic properties of the biological informatons 

dissociate from those of physical informatons. The characteristics of the force are therefore best 

assessed by taking the limit t→0. Thus, ℱatt = exp(MIinh) is expressed as the attractive microforce 

(Appendix 24) acting between G1mut and G2mut at t→0: 
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 .              (203) 

If we further assume a ≃ b, then ℱatt can be described as 

                                (204) 
(Appendix 13). This formula indicates that the attractive force ℱatt accelerates the transition from the 

single to double mutant and thus facilitates the biological interaction between G1 and G2. 

As shown in Figure 9d, we perform a simulation to verify this equation. Using the Moran model, 

transition rates a–e are calculated, and (𝑑 + 𝑒) (𝑎 + 𝑏)⁄  is plotted against 𝑟ଷ. If 0 < 𝜀௧௪௢ ≪ 1 and 

s1, s2 ≃ 0, then (𝑑 + 𝑒) (𝑎 + 𝑏)⁄  has a nearly linear relationship with 𝑟ଷ ≃ 1 + 𝜀௧௪௢ ≃exp(∆𝑀𝐼௜௡௛) = ℱatt. This observation supports Eq. (204) and implies that the Moran process model 

is a good representation of the influential force ℱatt acting between genes. 

Moran process model, influential force, and MI observed (MIobs) 

Whereas MIinh is not observable, MIobs is an observable value calculated from the genotype frequencies. 

Using the probabilities X0–X3, MIobs is expressed as 

 .         (205) 

As detailed by Appendix 13(3), we derive temporal changes in MIobs by applying X0(t)–X3(t) described 

in Eq. (201). If we set X0(0) = 1 and X1(0) = X2(0) = X3(0) = 0, the second derivative of MIobs at t = 0 

is expressed as 

 .             (206) 

This equation shows the relationship between MIinh and MIobs. Furthermore, we refer to ℱobs as an 

apparent attractive force observed from the genotype frequencies in a finite-size population. At t = 0, 

this ℱobs is derived as the product of the reduced mass of informatons and the second derivative of the 

information metric r(G1, G2) = H(G1) + H(G2) – 2MIobs. We here assume that H(G1) and H(G2) are 

large and virtually constant throughout the process. If 0 < ∆𝑀𝐼௜௡௛ ≪ 1, then ℱobs is expressed as 

           (207) 

where AM = 4(ad + be) / [W(G1)−ά + W(G2)−ά] and BM = 4(2ab − ad − be) / [W(G1)-ά + W(G2)−ά]. 
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Equation (207) shows that the true attractive force ℱatt working at the gene level and the apparent 

attractive force ℱobs observed at the population level are nearly linear. Thus, ℱatt acts between genes 

both microscopically and macroscopically. It accelerates the formation of the double mutant and 

reduces the information metric r of genes, thereby enhancing their mutual relationships. 

Simulations 

The above discussion suggests that the influential force ℱatt generates gene interactions via the effect 

of εtwo = ΔMI. We next examine the impact of εtwo by simulating temporal changes in the genotype 

frequencies using Eq. (201). We use the following parameters in the simulations [45]. The population 

size N is set to 1E5, which is generally used for the population genetics of mammals. The base 

substitution rate is 1E−9/year·base, and the mutation rates u1–u4 (Fig. 10a) are thus set to 1E−6 per 

generation per gene with total exons of 1 kb. One generation takes 1 year. We regard the time when 

type 3 (i.e., the double mutant) accounts for 99.5% of the population as the fixation time of type 3. 

● Case 1: s1, s2 ≥ 0 

The solution for a pair of neutral mutations (i.e., s1 = s2 = 0) is shown in Figure 10b. The figure shows 

how mutants G1mut and G2mut arise and are finally fixed in the population. When εtwo = 0, type 3 

becomes fixed after 5.43 million years. However, when a cooperative interaction arises with εtwo = 

1E−4, type 3 is fixed 2.16 times earlier; that is, at 2.51 million years (Fig. 10c). We next show the 

cases in which s1 = s2 = 1E−4; that is, both mutations are strongly advantageous. When εtwo = 0 (Fig. 

10d) and εtwo = 1E−4 (Fig. 10e), the time to fixation is largely shortened to 589,000 and 368,000 years, 

respectively. Although less effective than in neutral mutants, a positive effect of εtwo on the fixation is 

again evident. These results indicate that εtwo accelerates the fixation of both neutral and advantageous 

mutants. Finally, because ℱatt ≃ (𝑑 + 𝑒) (𝑎 + 𝑏)⁄  is equal to 1.00, 9.24, 1.00, and 1.98 in Figures 
10b, c, d, and e, respectively, an increase in εtwo is considered to accelerate the fixation of the double 

mutant through ℱatt in Figures c and e. 

● Case 2: s1, s2 < 0 

In contrast to Case 1, in which both mutations are nondeleterious (i.e., s1, s2 ≥ 0), most mutations are 

deleterious (i.e., s1, s2 < 0), categorized as Case 2, and are subject to negative selection. Therefore, the 

solution in the region s1 < 0 and s2 < 0 is essential to understanding what allows the phenotypic 

evolution of organisms. As presented below, even in this adverse situation, advantageous information 

can be fixed owing to the intergenic MI. 

When a single gene mutation is deleterious (i.e., s < 0), the mutation is regarded as nearly neutral 

[45] only if it satisfies |Ne s| < 1. Therefore, unless the effective population size Ne is sufficiently small, 

fixation hardly occurs because of negative selection pressure [45]. When Ne is 1E5, the maximal |s| 
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satisfying |Ne s| < 1 is as little as 1E−5; thus, only a limited range of mutant genes can survive. Likewise, 

when we consider s = s1 + s2 in a two-gene system, only |Ne(s1+s2) | < 1 is nearly neutral. In contrast to 

this limitation associated with near neutrality, however, it is worth remarking that the tunneling effect 

becomes more pronounced in populations with larger Ne [56]. Thus, tunneling might overcome the 

inherent limitation of the theory of near neutrality. 

We calculate the tunneling rate c in a two-gene system (Appendix 12) and assess its contribution 

to the fixation process (Fig. 10f−h). With fixed settings εtwo = 0.10 and s1 = s2, we search for a range in 

which tunneling occurs. Under the same conditions as above (N = 1E5, u1–u4 = 1E−6/year), we find 

that tunneling occurs over a wide range; that is, −10,000 < Ne(s1 + s2) < −1. In this case, the tunneling 

 
Figure 10 | Moran process. a, Mutation rates in the Moran process. u1–u4 are the probabilities of 
mutations between types 0–3. b–e, Effect of εtwo on the fixation probability of a double mutant when s1 = 
s2 ≥ 0. Blue, purple, and red lines represent X0, X1 (= X2), and X3, the probabilities that the entire 
population is occupied by types 0–3 at time t, respectively. The parameters are N = 1E5 and u1–u4 = 
1E−6/year. (b) εtwo = 0 and s1 = s2 = 0. (c) εtwo = 1E−4 and s1 = s2 = 0. (d) εtwo = 0 and s1 = s2 = 1E−4. (e) 
εtwo = 1E−4 and s1 = s2 = 1E−4. f–h, Effect of εtwo on the probability when s1 = s2 = −0.049. (f) εtwo = 0.10 
and a tunneling rate c = 7.76E−9. (g) εtwo = 0.10 and c = 0. (h) εtwo = 0. 



87 
 

effect increases the prevalence of type 3, which leads to its ultimate fixation. When we examine the 

population change with settings s1 = s2 = −0.049, which is close to the lower bound of the range, the 

transition from type 0 to type 3 arises without increasing the prevalence of types 1 and 2 (Fig. 10f). 

This indicates the emergence of the tunneling phenomenon, and type 3 is finally fixed at 0.7 billion 

years. In contrast, type 3 does not appear when we set either c = 0 (Fig. 10g) or εtwo = 0 (Fig. 10h). 

These results indicate that type 3 becomes fixed depending on both εtwo and the tunneling effect. 

In addition to the range in which tunneling is possible, when −1 ≤ Ne(s1 + s2) < 0, type 3 is also 

fixed depending on εtwo, although there is no tunneling event in this range. Taken together, εtwo = 0.10 

contributes to the fixation under the union of the two ranges; that is, −10,000 < Ne(s1 + s2) < 0, which 

amounts to up to 94.9% of the joint distribution of s1 < 0 and s2 < 0 [57]. In summary, advantageous 

information can be fixed according to both MI and the tunneling phenomenon in most cases of s1, s2 

< 0, similar to the situation for s1, s2 ≥ 0. 

● Conclusions 

Comparing the results of Kolmogorov forward and backward equations, the conditions required for 

the ultimate fixation of the double mutant coincide with each other; that is, 

 .                         (208) 

Accordingly, even when s1 + s2 < 0, if the epistatic fitness εtwo = ΔMI is sufficiently large, then there is 

compensation for the harm of deleterious mutations, resulting in an increase in the fixation probability. 

Considering that most mutations in protein sequences are at least slightly deleterious (i.e., s1 < 0 and 

s2 < 0) [57], a large part of the fixed advantageous information can be attributed to ΔMI. Thus, as a 

result of the influential force ℱatt, the intergenic MI can function as a determinant of the evolution of 

the two-gene system. 

In contrast to the potential roles of ΔMI = εtwo in the fixation, however, the time required for 

fixation varies dramatically depending on s1 and s2. Fixation takes a short time (e.g., 1E5–1E7 years) 

when 0 < s1 + s2 but a very long time (e.g., 1E8–1E9 years) when −εtwo < s1 + s2 < 0. For the latter 

condition, the fixation depends on the tunneling rate, which slows the fixation process and may 

ultimately reduce the actual chance of fixation. Nevertheless, we should remember that this adverse 

condition accounts for most cases. Therefore, additional compensatory mechanisms must be 

considered to adequately explain phenotypic evolution. Such additional mechanisms will be further 

discussed in later sections of this chapter. In summary, in both analytical and simulative approaches, 

ℱatt = exp(ΔMI) was demonstrated to be involved in the evolutionary process of the two-gene system. 

The next section elucidates the causal mechanisms of the MI of genes and considers the relationship 

between biological and physical systems. 
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(f) Evolution of the MI of two genes 

Gene information is extremely high-dimensional with respect to the number of features. Accordingly, 

the degree of freedom that can affect intergenic MI is very high. For example, the MI of two genes 

can be increased successively by the detailed adjustment of a broad spectrum of conditions, such as 

optimizing protein sequences and expression conditions, adding transport signals, and integrating 

miRNA regulations. 

Intergenic MI caused by fluctuation 

We again apply the fluctuation model to explain the evolution of the MI of two genes. In the 

evolutionary process, stochastic fluctuations occur for each gene informaton owing to mutational 

events. Intergenic MI can therefore be generated by mutations of both genes in the nucleotide 

sequences, including untranslated regions. We consider two genes GX and GY, and let LX and LY bases 

be their respective lengths on chromosomes. We assume that the information expressed from GX and 

GY takes at most M (≤ 4௅೉) and N (≤ 4௅ೊ) observable states as multidimensional random variables 

X and Y, with information levels X and Y, respectively. Suppose that X and Y can be evenly split into 

m and n levels that are distinguished by linear indices k (1 ≤ k ≤ m) and l (1 ≤ l ≤ n), respectively. 

Additionally, we assume that the realization probability of the k-th information level of 𝑋, 𝑋௞, follows 

the infocanonical distribution 𝑝(𝑋௞) = [exp (1/𝜆) − 1]exp (−𝑘/𝜆)  while that of the l-th 

information level of 𝑌 , 𝑌௟ , follows p (𝑌௟) = [exp (1/𝜈) − 1]exp (−𝑙/𝜈) , where λ and ν are 

respectively the mean index values of 𝑋௞ and 𝑌௟. 
As in the case of physics, we employ a fluctuation factor 𝜺𝒌𝒍 that represents the relationship 

between the joint probability and marginal probabilities; that is, 𝜀௞௟ = 𝑝(𝑋௞ ,𝑌௟) [𝑝(𝑋௞)𝑝(𝑌௟)]⁄ . We 

again suppose that 𝜀௞௟ fluctuates close to a value of 1, and we express 𝜀௞௟ as 𝜀௞௟ = 𝛾௞௟𝛿௞௟ using 

the two factors 𝛾௞௟ and 𝛿௞௟, which independently fluctuate owing to changes in X and Y, respectively. 

The introduction of 𝛾௞௟ and 𝛿௞௟ is justified in that the mutations of each gene generate epistasis. We 

further let 𝛾 and 𝛿 be the averages of 𝛾௞௟ and 𝛿௞௟ over k and l, respectively, and we assume that 

both 𝛾 and 𝛿 follow a normal distribution with a mean of 1 and variance of 𝜎ଶ. We here think that 

both m and n are sufficiently large. Then, MI (in terms of MIinh) of GX and GY is expressed as 

 .                     (209) 

This is the identical formula as for physical informatons [Eq. (112), Appendix 7]. Because 𝑚/𝜆 and 𝑛/𝜈  hardly change according to the nearly neutral theory, 𝜀௞௟  is supposed to fluctuate without 

changes in the marginal probabilities 𝑝(𝑋௞) and 𝑝(𝑌௟). Thus, MI is also generated between genes 

because of fluctuations in their microstates caused by mutations. 
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Temporal profiles of intergenic MI 

We examine temporal changes in the MI of genes. In evolution, mutational events arise stochastically 

in the gene regions of GX and GY, including untranslated sequences. These mutations lead to both 

quantitative and qualitative alterations in the gene information, and we will therefore extend the 

previous considerations for physical systems. As described in Section (f) of Chapter 2, we examined 

the effects of fluctuations in the stochastic factor 𝜀௞௟ and obtained Eq. (113). We here consider a 

situation where mutations affect the probability distribution of the information levels of the genes. 

We make the following assumptions in analyzing the effects of mutations on MI(GX; GY). First, 

as previously mentioned, we assume that a diffusion equation describes the distributions of γ and δ 

with diffusion coefficient D and that both γ and δ follow a normal distribution having a mean of 1 and 

variance 𝜎ଶ ≃ 2𝐷𝑡 at time t. Second, we assume that the total numbers m and n of the information 

levels in GX and GY increase by Δm and Δn per unit time, respectively. Third, we assume that both Δm 

and Δn follow a Poisson distribution having a mean μ per unit time. Finally, we assume that λ and ν, 

the expectation values of k and l, respectively, increase at a rate κ, accompanying the evolution of each 

gene. Then, whereas γ and δ follow the diffusion equation, Δm, Δn, Δλ, and Δν are expected to be 

proportional to t. Under these conditions, the expectation value of MI in terms of MIinh is 

         (210) 

(Appendix 14). Note that, whereas ⟨ΔMI⟩ is the cubic function of t, ⟨|ΔI|⟩ is the square root function 

of t [Eq. (194)]. Hence, ⟨ΔMI⟩ increases with time and can be greater than ⟨|ΔI|⟩. If we consider that 

the same values of ⟨|ΔI|⟩ and ⟨ΔMI⟩ contribute equally to the fitness, then it is possible that ⟨ΔMI⟩ 
contributes more than ⟨|ΔI|⟩ to the positive fitness (Fig. 11). 

 
Figure 11 | Evolution of intergenic MI. a, b, Temporal change in means of ΔMI (light blue) and 
effective self-information |ΔI| (blue). The diffusion coefficient D is 1E−7 (a) or 1E−8 (b). 
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According to Eq. (187), the sum of information of the genes is H(GX) + H(GY) ≃ 2 + log(λ + Δλ) 

+ log(ν + Δν), and the mean satisfies ⟨H(GX) + H(GY)⟩ ≃ 2 + log(λ + κt) + log(ν + κt). Here, the 

expectation value of the information metric is ⟨r⟩ = ⟨H(GX) + H(GY)⟩ − 2⟨ΔMI⟩. Because ⟨H(GX) + 

H(GY)⟩ increases as the sum of the logarithmic functions of t while ⟨ΔMI⟩ is the cubic function of t, ⟨r⟩ decreases with time. The average change rate of the information metric ⟨r⟩ is thus expressed as 

 
(211) 

As long as d⟨r⟩ /dt < 0, ⟨r⟩ decreases monotonously. This condition is satisfied by the parameters used 

in the following simulations for gene evolution. In contrast, in physical systems under isothermal 

conditions, κ = 0 and μ = 0. Accordingly, d⟨r⟩ /dt < 0 is always satisfied for physical informatons, and ⟨r⟩ decreases monotonously. 

Simulations 

To confirm the analytical observations described above, we perform numerical simulations as 

presented in the following part of this subsection. As expected, ⟨ΔMI⟩ considerably increases while ⟨r⟩ monotonously decreases with time t, for the parameters given below. 

Adopting the Moran process, we examine the effects of the increase in ΔMI [Eq. (210)] on the 

evolution of the two-gene system comprising G1 and G2. According to the literature [57], 1% of newly 

generated mutations are supposed to be advantageous. With this in mind, we here assume that the 

epistatic fitness can be approximated as a linear function of 〈ΔMI〉 such that 𝜀௧௪௢= 0.01 × 〈ΔMI〉. 
According to this model, 𝜀௧௪௢ increases with ΔMI over time. In contrast, the preceding simulations 

employed a static model in which an advantageous fitness 𝜀௧௪௢= ΔMI was set to a constant value. 

We use time-dependent parameters in the following simulations. We now regard the transition 

rates a(t)–e(t) in Eq. (200) as functions of time according to Eq. (A66) in Appendix 12 and calculate 

the frequency of each genotype using the general solution given by Eq. (A64). We let the population 

size N = 1E5, numbers of gene information levels m = n = 1000, the expectation values of k and l be λ 

= ν = 100, and κ = 1E−7 (/year) be the change rates of λ and ν. We set the mutation rates as u1–u4 = 

1E−6 (hit/year). The population is then homogeneous with respect to the genotype most of the time 

[56]. Moreover, we estimate the change rate of the number of information levels and the diffusion 

coefficient as 1/10 of u1–u4 and thus set μ = 1E−7 and D = 1E−7. 
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● Case 1: s1, s2 = 0 

We first assume that both mutations are neutral; that is, s1 = s2 = 0. Fixation then occurs depending on 

the increasing value of εtwo = 0.01 × 〈ΔMI〉. When the tunneling rate is artificially set as c = 0, type 3 

(i.e., the double mutant) fixes at 2.40 million years without tunneling. In contrast, when c is naturally 

allowed to become positive, tunneling occurs with a maximal c value of 1.69E−5. As a result, type 3 

fixes at 0.56 million years, in a process that is 4.31 times faster than that without tunneling (Fig. 12a). 

Compared with the slopes in the cases using the fixed value of ΔMI [Fig. 10b and 10c in Section (g)], 

the slopes of these fixation curves are steeper, reflecting the continuous increase in ΔMI. 

We here calculate the percentage occupancy of 〈ΔMI〉 within the fixed total information 

comprising 〈ΔMI〉 and ⟨|ΔI|⟩. The occupancies of 〈ΔMI〉 at the time of fixation with and without 

tunneling are 46.9% and 68.3%, respectively. In terms of the information metric of the two genes, ⟨r⟩ 
shortens by 0.940 and 4.77 nat with and without tunneling, respectively. These observations indicate 

that the increasing ΔMI and the tunneling effect cooperatively promote the fixation of neutral mutants 

and contribute to the fixation of advantageous information. As a result, the two genes become closer 

in the information metric spacetime (𝑟-spacetime). 

 
Figure 12 | Effect of time-dependent εtwo on the fixation probability of a double mutant. The 
parameters are N = 1E5 and u1–u4 = 1E−6/year. εtwo changes as 𝜀௧௪௢ = 0.01 × 〈Δ𝑀𝐼〉 through Eq. 
(210). Blue, purple, and red lines respectively represent X0, X1 (= X2), and X3. a, s1 = s2 = 0. b, s1 = s2 = 
− 0.05. c, s1 = s2 = 0.01 × ⟨|ΔI|⟩. d, s1 = s2 = −0.05 + 0.01 × ⟨|ΔI|⟩. 
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● Case 2: s1, s2 = − 0.05 

We next consider the case in which the fitness of each mutant takes a constant negative value, similar 

to the case in Fig. 10f. With settings s1 = s2 = − 0.05 [i.e., Ne(s1 + s2) = −10,000], εtwo = 0.01 × 〈ΔMI〉 
increases by more than 0.10 at 7.21 million years, at which time the total fitness s = s1 + s2 + εtwo 

becomes positive. Type 3 is finally fixed at 18.6 million years owing to the tunneling effect, with the 

maximal c value being 9.83E−07 (Fig. 12b). 

The above results show that an increased εtwo = 0.01 × 〈ΔMI〉 overcomes the deleterious effects 

of the harmful mutations, even though Ne(s1 + s2) = −10,000 is much less than the lower limit of the 

near neutrality; that is, Ne(s1 + s2) = −1. Notably, the information occupancy of 〈ΔMI〉 at the time of 

fixation is as high as 93.4%. Thus, most of the fixed information corresponds to 〈ΔMI〉 but not to ⟨|ΔI|⟩ 
of each gene. Taking these results together with those of Case 1, while almost all mutations fall in the 

range of −10,000 < Ne (s1+s2) < 0, a fraction of the fixed advantageous information is attributed to 

ΔMI in this range. Moreover, at fixation, ⟨r⟩ decreases 86.4 nat, which is more than 91 times the value 

in Case 1 with tunneling. These findings demonstrate that 〈ΔMI〉 largely contributes to the attraction 

of the two genes in the information metric spacetime (𝑟-spacetime). 

Case 3: s1, s2 = 0.01 × 〈|𝚫𝑰|〉 
We next examine the case in which ⟨|ΔI|⟩ as well as ⟨ΔMI⟩ increases from an initial value of zero [Eq. 

(194)]. When we set s1 = s2 = 0.01 × 〈|Δ𝐼|〉, the fixation takes 70,020 years without tunneling (Fig. 

12c), which is much faster than that in Case 1 (i.e., s1 = s2 = 0). This is because s1 and s2 are positive 

under these conditions (Fig. 10d showing the control). Although small, ⟨r⟩ decreases by 0.113 nat at 

the fixation. At the same time, ⟨ΔMI⟩ accounts for 23.0% of all fixed information, which is the smallest 

value among the four cases tested. 

● Case 4: s1, s2 = − 0.05 + 0.01 × 〈|𝚫𝑰|〉 
We finally explore the case in which s1 and s2 increase from a negative initial value (Fig. 12d). When 

we set s1 = s2 = − 0.05 + 0.01 × 〈|Δ𝐼|〉, the fixation occurs at 16.1 million years, which is a shorter 
time than in Case 2 (i.e., s1 = s2 = −0.05). This is because r1 and r2 continue to increase under these 

conditions. In Case 4, however, the occupancy of ⟨ΔMI⟩ reaches 92.3% at the fixation, which is almost 

the same value as in Case 2. Likewise, ⟨r⟩ decreases 68.2 nat, which is the second-largest value, 

following Case 2. These results indicate that, even though ⟨|ΔI|⟩ is increasing, the increase in ⟨ΔMI⟩ is 

much more rapid, and ⟨ΔMI⟩ is thus the main factor driving the fixation process. In contrast to the 

fixed value of ΔMI (Fig. 10f), type 3 does not emerge gradually in the population, and the slope of the 

fixation curve is steeper. It may be that the mutants categorized in Case 4 spread abruptly in the 

population. 
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● Conclusions 

At the onset of mutations, most mutations are at least slightly deleterious. Afterward, the gene 

information is subject to fluctuation, increasing ⟨|ΔI|⟩ and ⟨ΔMI⟩. It is thus probable that most real 

situations are similar to Case 4 (Fig. 12d), in which 𝜀௧௪௢= ΔMI plays a major role in the evolutionary 

process. Also in the other three cases, a monotonous increase and a monotonous decrease were 

observed for ⟨ΔMI⟩ and ⟨r⟩, respectively, although with various magnitudes. 

In summary, the above simulations demonstrate that intergenic interactions promote evolution. 

In turn, a considerable amount of advantageous information acquired during evolution is ascribed to 

the intergenic MI. Finally, ⟨r⟩ continuously decreases in all cases examined, which substantiates the 

involvement of the attractive force ℱatt in the evolution of a two-gene system. Conversely, in a 

multigene network, ΔMI of a particular gene with many other genes will sum up to a large amount. 

Thus, as discussed in the next section, the total amount of ΔMI in the whole network affects fitness. 

Similarity to physical systems 

In addition to the dynamic simulations presented thus far, we consider the case in which protein-coding 

genes have reached sufficient stable conditions. Many genes that constitute present organisms have 

already evolved highly, and an amino acid substitution thus takes as long as approximately 1E7 years 

per 100 amino acids. If we assume that the numbers of information levels, m and n, and the mean 

index values of information levels, λ and ν, do not change within this long stable period, then both 

H(GX) and H(GY) are constant. In this case, the expectation value of the MI of GX and GY increases 

with time, as expressed in Eq. (210), while that of the information metric 𝑟 decreases. The influential 

force thus acts between genes, just as the influential force acts between physical informatons, and is 

considered the driving force of biological evolution. 

 

(g) Evolution of a network of two genes 

Attractive and repulsive forces 

In this section, we will consider the two-gene system. Mutations accumulate over time in the regions 

of two genes, affecting information and fitness. The genes are then subject to successive cycles of 

mutation and selection, resulting in either fixation or extinction and ultimately leading to the evolution 

of each gene. Along with these events, MI for two genes gradually increases while the information 

metric r decreases, finally facilitating the functional interplay of the two genes. Gene interactions have 

now evolved fairly well in complex organisms, demonstrating that the attractive force ℱatt has worked 

between genes for a long time. 
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Despite the roles played by ℱatt, Eqs. (17) and (18) predict that the repulsive force ℱrep also acts 

between genes. From a physiological point of view, an optimum metric 𝑟௘  should exist for the 

survival of organisms. For example, if 𝑟  is too small, then the interference between two genes 

becomes excessive. In this case, the activity of each gene becomes disrupted, which would not be 

beneficial for survival. Selective pressure is therefore expected to act in the direction in which the 

metric 𝑟 increases. This indicates the emergence of the repulsive force between genes. Conversely, 

the observation of a repulsion implies that the relationship between genes is strong. In this connection, 

the mutual exclusivity of genes is the best example of the repulsive force (Chapter 4, Section (f)). 

Influential force orbital 

Through evolution, intergenic interactions evolved, which are detailed, strong, multifaceted, attractive, 

or repulsive. These interactions can be assigned in the information metric spacetime (𝑟-spacetime). 

The attractive force acting between genes Gi and Gj is expressed using the Slater-type function of the 

information metric 𝑟 as 

 ,                  (212) 

where 𝛼௜௝ is the influential force parameter. This is the same as Eq. (179) for physical systems, except 

that 𝑟 is used instead of the information distance 𝐼ை = 𝛼𝑥 + 𝑟/2 under the limit 𝛼𝑥 → 0. When we 

use the attractive coefficient k1ij and repulsive coefficient k2ij, set the influential force orbital to 𝝌𝒊𝒋(𝒓) =  ൫𝝓𝒊𝒋(𝒓), [𝝓𝒊𝒋(𝒓)]𝟐൯, and set the coefficient vector to cij := ൫𝑘ଵ௜௝ , −𝑘ଶ௜௝൯, the influential force 

acting between Gi and Gj is expressed as 

 .                           (213) 
Again, this is essentially an equal representation for physical informatons written as Eq. (180). 

Graph with two nodes 

To focus on the informatics aspects of the influential force acting between Gi and Gj, we regard the 

intergenic interaction as a graph with two nodes and an edge of weight MI(Gi; Gj). We call this 

interaction a two-gene network Nij. We now define H(Nij) as the information that characterizes this 

particular two-gene interaction. We express H(Nij) using MI(Gi; Gj) and the signature information 

Hsgn(Gi, Gj) that indicates the direction of the edge between genes: 

 ,                     (214) 
which represents the union of the two pieces of information. However, inversion in the direction of 

gene interaction would considerably affect the fitness of the organism. It is therefore natural to suppose 

that such an inversion occurs infrequently, and thus, ΔH(Nij) = ΔMI(Gi; Gj) most of the time. 

Instead of the fluctuation model used in the preceding sections, we here use the equation of 

motion in the information metric spacetime [Eq. (103)]. If t is sufficiently small, then 
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.          (215) 

This solution to the equation of motion is similar to MI (in terms of MIinh) calculated using the 

fluctuation model in that they are quadratic functions of t [Eq. (210)]. From the discussion in the 

previous section, the advantageous information can be acquired as ΔH(Nij) through the evolution of 

gene interactions. Again, it is important that ΔH(Nij) = ΔMI(Gi; Gj) is larger than ΔH(G1) + ΔH(G2), 

which represents the amount of information obtained from the evolution of two individual genes. 

 

(h) Evolution of networks of multiple genes 

This section considers a multigene system that is constructed as a one-to-many network with Gi at the 

center. An extensive network, between Gi at the center and the other genes Gj on the periphery, then 

evolves with time. In humans, Gj involves approximately 20,000 protein-coding genes. Even a weak 

relationship is amplified in evolution [58], and there are thus detailed interactions among virtually all 

genes. Moreover, associations with non-protein-coding genes are constructed similarly to those with 

protein-coding genes. 

LCIO as a genetic orbital 

In the multi-gene system around Gi, the influential force of Gi is expressed in a multidimensional 

information metric spacetime (Fig. 13). This is done by combining the influential force orbitals as 

 ,                          (216) 
which is the sum of the influential forces that Gi exerts on all other genes. In a biological sense, this 

represents the extended functions of Gi. We call this φ the genetic orbital (GO) of Gi. It is expressed 

as the LCIO between Gi and all other genes, as given by Eq. (181). This formula is analogous to the 

molecular orbital as the linear combination of atomic orbitals (LCAO) [59]. However, unlike the case 

for the LCAO method, we must consider the dimensions of the information metric spacetime to 

illustrate the multi-gene system. This is because genes have diverse structural properties and widely 

distinct functions. Genes are thus separated from each other by the information metric r in the 

multidimensional spacetime. 

We calculate the dimension M of the information metric spacetime as follows. The number of 

relative coordinates of N genes in the M-dimensional space is (N−1)M. These coordinates must satisfy 

the N(N −1)/2 equations for the information metric r between each pair of genes. Therefore, (N−1)M 

≥ N(N − 1)/2 and M = [(N+1)/2], where N is the total number of genes and [x] is the Gaussian notation 

for the largest integer that does not exceed x. Thus, when considering N = 2E4, we have M = 1E4. 
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Figure 13 | Intricate network of genes. This schema represents complex network interactions 
between multiple genes (provided by Dr. Keiichiro Ono, http://www.cytoscape.org). On the basis of 
LCIO, each gene exerts highly evolved network functions through its effect on many other genes. 

Molecular information and network information 

To decipher the informatic implications of the LCIO, we consider a gene network Ni of the gene Gi. 

Ni is constructed for the central node Gi and peripheral nodes Gj as the summation of each two-gene 

network Nij. Nij is characterized by the two-gene network information H(Nij), and H(Ni) is thus 

expressed as the superposition of each H(Nij) in a multidimensional spacetime as 

 .                         (217) 
From the equivalence principle of information and probability [Eq. (A104), Appendix 20], this formula 

is equivalent to the LCIO. However, the current paradigm of gene information is that it encodes the 

structure of gene products (e.g., proteins, miRNAs, and lncRNAs). Therefore, the total information of 

gene Gi, H(Gi), is the union of molecular information H(Mi) expressed by the molecular structure of 

the gene product and the network information H(Ni) represented by the network structure of the LCIO: 

 .                           (218) 

Biological implications of network information 

Equation (218) states that each gene encodes not only the molecular structure but also the network 

structure that represents mutual relationships with other genes. The network based on the LCIO 

assembles all the gene nodes around Gi using the edges of weight MI(Gi; Gj) (Fig. 1e) and thereby 

endows Gi with the following new functions. First, Gi affects the other N − 1 genes (N ≥ 2E4), thereby 
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making it possible to use them as tools with which to realize the physiological functions of Gi itself. 

Next, the N − 1 genes concertedly exert their influential force on Gi, allowing the fine tuning of the Gi 

functions according to the intracellular and extracellular conditions. This also provides a molecular 

basis underlying the information processing machinery required to establish complex multicellular 

organisms. Such highly sophisticated functions are possible only because the gene network has a very 

high density; that is, H(Ni) is immense. 

Quantity of network information 

With Gi at the center, H(Ni) is the union of all the information of two-gene networks Nij. However, we 

must keep in mind that H(Ni) is not the simple sum of each H(Nij) but also depends on the network 

structure in the multidimensional spacetime. To determine H(Ni), we consider the projection of the 

network structure to three-dimensional space. Here, we must take account of the differences among 

individual genes, in contrast to the case of physical systems in which the distinction among bodies is 

not necessary. According to Bianconi [60], H(Ni) is calculated by applying statistical mechanics to the 

network ensemble. While H(Ni) takes the maximum value maxH(Ni) when all edges are independent, 

we suppose that H(Ni) is basically equal to maxH(Ni) because genes are distinct from each other. H(Ni) 

is then the sum of each information of edge weights (ΣW), directions (Σsgn), and ranks (Σrank): 

.                         (219) 

To calculate H(Ni), we deal with a one-to-many network with Gi at the center. We then have 

 .           (220) 

As described below, we investigate how H(Ni) = ΣW + Σsgn + Σrank changes with time. First, however, 

we assume that Σsgn derived from the edge directions does not change. This is because an inversion of 

interaction direction will cause a significant fitness effect and is supposed to be rare. 

ΣW : network information originating from edge weights 

ΣW originates from all edge weights around Gi. The increase in ΣW is expressed by the change in S = ∑ 𝑀𝐼௝ஷ௜ (Gi; Gj), from S to S + (N − 1)ΔMI, where ΔMI is the average increase in edge weights. When 

each MI(Gi; Gj) increases with time, ΔΣW as the total sum of ΔMI(Gi; Gj) is approximated as 

                   (221) 
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(Appendix 15). As an example, we now consider a case in which N = 2.0E4, S = 200 nat, and each 

MI(Gi;Gj) increases by ΔMI = 1.0E−4 or 1.0E−3 on average. This value of S is a typical value estimated 

from the ab initio GO analysis of CLSTN3 mentioned later. ΣW then increases respectively as ΔΣW = 

9.23 and 92.3 in the entire network; both these values are 92,300 times ΔMI. If we assume that the 

increases in MI act additively on the fitness and the summed fitness value [=: εw (Ni)] increases by 1% 
of ΔΣW, then εw (Ni) respectively becomes 0.0923 and 0.923, which are 923 times ΔMI. Such large 

fitness values are generated by the sum of epistatic effects of each εtwo = ΔMI(Gi; Gj). 

With respect to the fixation of a new mutant of a single gene Gi, εw (Ni) = 0.01 × ΔΣW is expected 

to have a large compensation effect, even if this mutant has a deleterious effect. To examine the effect 

of ΔΣW, we here assume the same conditions as those for Fig. 10, except that we consider only one of 

the two genes as Gi. The time to fixation of a neutral mutant then becomes as short as 629 years (or 

15,700 years for humans whose generation takes 25 years) (Table 2). This is in clear contrast to 4.80E6 

years in the case without this effect, which indicates that the fixation is remarkably accelerated by an 

increase in εw (Ni). Even when the mutation is strongly deleterious such that s1 = −0.05 (i.e., Ne s = 

−5000), the fixation time with εw (Ni) is only 1310 years (32,700 years for humans). 

In accordance with the acceleration of fixation, the relative fixation probability of the neutral 

mutant with εw (Ni) is 9230 times that without εw (Ni). Even if the mutation is strongly deleterious as 

above (s1 = −0.05), the massive effect of εw (Ni) largely precludes harm. It increases the fixation 

probability to 4230 times that of the control (i.e., s1 = εw (Ni) = 0). Finally, it is convincing that εw (Ni) 

occupies much of the advantageous information that Gi acquires through evolution, because εw (Ni) is 

much larger than εtwo = ΔMI, let alone | s1 | = | ΔI |, a selection coefficient of the Gi mutant itself. In 

conclusion, ΣW greatly affects the evolution of a gene in terms of probability and rapidity. 
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Σrank : network information generated by gene rank 

Σrank does not change over time in contrast to ΣW, which increases with time. This is because Σrank 

arises from the permutation of the magnitude rank of MI(Gi; Gj); that is, Σrank = log[(N−1)!], which is 

constant over time. However, for the following reasons, if there are changes in the rank order of 

MI(Gi;Gj), there will be qualitative changes in the network functions of Gi, which is located at the 

center of the network. Given that different peripheral genes Gj have distinct structures and functions, 

the information shared with the central gene Gi varies from Gj to Gj. As a result, a rank order arises 

spontaneously in the magnitude of MI(Gi; Gj). It is notable that MI(Gi; Gj) indicates the functional 

proximity of Gi and Gj (Appendix 16). Thus, the rank order of MI(Gi; Gj) determines what gene Gj 

preferentially interacts with Gi, thereby qualitatively defining the network functions of Gi. 

We now investigate how network functions undergo qualitative evolution through changes in the 

rank order of MI(Gi; Gj). For this purpose, we calculate the increase in the fitness associated with such 

events. We consider a case in which the weight of a particular edge around Gi increases more rapidly 

than the weights of other edges, and the rank of its weight thereby rises among all edges. The edge 

weights MI(Gi;Gj) follow an infocanonical distribution [Eq. (17)] (Appendices 2 and 17). Hence, we 

set MI(Gi ; Gj) = −A × log( j ) + B (e.g., A = 1.032 and B = 14.05 in CLSTN3 described later) for the 

j-th largest MI. Then, when MI(Gi; Gj) increases by ΔMI, the average rise λr in its rank is expressed as 

 .                               (222) 

We here consider a situation in which the increase in MI per unit time increases from ΔMI0 (≃0) 

to ΔMI and |ΔMI| << 1. If we initially assume that all newly generated information is associated with 

positive fitness, then the increase in the fitness value [=: εrank (Ni)] is calculated as 

                  (223) 
(Appendix 27). This implies that the edge rank, in addition to the edge weight, affects the fitness. 

When the change in MI per unit time increases from ΔMI0 ≃ 0 to ΔMI = 1.0E−4, the average increase 

in the rank is calculated as λr = 0.969. If we assume that a 1% fraction of ΔMI is reflected in Eq. (223), 

then the increase in the fitness is εrank (Ni) = 0.00969. Moreover, considering the contributions of both 

genes Gi and Gj, the expectation value of the increase is εrank = εrank (Ni) + εrank (Nj) = 2εrank (Ni) = 

0.0194, which is 194 times that for εtwo = ΔMI. 

The above increase in εrank (Ni) means the rise in importance of the role that Gi plays through the 

interaction with Gj, implying a qualitative change in the network function of Gi. Given that selective 

pressure favors intergenic interactions advantageous to the organism, a mutant with this new preferred 

network function spreads in the population rapidly. Thus, changes appear in the network functions of 

genes, leading to the qualitative evolution of the genes. 
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Evolution driven by network information 

The preceding observations revealed that the network information H(Ni) involving ΣW and Σrank greatly 

affects the evolution of gene Gi. While εw (Ni) affects both the probability and rapidity of the fixation 

process of new genes, εrank (Ni) influences functional aspects of the gene network. Their multiplier 

coefficients are respectively 923 and 194 times those for εtwo = ΔMI. These effects of H(Ni) on fitness 

are so strong that the biological effects of the mutations in non-coding DNA regions may also become 

apparent. If this is the case, the mutations in the long non-coding regions will increase the effective 

rate of information change by orders of magnitude. Taken together, even though many mutations in 

protein sequences are deleterious, changes in network information H(Ni) provide opportunities for 

creating advantageous information to more than compensate for the harm, which may facilitate the 

phenotypic evolution of organisms. 

Particularity of network information 

In evolution, both the rank orders and direction of edges MI(Gi; Gj) are generated quite spontaneously. 

This is because there is originally no preference in the direction of mutation. However, despite this 

natural spontaneity, the generated network information H(Ni) is large enough to provide a basis for the 

vast variations and profoundness of gene functions. As discussed earlier, this is a situation analogous 

to the generation of MI in physical systems, where massive amounts of information are produced with 

the multi-body system. Nevertheless, in contrast to the physical system made up of homogeneous 

particles, there is remarkable heterogeneity in the gene nodes of the network. Accordingly, evolution 

allows the development of a highly complex network of genes, which is a prerequisite for the 

establishment of sophisticated phenotypes. These properties highlight the particularity of the 

biological informaton and illustrate the need for an in-depth inquiry into the network architecture. 

Thus, we next examine the qualitative and quantitative properties of the gene network structure. 

Rapid evolution implied by the Pareto distribution of MI(Gi ; Gj) 

From the above consideration, the probability distribution of MI(Gi; Gj) is supposed to have an intimate 

relationship with the properties of the gene Gi. In some cases, mutations in Gi will affect the 

distribution of MI(Gi; Gj). In particular, if Gi has a strong influential force ℱ and is evolving rapidly, 

then mutations in Gi can affect most of the relationships with the other genes. For example, if such Gi 

acquires new functions through evolution, then there will be changes in the probability distribution of 

the observable information level X of Gi. This will cause shifts in the distribution of micromutual 

information MIkl of Gi and Gj, which eventually affects the probability distribution of MI(Gi; Gj). Such 

scenarios apply when a new phosphorylation site arises in the encoded protein and in another case 

where a mutation occurs in the protein interaction domain. 
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We presume that genes initially have an infocanonical distribution in MI(Gi; Gj) under sufficiently 

stable evolution (Appendices 2 and 17). However, in the cases above, we propose that MI(Gi; Gj) 

undergoes a transition from the original infocanonical distribution and approaches the Pareto 

distribution (Appendix 28). It is thus expected that the genes following the Pareto distribution are 

rapidly evolving and that their influential forces are strong. Indeed, the results of ab initio GO analysis 

in the next chapter fairly meet our expectations; that is, while most genes have an infocanonical 

distribution of MI(Gi; Gj), most genes in the immune system have a Pareto distribution (to be published 

elsewhere). It is known that genes of the immune system have a potent biological activity and a high 

evolution rate, which conforms to the above predictions. We present examples in the next chapter. 

Large amount of network information 

As noted above, the network information H(Ni) constitutes a large part of the information that a gene 

Gi acquires through evolution. Gi is then supposed to express most of its information as H(Ni) but not 

as the molecular information H(Mi). We here compare the maximum possible magnitude between 

H(Mi) and H(Ni). For H(Mi), we consider a protein of standard molecular weight with 500 amino acids. 

The maximum number of states W(Mi) expressed by the permutation of the amino acids is then 20500 

= 3.27 × 10650, which is equivalent to H(Mi) = 2,161 bit. 

Meanwhile, for H(Ni), we consider Σrank and Σsgn as components of H(Ni) = Σrank + ΣW + Σsgn, and 

then H(Ni) > Σrank + Σsgn. If we set N = 20,000, then the maximum number of states of the network is 

W(Ni) > exp(Σrank) × exp(Σsgn) = (8.77 × 1084,580) × (29999.5) = 1.24 × 1087,591, where Σrank = 281 kbit 

and Σsgn = 10 kbit. A comparison of the two types of information gives W(Ni) / W(Mi) > 3.78 × 1086,940, 

implying more than a 289-kbit difference between H(Ni) and H(Mi). This large difference indicates 

that even if we ignore ΣW, H(Ni) is by far larger than H(Mi). It is thus suggested that the major part of 

the gene information is encoded as the network structure and not as the molecular structure. 

In the ab initio GO method described in the next chapter, we choose the related genes Gj whose 

ranks of MI(Gi; Gj) are within the top 10% and then calculate the relevant pathways of Gi and the 

direction of each edge. As detailed there, the functions of Gi deduced from this calculation provide 

good results, which supports the importance of H(Ni). However, to reduce the calculation burden, we 

use the combined information as a substitute for exp(Σrank) because the combination reflects the gene 

rank order. At this time, W(Ni) > C(20,000, 8000) × ( 28,000
 ) = 5.07 × 108251 (27.4 kbit), which is still 

far larger than W(Mi) = 3.27 × 10650, despite the reduction in the calculation cost. 

Non-coding regions and network information 

At the end of this chapter, we consider the effect of non-coding chromosomal regions on network 

information. It is known that the complexity of higher organisms correlates with the relative amount 

of non-coding DNA sequences in the genome [61]. This suggests that mutations in the non-coding 
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regions have led to the evolution of H(Ni), making it possible to express complex phenotypes. When 

mutations arise in the non-coding regions, they do not change the structural properties of the gene 

product but can affect the spatiotemporal regulation of gene expression. 

The changes induced in gene expression profiles then cause fluctuations in the microstate 

probability of intergenic MI, resulting in the alteration of each MI(Gi; Gj) and the overall network 

structure; that is, all of Σrank, ΣW, and Σsgn may change. As H(Ni) >> H(Mi), the evolution of the gene 

network function, ΔH(Ni), greatly exceeds that of the molecular function remaining at ΔH(Mi) = 0. As 

a result, H(Ni) gains considerable variability in both network architecture and activity, and there is thus 

an opportunity for creating the complexity of higher organisms. Together with an inherently large 

H(Ni), the above inference may offer a further plausible explanation for why the phenotypic evolution 

is occasionally much more rapid than the gene evolution. 

Chapter summary 

This chapter showed that the influential force ℱ acts between genes and is expressed by the same 

mathematical formula as the influential force in the physical system. The force arises from MI(Gi; Gj) 

by gene interaction and represents the relative fitness. In a multi-gene system, the force provides power 

to construct the LCIO, which has an immense magnitude of information encoding the precise structure 

of the gene network. Unlike physical systems, the gene nodes in the network have highly divergent 

properties, such that the network functions H(Ni) of each gene Gi vary enormously. 

The findings obtained in this chapter demonstrate that the network function constitutes the main 

body of the gene information. This leads to the striking conclusion that 

 ,                           (224) 

which indicates that the gene functions based on the network structure are far more essential than those 

based on the molecular structure. Especially in higher organisms, genes primarily encode the 

intergenic MI, presumably based on information in untranslated regions, thereby determining the 

network structure. This concept rewrites the traditional paradigm based on the Watson–Click model, 

which claims that genes encode the amino acid sequence based on exon sequences, thereby 

determining protein structure. 

In turn, the above conclusion will drastically change our perception of both biology and medicine. 

We should be aware of the priority of H(Ni) when investigating gene properties and their relevance to 

pathophysiology. Focusing on the LCIO-based network structure will allow the determination of the 

gene function of interest without experimentation. This method could also be applied to genes that do 

not encode proteins. In the next chapter, we will present examples of how modern medicine can be 

advanced by analyzing the LCIO-based gene network information. 
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4. Ab initio GO method 
 

(a) Basic theory of the ab initio GO method 

Medical science has made much progress owing to the availability of massive information about the 

human genome. However, there remain many diseases without known etiology or effective therapies, 

indicating that our knowledge about the genome is still far from complete. Medicine can be advanced 

by the functional characterization of all genes, which will broaden the perspective of pathophysiology 

and help identify novel disease-associated genes, diagnostic markers, and molecular targets for therapy. 

For the advancement in this direction, we employ a new strategy to reveal the network functions of 

genes, which we have proposed to be encoded by the LCIO. 

Here, to advance medicine and demonstrate that genes perform functions based on the LCIO, we 

developed an informatics program named the ab initio GO method. Using The Cancer Genome Atlas 

(TCGA), this method calculates the function of a gene of interest within minutes. Additionally, we 

developed another program, STAIC (a Strategic Tool for Ab Initio Identification of Cancer Genes), 

to facilitate the discovery of cancer genes. Combining these two methods, we identified a potential 

immune checkpoint, KYNU / kynureninase. While traditional techniques of molecular biology have 

never elucidated this function, our informatics demonstrated the possible involvement of KYNU in 

cancer immunity. Thus, with rapidity and accuracy, the ab initio GO method could accelerate the 

functional analysis of the human genome and advance medical science. 

LCIO in cancer cells 

In Chapter 3, we discussed the organismal level of gene network evolution. The formation of 

intergenic MI is accompanied by the establishment of the LCIO, which codes for the structures and 

functions of gene networks. Meanwhile, genes are also subject to evolution by natural selection in 

carcinogenesis, like in gene evolution in organisms. Therefore, if the development of the LCIO 

constitutes a key feature of the gene evolution at the organismal level, then the LCIO would also 

develop through the evolutionary process of genes in cancer. Furthermore, given that the LCIO 

substantially contributes to gene functions in normal cells, it would also play a pivotal role in the gene 

activities in cancer cells. 

Of note, cancer cells usually use the gene functions of their normal cell counterparts [62]. 

Therefore, conversely, we can deduce many genes' actions in normal cells from those in cancer cells. 

Indeed, this strategy has been widely applied to experimentally elucidate the functions of many genes 

in normal cells. However, although it has been a standard procedure, the experimental approach has 
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two significant drawbacks. First, as expressed by 𝐻(𝑁௜) ≫ 𝐻(𝑀௜) [Eq. (224)], molecular functions 

constitute only a small part of the total gene activity. Hence, whereas ordinary ‘wet’ experiments 

clarify the molecular functions of genes, the obtained knowledge may be insufficient to understand 

the whole picture of the physiological role of the genes. Second, the experimental process takes a long 

time to uncover the properties of a gene of interest; that is, it usually takes more than 10 years and 

therefore requires multidirectional, large-scale investments. 

To evade the two drawbacks mentioned above, we developed an informatics algorithm that 

rapidly calculates gene functions without performing experiments. In principle, this algorithm 

deciphers the LCIO in cancer cells, whereby we can deduce the network functions of a particular gene 

in normal cells. This procedure is designated as the ab initio GO method because its rationale is 

analogous to that of the ab initio molecular orbital method. Our method computes the intergenic MI 

at a super-high resolution and thereby predicts a wide range of gene properties, ranging from the 

molecular function to the pathophysiological relevance. 

Generation and amplification of intergenic MI 

In the process of cancer evolution, various changes (e.g., mutations and epimutations) arise in 

numerous genes. As a result, intergenic MI is generated globally. Within the many gene alterations, 

there are recurrent patterns characteristic to each gene, each case, and each type of tumor. This 

tendency is also true for the co-occurrence of gene alterations, which reflects the intergenic MI. 

Therefore, by analyzing the relationships between various changes in many genes, in many cases for 

multiple kinds of tumors, we can explore MI shared between virtually all the genes with all other genes. 

In addition, much of the intergenic MI in cancer cells is related to that in normal cells because, as 

noted above, the functions of the corresponding genes are similar. We can thus deduce much of the 

intergenic MI in normal cells. 

In addition to the global generation of intergenic MI, the ab initio GO method uses the property 

that the evolutionary process of genes in cancer is analogous to that in organisms. From the beginning, 

all the genetic information (e.g., genes and intergenic MI) in organisms has evolved through effects 

on the fitness of the organisms. Similarly, in cancer evolution, the alteration of genetic information 

[e.g., the (epi)mutations and altered intergenic MI] also affects the fitness of the generating cancer 

cells. The cells with changed fitness are subject to natural selection, thereby eliciting the fluctuation 

in the frequency of the altered information within the cell population. 
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(b) Super-high resolution analysis of intergenic interactions 

Detection of intergenic MI using a contingency table 

As the prevailing carcinogenesis model, we again adopt the Moran process, which explains genotype 

amplification. First, we consider the case of single-gene evolution at an organismal level. Even if the 

fitness advantage is as small as s = 1E−8 to 1E−7, this effect is amplified through generations, resulting 

in a dramatic increase in its genotype frequency. Second, in the case of single-gene evolution in cancer, 

the fitness effect is again unambiguously appreciable. Finally, when two genes Gi and Gj are subject 

to alterations in cancer cells, MIinh(Gi;Gj) arises because of the fluctuation in information for both 

genes [Eq. (210)]. An influential force then arises between the genes and affects the evolutionary 

fitness of the cells: ℱatt = exp[MIinh(Gi;Gj)] ≃ 1+𝜀௧௪௢ [Eq. (202)]. As discussed in Chapter 3, this 

epistatic fitness εtwo increases the frequency of the double mutant. 

 

Figure 14 | Theory of the ab initio GO method. a, Network of genes around Gi. The bottom plane 
represents the gene network around Gi in the information metric space. Six clusters represent a group of 
genes with related functions. The large surface expresses the influential force potential, and its vertex 
corresponds to Gi. The clusters are represented as six small surfaces on the large surface, and their 
vertices express the centers of information mass of the clusters. b, c, Change in genotype frequencies in 
the Moran process. Blue, purple, and red lines represent X0, X1(= X2), and X3, the frequencies of types 0–3 
in cancer samples at time t, respectively, and the green line represents MIobs. N = 1000, u1–u4 = 1E−3, r0–
r2 = 1 and r3 = 1 (b) or 1.01 (c). MIobs remains zero when r3 = 1. d, Effect of r3 on MIobs in the Moran 
process. MIobs increases as r3 increases. t is 200 (red line), 300 (blue) or 400 (yellow). e, Infocanonical 
distribution of micromutual information MIkl. 
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In a multigene system, MIinh(Gi;Gj) as the epistatic fitness value differs for each combination of 

Gi and Gj (Fig. 14a). The differences in the fitness effect are then amplified through the cycles of cell 

division, which results in a shift in the allele frequency distribution. This phenomenon can be presented 

in a contingency table as a deviation in the frequency of genotype combinations (Fig. 14b, c and Table 

3), which is measured by the increase in MIobs. Conversely, by detecting the frequency deviation as 

MIobs in cancer, we get a clue for estimating intergenic interactions as MIinh in normal cells [Eq. (206)]. 

For example, we consider two genes, A and B, and let them take two different states, A / A´ and 

B / B´, respectively. Table 3A gives the relative frequency of the combination of gene states. Here, X0, 

X1, X2, and X3 are respectively the proportions of combinations AB, A´B, AB´, and A´B ´. Table 3B 

gives the observable number of cases. Using this frequency distribution, we can calculate the one-

dimensional MIobs for A and B as 

 .           (225) 

Furthermore, in the latter part of this section, we describe a procedure for calculating extremely high-

dimensional MIobs, which is an advanced methodology based on a series of novel mathematical 

theorems (Appendices 18–20). 

Similarity of networks between normal and cancer cells 

Before proceeding, we establish two conjectures about the LCIO-based gene network. Both 

assumptions derive from empirical observations that cancer gene networks are, on average, similar to 

the gene networks of normal cell counterparts. The first conjecture is that the MI(Gi;Gj) distribution 

around each gene Gi is fixed as either an infocanonical or Pareto distribution and that the distribution 

parameters do not notably change upon transformation from normal cells to cancer cells. It is known 

that few gene alterations are uniformly common to many cases in various types of cancer. Therefore, 

when assessed using many datasets with more cancer data, the distribution of MI(Gi; Gj) would become 
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stable on average and approach that in normal cells. The second conjecture is that, upon transformation, 

there is little change in the rank order of the magnitude of MI(Gi; Gj) around Gi. This supposition is 

made because the realization probability of changes in the rank order follows a Poisson distribution 

and is thus expected to be sufficiently small on average (Appendix 27). 

If the above two conjectures are correct, then both MIcan(Gi;Gj) in cancer cells and MInorm(Gi;Gj) 

in normal cells follow either an infocanonical or Pareto distribution, and 

 ,               (226) 

where ⟨MInorm(Gi;Gj)⟩ and ⟨MIcan(Gi;Gj)⟩ are respectively the mean values of MI(Gi;Gj) in normal cells 

and cancer cells. Therefore, if we successfully analyze the LCIO in the cancer cells, we can better 

understand the LCIO in the normal cells. Furthermore, even if the data in the TCGA are heterogeneous 

in terms of the sampling conditions, the numbers of cases and types of cancer are sufficiently large 

that the precision of the estimation of each MI(Gi;Gj) would be guaranteed by the multivariate central 

limit theorem (Appendix 29). In conclusion, when large-scale data on many kinds of cancer are 

available, the above conjectures will ultimately become true on average, which would provide a wealth 

of information about the LCIO in normal cells. Therefore, we will next focus on the development of 

strategies that allow the management of massive data. 

Evolutionary microscope 

To obtain the highest possible resolution of the structures of the LCIO-based gene networks, we 

exploit the dramatic amplification effect of MIinh through evolution. MIobs is a multivariate function of 

fitness (r1–r3), time t, mutation rates (u1–u4), and population size N [Eqs. (201) and (205)]. If u1 ≤ u4 

and u2 ≤ u3, then MIobs mainly depends on r3, the relative fitness of the double mutant. MIobs is a 

monotonously increasing function of r3 ≃ ℱatt = exp(MIinh), even in carcinogenesis (Fig. 14d, 

Appendix 13). Below are the examples that illustrate the dominant effect of r3 on MIobs. 

● Case 1: increases in mutation rates 

As an example of the strong dependence of MIobs on r3, we here discuss a single type of cancer, and 

set N = 1000, u1–u4 = 1E−3, r0–r2 = 1.0, and max (t) = 200. Initially, we examine a two-gene system 

in which both rates of reciprocal mutations (i.e., u3 and u4) increase by 1%. The transition rates d and 

e then increase by 1.7% from 2.31E−3 to 2.35E−3. However, MIobs is as small as 7.83E−4 nat, and the 

obtained p-value is only 1E−0.34 even at t = 200. The increases in mutation rates thus do not 

appreciably enhance the intergenic MI. 
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● Case 2: increase in fitness 

We next consider the increase in the fitness of the double mutant instead of increases in the mutation 

rates. If r3 increases by 1% from 1.00 to 1.01, then d = e = 1.20E−2, which increases the transition 

rates by 419%. Moreover, when r3 = 1.01, MIobs increases with time and reaches 0.193 nat at t = 200, 

which is 246 times higher than that in Case 1 (Fig. 14d). In addition, the p-value becomes 1E−84, 

which is the 246th power of that in Case 1. These observations indicate that a 1% difference in the 

fitness values can be discriminated at extremely high sensitivity and significance levels. Thus, the 

intergenic interactions can be detected sensitively on the basis of the amplification of the fitness effect 

that arises from evolution. We refer to this amplification effect as the evolutionary microscope. 

Meta-analysis via a novel theorem 

In the past, conventional information theory did not consider the application of meta-analysis to the 

calculation of MI. The inability of meta-analysis constituted a limiting factor for the precision and 

accuracy of the MI analysis. To overcome this issue, we have developed a novel theorem named the 

“equivalence principle of information and probability”, detailed in the next section and Appendix 20. 

This theorem asserts that MI can be calculated from the p-value of Fisher’s exact test. Therefore, MI 

can be computed from a meta-analysis of Fisher’s exact test using many large-scale data, allowing the 

quantitative estimation of MI at an extremely high significance level. 

● Case 3: conducting a meta-analysis 

To conduct a meta-analysis [63], we next explore 30 types of cancer dataset with the same sample size 

simultaneously, instead of considering only one type of cancer dataset. When r3 increases by 1% from 

1.00 to 1.01 as in Case 2, MIobs remains the same, 0.193 nat. This invariance shows that the sample 

size does not affect MI, which conforms to its well-known quantitative nature. However, the p-value 

becomes 1E−2520, which is as much as the 30th power of that in Case 2. Such a drastic decrease in 

the p-value demonstrates that if we perform a meta-analysis using many types of cancer dataset, we 

can improve the accuracy of the evolutionary microscope even more. 

When we combine the two principles mentioned above, namely the evolutionary microscope and 

the meta-analysis, the magnitude of Δr3 that can be discriminated at a significance level of p = 0.05 is 

5.17E−6, which is remarkably small. Even when we assume Δr3 = 0.01 × MIinh, ΔMIinh that can be 

distinguished is as small as 5.17E−4. Moreover, the meta-analysis has the merit of assessing the LCIO 

without being disturbed by the noise that accompanies the individual properties of cancer. 
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Integration of the Moran process and branching process 

The initiation of cancer divides tumor development into two phases: the pre-initiation phase and the 

post-initiation phase [64,65]. The Moran process presupposes a constant cell number and is used to 

model the pre-initiation phase. By contrast, the branching process is chosen to model the post-initiation 

phase in which the cell number increases [64,66]. In the branching process, the cell with fitness 1 + s 

divides into two daughter cells with probability (1 + s) / 2 and dies with probability (1 − s) / 2. It is 

assumed that a mutation occurs in the mitosis with the probability u. It is also assumed that the fitness 

increases as the cell has more mutations. 

Whereas the Moran model of the pre-initiation phase underlies the LCIO-based network model 

described in this paper, the data in the TCGA derives from the cancer samples obtained in the post-

initiation phase. Therefore, in estimating the LCIO, we should consider the possibility of the 

deformation of the network structure, which might accompany the phase transition. However, because 

the increase in the fitness due to the mutations in the post-initiation phase is sufficiently large, the 

genotype frequencies used for the Moran model remain virtually constant (Appendix 30). In other 

words, the fitness values of gene alterations established in the pre-initiation phase are so small that 

there is no interference with the large fitness values arising after the initiation. Therefore, the Moran 

model can also be applied to the genetic data even after cancer initiation. Thus, we can use the TCGA 

as a source with which to analyze the LCIO-based gene network. 

 

(c) Frontier information theory 

Immensely high-dimensional intergenic MI 

The gene information is an extremely high-dimensional random variable. Therefore, the MI of genes 

becomes an immensely high-dimensional random variable. This remarkable complexity poses a 

serious problem when we wish to estimate the MI of genes because we cannot perfectly measure the 

probability of all combinations of the information states of the genes. To resolve this issue, we 

developed a calculation strategy that generally allows us to compute the highly multi-dimensional MI 

of two random variables. 

The computing methodology employed is based on two principles detailed later. In short, 1) the 

micromutual information MIkl follows an infocanonical distribution when the number of dimensions 

is sufficiently large, and 2) the information exchange mainly occurs in a particular state where MIkl 

takes the maximum value. In addition, a prerequisite for the calculation scheme is that the specific 

condition noted in 2) is experimentally observable. This precondition assumes that the particular state 

producing the highest MIkl value occurs at a considerable frequency and can thus be readily measured. 
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Figure 15 | Transformation from an m × n contingency table into a 2 × 2 contingency table. a, m × n 
contingency table with respect to two random variables X and Y. b, 2 × 2 contingency table concerning the 
cell (k, l) in a. 

In addition, the measurement method is expected to allow a wide range of observations that provides 

the most valuable data related to gene interactions. If these prerequisites are satisfied, we can adopt 

the highest MIkl obtained as the representative value of the intergenic relationship. 

The TCGA is a comprehensive gene database for multiple types of cancer. It provides a broad 

collection of cancer information (e.g., mutations, expression levels of mRNA and proteins, DNA copy 

numbers, DNA methylation, and clinical outcomes) for many kinds of tumor. The TCGA contains a 

wide variety of data, and it is thus expected to provide sufficient information to analyze the high-

dimensional MI of genes and be an ideal source for the computation. We therefore designed the ab 

initio GO method to incorporate multiple types of data from the TCGA as different dimensions of 

information. In this way, the ab initio GO method integrates large-scale, multi-dimensional genomic 

data and calculates MI as a unified indicator of gene interaction. 

Lowering the number of dimensions using a linear indexing method 

We consider two genes GX and GY, which take multi-dimensional states X and Y, respectively. To the 

collected data representing these variables, we apply a linear indexing technique (Appendix 9). 

Adopting this technique, we can transform X and Y into one-dimensional variables labelled with the 

linear indices k and l, respectively. If k and l take m and n different positive integers, respectively, we 

obtain an m × n large contingency table (Fig. 15a). We are now able to measure the intergenic MI 

according to 
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 .                    (227) 
Although this equation follows the exact calculation method for MI, it has drawbacks. MI obtained 

using Eq. (227) is derived from the relative frequency of each cell (k, l) in the table, and it thus does 

not reflect the sample size and is irrespective of the significance level. This lack of significance level 

can lead to an increase in the computation time without yielding meaningful data. Therefore, to 

consider each cell's significance level and avoid valueless computation, we devised a novel analysis 

protocol that uses the micromutual information MIkl. 

Micromutual information MIkl 

To apply the statistical approach, the m × n large contingency table is transformed into a 2 × 2 small 

contingency table (Fig. 15b). For the cell (k, l) of the large contingency table, the micromutual 

information MIkl is defined as MI of the corresponding 2 × 2 contingency table. When the indices k′ 

and l ′ in the small contingency table take values of 1 or 2, respectively, MIkl is obtained as 

 ,                   (228) 
which indicates MI of X and Y shared at the specific microstate (k, l). 

Managing massive information using MIkl 

We next discuss the methodology of using MIkl obtained above and the small 2 × 2 contingency table 

to manage much information initially included in the large m × n contingency table. We have 

developed a series of mathematical theorems that use MIkl and MI as statistical variables. These 

theorems include 1) the MIkl summation theorem, 2) the infocanonical distribution of MIkl, 3) the 

frontier information theory, and 4) the equivalence principle of information and probability 

(Appendices 6, 18, 19, and 20). 

Filtering using the odds ratio (OR) 

Our goal is to examine the network information H(Ni) of a gene Gi in a multi-gene system. We first 

characterize the multidimensional interaction between genes Gi and Gj in a dataset h. The respective 

states of the two genes (including both normal and aberrant states) were classified into m and n types. 

Thus, the m × n large contingency table is prepared (Fig. 15a). We next calculate the OR for each cell 

in the table and select only cells that exhibit a strong association between the two genes. At the same 

time, we distinguish the interaction in each cell between being cooperative and mutually exclusive 

[67]. To calculate the OR, we use the 2 × 2 small contingency table (Fig. 15b) and judge each interaction 

as follows. If the OR is more than 2, then the interaction is strong and cooperative; if the OR is less 

than 0.5, then the interaction is strong and mutually exclusive. 
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We note here that the formation of mutually exclusive interaction is less frequent and less 

important than that of cooperative interaction. We suppose that the mutually exclusive interaction is 

the result of a highly acute evolution. While such a rapid alteration in the gene relationship is often 

observed in cancer, it rarely occurs in organismal evolution. Thus, in the following part of this paper, 

we mainly consider cells with an OR greater than 2 in the contingency table. 

Equivalence principle of information and probability 

With an m × n contingency table, we introduce a novel point of view on the relationship between the 

two genes Gi and Gj. On the one hand, we must evaluate the significance (p-value) of intergenic 

interaction, which varies greatly between datasets based on sample size differences. On the other hand, 

we require a quantitative measure of information transmission that is robust against variations in the 

sample size. However, to satisfy these contradictory demands, neither current information theory nor 

current probability theory is sufficient. In particular, because our analysis uses multiple large-scale 

genomic data, p-value instability is a major issue. 

Here, we describe a theorem that connects information theory and probability theory. It claims 

the equivalence between MI and the p-value, providing a dualistic (i.e., informational/probabilistic) 

point of view of the interaction between the two informatons. The realization probability of MI of two 

random variables is calculated using the following equations. We refer to them collectively as the 

equivalence principle of information and probability. 

1) In probability theory, when the maximum entropy principle is applied, we obtain 

 ,                     (229) 
where p(MI) is the probability that the magnitude of MI becomes MI [Eq. (17)] (Appendix 2). 

This formula indicates that MI is another expression of p(MI) and implies the infocanonical 

distribution of MI (Appendix 17). We used this formula for physical informatons in Chapter 2. 

2) In statistical theory, if the information exchange is evaluated N times between the two informatons, 

the expected total MI is N⋅MI. We then have 

 ,            (230A) 
where p(N⋅MI) is the probability that the magnitude of total MI is N⋅MI, and this p(N⋅MI) also 

represents the statistical significance of MI. Whereas Eq. (230A) holds independently of the 

sample size N, the formula 

                          (230B) 
holds in the limit of large N, where 𝑃ி is Fisher’s exact probability (Appendix 20) and virtually 

represents the statistical significance of MI. Equations (230A) and (230B) indicate that N⋅MI is 

equivalent to p(N⋅MI) and asymptotically equivalent to 𝑃ி . In this Chapter 4, we apply this 

formula in the analysis of intergenic interactions using large-scale data. 
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Features of the equivalence principle 

In developing the ab initio GO method, we emphasize five essential points of the above theorem, 

especially regarding the latter equations. 

1) For a single informaton, the relationship between the self-information I and its probability 𝑝(𝐼) is 

expressed as 𝑝(𝐼) = 𝑒ିூ  and 𝐼 = − log𝑝(𝐼)  [12]. However, there has been no such 

corresponding paradigm regarding the information exchange between informatons. 

2) While the theorem provides an informatics approach to analyze the probabilistic-statistical events, 

it conversely offers a way to characterize the probabilistic-statistical properties of informational 

phenomena. 

3) The theorem provides the information-theoretical interpretation of Fisher’s exact probability. 

Accordingly, it has the potential to make a paradigm shift in our understanding of so-called 

statistical significance. 

4) While MI is a robust measure that is not biased by the sample size, the theorem allows the 

evaluation of the statistical significance (p-value) of MI that is sensitive to the sample size. 

5) On the basis of the p-value calculated for MI, we can apply meta-analysis to integrate multiple 

datasets, thereby improving the precision and accuracy of the estimation of MI, especially when 

using large-scale data. 

Frontier mutual information MIfront 

We revisit the m × n contingency table for Gi and Gj in the dataset h. When m and n are sufficiently 

large, MIkl in the cell (k,  l) follows an infocanonical distribution (Appendices 17 and 18). That is, if we 

set x = MIkl and 𝜆 = 𝑚𝑛 𝑀𝐼௢௕௦⁄ , then the probability density function of x is 

 ,                        (231) 
where MIobs is MIobs(Gi; Gj) calculated from the m × n contingency table. This means that the two genes 

interact predominantly in a limited number of cells in the table with large MIkl values (Fig. 14e). 

Furthermore, when m and n become sufficiently large, the number of conditions that cause the 

substantive information exchange converges to only one. This conclusion is consistent with a common 

biological observation that genes (or gene products) interact with each other in their specific molecular 

forms, under particular spatiotemporal conditions, within restricted types of cells. 

The infocanonical distribution of MIkl noted above is generally applied to the information 

exchange between informatons. In this connection, MI for informatons relates to the physical forces, 

as described in Chapter 2. Accordingly, it is not surprising in physicochemical systems that 

information exchange with energy transfer commonly occurs under a limited set of conditions, where 

the most efficient transfer takes place (Fig. 14e). Such a specific condition for each informaton 
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corresponds to a state that has the nearly highest level of energy/information. Indeed, frontier orbital 

theory claims that organic compounds undergo electrophilic reactions with the atoms whose electron 

density of the highest occupied frontier orbital (HOMO) is large [68]. Of note, the HOMO is the 

frontier orbital with the highest energy level, and it therefore has the highest information level. 

From the above considerations, in the m × n contingency table for Gi and Gj in the dataset h, we 

designate a cell with the highest MIkl value as a frontier cell, where the two genes exchange 

information predominantly. Additionally, we define the frontier mutual information (MIfront) as the 

maximum MIkl manifested in the frontier cell; that is, MIfront := max(MIkl). We assume that m and n are 
sufficiently large, and MIkl thus follows an infocanonical distribution (Appendix 18). MIobs can then 

be estimated using MIfront (Appendix 19) as 

.                        (232) 

Next, for a cell (k, l) in the original m × n large contingency table, we set PF_kl as the PF-value of 

the transformed 2 × 2 small contingency table. We additionally define the frontier probability (Pfront) 
as the minimum of PF_kl ; that is, Pfront := min(PF_kl). We can now apply the equivalence principle of 

information and probability [Eqs. (230A, 230B)]. If N is sufficiently large, then we can directly 

calculate MIfront from Pfront according to 

. (233) 
Furthermore, we get the 95% confidence interval of MIobs according to 

 .   (234) 
If we assume, for example, that both Gi and Gj express 20 discrete states for each of 50 different 

properties, then m = n = 2050. The relative error of MIobs is within 0.99% in this instance because 

2.970/log(mn − 1) is 0.0099. In conclusion, owing to a great number of states, the intergenic interaction 

MIobs(Gi; Gj) can be computed from MIfront with a fairly small error. This procedure has the advantage 

that we can reduce the calculation time by omitting the cells without statistical significance. In addition, 

the significance p-value for Gi and Gj is readily estimated from MIfront and p = 𝑒ିே∙ெூ೚್ೞ. 
Signature information Hsgn 

In addition to MIobs(Gi; Gj), we can obtain the signature information Hsgn(Gi, Gj) in the dataset h. This 

is done by comparing the direction of the mRNA expression between the two genes in the frontier cell. 

Depending on the direction, Hsgn is defined as taking a value of 1 or −1, indicating the same or opposite 

orientation. The frontier cell represents a gene interaction with a significance value of Pfront, and Hsgn 

is therefore also expected to have a significance that reflects Pfront. In addition, because we focus on 

cooperative interactions, Hsgn = 1 and −1 respectively indicate a gene direction that the coexpression 

and reciprocal expression of the genes Gi and Gj promotes their collaborative functioning. 



115 

Data aggregation of MIobs and Hsgn 

To accomplish the computation of the interaction between Gi and Gj, we aggregate MIobs(Gi;Gj,h) and 

Hsgn(Gi,Gj,h) from multiple datasets, where the index h denotes the h-th dataset. First, we repeat the 

above MIfront(h) calculations across various datasets for distinct types of tumors. We then obtain Poverall 
by summarizing each Pfront(h) based on a meta-analysis. After the calculation of Poverall, we can 

transform Poverall into MI (=: MIoverall) based on the equivalence principle [Eqs. (230A), (230B)] 

because the principle also holds after meta-analysis. Thus, 

 ,                    (235) 
where Noverall is the total number of samples across all datasets examined. Second, the overall value of 

Hsgn(Gi,  Gj) (=: Hsgn_overall) is calculated as the signature of the total sum of each Hsgn(Gi,  Gj, h); that is, 

.                     (236) 
The two-gene network Nij is now determined from the network information H(Nij) using Eq. (214) as 

 .             (237) 

Finally, the network information H(Ni) of the gene Gi is obtained by iterating the above computations 

for all other genes Gj. Then, as described in Chapter 3, H(Ni) is expressed as the superposition of each 

H(Nij) in multidimensional space: 

.                        (238)
Again, this is an equivalent derivative of the LCIO in the multidimensional information metric 

spacetime. 

Consequently, using the evolutionary microscope and conducting a meta-analysis of frontier 

information, we can reveal the LCIO in cancer cells. Owing to the vast volume of data in the TCGA, 

the network structure calculated in cancer cells is thought to reflect the network structure in normal 

cells. We thus adopt the obtained results as values consistent with those of the normal gene network. 

(d) Weighted pathway analysis

The LCIO predicts that Gi performs network functions based on H(Ni). In other words, the network 

functions of a gene are determined by what kind of genes it affects. This can be validated using the 

weighted pathway analysis described herein (Appendix 21). The analysis adopts the principle that 

genes with related functions share large MI with each other (Appendix 16). Therefore, using H(Ni) 

obtained in the preceding section, we can elucidate the network functions statistically. We here suppose 

that Gi affects the functions of other genes Gj. We now set Fj(Gi) = Nij = [MI(Gi;Gj), Hsgn(Gi,Gj)] as the 
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j-th network function of Gi. The total network function of Gi is then equal to the network information 

H(Ni) that is superimposed on the multidimensional space as 

 .         (239) 
By considering the projection of H(Ni) to three-dimensional space, we can compute ΣW, Σsgn, and Σrank 

in Eq. (220), which provides a clue with which to decipher the network function of Gi. 

More specifically, we can elucidate the network functions of Gi through weighted pathway 

analysis. This analysis determines the significance level at which Gi is involved in a specified pathway. 

As detailed in Appendix 21, we know the network functions of Gi with PWE expressed by 

         (240) 

Practically speaking, we adopt Ingenuity Pathway Analysis (IPA), although it cannot evaluate edge 

weights. We perform Canonical Pathways analysis using a set of Gj with MIoverall(Gi;Gj) ranks above 

2000 or 8000. In addition, we use Hsgn_overall to conduct Diseases and Functions analysis, which 

computes the magnitude and direction of Gi functions and the relationships of Gi with 

pathophysiological conditions. Furthermore, other informatics programs of IPA, such as Upstream 

Analysis, Regulator Effects Analysis, and Causal Network Analysis, can also be performed. Thus, 

through the application of IPA, we can readily interpret a wealth of information regarding the 

functional properties of the LCIO. 

 

(e) Application of the ab initio GO method 

Genes have evolved for 4 billion years. They now possess profound functions, which are far beyond 

human understanding. Genes are involved in many diseases, and a technique that clarifies their broad 

functions rapidly and accurately will lead to substantial advances in medical sciences. The ab initio 

GO method allows the rapid functional analysis of genes of interest, which took more than 10 years 

by conducting wet experiments. Because this method uses a large amount of network information of 

the LCIO, we can obtain a wide range of knowledge about the features of gene function and its 

pathophysiological relevance. This section examines the characteristics of gene networks by adopting 

the ab initio GO analysis. We subsequently provide examples of practical interpretation regarding the 

properties of the gene network function. 
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Network properties of the LCIO 

From a network theoretical point of view, the LCIO presents a novel type of architecture for gene 

networks. The LCIO-based network model determines the properties of both nodes and edges. As for 

the nodes, the Shannon information entropy H(Gi) of a gene Gi follows an exponential distribution by 

applying the maximum entropy principle [69,70]. This is analogous to physical systems, where the 

thermodynamic entropy S follows an exponential distribution under isothermal conditions. For the 

edges, the LCIO employs MI as edge weights, and MI is also expected to follow an exponential 

distribution, which we call the infocanonical distribution [Eq. (191)] (Appendices 2 and 17). 

In contrast to the LCIO, the traditional theory states that many biological networks are scale free 

[71]. In this model, the degree k of nodes follows a power law as P(k) ~ k-γ; that is, the Pareto 

distribution. Importantly, this model neglects edge weights and assumes that the existence of the edges 

between nodes follows the all-or-none principle. However, because genes have been under selective 

pressure for a very long time, there is no doubt that mutual interactions have occurred for virtually all 

pairs of genes. Furthermore, it is natural that a physiological level of variation has emerged among the 

edge weights. Hence, we propose that the LCIO revises the classical model of gene networks. The 

validity of the LCIO-based network will be confirmed using examples later. 

Distribution of MI obtained using the ab initio GO method 

We performed ab initio GO computations to get an overview of gene networks. We initially calculated 

the quantity distribution of gene information H(Gi). H(Gi) is approximated from the network 

information H(Ni) using Eq. (224), and we computed MI(Gi;Gj) for all genes using Eq. (235). 

We found that, for most cases, MI(Gi;Gj) of a single gene Gi with other genes Gj follows the 

infocanonical distribution (Appendices 2 and 17). In this case, MI(Gi;Gj) follows the logarithmic 

distribution of magnitude rank j [Eq. (192)] (Fig. 16). By contrast, MI(Gi;Gj) for rapidly evolving 

genes with strong influential forces tended to follow the Pareto distribution. Indeed, most of the 

immune genes exhibited the Pareto distribution. This particular phenomenon is consistent with the 

general notion that immune genes evolve rapidly to cope with the expeditious evolution of pathogens. 

In addition, we noted that each gene tended to interact with other genes having the same kind of 

MI distribution as its own. (Results are to be published elsewhere.) Thus, genes are divided by the MI 

distribution into two groups: an infocanonical type and a Pareto type. Furthermore, it was found that 

genes with closely related functions share much MI with each other (Appendix 16). Thus, genes 

constitute a biological pathway by sharing MI with other genes that express interrelated information. 

Therefore, it is conceivable that strong influential forces acting between genes form a pathway, thereby 

producing greater biological fitness. 
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Figure 16 | Rank distribution of MI. MIoverall of Gi = ASXL1 (a) or CLSTN3 (b) with other genes Gj is 
represented by the blue circles, where j is the rank of the magnitude of MIoverall with Gi. The regression is 
shown as the pink line in (a) and the blue line in (b). 

In an earlier study [62], the authors described a method for constructing a gene network by 

calculating MI only for regulators and targets, assuming that the mRNA expression of genes follows 

a normal distribution. Our methods differ from previous methods because we calculate MI for all genes 

without assuming any distribution. 

ASXL1 

Additional sex combs like 1 (ASXL1) is a member of the ASXL family and is involved in epigenetic 

regulation. Somatic mutations of the ASXL1 gene are frequently detected in hematopoietic neoplasms, 

including those of myelodysplastic syndromes and acute myeloid leukemia. ASXL1 interacts with a 

deubiquitinase BAP1 to form polycomb-repressive deubiquitinase, which removes histone H2A lysine 

119 ubiquitylation (H2AK119Ub) [72]. It has been shown that the disease-associated ASXL1 

mutations form hyperactive deubiquitinase complex with BAP1 to upregulate several target genes, 

including HOX genes [73,74]. Additionally, a recent report showed that the mutant ASXL1/BAP1 

complex induces deubiquitination of phosphorylated AKT, thereby activating the AKT/mTOR 

pathway in hematopoietic stem cells. The mutant ASXL1-induced overactivation of AKT/mTOR 

signaling provokes mitochondrial dysregulation and promotes premature aging of hematopoietic stem 

cells [75]. Thus, ASXL1 regulates the ubiquitination of histones (e.g., H2AK119ub) and non-histone 

proteins (e.g., phosphorylated AKT) to maintain the hematopoietic system. 

We here applied the ab initio GO analysis to ASXL1. The levels of mRNA expression and DNA 

methylation were used as computation dimensions unless otherwise stated. First, we made a list of 
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relevant genes and calculated the intensities and directions of their actions using the ab initio GO 

method. We used the highly related genes whose MI shared with ASXL1 was ranked within the top 

2000. As shown in Fig. 16a, MIoverall values were distributed logarithmically with rank j at a high 

coefficient of determination (R2 = 0.9943), showing the infocanonical distribution of MI [Eq. (191)] 

and thereby supporting the precision of our prediction (Appendix 2). MIoverall of AKT2 with ASXL1 

was ranked in the top 0.052% (10th) of the 19,195 genes, demonstrating the involvement of ASXL1 in 

the AKT pathway, consistent with the experimental observation. 

We next estimated the pathways and functions of ASXL1 using the Canonical Pathways analysis 

and Diseases and Functions analysis of IPA, respectively. In the Canonical Pathways analysis, we 

found that the Protein Ubiquitination Pathway and mTOR Signaling ranked second (goodness-of-fit, 

***p = 2.04E−5) and third (***p = 3.11E−5), respectively (Fig. 17a). In addition, the first-ranked was 

EIF2 Signaling (***p = 6.81E−8), downstream of the ATK/mTOR pathway involved in cell survival. 

In the Diseases and Functions analysis, activation was deduced for Cell survival, Cell transformation, 

Leukopoiesis, and Ubiquitination, with z-scores 6.203 (***p = 1.46E−10), 2.920 (***p = 2.44E−8), 

2.421 (***p = 1.45E−6), and 2.254 (***p = 1.22E−5), respectively (Fig. 17b). Finally, when mRNA 

expression levels, mutation, and DNA copy number variation were used as dimensions, Oxidative 

Phosphorylation and Mitochondrial Dysfunction ranked first (***p = 2.76E−28) and second (***p = 

5.83E−24) respectively in the Canonical Pathways analysis. Thus, the pathways and functions 

identified by the ab initio GO method agree well with the known roles of ASXL1. 

 

Figure 17 | Ab initio GO analysis for ASXL1. Functions of ASXL1 calculated using the ab initio GO 
method and IPA. Items relevant to the text description are shown in red. a, Canonical Pathways analysis. 
The magnitudes of z-scores are shown by the color scale bar in the inset. A grey bar means that the z-
score was not determined. b, Diseases and Functions analysis. The lengths of bars express the goodness-
of-fit in (a) and activation z-scores in (b). 
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CLSTN3 

CLSTN3 is involved in synaptogenesis and synaptic plasticity. The calsyntenin family links between 

vesicles and kinesin motors for axonal transport [76,77] and is implicated in memory and learning [78] 

as well as the secretory pathway [79,80]. We calculated the functions of CLSTN3 using the ab initio 

GO method in the same way as for ASXL1. We used the highly related genes whose MI with CLSTN3 

was ranked within the top 2000. MIoverall followed the infocanonical distribution with a high coefficient 

of determination (R2 = 0.985), supporting computation accuracy (Fig. 16b, Appendix 2). 

When the selected genes were subjected to the Canonical Pathways analysis in IPA (Fig. 18a), 

the Synaptogenesis Signaling Pathway ranked top, exactly indicating the primary function of CLSTN3. 

In the Diseases and Functions analysis (Fig. 18b), the Microtubule dynamics and Transport of vesicles 

had high activation z-scores, 6.353 (***p = 1.64E−22) and 2.764 (***p = 5.63E−7), respectively. These 

were illustrated by the findings that MI of CLSTN3 and either kinesin 3B or 3C ranked in the top 

0.59% (117th) or 0.11% (21st), respectively. The kinesin-mediated transport was thus correctly 

estimated [81]. In this connection, CASY-1, the homolog of CLSTN3 in Caenorhabditis elegans [82], 

transports the insulin receptor by complexing with kinesin moving on microtubules [83]. 

Additionally, CLSTN3 was deduced to augment Cognition and Learning, higher physiological 

activities of the nervous system. Furthermore, Synaptic transmission as well as both Long-term 

depression and Long-term potentiation, which are the basic mechanisms of memory, were elucidated. 

All of these activities were detected with z-scores greater than 2.0 (p < 3.0E−7). Thus, the ab initio 

GO method successfully predicted both molecular and physiological functions of CLSTN3. We present 

other examples of ab initio GO calculation in Appendix 31. 

 

Figure 18 | Ab initio GO analysis for CLSTN3. Functions of CLSTN3 calculated using the ab initio GO 
method using IPA. Items relevant to the text description are shown in red. a, Canonical Pathways 
analysis. The magnitudes of z-scores are shown by the color scale bar in the inset. A grey bar means that 
the z-score was not determined. b, Diseases and Functions analysis. The lengths of bars express the 
goodness-of-fit in (a) and activation z-scores in (b). 
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(f) Searching for a novel immune checkpoint in cancer 

Progress in modern medicine has revealed that genetic changes in cancer are highly divergent among 

patients, broader than previously thought, and range over the whole genome. Therefore, extracting 

essential genetic alterations from enormous amounts of data is a critical issue in current oncology. 

However, existing informatics tools have poor functionality in suggesting which genes are the most 

intimately related to cancer pathophysiology, although they enable us to browse genes one by one on 

databases. Furthermore, the registered gene information in databases depends only on the knowledge 

obtained from experimental observations in the past, which limits the range of information to less than 

that needed for rapid advancement. 

STAIC—a strategic tool for cancer genome analysis 

We developed STAIC to discover cancer genes more efficiently and overcome the drawbacks of 

conventional informatics programs. STAIC is a program that includes data of the 33 kinds of tumors 

in the TCGA and allows the efficient identification of genes associated with cancer pathophysiology 

(initiation, progression, and prognosis) by considering simultaneously four types of information on 

the mRNA expression profile, DNA copy number, mutation, and clinical course of all the genes. 

Specifically, to better identify the ‘driver’ genes involved in cancer initiation, STAIC uses the COPA 

algorithm [84] in analyzing the mRNA expression and DNA copy number profiles. Moreover, STAIC 

offers a convenient command to immediately start the ab initio GO analysis of the discovered genes. 

These features allow a rapid identification of candidate genes followed by the successive, quick but 

detailed prediction of their functional and pathophysiological properties. 

After developing STAIC, we used it to investigate datasets for 19 kinds of tumors with sufficient 

information. We detected 90.6% of previously reported tumor genes (92.3% for epithelial and 84.5% 

for non-epithelial tumors). Moreover, we found many unpublished genes having a strong relationship 

with cancer. For example, 30 and 38 genes had a mutation frequency exceeding 20% in lung 

adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD). For LUAD and PAAD, very few 

of these genes have been reported in the literature on their role in cancer. This lack of literature is 

noteworthy if we consider the enormous past investments spent identifying oncogenes. 

Finally, we performed the ab initio GO analysis of the discovered genes and found that their 

biofunctions were compatible with the cancer pathology. (Data will be published elsewhere.) In this 

way, the STAIC analysis followed by the ab initio GO method facilitates the rapid identification and 

characterization of novel cancer genes with potential applications as biomarkers and/or therapeutic 

targets. 
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Immune checkpoint in cancer 

Immune checkpoints are gatekeeper mechanisms that maintain self-tolerance and moderate immune 

responses [85]. In cancer, immune checkpoints are frequently activated to evade antitumor immunity. 

In 2018, James P. Allison and Tasuku Honjo won the Nobel Prize in Physiology or Medicine as the 

founders of cancer immune therapy that aims at restoring the antitumor reaction by targeting the 

checkpoint molecules CTLA-4 and PD-1 (gene symbol, PDCD1), respectively. Following their 

success, the search for other immune checkpoints has become a hotspot of research in oncology. Thus, 

we search for a novel immune checkpoint gene by combining STAIC and the ab initio GO method. 

Searching for a novel immune checkpoint in LUAD 

LUAD is a representative immune-driven tumor. It involves widespread gene alterations causing 

various cellular dysfunctions, and it is thus possible that mutations of unknown immune genes may 

underlie the abrogation of anti-cancer immunity. Therefore, it is an ideal target of the investigation to 

identify a novel immune checkpoint. Hence, we performed a search procedure using the LUAD dataset 

of the TCGA by employing a two-step process; that is, a STAIC-based enrichment of candidate genes 

coupled with an ab initio GO prediction of their functions. 

The impairment of anti-cancer immunity is not only an early event in carcinogenesis but also 

associated with cancer development at a later stage, leading to a poor outcome [86]. In contrast, the 

number of genes showing such dual nature is not high among the classical oncogenes and anti-

oncogenes. Therefore, by taking advantage of an enrichment function of STAIC, we extracted genes 

with deep involvement in both carcinogenesis and malignancy. We thus began a STAIC analysis for 

searching for genes that fulfill the following criteria. 

1) The genes have the highest COPA scores for mRNA expression levels; that is, they are ranked 

within the top 10% of all genes. The COPA is an excellent algorithm for finding ‘driver’ genes, 

mainly involved in cancer initiation [84]. 

2) The mutation frequency is more than 3%. This criterion enriches the cancer-associated genes. 

3) The p-value of the log-rank test is sufficiently small. This criterion ensures that the gene is involved 

in cancer progression. 

4)  The proportion of patients with a combination of genetic alterations (out of 47 types) that gives the 

lowest p-value in the log-rank test reaches 15%. This criterion assumes that specific conserved 

changes in relatively limited genes underlie the frequent immune dysfunction of LUAD. 

After the enrichment procedure, we performed the ab initio GO analysis of the candidate genes 

that gave significant p-values in the log-rank test. We then found KYNU, which exhibited the smallest 

p-value related to severe prognosis (Fig. 19). Finally, an in-depth IPA analysis concluded that KYNU 

is a novel immune regulator involved in the pathophysiology of LUAD. 
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Figure 19 | STAIC analysis for LUAD in the TCGA. Gene enrichment was performed by COPA 
(mRNA) ≤ top 15%, mutation ≥ 3%, and affected patient population ≥ 15 %. The enriched genes were 
sorted in decreasing order of the minus log(p-value) of the log-rank test. KYNU was ranked highest of all 
genes. 

KYNU role in LUAD 

The LCIO predicts that the network function of a gene is of primary importance [Eq. (224)]. For this 

reason, we cannot obtain a complete understanding of the gene function when we rely only on 

conventional molecular biological techniques. Our STAIC analysis revealed that many unreported 

genes showed prominent associations with tumors. Therefore, there may remain undiscovered immune 

checkpoints in cancer. In this regard, it is noted that controversy exists regarding the importance of 

PD-1 (PDCD1) and its ligands, PD-L1 (CD274) and PD-L2 (PDCD1LG2), in LUAD [87-90]. We 

hypothesized that the known immune checkpoints are insufficient to fully explain the immune 

dysfunction in LUAD. Thus, to broaden our perspective, we applied our informatics algorithms and 

identified KYNU. When we conducted the ab initio GO method with IPA, the Disease and Functions 

analysis indicated that KYNU is intimately associated with immunity (Fig. 20a). 

To improve the sensitivity of detecting gene involvement in the disease outcome, STAIC was 

implemented with automatic optimization of the search conditions. This function facilitated the 

discovery of unpublished genes associated with LUAD. Despite this high sensitivity, however, the 

optimized STAIC produced starkly contrasting results between KYNU and the PD-1 ligands, as follows. 

The patients with altered KYNU [higher mRNA (> mean+2SD) and/or DNA amplification] showed a 

marked association with adverse prognosis in an optimized log-rank test (***p = 9.34E−5) (Fig. 20b). 
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This index indicated a much worse prognosis than in the cases of altered IDO1 (**p = 0.00268, Fig. 

20c), altered PD-L1 (p = 0.148, Fig. 20d) or altered PD-L2 (p = 0.111) [where the latter two groups 

had higher mRNA (> mean+2SD) and/or DNA amplification, and/or DNA gain]. Moreover, the 

population with altered KYNU (21.38%) was much greater than that with altered PD-L1 (2.31%) or 

PD-L2 (0.63%). Similarly, a more significant p-value was observed with KYNU than PD-L1 or PD-

L2 in PAAD and lung squamous cell carcinoma (LUSC) under the optimized search conditions. These 

findings suggest that KYNU is prominently involved in cancer progression as a major pathogenic factor. 

In addition to the later stages of LUAD, KYNU is likely involved in the earlier stages. This is 

evidenced by the COPA analysis on STAIC. KYNU mRNA ranked in the upper 5.61% of all genes 

when we calculated the COPA score at the first percentile of the patient population. This observation 

suggests that the overexpression of KYNU is a critical upstream event in carcinogenesis, consistent 

with its putative immune function. In contrast, the COPA scores of PD-L1 and PD-L2 were ranked in 

the upper 47.79% and 60.13%, respectively. These ranks are almost the average for all genes, and it is 

thus difficult to conclude that these PD-1 ligands are cancer drivers. Thus, KYNU is associated with 

LUAD pathology more deeply than the PD-1 pathway. 

 
Figure 20 | Search for an immune checkpoint using the ab initio GO method. a, Functions of KYNU 
calculated using the ab initio GO method and the Diseases and Functions analysis of IPA. b, c, d, Prognosis 
of patients of LUAD with overexpression or mutations of KYNU (b), IDO1 (c), and CD274 (d) from the 
TCGA (n = 477). The red and blue lines represent the survival with overexpression or mutations and 
normal expression, respectively. Ratios of alteration-related deaths to controls and p-values from log-rank 
tests are indicated. 
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KYNU role in cancers other than LUAD 

Among previous studies on KYNU and cancer, some studies supported an oncogenic role [91-96] 

whereas a few showed a tumor suppressor role [97]. Such controversy occasionally arises for genes 

involved in cancer. We performed the optimized log-rank test on STAIC. Figure 21 illustrates the 

examples of Kaplan–Meier curves with significance (p < 0.05). Panels (a) to (e) indicate that the 

overexpression of KYNU leads to a worse prognosis, while panel (f) shows that its low expression 

predicts a better outcome. Especially in PAAD (Fig. 21a), the overexpression of KYNU was more 

strongly associated with unfortunate outcomes than in LUAD. 

In summary, the aberrant increased expression of KYNU is often accompanied by poorer 

outcomes in various cancers. Notably, in LUAD and PAAD, KYNU was altered in expression levels 

at a much higher frequency than the PD-1 pathway, indicating that this gene is deeply involved in the 

pathogenesis of these two types of adenocarcinoma. 

 
Figure 21 | Prognosis of patients of various cancer types with altered KYNU expression from the 
TCGA. The red and blue lines represent the survival with altered expression or mutations and normal 
expression, respectively. a, PAAD with amplification or mRNA expression > mean + 2SD (n = 127). b, 
Breast invasive carcinoma with mutation or mRNA expression > mean + 1SD (n = 1043). c, Kidney renal 
clear cell carcinoma with amplification or mRNA expression > mean + 2SD (n = 521). d, Liver 
hepatocellular carcinoma with amplification, mutation, or mRNA expression > mean + 0.5SD (n = 257). e, 
Stomach adenocarcinoma with mRNA expression > mean + 1SD (n = 442). f, Uterine carcinosarcoma with 
homozygous deletion or mRNA expression < mean – 1SD (n = 57). Ratios of alteration-related deaths to 
controls, and p-values from log-rank tests are indicated. 
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Characterizing the immune function of KYNU 

KYNU encodes kynureninase, a metabolic enzyme on the kynurenine pathway [98]. This pathway 

catalyzes the degradation of tryptophan, which leads to the production of nicotinamide adenine 

dinucleotide (NAD+). The known molecular function of kynureninase is the cleavage of 3-

hydoxykynurenine to 3-hydoxyanthranilic acid (3-HAA). No paper has shown that KYNU functions 

as an immune checkpoint until now, which may be related to the difficulty of experimental verification. 

However, when we applied the ab initio GO method with IPA, the Canonical Pathways analysis further 

indicated that KYNU is prominently associated with immunity (Fig. 22). 

The most significantly affected pathways include Th1/Th2 activation, cytokine signaling, T cell 

differentiation, NK cell signaling, autoimmunity, and inflammatory pathways. The goodness-of-fit 

−Log(p-value) scores for these pathways were extremely high, exceeding 20; that is, p < 1E-20. 

Notably, the activation z-scores for these pathways were strongly positive (3.280–7.042), except that 

the PD-1 pathway was significantly negative (−3.395). This indicates that, whereas the KYNU gene is 

co-regulated with most of the immune regulatory pathways, only the PD-1 pathway displays a 

mutually exclusive alteration pattern. Such mutual exclusivity is a strong indication that KYNU has 

the redundant/same role as the PD-1 pathway. Moreover, the Disease and Functions analysis showed 

that KYNU is intensely associated with lung cancer (***p = 4.40E−54, z = 2.581). Thus, the 

overexpressed KYNU and the increased production of 3-HAA may be responsible for the immune 

dysfunction, which leads to the immune evasion of the cancer cells, resulting in a worse prognosis. 

 
Figure 22 | Ab initio GO analysis for KYNU using the Canonical Pathways analysis of IPA. Items 
relevant to the text description are shown in red. The lengths of bars express the goodness of fit to each 
pathway. Red and blue bars represent positive and negative activation, respectively. The magnitudes of z-
scores are shown by the color scale bar in the inset. Grey bars: z-scores not determined. 
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In addition to the overall findings of IPA, the ab initio GO method identified the genes that have 

the highest MI with KYNU. The gene with the most MI was TIM-3 (HAVCR2) [99]. This gene is an 

immune checkpoint, mainly expressed on T cells, and suppresses immunity [100]. To compare 

network functions between KYNU and TIM-3, we searched for genes exhibiting the most potent 

interaction with these genes. In comparing the 100 genes showing the most MI with KYNU and the 

100 genes showing that with TIM-3, as many as 72 genes were in common. Given this strong 

commonality, it is conceivable that there is a critical relationship between the gene functions of KYNU 

and TIM-3. Thus, these findings further demonstrate that KYNU is substantially involved in anti-cancer 

immunity in coordination with TIM-3. 

In contrast to the pathogenic role of KYNU, STAIC revealed that HAAO had a positive effect on 

the prognosis of cancers. These cancers include PAAD, kidney renal clear cell carcinoma (KIRC), and 

colon adenocarcinoma (COAD). HAAO encodes the downstream enzyme of kynureninase (i.e., 3-

hydroxyanthranilate 3,4-dioxygenase), which oxidizes 3-HAA to 2-amino-3-carboxymuconic 

semialdehyde. The ab initio GO method demonstrated that HAAO is also involved in immunity. These 

observations collectively imply that HAAO antagonizes the pathological effect of KYNU by washing 

out 3-HAA, which leads to the restoration of anti-cancer immunity. In conclusion, many observations 

support that KYNU and 3-HAA respectively promote cancer development as an immune checkpoint 

gene and molecule, both of which might be used as tumor markers. Consistent with our predictions, 

3-HAA is considered to suppress immunity [101]. 

In line with the informatics observations above, the immune regulatory function has been recently 

ascribed to the kynurenine pathway. IDO1 encodes the first and rate-limiting step enzyme of this 

pathway, namely indoleamine 2,3- dioxygenase 1, which catalyzes the O2-dependent oxidation of L-

tryptophan to N-formylkynurenine. IDO1 and related genes (IDO2 and TDO) have been implicated in 

immune surveillance and tumor progression [102]. Clinical tests have been conducted to evaluate the 

effects of anti-cancer therapeutics targeting IDO1 [103]. However, pivotal phase-3 trials 

(NCT02752074, NCT03386838, and NCT03417037) had negative results and were halted. Although 

surprising, these failures are consistent with our informatics findings. In comparison with KYNU, 

STAIC showed that IDO1 and isozymes were altered much less frequently and/or with much lower 

significance in tumors such as those of LUAD (Fig. 20c), PAAD, and LUSC. These observations 

demonstrate that, at least when we focus on the immune checkpoint function in cancer, KYNU is an 

essential molecule on the kynurenine pathway. 

KYNU as a potential tumor marker and a therapeutic target 

The gene product of KYNU is a metabolic enzyme, kynureninase, and it would thus be ideal as a tumor 

marker and therapeutic target. Inhibitors of KYNU, such 2-amino-5-methyl-S-phenyl cysteine S,S-

dioxide and 2-amino-4-[3′-hydroxyphenyl]-4-hydroxybutanoic acid, have been developed [104]. 
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However, they are chiefly used to treat neuropsychiatric diseases, and there have been no reports that 

they are applied to cancer treatment. By optimizing the chemical structure of inhibitors, it might be 

possible to develop their applications for cancer. Especially, pancreatic cancer has a very poor 

prognosis, and the indication for anti-PD-1 antibody (pembrolizumab) is limited. In this respect, the 

involvement of KYNU in the prognosis of pancreatic cancer is evident (Fig. 21a), and the number of 

affected patients is not small. Thus, the development of KYNU inhibitors may lead to remarkable 

advances in the treatment of pancreatic cancer. 

 

(g) In silico prediction of the targetability of an immune checkpoint 

Immune checkpoint-targeted therapy is intended to reactivate the immune surveillance mechanism 

against cancer by inhibiting the function of the checkpoint gene product. However, much trial and 

error will be required if we proceed with developing a checkpoint inhibitor without knowing the 

therapeutic targetability of the molecule. Here, we describe an in silico approach to determine the 

therapeutic targetability of a checkpoint candidate. TCGA pan-cancer analysis shows that SNPs that 

disrupt the molecular structure of a checkpoint protein confer a favorable, although seemingly 

paradoxical, prognosis. This phenomenon is especially true for KYNU, a finding that demonstrates its 

therapeutic targetability. Using this knowledge, drug development could be focused on particular 

genes with potential targetability, thereby reducing wasted investment and time. 

 
Figure 23 | Overall survival of TCGA pan-cancer patients with alterations in the KYNU gene. The blue 
lines represent the survival with wild-type KYNU. a, The red line represents the survival with amplification 
or gain of KYNU. b, The red line represents the survival with the mutation of KYNU. The number of cases 
and the p-values from log-rank tests are indicated. 
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Targetability of immune checkpoint correlates with the mutation-dependent prolongation of 
prognosis 

The TCGA pan-cancer data provide the cancer gene profile and clinical course for over 10,000 cases 

across 32 cancer types. cBioPortal (https://www.cbioportal.org/) is an online tool used to facilitate 

TCGA data retrieval [105]. We used cBioPortal to examine the association between alterations in 

KYNU and overall survival. We found that patients with an increased DNA copy number of KYNU 

had a significantly (***p = 5.797E-4) worsened prognosis (Fig. 23a). This result is consistent with the 

assumption that the increases in the expression of KYNU and its reaction product 3-HAA lead to 

immunosuppression and poor prognosis. 

Meanwhile, patients with KYNU mutations had a significantly (**p = 6.422E−3) longer survival 
than wild-type patients (Fig. 23b). Notably, the median survival was 151.26 (95% CI: 102.11–NA) 

months in patients with KYNU mutations, compared with 78.44 months (95% CI: 72.36–83.24) in 

wild-type patients, representing an increase of 72.82 months with mutations. Considering that the 

general goal in anticancer drug development is to increase the median survival by 2 months, this is an 

extremely large prognostic effect. These observations suggest that the mutation-associated loss of 

protein function may be responsible for the improved prognosis, in marked contrast to the worse 

prognosis seen for mutations in known oncogenes (Fig. 24a,b) or antioncogenes (Fig. 24c,d). 

 
Figure 24 | Overall survival of TCGA pan-cancer patients with mutations in oncogenes or 
antioncogenes. The red and blue lines represent the survival with and without mutations of EGFR (a), KRAS 
(b), TP53 (c), and CDKN2A (d), respectively. The number of cases and the p-values from log-rank tests are 
indicated. 
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We next examined whether mutations in known immune checkpoint genes also confer a favorable 

prognosis. In addition to the PD-1 pathway genes (Fig. 25a-c) and CTLA4 (Fig. 25d), for which 

targeted therapy is already underway, TIM-3 (Fig. 25e) and LAG3 (Fig. 25f), which are in the 

investigational phase, have a trend toward improved prognosis with their mutations. Additionally, 

mutations in the upstream genes of KYNU in the kynurenine pathway, IDO1 (Fig. 25g), IDO2 (Fig. 

25h), and TDO2 (Fig. 25i), show a slightly improved prognosis. 

Of note, the limited prognostic benefit of the mutations of CTLA4 and IDO1 compared with that 

of the mutations of the three genes in the PD-1 pathway is consistent with the poorer response rate to 

drugs that inhibit these molecules than those targeting the PD-1 pathway. Thus, mutations in known 

checkpoint genes tend to provide a better prognosis across the board, and the magnitude of this trend 

is likely related to the therapeutic targetability of these genes. Therefore, the fact that the p-value of 

the KYNU mutation is higher than only that of the TIM-3 mutation is a hopeful finding regarding the 

therapeutic targeting potential of KYNU. 

 
Figure 25 | Overall survival of TCGA pan-cancer patients with mutations in immune checkpoint genes. 
The red and blue lines represent the survival with and without mutations of PD-1 (a), PD-L1 (b), PD-L2 (c), 
CTLA4 (d), TIM-3 (e), LAG3 (f), IDO1 (g), IDO2, (h) and TDO2 (i), respectively. The number of cases and 
the p-values from log-rank tests are indicated. 
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Targetability of KYNU revealed by the SNP-dependent prolongation of prognosis 

To obtain clues as to the mechanism by which KYNU mutations confer a prolonged survival of TCGA 

pan-cancer patients, we examined the effects of amino acid substitutions due to SNPs on protein 

functions. To this end, we focused on cases in which the DNA copy number of KYNU was normal 

(i.e., diploid) and only one missense mutation was present in the encoded protein. The missense SNPs 

were scattered throughout the protein, suggesting they are sporadic (Fig. 26a). 

To predict the effect of amino acid substitutions on protein functions, we combined two popular 

in silico algorithms, SIFT [106] and PolyPhen-2 [107]. The SNPs predicted to be deleterious by both 

calculations were designated destructive and the others nondestructive. We found that amino acid 

substitutions by SNPs tended to prolong prognosis (Fig. 26b), although the result did not reach 

significance (†p = 0.061). Meanwhile, when we divided the SNPs into two groups (Fig. 26c), only the 

destructive SNPs significantly prolonged prognosis versus controls (**p = 0.008), whereas the 

nondestructive SNPs showed no significant prolongation (p = 0.561). Furthermore, the two SNP 

groups had significantly different effects on prognosis (*p = 0.036). These observations suggest that 

the prognosis-prolonging effect of SNPs is based on the loss of function of KYNU / kynureninase. 

 
Figure 26 | Overall survival of TCGA pan-cancer patients with SNP in KYNU. a, Missense SNPs 
mapped on KYNU / kynureninase. The green box (Aa. 119-387) represents the aminotransferase class-V 
domain (Pfam, PF00266). b and c, The blue-gray lines represent the survival with wild-type KYNU, and the 
number of cases and the p-values from log-rank tests are indicated. The purple line represents survival with 
all kinds of SNP (b). The red and blue lines represent survival with destructive and nondestructive SNPs, 
respectively (c). 
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Combined with the earlier findings, the SNP-dependent prognostic changes measured in silico 

suggest that KYNU is an immune checkpoint with promising therapeutic targetability. It is noted that 

although this approach is simple, it was only possible because of TCGA, a huge cancer database. This 

database provided statistical power to detect the effects of SNPs. It also enabled the examination of 

KYNU overexpressed on the cancer cell side in addition to known immunoregulatory genes on the 

immune cell side. Finally, the above method informs us of the drug targetability of an immune 

checkpoint of interest before creating targeted therapeutics, reducing wasted time and money. 

KYNU is a nodal point of the immune network 

From the ab initio GO calculation, the distribution of MI of the KYNU-neighboring gene was shown 

to follow a Pareto distribution. This is consistent with the empirical findings that immune genes 

generally follow a Pareto distribution. That is, if we set Gi = KYNU, then MI with another gene Gj of 

the j-th ranked interaction is MI(Gi;Gj) = 33.7j-0.245 (R2 = 0.9559), which is consistent with the above 

description. Thus, the structural features of the gene network again support the involvement of KYNU 

in immune function. The Pareto distribution demonstrates that the interaction of KYNU with the 

functionally related genes is more potent than those in the infocanonical distribution (Appendices 17 

and 18), which is expected under natural conditions. 

On the basis of the characteristic network structure, we suppose that the immune network of 

KYNU has strengthened the gene association in the vicinity within the network at a rapid evolutionary 

velocity for the fierce battle against pathogenic microorganisms. An analytical model that may explain 

this evolutionary process is presented in Appendix 28. In distinguishing between self and non-self, 

KYNU’s immune checkpoint function is coupled with the evolution of the immune system against 

pathogenic microorganisms. Thus, the network properties indicate that KYNU constitutes a nodal point 

of immune regulation, thereby supporting its targeting potential. 

Chapter summary 

By developing two in silico technologies, the ab initio GO method and STAIC, we found KYNU as a 

potential immune checkpoint in cancers such as LUAD and PAAD. The ab initio GO method reveals 

the pathophysiological role of genes, even when the wet experiment is difficult to perform. 

Furthermore, the SNP-dependent prolongation of prognosis demonstrated that KYNU / kynureninase is 

an attractive therapeutic target for cancer therapy. 

We hope that our informatics programs will lead to the identification of new disease-related genes 

other than KYNU. The target disease genes will include those challenging to experiment with, such as 

non-coding RNAs and genes of the nervous system and immune system. Finally, the medical advances 

thus brought about will confirm the correctness of the ab initio GO method, supporting the assumption 

that gene networks are formed as the LCIO based on the intergenic influential force in evolution. 
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5. Conclusions and Discussion 

This paper discovered the influential force, which is a force based on probability, and elucidated its 

characteristics as a unifying force. We showed through many examples that the influential force exists 

in both physical and biological systems. In the study, we developed statistical mechanics that deals 

with MI in microstates and proceeded with analysis based on the statistical mechanics. As a result, for 

physical systems, we obtained a formula that describes the four natural forces in a unified manner. We 

further explained many critical issues in modern physics, including spontaneous symmetry breaking 

of the Higgs field and its relationship with entanglement entropy. Meanwhile, for biological systems, 

we demonstrated that the influential force endows genes with much network information, which led 

to the development of the ab initio GO method and the identification of a novel immune checkpoint, 

KYNU. In this way, we found answers and clues for many previously intractable problems. The 

existence of the influential force has become clear from the abundant findings described in this paper. 

Statistical mechanics and probability theory of MI 

The realization probability of the MI of two random variables is calculated from the equivalence 

principle of information and probability. This principle holds in the fields of both probability theory 

and statistics as follows. 

1) In probability theory, when the maximum entropy principle is applied, the following formula holds: 

.                     (241) 
This corresponds to the realization probability 𝑝(𝐼) = 𝑒ିூ of the self-information I of one random 

variable. In this case, the p-value does not depend on the sample size. We used this formula to derive 

the state probabilities of physical systems. 

2) In statistics, the following formula holds asymptotically in the limit of large N: 

,                             (242) 
where 𝑃ி is Fisher’s exact probability. 𝑃ி depends on the sample size N and virtually represents 

the statistical significance of MI. In this paper, we applied this formula to the analysis of intergenic 

interactions using large-scale data. 𝑝(𝑀𝐼) = 𝑒ିெூ demonstrates that it is natural for informatons not to share much information, and 

there is a spontaneous tendency to reduce MI. This shows the trend of increasing the joint entropy of 

two informatons, which follows the second law of thermodynamics. However, in most cases, MI takes 

a certain positive value. It is therefore presumed that a force exists and contributes to the generation 

of MI, thereby antagonizing its decreasing tendency. Hence, we verified the presence of the force in 

various systems. 
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Spontaneity of MI 

In all the cases examined, MI occurs spontaneously by the mechanisms described in (1) and (2) below. 

(1) MI due to microstate fluctuations 

The influential force is based on the statistical mechanics and probability theory of MI. Traditionally, 

MI analysis methods for physical systems have been limited. However, we developed a method of 

calculating high-dimensional MI between informatons with multi-dimensional information. Whether 

random variables are treated discretely or continuously, the MI of two informatons X and Y is generated 

from the fluctuations in their microstates. 

 As for discrete random variables, we investigated classical physical systems and genetic systems. 

In these examples, MI is calculated as the sum of micromutual information MIkl: 

.                           (243) 
Here, the condition that MI > 0 is that the fluctuation factor 𝜀௞௟ = 𝑝(𝑋௞ ,𝑌௟) [𝑝(𝑋௞)𝑝(𝑌௟)]⁄  and MIkl 

= 𝑝(𝑋௞ ,𝑌௟)log𝜀௞௟ fluctuate in the microstates. We considered the case of mixing two kinds of inert 

gas as a classical system. At this time, molecular collisions due to mutual diffusion cause fluctuations 

in the microstates’ probabilities, such as those of position, momentum, and energy. MI between 

molecules then arises, and the gas molecules begin coordinated movements. Meanwhile, for the 

genetic system, we discussed the process of gene mutation in evolution. In this case, fluctuations arise 

in the microstate probabilities of the information expressed from two genes, and MI is generated. 

 As for continuous random variables, we dealt with the probability density functions of quantum 

systems. If �⃗� and �⃗� are respectively the position vectors of X and Y, then MI in the quantum system 

can be calculated by integrating the MI density, MId, corresponding to MIkl as 

.                             (244) 

Here, the condition that MI > 0 is first that the fluctuation factor 𝜀௫௬ = 𝑝(𝑥,𝑦) [𝑝(x)𝑝(y)]⁄  

corresponding to 𝜀௞௟ and MId = p(x,y)log𝜀௫௬ fluctuate in the microstates. In addition, the subsystems 

X and Y must be independent of each other in the initial state. In this paper, two examples were given 

as situations that satisfy these conditions. First, in relativistic scattering, two particles are mutually 

independent before the scattering. Second, in the exchange interaction of two identical quanta, if one 

quantum appears in the vacuum as a delta function at a certain point in time, the two quanta are 

independent at the time of appearance. Under these mutually independent conditions, MI(X;Y) = 0, 

and thereafter, MI becomes positive owing to the fluctuations of the microstates. 

 In all cases examined, for either discrete or continuous systems, the microstate fluctuations 

occur naturally (and in many instances randomly), and MI is thus supposed to arise spontaneously. 
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(2) MI due to quantum entanglement 

In addition to the above examples, we took up the entanglement of quantum superposition. We 

consider that two quanta are mutually independent in the initial state, and we assume that the 

entanglement produces a composite system in the pure state. If the entanglement entropy is SEE, then 

the interaction energy ΔU per one quantum is described by MI as 

  .                      (245) 
The large negative value of arising ΔU indicates that the entanglement is likely to occur, and indeed, 

the entanglement exists universally. Summarizing (1) and (2) above, it is concluded that MI occurs 

spontaneously through either microstate fluctuations or quantum entanglement. 

Information distance and the influential force 

To formulate the force between informatons, we introduced the information distance 𝐼ை  and a 

coordinate system based on the distance. 𝐼ை  represents the difficulty of information transmission 

between two informatons and is defined as 

 ,                           (246) 
where 𝑥 is the conventional distance and 𝑟 is the information metric. Then, 𝛼𝑥 is the dimensionless 

path length of the particle mediating the force between quanta in the external spacetime. Meanwhile, 𝑟 is a measure that quantitatively expresses the difference in the internal state between informatons 

and satisfies the metric axiom. In physical systems, 𝑟 2⁄  expresses not only the potential difference 

and phase difference between the quanta but also the dimensionless path length in the information 

metric spacetime. In cases other than physical systems, the information distance can be applied by 

taking the limit of 𝛼𝑥→0 and setting 𝐼ை = 𝑟 2⁄ . 𝐼ை is associated with the MI of informatons as 

 .                     (247) 
We here remark on the energy change ΔU of the closed composite system XY. ΔU = kBT･ΔH(X,Y) is 

likely to take a negative value, and the joint entropy H(X,Y) tends to decrease. Therefore, when x is 

constant, the information distance 𝐼ை   tends to decrease as MI increases. In other words, the 

spontaneous increase in MI can be regarded as a state in which an attractive force acts between 

informatons. Meanwhile, when applying the metric symmetry, 𝛼𝑥 becomes equivalent to 𝑟 2⁄  and x 

tends to become shorter, reducing 𝐼ை  and energy. This again indicates the action of the attractive force. 

The influential force includes a repulsive force in addition to the attractive force. The cause of 

the repulsion is the recovery of entropy, and the magnitude of the repulsive force is proportional to the 

square of the attractive force. This repulsive force is the same phenomenon as level repulsion under 

the condition that the energy and entropy of quanta can be regarded as equivalent. 
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Metric symmetry and the unifying force 𝐼ை is the least-action path length within the information coordinate spacetime (𝐼ை-spacetime). On the 

basis of additivity [8], we define 𝑆௨௡௜ as the sum of the actions of all natural forces. Then, 

 
,                            (248) 

where 𝛿𝑆௨௡௜ = 0. The unifying force is derived from this unified information distance 𝐼ை. 𝛼𝑥 and 𝑟 2⁄  are the information distances in the external and internal spacetimes, respectively. 

We introduced metric symmetry, which considers the approximate equivalence of these distances. The 

metric symmetry is a probabilistic symmetry based on the canonical distribution of the three 

information distances (i.e., 𝐼ை , 𝛼𝑥 , and 𝑟 2⁄  ). As a result of its introduction, the universal gauge 

symmetry is derived, which allows a unified expression of the four natural forces; that is, 𝐹௔௧௧ᇱ (𝐼ை) =−1  and 𝐹௥௘௣ᇱ (𝐼ை) = 2 . The influential force is then expressed either mechanistically or 

probabilistically as 

 ,                     (249) 

 .      (250) 
In turn, the unifying force in the conventional coordinate spacetime is expressed as 

 .                       (251) 
At present, no supersymmetric particles have been discovered. Meanwhile, metric symmetry, which 

interrelates the external and internal spacetimes, is a promising alternative to supersymmetry. 

Influential force and thermodynamics 

As mentioned above, there is a natural tendency for MI to increase, whether in a physical system or 

genetic system. It is noted that the joint entropy H(X,Y) of the composite system XY becomes less than 

that of the initial state entropy H(X)+H(Y), where X and Y are independent. Thus, although the increase 

in MI does not contradict the increase in entropy for the entire universe, it reduces the overall entropy 

of the composite system, which is a local system. 

We here propose the spontaneous increasing tendency of MI as a novel law of thermodynamics. 

In other words, ℱ ′att arises naturally between informatons, and the entropy of the composite system 

thereby decreases spontaneously. At first glance, this is the opposite of the conventional wisdom that 

systems tend to progress toward increasing entropy. However, this novel rule was valid in all the cases 

examined. Especially in the case of physical systems, the decrease in entropy of the composite system 

is accompanied by the reduction of its energy, which highlights the tight coupling between entropy 

and energy. MI is a kind of entropy, and this new rule will therefore be understandable if we consider 

that the law of increasing entropy also applies to the MI itself. 
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Canonicality of the information coordinate system 

We have verified from the above perspectives that the influential force explains all the fundamental 

interactions. Conventionally, the three fundamental forces other than gravity (i.e., the electromagnetic, 

weak, and strong forces) have been described by scattering theory. However, by applying information 

theory, we have shown that in relativistic scattering, the potential 𝑉  is generated through the 

exchange of information between quanta. At this time, 𝐼ை = 𝛼𝑥 + 𝑟 2⁄  is shortened by Δ 𝑟 2⁄ = 𝛽Δ𝑉. 

Meanwhile, in the case of gravity, 𝐼ை  for spacetime quanta is expressed using the entanglement 
entropy 𝑆ாா  as 𝐼ை = 𝛼𝑥 − 2𝑆ாா . In this case, the gravitational potential 𝑉௚  is generated by an 

information exchange through the entanglement of the spacetime quanta, and 𝐼ை   is shortened by Δ𝑟 2⁄ = −2Δ𝑆ாா. Taken together, the gauge interactions and the quantum entanglement are equivalent 

information exchanges within the information coordinate spacetime (𝐼ை-spacetime), with both leading 

to 𝐼ை shortening by Δ 𝑟 2⁄ . 

It is noted that all the fundamental forces distort the 𝐼ை -spacetime by Δ𝑟 2⁄  , just as gravity 

distorts the conventional coordinate spacetime (𝑥-spacetime). This is a remarkable commonality found 

for every unified natural force, which supports the canonicality of the information coordinate system. 

We refer to this general phenomenon as the relativization of relativity. This generality also implies 

that the information coordinate system has successfully incorporated the outcome of superstring theory 

and suggests that the gauge–gravity correspondence can be resolved within the 𝐼ை-spacetime. 

Along with the canonicality described above, the ability of the influential force to unify all the 

natural forces is brought about by adopting the information coordinates. In contrast, when using the 

conventional coordinate system, it is impossible to express all the natural forces with one mathematical 

formula, even on the basis of superstring theory. The fact that the unified gauge symmetry of the 

influential force depends on the information distance 𝐼ை  suggests that future physics should employ 

the information coordinate system. 

Exploration of physics based on the influential force 

Next, by considering the influential force, we addressed multiple issues in modern physics. 

(1) Novel exchange interaction as a dark-matter candidate 

The universal gauge symmetry of the influential force requires 𝛼𝑥 (> 0) to formulate 𝐼ை = 𝛼𝑥 + 𝑟 2⁄ . 

The use of 𝛼𝑥 allows us to deal with a non-local interaction within the 𝑥-spacetime as a gauge force 

within the 𝐼ை-spacetime. We identified a novel exchange interaction between identical particles. This 

interaction is non-local in the 𝑥-spacetime and generates MI as well as the influential force between 

the particles within the 𝐼ை-spacetime. Of note, the energy being represented by 𝛼𝑥 suggests that the 

influential force also acts within the 𝑥-spacetime. We proposed that a hypothetical boson named the 

mion mediates this new exchange interaction, and we estimated its energy. Although the calculated 
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energy is much lower than that of the known exchange interactions, it is almost independent of the 

distance within the 𝑥 -spacetime. This is consistent with the non-locality of the new exchange 

interaction and sharply contrasts with known exchange interactions that work over a very short range. 

Given the immense possible number of new exchange interactions, the mion is considered a novel 

candidate for dark matter. 

(2) Elucidation of the identity of the Higgs field 

The existence of the repulsive term is a distinctive feature of the influential force and leads to solutions 

for several major problems of the Standard Model. First, we identified a pair of spacetime quanta that 

interact under quantum gravity according to Hamada's theory. These are the spacetime fermions with 

opposite spins. By applying the modified Nambu BCS theory and considering the vibration of the 

background metric field as a phonon, it was shown that an attractive pair potential Δ is generated 

between the spacetime quanta. In the 𝐼ை -spacetime, this quantum pair is a composite particle 

corresponding to the Cooper pair; that is, the Higgs boson. Here, Δ acting between quanta is gravity, 

which can be regarded as the influential force derived from the information exchange between the 

quanta. At the same time, there is an energy gap due to level repulsion, which gives the vacuum 

expectation value 〈𝜙〉଴ = 2Δ0 (= 246 GeV). This level repulsion is equivalent to the repulsive term 

of the influential force, indicating that the gauge symmetry of the influential force field is 

spontaneously broken. The Higgs mass of Δ0 = 123 GeV is then generated; this value is close to the 

observed value of 125 GeV. 

(3) On the equivalence of inertial and gravitational mass 

The findings described above show the equivalence of the influential Higgs field and the gravitational 

field. On this basis, the equivalence of inertial mass and gravitational mass was also explained. When 

the matter particles interact with the Higgs field to gain mass, MI of the matter particles and Higgs 

particles is generated. This MI increases the mass of the Higgs boson by the mass obtained by the 

matter particle. The increase in the Higgs mass means that the influential force potential and the 

gravitational potential become steeper, indicating that gravitational mass is created. From this 

discussion, we explained the rationale for why the inertial and gravitational masses become equal. 

(4) On the hierarchy problem 

The hierarchy problem is that the Higgs boson is so much lighter than the Planck mass. We solved this 

problem by again considering the influential Higgs. As in (3), the Higgs mass increases by the same 

magnitude as the mass acquired by the matter particles, which results from the deepened bottom of 

the influential Higgs potential. For all natural forces, the influential force potential 𝜑′(𝐼ை) represents 

the cumulative probability amplitude of exchanging information between the origin and a point at the 

information distance 𝐼ை. Therefore, 𝜑′(𝐼ை) can be converted into potential energy by 
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 ,                            (252) 
which applies to the Higgs potential. It is noted that this probability-based potential does not diverge. 

Therefore, it is unnecessary to apply renormalization to the Higgs mass, and the hierarchy problem is 

thus avoided. Similarly, it is worth noting that the gravitational potential expressed by the influential 

force potential 𝜑′(𝐼ை) also does not diverge. This implies that the influential force ℱ ′ can faithfully 

describe quantum gravity. 

(5) Influential Higgs inflation 

Next, the influential Higgs inflation was discussed to clarify the importance of the repulsive force to 

the cosmic structure. The influential Higgs potential 𝜑′(𝐼ை) does not diverge and becomes flat as 𝐼ை 

goes to infinity. This is in sharp contrast to the case of the standard Higgs potential VH, which diverges 

rapidly and is shaped like a Mexican hat. It is noted that because the influential Higgs potential 

expresses gravity from the beginning, it does not require an artificial R2 term or a non-minimal 

coupling to gravity. Nevertheless, the influential Higgs inflation model reproduces measurements of 

the cosmic microwave background well (ns = 0.966, r = 0.0022). This suggests that the Higgs field, 

gravitational field, and inflaton field are originally the same, all being derived from the influential 

force field. Considering this scenario, spontaneous symmetry breaking is thought to have occurred 

owing to the strengthening of the repulsive force in the process of inflation. It is possible that the 

influential force played a major role in cosmogenesis. 

(6) Influential Higgs and quantum entanglement 

Cosmology based on the influential force field has succeeded in incorporating the outcome of 

superstring theory. It is known that the pair potential Δ between electrons, which corresponds to the 

attractive force of BCS theory, is proportional to the quantum entanglement entropy 𝑆ாா. Here, it was 

shown that a proportional relationship 𝑆ாா = 𝛽Δ 2⁄  holds even in the case of the influential Higgs. 

The probabilistic influential force potential 𝜑′(𝐼ை) of the information coordinate system is minimized 

at the equilibrium information distance 𝐼௘ = (log 2) 4⁄  . This 𝐼௘  is the information distance 

corresponding to the Schwarzschild radius when the spacetime quantum of the origin is regarded as a 

black hole. According to the Ryu–Takayanagi formula, 𝑆ாா = 𝐼௘ = (log 2) 4⁄  is the minimum number 

of entanglements that one spacetime quantum can take and equals the minimum surface area and 

minimum gravity of a black hole. Thus, the spacetime quantum existing at the origin is a black hole 

whose radius is 𝐼௘ = 𝑆ாா. In turn, the above spacetime quantum pair is a Higgs boson and is a black 

hole dimer, separated by 𝐼௘. 

(7) Repulsive influential force as a dark-energy candidate 

All Higgs bosons present in a vacuum are identical, and our novel exchange interaction probably forms 

the Higgs condensate. The phase coherence created at this time implies the shortening of 𝐼ை between 
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spacetime quanta by ∆𝐼ை = −∆𝑀𝐼; that is, the distortion of the 𝐼ை-spacetime. A gravitational force 

field is thus induced. Again, because there is a large number of information exchanges between the 

identical Higgs bosons, the energy of the new exchange interaction may be the origin of dark matter. 

Meanwhile, by considering the influential force of many-body systems, it was shown that a cosmic 

repulsive force, which is equivalent to dark energy, is generated. Whereas the magnitude of the 

attractive force is Δ (= 𝑘஻𝑇･𝑀𝐼), that of the repulsive force is 2Δ. Therefore, dark energy is two-thirds 

(67%) of the cosmic energy. This proportion is close to the measurement of 68%. 

In summary, spontaneous symmetry breaking is explained by considering the influential force 

field. Furthermore, the Higgs field, gravity, inflation, and entanglement entropy are explained in a 

unified manner, which provides clues for clarifying the essential structure of a universe that has dark 

matter and dark energy. 

Exploration of biology based on the influential force 

(1) Gene information offered by the influential force 

The influential force acting between genes functions in the same way as that acting between objects 

in a physical system. The intergenic MI is spontaneously generated by mutation-induced fluctuations 

of MIkl. By combining information theory and population genetics, we proved that the intergenic MI 

is equal to the epistatic fitness, εtwo. As an effect of this intergenic MI, the influential force ℱatt affects 

the existence probability of gene information according to 

 .                        (253) 
Using the Moran process, we revealed how the MI of genes becomes fixed in the population. 

Even though most individual mutations are harmful, if the intergenic MI compensates for the harm 

and is sufficiently favorable to the organism’s survival, then MI is fixed. On the basis of this MI of 

two genes created by the influential force, all the other genes gather around a gene Gi to form a highly 
multi-dimensional network represented by the LCIO; that is, 𝜑[𝑟(𝐺௜)] = ∑𝑐௜௝ ∙ 𝜒௜௝. 

The LCIO imparts a substantial amount of highly diverse network information to genes, far 

exceeding the amount of molecular information encoded by the structure of gene products. This is 

because gene nodes have widely distinct properties, and permutations generate immense information. 

Thus, most of the information expressed by genes is encoded as the network structure; that is, 

.                            (254) 
The substantial amount of network information can explain the relationship between gene evolution 

and phenotypic evolution, which has traditionally been a major problem in evolutionary biology. 

Therefore, to clarify the function of a gene, it is essentially more important to know the network 

function of the LCIO than to know the molecular function of the gene product. 
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(2) Ab initio GO method 

We developed the ab initio GO method to advance medicine and demonstrate that genes perform 

functions based on the LCIO. This method uses large-scale genomic data of the TCGA, computes the 

intergenic MI at a super-high resolution, and predicts a wide range of gene properties within minutes. 

In developing the ab initio GO method, we discovered a series of mathematical theorems that use MIkl 

and MI as statistical variables. These theorems include 1) the MIkl summation theorem, 2) the 

infocanonical distribution of MIkl, 3) frontier information theory, and 4) the equivalence principle of 

information and probability. 

The ab initio GO method uses the above principles, integrates large-scale, multi-dimensional 

genomic data, and calculates MI as a unified indicator of gene interaction. The network information 

H(Ni) of the gene Gi is obtained by comprehensive calculation and superposition of all two-gene 

network information H(Nij) = [MIoverall(Gi;Gj), Hsgn_overall(Gi,Gj)] in multi-dimensional space as 

 .                        (255) 
Finally, applying IPA allows the interpretation of a wealth of information regarding the wide range of 

functional properties of the LCIO, from molecular functions to pathophysiological relevance. 

(3) Identification of a potential immune checkpoint, KYNU / kynureninase 

The ab initio GO method allows us to quickly decipher gene functions, even when the experimental 

elucidation is difficult. In addition, we developed another program, STAIC, to facilitate cancer gene 

discovery. Combining the two strategies, we identified a potential immune checkpoint, KYNU. Our 

analysis showed that the overexpressed KYNU could lead to the abrogation of the immune checkpoint, 

resulting in a prominently worse prognosis in several types of cancers. In particular, the involvement 

of KYNU in clinical outcomes is highly evident in LUAD and PAAD. KYNU would thus be ideal for 

these representative refractory cancers as a tumor marker and therapeutic target. Furthermore, we 

devised an in silico protocol that evaluates the targetability of an immune checkpoint of interest, 

predicting the potential therapeutic targetability of KYNU. The development of KYNU inhibitors is 

highly awaited to advance cancer treatment. 

From the success of the ab initio GO method, it was demonstrated that an influential force-based 

gene network is indeed formed as the LCIO. With the LCIO in mind, we propose promoting the 

functional genome project by applying comprehensive network analysis technology as a future 

application of informatics to medicine. This project will provide a great deal of novel valuable 

information about diseases of unknown etiology. Hopefully, various molecular targeted therapies such 

as anticancer drugs targeting KYNU / kynureninase will be developed. 
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Concluding remarks 

The preceding findings demonstrate that the influential force explains the laws of physical and 

biological systems in a unified manner. Although genes and physical objects appear absolutely 

different, they have commonality as informatons. Notably, between the informatons within each 

system, an equally expressed influential force acts, resulting in the formation of many-body systems. 

Despite the commonality in each system, they are different in terms of whether the components 

of the constructed many-body systems are homogeneous or heterogeneous. As a result, exchange 

interactions occur in the physical system, the accumulated energy of which is large enough to affect 

the entire structure of the universe. Meanwhile, in the multi-gene system, giving each gene substantial 

network information enabled the creation of organisms with complex information processing 

machinery that has survived a long geological age. Although the representations of the two many-body 

systems are absolutely different, they are common in that a vast amount of MI is generated. We can 

understand the emergence of these enormous amounts of MI in the unified context of the new law of 

thermodynamics that we have proposed; that is, MI arises between informatons spontaneously. Even 

with different features and shapes, the common generation of massive volumes of MI by the influential 

force demonstrates a surprising similarity between the totally different beings of the universe and life. 

Finally, from the universality of information and probability, we can presume that the influential 

force also affects relationships between other informatons such as humans. It is conceivable that the 

preceding arguments for the interaction between informatons will also apply to human relationships. 

This is because we have successfully described interactions between genes, which are sufficiently 

complex as those between humans. In this case, the influential force acting on the mutual relationship 

between humans will appear in two forms: the attractive and repulsive forces. Through the action of 

two opposing forces acting between individuals, the influential force provides power to construct the 

network of human beings, thus building society and bringing about its time evolution; that is, the 

history of humanity. 

In finishing this manuscript, we await further studies that will seek to validate the conjectures 

presented in this paper. 
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Appendices 

1. Distances, metrics, and coordinates 
This paper uses several kinds of coordinate: the information metric 𝑟 , conventional distance 𝑥 , 

information distance 𝐼ை (either original or reduced), and probability 𝑝. 

(1) Information metric, 𝒓 
The information metric 𝑟 is also known as the variation of information [10]. This 𝑟 is a true metric 

because it satisfies the axioms of the metric space; that is, triangle inequality, non-negativity, 

indiscernibility, and symmetry. 𝑟 is a metric of the distance between informatons. We associate 𝑟 

with the potential 𝑉(𝑥)  and partition function 𝑍′  by 𝑟 = 2𝛽𝑉(𝑥) + 2 log𝑍′  [see Chapter 2, 

Section (c)]. 

(2) Conventional distance, 𝒙 
The conventional distance 𝑥 is a physical distance in the conventional coordinate spacetime without 

gravity, measured in terms of the velocity of light in a vacuum. 

(3) Information distance, 𝑰𝑶 
(Original) information distance 
The information distance 𝐼ை  represents the difficulty of information transmission between two 

informatons. If the probability density of information transmission from informaton X to Y is 𝑝, then 

their information distance is expressed as 
 .                                (A1) 

By setting 𝑍ᇱ = 0, 𝐼ை is written using the conventional distance x and information metric 𝑟 as 

 ,                            (A2) 
where 𝛼 is a distribution parameter and 𝛼𝑥 and 𝑟 2⁄  are the lengths of least action paths in the 

conventional spacetime (𝑥-spacetime) and information metric spacetime (𝑟-spacetime), respectively. 

Reduced information distance 
For the oscillation of informatons, we use the reduced information distance 𝐼ை: = (𝛼𝑥 + 𝑟 2⁄ ) 2⁄ , 

which corresponds to the reduced mass-energy of the quantum. 

(4) Probability, 𝒑 
Suppose a one-dimensional spacetime with probability density p as a coordinate, where p satisfies the 

axioms of the metric space. If the probability density 𝑝 = 𝑝(𝑋) of the random variable 𝑋 follows a 

canonical distribution, then p is a strictly monotonically decreasing function of 𝑋, and 𝑋 and 𝑝 are 

injective. Here, 𝑋  applies, for example, to the information distance 𝐼ை , information metric 𝑟 , 

potential 𝑉, and MI. In particular, 𝐼ை and 𝑝 are bijective and thus reversible. 



144 
 

2. Probability distribution of MI 

(1) Realization probability of MI 

We consider that two systems X and Y interact and share MI, where the system is under isothermal 

conditions. Let WX and WY be the numbers of states of X and Y, respectively, and WMI be the number 

of states of MI. Here, according to the principle of equal a priori probabilities, the number of states 

Wtot when no information is shared is expressed as 

 .                             (A3) 
When the information is shared, the number of states W of the composite system XY is expressed as 

 .                       (A4) 
Then, the spontaneous probability p(MI) that the magnitude of MI becomes MI is 

.                     (A5) 
We call this the infocanonical distribution of MI, which represents the "equivalence principle of 

information and probability" in the field of probability theory (Appendices 17 and 20). Finally, p(MI) 

is equal to the inverse of the attractive influential force; that is, 

 .                             (A6) 

(2) Repulsive force generated by MI 

We next consider each of systems X and Y mentioned above. We assume that in the initial state, X and 

Y share information, where the magnitude of the MI is MI0. First, we consider only X. From the 

principle of equal a priori probabilities, the initial number of states WX(MI0) of X is then expressed as 

 .                            (A7) 
When the MI decreases by ΔMI, the number of states of X is 

 .             (A8) 
The MI tends to decrease because WX(MI0-ΔMI) > WX(MI0). Let pX(MI0) be the realization probability 

of X when the magnitude of MI is MI0. The relative probability of a decrease in MI is then expressed 

as 

 .           (A9) 
Likewise, MI tends to decrease also for Y, and its relative probability is 𝑒∆ெூ equally. Thus, a repulsive 

force ℱrep acts between X and Y, and its magnitude is the product of both changes in the probability: 

 .                    (A10) 
If the initial MI is zero, then ℱrep = 𝑒ଶெூ. This is equal to the square of the attractive force ℱatt =  𝑒ெூ. 
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(3) Rank distribution of MI 
Let Gj be the gene whose MI shared with Gi ranks the j-th largest. MI(Gi;Gj) is then expressed as 

 ,                        (A11) 
where A and B are constants. The rank j is then expressed as 

 .                        (A12) 

3. MI and natural force potentials 

We consider a system of two informatons X and Y. Let H(X) and H(Y) be the information entropy of 

X and Y, respectively. Let also S(X,Y) be their joint thermodynamic entropy, and ΔV(x) be the potential 

difference between X and Y. We here examine a situation where H(X) and H(Y) are constant when the 

mediator particles’ entropy is summed [Eq. (36)]. The internal energy U of the composite system XY 

is then expressed as 

 ,         (A13) 
where F is the Helmholtz free energy. ΔF = −𝑘஻𝑇 ΔlogZ = 0 as we assume the thermodynamic 

equilibrium condition. Moreover, if we suppose a static setting, such as the static potential generated 

by mediator particles, then ΔV(x) is equal to ΔU. Thus, 

 .                        (A14) 

4. Probabilistic influential force potential and Morse potential 

We numerically compare the probabilistic influential force potential 𝜑(𝑟) and the Morse potential 𝑉ெ(𝑥). In the 1Σ state of the hydrogen molecule, D = 7.964 × 10−19 J and �́� = 1.85 × 1010 m−1, the 

reduced mass is half that of the proton μ = 8.365 × 10−28 kg, and there are 19 energy levels. Using 

these parameters, the vibration entropy is calculated as S = 1.21 × 10−30 J/K.  

In addition, because the standard molar entropy of the hydrogen molecule in the standard state is 

130.684 J/mol·K and that of the hydrogen atom is 114.713 J/mol·K, the MI shared by the two atoms 

in the hydrogen molecule is calculated as (2 × 114.713 − 130.684) / (kB × 6.02 × 1023) = 11.886 nat, 

and the information metric for the nuclei is 114.713 × 2/(kB × 6.02 × 1023) – 2 × 11.886 = 3.844 nat. 

This is the equilibrium information metric 𝑟௘ for the two atoms. We assume that this corresponds to 

the equilibrium conventional distance 𝑥௘  = 8.9 × 10−11 m of 𝑉ெ(𝑥). Then, based on the metric 

symmetry, 1 nat can be converted to 2.32 × 10−11 m. 
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When we represent the internuclear distance 𝑥 in terms of meters, the Morse potential [31] is 

expressed as 

. 
(A15) 

Using the relationship that �́� = 1.85 × 1010 m−1 corresponds to 0.429 nat−1, we can represent 𝑟 in 

terms of nat. Then, as an alternative representation of the Morse potential, we obtain the description 

of the probabilistic influential force potential 𝜑(𝑟) between the hydrogen nuclei as 

 ,       (A16) 

which follows 𝑉ெ(𝑥) = 𝜑(𝑟). If this formula is valid, then we can expect the number of information 

levels of the anharmonic oscillation to be 19 and that the vibration entropy is S = 1.21 × 10−30 J/K. 

These constants are consistent with those of the Morse potential. The above calculations thus suggest 

that the Morse potential 𝑉ெ(𝑥)  may numerically conform to the probabilistic influential force 

potential 𝜑(𝑟). 

5. Probabilistic influential force potential and dispersion force 

We explore whether the dispersion force acting between the helium atoms conforms to the probabilistic 

influential force potential 𝜑(𝑟). When we performed a fitting analysis, the following function 𝑉ு௘(𝑥) 

provided a good fit to the potentials between two monoatomic helium molecules calculated by 

Hellmann [32] and Hurly and Mehl [33]: 

, 
(A17) 

where 𝑥 is expressed in terms of meters. If we accept this formula as a representation of the dispersion 

force acting between the helium molecules, because �́� = 2.096 × 1010 m−1 is converted to 0.4836 

nat−1, the probabilistic influential force potential is expressed as 

 ,     (A18) 

where r is expressed in terms of nat. 

Comparing the above two formulas with those of the hydrogen molecule in the previous section, 

the equilibrium information metric 𝑟௘ is 3.33 times longer, whereas the dissociation energy D is one-

5238th as large. The interaction in the helium dimer is based on the dispersion force; thus, the 

obtained formulas reflect that the dispersion force is much weaker than the covalent bond. As 

described above, it is feasible that the dispersion force acting between monoatomic molecules also 

conforms to the probabilistic influential force potential 𝜑(𝑟). 
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6. Micromutual information summation theorem 

We describe a theorem that allows the calculation of highly multidimensional MI. Let MI be the MI 

of the m × n contingency table with respect to two random variables X and Y. Let MIkl be the MI, 

defined as the MI of the 2 × 2 contingency table with respect to a cell (k, l). Additionally, let p(Xk, Yl) 

be the relative frequency of the cell (k, l), and let p(Xk) and p(Yl) be the marginal relative frequencies 

of the k-th column and l-th row, respectively. We here examine the equivalence of MI and the sum of 

MIkl over all cells by taking their difference as 

 
(A19) 

We now divide each cell of the original contingency table into h equal parts for both directions of rows 

and columns. If we take the sum of MIkl over all the divided cells, we obtain 

 
(A20) 

We define Δ(h) as the left-hand side of Eq. (A20). Using L’Hospital’s theorem, we calculate the limit 

of each term on the right-hand side as h tends to infinity. The limits of the first and second terms are 

then both p(Xk, Yl). Meanwhile, the third term approaches 

                 (A21) 

and the fourth and fifth terms approach 

 ,               (A22) 

respectively. If we sum these limits and consider that the sum of p(Xk, Yl), that of p(Xk), and that of 

p(Yl) are each equal to 1, then we can prove that the limit of the right-hand side is zero. Therefore, lim௛→ஶΔ(ℎ) = 0. Thus, when m and n are sufficiently large, 

 .                         (A23) 
In conclusion, the highly multidimensional MI can be calculated by taking the total sum of the 

micromutual information MIkl. 
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7. MI of informatons that accompanies fluctuations 

We calculate the MI of two highly multidimensional informatons, GX and GY, under the condition that 

a fluctuation occurs in the realization probability of each information. Let the information expressed 

by GX and GY take at most M and N observable states as multidimensional random variables X and Y, 

respectively. Under M, N → ∞, the information levels of these states can be represented by one-

dimensional continuous random variables X and Y, respectively. In this case, the realization 

probabilities of X and Y respectively follow the infocanonical distributions (Appendix 17) as 

 ,            (A24) 
where IX and IY are the expectation values (i.e., the effective self-information) of X and Y. We also 

assume X and Y can be evenly split into m and n levels and are discretely distinguished by linear 

indices k (1 ≤ k ≤ m) and l (1 ≤ l ≤ n), respectively. Then, the realization probability of the k-th 

information level of 𝑋, 𝑋௞, follows the infocanonical distribution as 

 ,             (A25) 

while that of the l-th information level of 𝑌, 𝑌௟, follows 

 .             (A26) 
where λ and ν are the mean index values of 𝑋௞ and 𝑌௟, respectively. 

We assume that owing to the random fluctuations, the realization probabilities of each level Xk 

and Yl change stochastically. We use a fluctuation factor 𝜀௞௟ = 𝑝(𝑋௞ ,𝑌௟) [𝑝(𝑋௞)𝑝(𝑌௟)]⁄ , and suppose 

that 𝜀௞௟  fluctuates close to a value of 1 and that 𝜀௞௟ is expressed by 𝜀௞௟ = 𝛾௞௟𝛿௞௟ using the two 

factors 𝛾௞௟ and 𝛿௞௟, which independently fluctuate owing to changes in X and Y, respectively. We let 𝛾 and 𝛿 be the averages of 𝛾௞௟ and 𝛿௞௟ over k and l, respectively, and additionally assume that 

both 𝛾 and 𝛿 follow a normal distribution having a mean of 1 and variance 𝜎ଶ. 

In this case, the micromutual information MIkl is calculated as 
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  , 

(A27) 

which is simplified as 

            (A28) 

Hence, if m and n are sufficiently large, then 

        (A29) 

This equation applies to the various high-dimensional informatons whose states fluctuate randomly. 



150 
 

8. MI of free particles in an exchange interaction 

(1) MI of free particles in a one-dimensional spacetime 

We describe the MI of free quantum free particles that undergo diffusion processes. A case for 

identical bosons is discussed in the text (Chapter 2, Section (g)). Appendix 8 considers two identical 

free fermions X and Y with the same mass m. Their position coordinates x and y take values of d and 

–d at t = 0, respectively. Their propagators are then expressed as 

  and                 (A30) 

 .                   (A31) 

The probability density functions for X and Y are calculated as below under the limited conditions |𝑥 − 𝑑| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄  and |𝑦 + 𝑑| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ , respectively, where h is the Planck constant. 

Let 𝜓(𝑥,𝑦, 𝑡) be the composite wave function of X and Y, which we express as 

 ,            (A32) 

where A is the normalization constant. When (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 1⁄ < 2𝑑 (i.e., 𝑡 < 4𝑑ଶ𝑚/ℎ), if 𝑥 < 𝑑 −(ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄  and 𝑦 > −𝑑 + (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ , then 𝜓(𝑥,𝑦, 𝑡) = 0. Meanwhile, when 𝑡 > 4𝑑ଶ𝑚/ℎ, 

if 𝑥 > 𝑑 − (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄  and 𝑦 < −𝑑 + (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄ , then 𝜓(𝑥,𝑦, 𝑡) can take non-zero values. 

The constant A is calculated by setting the integral of |𝜓(𝑥,𝑦, 𝑡)|ଶ  on the rectangle |𝑥 − 𝑑| <(ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄  and |𝑦 + 𝑑| < (ℎ𝑡 𝑚⁄ )ଵ ଶ⁄ 2⁄  to 1. 

A is calculated as 

.   (A33) 

We therefore obtain the joint probability density function 𝑝(𝑥,𝑦, 𝑡) as 

 .        (A34) 
The marginal probability density functions are expressed as 

    (A35) 
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and 

 .   (A36) 

Thus, 𝜀௫௬, the ratio of the joint probability density to the product of the marginal probability densities, 

is expressed as 

.         (A37) 

Therefore, MId, the density of MI for X and Y, is 

 .      (A38) 

We calculate MI by integrating MId as 

.                (A39) 

We thus obtain a positive value of MI for identical fermions in the one-dimensional spacetime. 

(2) MI of free particles in a three-dimensional spacetime 

Similar arguments as above hold for the three-dimensional case. The position vectors of two particles 

r1 = (x1, y1, z1) and r2 = (x2, y2, z2) take the values (d, 0, 0) and (–d, 0, 0) at t = 0, respectively. Then, 

their propagators are 

 and          (A40) 

 ,          (A41) 
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respectively. The composite wave function is expressed as 

 ,     (A42) 

where A is the three-dimensional normalization constant. A is calculated as 

.    (A43) 
We obtain the joint probability density function as 

 .   (A44) 

The ratio of the joint probability density to the product of the marginal probability densities is 

expressed as 

.        (A45) 

Therefore, MId is expressed as 

 ,       (A46) 

where A is the three-dimensional normalization constant. By integrating MId with respect to r1 and r2, 

we obtain MI as 

 ,          (A47) 
We thus obtain a positive value of MI for identical fermions in the three-dimensional spacetime 

similarly to the one-dimensional case. 
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9. Multidimensional information and linear index 

We here describe a method that allows the management of highly multidimensional information. While 

we use genes as examples here, the procedure below is also applied to other multidimensional 

informatons. The information expressed by a gene G is detailed and ranges over many categories. We 

regard this information as the n-dimensional random variable X and describe it as the n-dimensional 

row vector 
 ,                              (A48) 

where the i-th entry Xi represents information categories, such as the mRNA expression, translation 

rate, chemical modification, and intracellular localization. Meanwhile, Xi is the m-dimensional column 

vector whose j-th entry is Xij, and m depends on i. Xi is then expressed as 

 ,                           (A49) 

where Xij represents either the discrete values that Xi can take or the ranges of divided data if Xi takes 

a continuous value. 

The information expressed by the gene G is written as the combination of entries of each category 

Xi. To the combinations, we assign the linear index k′ arranged lexicographically. Each combination 

can then be described as the row vector Xk′ whose entries are the values of j for each i. As an example, 

if the combination of (i, j) with the k′-th linear index is (i, j) = (1, 2), (2, 5), (3, 4), …, then Xk′ is 

expressed as 

 ,                             (A50) 

where the total number 𝑁௧௢௧ of Xk′ is expressed as 

 .                              (A51) 
Given that the information expressed by the gene is large m and n are large finite numbers, and 𝑁௧௢௧ 
thus becomes an overwhelming number. 

Finally, using another linear index k, we rearrange Xk′ into another row vector Xk according to the 

order of its realization probability. The realization probability 𝑝(𝑋௞) of the k-th observable state Xk 

then follows the infocanonical distribution 𝑝(𝑋௞) = 𝑒ିூೖ , where 𝐼௞ = − log 𝑝(𝑋௞)  is the 

information level of Xk (Appendix 17). Here, even though the information level 𝐼௞ takes discrete 

values, because 𝑁௧௢௧ is immensely large, the level can be divided extremely finely and sufficiently 

expressed by a one-dimensional continuous random variable 𝑋௖. The realization probability 𝑝(𝑋௖) 

of the information level 𝑋௖ is then expressed by a continuous distribution as 

 .                            (A52) 
In this equation, I is the effective self-information, which is the expectation value of 𝑋௖  that 

represents the likelihood that 𝑋௖ takes a more unlikely information level. 



154 
 

10. Relationship between effective self-information and fitness 

In this section, we describe how gene information affects biological fitness. According to Section (a) 

of Chapter 3, we let X be the observable information level of a gene G. Then, at an individual level, X 

is related to its realization probability p(X) according to 

 ,                               (A53) 

where I is the effective self-information, which is the expectation value of X. In a sufficiently large 

and stable population, the realization frequency of X follows the same infocanonical distribution. We 

now assume that the population comprises a subpopulation with the wild-type gene Gwt and a 

subpopulation with the mutant gene Gmut. Let Iwt and Imut be the effective self-information of Gwt and 

that of Gmut, respectively. The difference ΔI in the effective self-information is then ΔI = Imut – Iwt. 

In each subpopulation, the frequency of individuals whose X takes a value x is expressed as 

 .         (A54) 

The relative fitness r(x) of the individual with Gmut to that with Gwt is then expressed as 

 .                  (A55) 

Therefore, the relative fitness rmut of the mutant subpopulation to the wild-type subpopulation is 

               (A56) 

When we set Iwt = 1, if ΔI ≃ 0 and all the mutations contribute to the positive fitness, then 

 ,                     (A57) 

where s is the selection coefficient. In this formula, exp(ΔI) is the ratio of the genotype frequency of 

individuals with a fitness of 1 + ΔI to that with a fitness of 1 after one generation [45]. Thus, the 

increase in the fitness of the mutant, s, is equal to the rise in the effective self-information, ΔI. 
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11. Relationship between MI and fitness 

We describe how the MI of genes affects biological fitness. If the change in energy is negligible, the 

spontaneous probability p(MI) that the magnitude of MI becomes MI is 

 .                               (A58) 
On this basis, we consider that MI of two genes G1 and G2 in a large haploid population follows an 

infocanonical distribution. We assume that the population comprises two subpopulations; that is, 

double wild-types (G1wt and G2wt) and double mutants (G1mut and G2mut). Let MIwt be the population 

mean MI of G1wt and G2wt in the wild-type subpopulation and MImut be that between G1mut and G2mut 

in the mutant subpopulation. The increase in MI caused by the double mutation is then described as 

ΔMI = MImut – MIwt. 

In each subpopulation, the frequency of the individual whose MI(G1;G2) is x is 

 ,     (A59) 

respectively. Then, the relative fitness r(x) of the double mutant to the double wild-type is 

 .                  (A60) 

The relative fitness of the double-mutant subpopulation to the double wild-type subpopulation is 

          (A61) 

When we set MIwt = 1, if the values of the relative fitness of each single mutant are nearly equal to 1 

and all the new interactions between mutants contribute to the positive fitness, then 

 ,                            (A62) 

where εtwo is the epistatic coefficient, and r3 is the relative fitness of the double mutant. Moreover, if 0 < Δ𝑀𝐼 ≪ 1, then 

 .                           (A63) 

Here, exp(ΔMI) is the ratio of the genotype frequency of individuals with fitness of 1 + ΔMI to that 

with fitness of 1 after one generation [45], which equals the attractive force ℱatt [Eq. (A71)]. 



156 
 

12. Moran process model of evolution 

(1) General solutions to the Kolmogorov forward equation 

The general solutions to Eq. (200) under initial conditions X0 (0) = 1 and X1 (0) = X2 (0) = X3 (0) = 0 

are calculated as 

 .     (A64) 

(2) Numerical solutions to the Kolmogorov forward equation 
If a(t) to e(t) are constant, then the numerical solutions to Eq. (200) under initial conditions X0 (0) = 1 

and X1 (0) = X2 (0) = X3 (0) = 0 are calculated as 

 
 (A65) 

Here, a, b, d, and e are expressed as 

 ,            (A66) 
where 𝜌ଵ–𝜌ହ are the probabilities that the organisms after the mutations are ultimately fixed. 
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(3) Tunneling rate 

In Eq. (A65), 𝑐 is called the tunneling rate. If it is independent of time, then 

 ,                    (A67) 

and 

 .    (A68) 

Moreover, V1 is the solution to a system of equations of (N – 1) variables: 

 . 
(A69) 

Similarly, V′1 is the solution to a system of equations of (N – 1) variables: 

 . 

(A70) 
Finally, the tunneling rate can be calculated using Eq. (A67). 
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13. Influential force acting between genes 

Using the Moran process model, we examine the influential force behind the evolutionary process.  

Under the assumptions described in Section (d) of Chapter 3, we consider a situation in which gene 

interactions newly arise between two mutants, thereby increasing the fitness. We here define MIinh as 

the inherent MI of two genes, which represents the MI of their mutants. 

(1) Influential force acting between genes 
We define an attractive force ℱatt acting between genes G1 and G2 as the ratio of the fitness of double 

mutants with and without the epistatic coefficient εtwo. In terms of population genetics, the intergenic 

ℱatt is the ratio of the genotype frequency of double mutants with (p′) and without (p) εtwo in the next 

generation, where p′ + p = 1 and the initial ratio is 1:1. According to the differential equation of 

Kimura [45], 𝑝௧ᇱ 𝑝௧⁄ = 𝑝଴ᇱ 𝑝଴⁄  exp(εtwo･t), where t is the generation number and 𝑝଴ᇱ 𝑝଴⁄  is the initial 

ratio of the frequency at t = 0, which takes a value of 1. As a result, ℱatt is obtained by setting t = 1 as 

 .                         (A71) 
If we let the initial MIinh = MI (G1;G2) be zero, the intergenic attractive force is ℱatt = 𝑒ெூ. Moreover, 

the intergenic ℱatt is independent of the selection coefficient (i.e., s1 and s2) for each gene because 

 .                     (A72) 
Thus, irrespective of s1 and s2, the intergenic ℱatt is identical to that acting between physical bodies. 

(2) Influential force and MIinh 

We describe the influential force ℱatt acting between G1 and G2 in the Moran model. We construct a 

2 × 2 contingency table of genotype frequencies (Table A1). Using this table, we examine ℱatt by 

dividing it into the microforces ℱkl_att for each cell (k, l) (Appendix 24). As depicted in the table, we 

assign columns and rows for the combination of G1wt/G1mut and G2wt/G2mut. The cells in the table then 

give the genotype frequencies X0, X1, X2, and X3. 

We assume that a new interaction arises between G1mut and G2mut. The attractive force ℱatt at t→0 

is thus expressed by a microforce ℱ22_att in cell (2, 2) of the table [Eqs. (107)] as 

 .                    (A73) 
Additionally, the solutions in Eq. (A65) are approximated to the second order of t: 

                         (A74) 
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By substituting Eq. (A74) into the right-hand side of Eq. (A73) and by taking the limit with respect to 

t→0, we obtain 

.               (A75) 
Moreover, if a ≃ b, then the attractive force is nearly equal to the ratio of the transition rates; that is, 

 .                               (A76) 
The influential force ℱatt thus facilitates the transition from each single mutant to the double mutant. 

(3) Influential force and MIobs 

We investigate the change in MI observed (MIobs) by applying the probability model. Using the 

genotype frequencies X0–X3 indicated above, MIobs can be calculated as 

 .                (A77) 

If we set the initial conditions to X0(0) = Xi0, X1(0) = Xi1, X2(0) = Xi2, and X3(0) = Xi3, then 

 
(A78) 

where 
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Next, to focus on the initial state, we set X0(0) = 1 and X1(0) = X2(0) = X3(0) = 0. By taking the 

Maclaurin series, the half of the second derivative of MIobs at t = 0 is expressed as 

              (A79) 

The apparent attractive force ℱobs acting between G1 and G2 observed at the population level is 

calculated according to Eq. (69) using the information metric r(G1,G2) = H(G1) + H(G2) – 2MIobs. The 

gene information is enormous, and we thus assume that H(G1) and H(G2) are constant. We then have 

           (A80) 

where AM = 4(ad + be) / [W(G1)−ά + W(G2) −ά] and BM = 4(2ab – ad – be) / [W(G1) −ά
 +W(G2) −ά]. This 

equation relates the apparent attractive force ℱobs to the true attractive force ℱatt. 

14. Temporal change in the MI of genes 

MI of genes in terms of MIinh is expressed by Eq. (A29) in Appendix 7, 

 .                      (A81) 

Let ΔMI be the change in MI when γδ, m, and n change from here. When the initial value of γδ is 1, 

Δ(𝛾𝛿) = 𝛾𝛿 − 1. It then follows that 

   (A82) 

If we assume that Δλ = Δν = κt, then the expectation value of ΔMI is calculated as 

 .      (A83) 

Thus, ⟨ΔMI⟩ increases spontaneously and monotonically for sufficiently small κ. 
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15. Network information of edge weights 

We calculate the ΣW component of the network information, which comprises edge weights. As the 

edge weight of the gene network, we use MI of two genes. ΣW in Eq. (219) is approximated using 

Stirling’s formula as 

               (A84) 
where S = ∑ 𝑀𝐼௝ஷ௜ (Gi ; Gj). When MI changes by ΔMI on average, the change in ΣW is expressed as 

 .                 (A85) 
Thus, the change in ΣW is approximately proportional to the average change in MI. 

16. Functional mutual information 

We consider the MI that represents the functional relationship between genes, which we refer to as 

functional mutual information (fMI). We assume that two genes X and Y express information that is 

categorized into one of n functions (X1, …, Xn) and (Y1, …, Yn), respectively. We additionally assume 

that each function Xi and Yj takes m states (Xi1, …, Xim) and (Yj1, …, Yjm), respectively. Let pijkl be the 

joint probability of Xik and Yjl in the contingency table of Xi and Yj. The marginal probabilities are then 

expressed as p(Xik) = Σl pijkl and p(Yjl)=Σk pijkl. Under these settings, we define the functional mutual 

information fMI(Xi;Yj) of the functions Xi and Yj as 

 .                 (A86) 

By contrast, the total MI(X; Y) of X and Y is described as 

   (A87) 
Thus, the total MI(X; Y) is the average of fMI(Xi; Yj), which implies that MI(X; Y) represents the 

functional proximity of the genes X and Y. 
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17. Infocanonical distribution 

(1) Infocanonical distribution of self-information 

Suppose a closed system A, which interacts and exchanges information with the surroundings. Let λ 

be a state of A, let P(λ) be its realization probability, and let I(λ) be its self-information. Then, 

                              (A88) 
holds anytime, irrespective of energy and temperature. Next, we suppose a closed system comprising 

two systems A and B. The systems interact with each other and exchange information. Let λ and ν be 

the states of A and B, respectively, let P(λ, ν) be their joint probability, and let I(λ, ν) be their joint self-

information. Then, 
                           (A89) 

holds anytime, irrespective of energy and temperature. 

In addition to the self-information, if we let X be the information level of a multidimensional 

random variable 𝑿 =  (𝑋ଵ,𝑋ଶ, . . . . ,𝑋௠)், then the realization probability of X is expressed as 

 ,                              (A90) 
where I is the expectation value of X; that is, the effective self-information [Chapter 3, Section (a)]. 

In contrast, the thermodynamic canonical distribution for the relationship between the system and 

the heat bath is described as follows [22]. Let μ be a state of a closed system, E(μ) be its energy level, 

and let P(μ) be its realization probability. Then, 

 .                           (A91) 

holds, where β is the inverse temperature 1/kBT. 

In Eqs. (A88) and (A89), the energy level E(μ) of the thermodynamic canonical distribution (A91) 

is replaced by the information levels I(λ) and I(λ, ν), respectively. Therefore, we refer to Eqs. (A88) 

and (A89) as the infocanonical distributions of one system and two systems, respectively. Moreover, 

we call Eq. (A90) the infocanonical distribution of the multidimensional random variable. 

Whereas the thermodynamic canonical distribution holds only under the isothermal condition, 

Eqs. (A88) and (A89) hold under any conditions irrespective of temperature and energy. 

(2) Infocanonical distribution of MI 

Besides the descriptions above, the "equivalence principle of information and probability" [Eqs. (A5) 

and (A104) in Appendices 2 and 20, respectively] implies that MI follows the infocanonical 

distribution. This infocanonical distribution of MI holds under the isothermal condition, contrary to 

the case of self-information. 
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18. Infocanonical distribution of micromutual information 

Let MI be the MI of the m × n contingency table with respect to two discrete random variables X and 

Y. It is defined as 

 ,                     (A92) 
where k and l run from 1 to m and 1 to n, respectively. Here, ∑∑p(Xk, Yl) = ∑p(Xk) = ∑p(Yl) = 1. Let 

MIkl be the micromutual information, which is defined as the MI of the 2 × 2 contingency table with 

respect to each cell (k, l): 

  .      (A93) 

When m and n become sufficiently large, by the micromutual information summation theorem, 

 .                              (A94) 
Each summand of the right-hand side of Eq. (A92) is the same as the first term on the right-hand side 

of Eq. (A93). Hence, in Eq. (A93), the total sum of the second, third, and fourth terms on the right-

hand side with respect to k and l converges to zero. This implies that, as m and n approach infinity, the 

expectation value for each MIkl of the cell (k, l) becomes more independent of the micromutual 

information of the other cells. 

As m and n increase, the distributions of X and Y become approximated by the uniform 

distribution, because X and Y respectively take the values Xk and Yl in a random manner. Meanwhile, 

the relative frequencies of the k-th column and l-th row respectively approach 1/m and 1/n according 

to the law of large numbers and become less dependent on the relative frequencies of the other columns 

and rows. 

Taken together, when m and n are sufficiently large, from a microscopic point of view, we can 

apply Eq. (17) and the discussion in Appendix 2(1) by setting X and Y as Xk and Yl, respectively. MIkl 

thus follows an infocanonical distribution. Meanwhile, from a macroscopic point of view, the mean 

value of MIkl is calculated as 

 .                             (A95) 
In conclusion, the probability density function p(x) of x = MIkl is expressed as 

 .                       (A96) 
The micromutual information MIkl thus follows an infocanonical distribution with a mean of MI/mn. 



164 
 

19. Frontier information theory 

The micromutual information MIkl follows an infocanonical distribution according to Eq. (A96). 

Therefore, if we let j be the rank of the magnitude of MIkl, say, x, then, 

 .                   (A97) 

where x1 is the maximum MIkl, which we refer to as the frontier mutual information MIfront. 

Hence, x is approximately expressed as a logarithmic function of j as 

 ,               (A98) 
and 

 .                         (A99) 
It follows that the frontier mutual information MIfront is related to MI by 

 .             (A100) 
Thus, MIfront is almost proportional to both the entire MI and the average MIkl. Conversely, the entire 

MI is estimated from the MIfront according to 

 .                       (A101) 

In addition to the above derivation, we can estimate the confidence intervals of MIfront and MI. 

The distribution function of MIfront is expressed as 

 ,                   (A102) 

where 𝜆 is the mean of MIfront. Its mean ⟨MIfront⟩ is approximated as (MI/mn)log(mn – 1) according 

to Eq. (A101) and its standard deviation σ[MIfront] is approximately equal to (π/60.5)(MI/mn). Therefore, 

the 95% confidence interval of MIfront is expressed as [⟨MIfront⟩ – 2.316 σ[MIfront], ⟨MIfront⟩ + 2.316 

σ[MIfront]], which is [(MI/mn)[log(mn – 1) – 2.970], (MI/mn)[log(mn – 1) + 2.970]]. We can therefore 

estimate the 95% confidence interval of MI from MIfront as 

 .    (A103) 

Thus, using MIfront, we can predict MI with a 95% confidence interval. By increasing m and n, it is 

possible to narrow the confidence interval. 
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20. Equivalence principle of information and probability 

In probability theory, when there is no prior information on the distributions of random variables, the 

principle of maximum entropy is applied. Then the realization probability of the MI of two random 

variables follows the "equivalence principle of information and probability" (Appendix 2); that is, 

 .                     (A104) 
This principle can also be extended to the field of statistics, where we deal with a contingency table 

with known marginal frequencies. Here, we prove that MI is asymptotically equal to the logarithm of 

Fisher’s p-value divided by the sample size. Our theorem in statistics is as follows. 

Theorem 

Let PF be the p-value of Fisher’s exact test in a 2 × 2 contingency table. Let MI be the MI of the two 

variables in the same table and N be the sample size. Then, 

 .                         (A105) 
Proof 

We consider a 2 × 2 contingency table for two random variables A and B, which take two values A and 

A´ and B and B´, respectively. Table 3A [reshown, see Chapter 4, Section (b)] gives the relative 

frequency of the combination of the variables. Hence, X0, X1, X2, and X3 are the proportions of AB, 

A´B, AB´, and A´B´, respectively. Table 3B gives the frequency itself obtained from the relative 

frequency by multiplying it by N. Then, MI is defined as 

.   (A106) 
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In the following, we consider PF, the p-value of Fisher’s exact test. We divide PF into two terms, 

the main term PH and the sum of the remaining terms PF_rem = PF − PH. First, PH is the probability that 

the observed result is obtained. Second, PF_rem represents the probabilities that more impossible results 

occur. As shown below, PF_rem asymptotically vanishes, compared with the main term. 

To begin with, the main term, PH, is calculated using the hypergeometric distribution: 

 .   (A107) 

Taking the logarithm yields 

       (A108) 

When n is large, Stirling’s formula, log n! ≃ nlog n - n, and X0 +X1 +X2 +X3 = 1, yields 

 
(A109) 

Hence, 

 .                         (A110) 

Therefore, if N is large, then MI is approximately equal to the logarithm of PH divided by N. 
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We next evaluate the error of this equation. The error comprises two parts. The first part is the 

sum of the remaining terms PF_rem = PF − PH, and the second part is the error of Stirling’s formula 

applied to the main term PH. Let ER1 be –log PH – (–log PF), which is an equivalent of PF_rem, and will 

be evaluated below. 

First part of the error 

We first estimate the first part of the error PF_rem. We can assume that X0 + X2 < min{X1 + X3, X0 + X1, 

X2 + X3} and X1X2 < X0X3 without loss of generality. It follows that X2 < X1, X0 < X3, and X2 < X3. The 

sum of the remaining terms PF_rem is then the probability that the frequency of AB is greater than NX0 

when the marginal frequency is fixed. 

We let p(X) be the probability that the frequency of AB is X, which follows the hypergeometric 

distribution. The main term is then equal to p(NX0), and 

,            (A111) 

where OR is the odds ratio (X0X3)÷(X1X2) > 1. Similarly,  

,         (A112) 
and  

.                        (A113) 
Therefore, the sum of the remaining terms is 

                 (A114) 
PH, the p -value of the hypergeometric distribution, is equal to p(NX0). Then, 

 .                           (A115) 
Hence, 

 .                           (A116) 
Thus, ER1 = –log PH – (–log PF) is evaluated as 

 .                 (A117) 
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Second part of the error 

We next estimate the second part of the error ER2 = −log PH − NMI. Stirling’s formula is expressed 
as 

 , (A118) 

where B2n denotes Bernoulli numbers. Taking the logarithm and substituting B2 = 1/6 and B4 = 1/30, 

we obtain 

 .   (A119) 
Using (A119) and neglecting ଵଷ଺଴(ேାଵ)య , we derive the difference (error) between the logarithm of 
PH and MI as 

 
(A120) 

Here, 𝑁 log ேାଵே = 𝑁 log൫1 + భಿ൯  < 𝑁 × భಿ  ୀଵ, 

, 
(A121) 

and similar inequalities hold. Moreover, 

 . (A122) 
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Thus,  

              (A123) 

We next evaluate the lower bound of this error. Using 

              (A124) 

and similar inequalities, we obtain 

            (A125) 
Thus,  

 
(A126) 

Hence, we have evaluated the second part of the error ER2. 

Combining the two parts of the error 

Combining ER1 and ER2, we can evaluate the total error as 

     (A127) 
Therefore,  

          (A128) 
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That is, 

         (A129) 
We thus have 

 .                          (A130) 
                                                                    q. e. d. 
 

Corollary 

Let PF be the p-value of Fisher’s exact test in an m × n contingency table. Let MI be the MI between 

the two variables in the same table and N be the sample size. Then, 

.                         (A131) 
Proof 

We consider an m × n contingency table for two random variables A and B. A takes integer values from 

1 to m, and B takes integer values from 1 to n. Let Xij be the relative frequency that A takes i and B 

takes j. Then, –log PH – NMI is calculated and evaluated similarly to Eqs. (A120) to (A123) as 

 

                    (A132) 
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Meanwhile, –log PH – NMI is evaluated similarly to (A124) and (A125) as 

(A133) 

Finally, we evaluate the difference between PF and PH. Because the total number of contingency 

tables is mnHN = (𝑁 + 𝑚𝑛 − 1)! [(𝑚𝑛 − 1)!𝑁!]⁄ , PF is evaluated as 

 .                    (A134) 
Hence, 

 .           (A135) 

Combining the above inequalities, we obtain 

 
. 

(A136) 

Meanwhile, 

   .    (A137) 

Therefore, 

   (A138) 
Hence,  

.                          (A139) 

         q. e. d. 

We have thus proved Eq. (A105) also in the case of an m × n contingency table; i.e., MI of multi-

dimensional random variables approaches the logarithm of the p-value of Fisher’s exact test divided 

by the sample size N. Therefore, the equivalence of information and probability also holds when there 

is prior information on the distribution of the random variables. 
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21. Weighted pathway analysis 

We calculate how much a gene Gi with unknown functions is involved in a biological pathway A. We 

first consider the pathway A = {x1, x2, …, xn} that comprises n genes. Let B = {x1, x2, …, xm} ⊂ A be 

the set of genes in A whose MI with Gi ranks above M. Moreover, let Wj be the total sum of MI(Gi;Gk) 

of Gi and each element Gk ∈ B. Then, probability PWE that Wj > W under the null hypothesis that Gi is 

not involved in A is expressed as 

         (A140) 
Here, N is the total number of genes, μ is the mean of MI(Gi;Gj) of Gi and Gj (j ≠ i), and σ is the 

standard deviation of MI(Gi;Gj). If we define weighted information IWE as 

 ,                            (A141) 

then IWE represents how much Gi is involved in A. 

 

22. Equation of motion in spacetime with probability as the coordinate 

We describe an equation of motion using the probability p as the coordinate. We assume a composite 

system XY comprising two informatons X and Y, which have the potential difference 𝑉 and MI MI. 

On the one hand, when this system follows the canonical distribution for the potential difference, the 

state probability is 𝑝(𝑉) = exp(−𝛽𝑉) 𝑍⁄ , where 𝑍 is the partition function. This equation means 

that the probability 𝑝(𝑉) increases in the direction in which the potential difference 𝑉 decreases and 

the information metric 𝑟 between X and Y reduces. 

Meanwhile, the probability of MI being MI is 𝑝(𝑀𝐼) = exp(−𝑀𝐼) by Eq. (17). This equation 

is based on a principle that the probability is proportional to the number of states of the composite 

system XY, which conforms to the second law of thermodynamics. Increasing MI decreases the total 

entropy by 𝐻(𝑋,𝑌) = 𝐻(𝑋) + 𝐻(𝑌) −𝑀𝐼, and 𝑝(𝑀𝐼) thus increases in the direction in which MI 

decreases, and the system entropy 𝐻(𝑋,𝑌) increases. In this case, because the internal energy U is 

proportional to 𝐻(𝑋,𝑌) under the thermal equilibrium condition, the energy U increases. We here 

assume a static condition where 𝑉 ≃ 𝛥𝑈, and the information metric 𝑟 also increases. Clearly, this 

is opposite to the above observed direction for the information metric 𝑟. 
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The realization probability 𝑝 of the system can be elucidated by considering a balance between 

the above two opposing forces. Hence, by applying an equality 𝑝 = 𝑝(𝑉) = 𝑝(𝑀𝐼), we get 

.                          (A142) 
Therefore, 𝑑𝑉 = −𝑑𝑝 (𝛽𝑝)⁄ , where 𝑑𝑉 is the change in the potential difference. The change in the 

Lagrangian 𝑑ℒ of the system is then expressed as 𝑑ℒ = 𝑑𝑇௄ − 𝑑𝑉, where 𝑑𝑇௄ is the change in the 

kinetic energy; that is, 

 .                 (A143) 
We now apply Lagrange’s equation of motion 𝑑 𝑑𝑡⁄ [∂ℒ ∂(𝑑𝑝/𝑑𝑡)⁄ ] − ∂ℒ ∂𝑝⁄ = 0 . Given that 𝑝ିଵ = 𝑝(𝑀𝐼)ିଵ = ℱatt , we can obtain an equation of motion of Newton’s type as 

 .                  (A144) 
where Fp is the force of probability, which acts to reduce the information metric 𝑟 between X and Y. 

In summary, ℱatt is a mechanistic force in this spacetime, which increases the relative probability of 

information transmission and the system's state probability. 

 

23. Equilibrium information distance 

We define 𝐼௘  as the equilibrium information distance between the informatons, where the state 

probability takes a maximum value. We demonstrate that Ie = (log 2)/4 irrespective of the informatons. 

The probabilistic influential force potential 𝜑ᇱ(𝐼ை) in the 𝐼ை-spacetime is a function of 𝐼ை(𝑥, 𝑟):  

 .            (A145) 

Then, 𝜑′(𝐼ை) takes the minimum when 𝐼ை= Ie, which is calculated as 

 .                         (A146) 

If we use k1ℳ(X)ℳ(Y) = (2𝑚𝜔 ℎ⁄ )ଵ ସ⁄  and k2[ℳ(X)ℳ(Y)]2 = (4𝑚𝜔 ℎ⁄ )ଵ ସ⁄  according to Eq. (84) 
and Eq. (85), then we obtain 

.                (A147) 

Thus, we have demonstrated that 𝐼௘ = (log 2) 4⁄   is constant irrespective of the mass of the 

interacting quantums or the separation of the quantums in x-spacetime. 
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24. Influential microforce 

(1) Information of the microstate 

In addition to the definitions of self-information 𝐼௞ = − log𝑝(𝑋௞)  and a fluctuation factor 𝜀௞௟ =𝑝(𝑋௞ ,𝑌௟) [𝑝(𝑋௞)𝑝(𝑌௟)]⁄  , we respectively define joint self-information 𝐼௞௟  and microinformation 

distance 𝑟௞௟ as 

 . 

If we multiply these formulas by 𝑃(𝑋௞ ,𝑌௟) and sum with respect to k and l, then we obtain 

 

 
 

(A148) 

which implies that 

 ,          (A149) 

where 𝑟 is the information metric, which is equal to ∑ ∑ 𝑃(𝑋௞ ,𝑌௟)௟௞ 𝑟௞௟. 
 

(2) Influential force of the microstate 

We next derive Eqs. (107) and (108), which represent the relationship among the influential microforce, 

micromutual information and macroscopic influential force. As we mentioned in Appendix 6, when 

m→∞ and n→∞, 

 ,            (A150) 
where 𝛾௞𝛿௟ is equal to 𝜀௞௟. Therefore, when m and n are sufficiently large, 

 .                         (A151) 
Hence, 

 .                          (A152) 
Let 𝑃(𝑋௞ ,𝑌௟) and 𝑃ᇱ(𝑋௞ ,𝑌௟) be the joint probabilities before and after the change in 𝛾௞𝛿௟. Then, 𝑃(𝑋௞ ,𝑌௟) = exp[−(𝐼௞ + 𝐼௟)] and 𝑃ᇱ(𝑋௞ ,𝑌௟) = exp{−[𝐼௞ + 𝐼௟ − ∆log(𝛾௞𝛿௟)]ሽ. By these probabilities, 

the attractive microforce ℱkl_att is defined as 
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 .         (A153) 

From this formula, we can derive the macroscopic attractive force as 

      (A154) 

Meanwhile, the repulsive microforce ℱkl_rep is the square of ℱkl_att, similar to Eq. (A10) in Appendix 

2. Therefore, similar formulas can also be derived with respect to ℱkl_rep. 

The composite microforce ℱkl = ℱkl_att −  ℱkl_rep can be regarded as the microforce for the 

microstate X = Xk and Y = Yl. 

 

(3) Equation of motion of the microstate 

If we use the probability as the coordinate in the information metric spacetime, then the equation of 

motion for the microstate is 

 . (A155) 

If we multiply both sides of Eq. (A155) by P(Xk, Yl) and sum with respect to k and l, then we obtain 

  .          (A156) 
Indeed, 

, (A157) 

where 

 .          (A158) 

In this way, the influential force can be explained by the influential microforce. We derived the 

equation of motion with respect to the probability from the microscopic probability. 
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25. Information entropy of the multidimensional random variable 

We assume that the information expressed by gene GX, whose length on the chromosome equals L 

bases, takes at most N (≤ 4L) observable states, represented by a multidimensional random variable 𝑿 =  (𝑋ଵ,𝑋ଶ, . . . . ,𝑋௠)். If we let X be the information level of 𝑿, then the realization probability of 

X follows the infocanonical distribution 

 ,                            (A159) 

where I is the expectation value of X; that is, the effective self-information. We also assume that the 

information levels are evenly split and discretely distinguished using a linear index k (1 ≤ k ≤ n). The 

realization probability of the k-th information level Xk is then described as 

 ,            (A160) 

where λ is the mean index value λ = nI. 

The information entropy H(X) is then calculated as 

    (A161) 

We suppose a situation in which the evolution of the gene GX results in an appreciable increase in λ. 

If λ goes to infinity, then H(X) is approximated as 

           (A162) 

If n becomes sufficiently large in comparison to λ, 𝑒ି ೙ഊ ≃ 0. Hence, 

 .                         (A163) 

Thus, the information entropy H(X) of the multidimensional random variable 𝑿 is expressed by the 

logarithm of the mean index value λ of the discrete information level Xk. 
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26. Temporal change in effective self-information 

As described in Appendix 9, we let X be the observable information level of a gene GX. Then, at an 

individual organism level, X is related to its realization probability p(X) by 

 ,                             (A164) 
where I is the effective self-information; that is, the expectation value of X. In a sufficiently large 

population of organisms, the individual frequency follows the same infocanonical distribution. We 

assume that the whole population comprises two subpopulations, one with the wild-type gene Gwt and 

the other with the mutant gene Gmut. Let Iwt and Imut be the effective self-information of Gwt and Gmut, 

respectively. The difference ΔI in the effective self-information is then described as ΔI = Imut − Iwt. 

In each subpopulation, the realization probability of the individual whose information level of GX 

is x is expressed as 

 .      (A165) 
We now assume that the information level x is evenly and discretely distinguished by a linear index k 

(1 ≤ k ≤ n). In this case, the realization probability of the k-th information level Xk follows the 

infocanonical distribution 

 ,                          (A166) 

which is the integration of p(X) from k − 1 to k. Let ΔI be the change in the effective self-information 

I when the realization probability of each state Xk becomes γk-fold owing to the mutation of the gene 

GX. If we let γ be the average of γk, then ΔI is expressed as 

                    (A167) 
We assume that the value of 1-γ satisfies the diffusion equation and follows a normal distribution with 

mean zero and variance σ2 over time. The absolute expectation value of 1-γ is then expressed as 

 .         (A168) 

Here, the expectation value of |ΔI| at time t is 

 ,                          (A169) 
where D is the diffusion coefficient and 𝜎ଶ ≃ 2𝐷𝑡 . Thus, the absolute expectation value of ΔI 

increases in proportion to the square root of t. 
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27. Relationship between the rank change in MI and fitness 

We consider the network Ni that comprises N genes with the gene Gi at the center. The nodes are all 

the genes, and the edges exist between Gi and the other genes, the weights of which are MI. Let Gj be 

the gene whose MI with Gi is the j-th largest among N − 1 genes around Gi. Because MI follows the 

infocanonical distribution from Eq. (17), we set MI(Gi; Gj) = −A × log(j + B) + C. 

Because 

 ,                     (A170) 

the rank of Gj when MI(Gi; Gj) increases in ΔMI is calculated as 

               (A171) 

The expectation value λr of the rise in the rank of Gj is expressed as 

 .                       (A172) 

In particular, when B = 0 as in Fig. 16, 

 .                               (A173) 

If we represent the permutation by the change in rank as the product of transpositions with the 

minimal number, then the number of transpositions follows a Poisson distribution with mean λr. Here, 

we consider the case that the change in MI per unit time increases from ΔMI0 (≃0) of the wild type to 

ΔMI1 of the mutant, and λr thereby increases from λ0 to λ1. Then, the probabilities P0(n) and P1(n) that 

the transpositions of ranks occur n times are 

 ,              (A174) 

respectively. We here assume that all the increases in MI contribute to positive fitness. The relative 

fitness r(n) of the individual with the mutant gene to that with the wild-type gene is then expressed as 

 .                       (A175) 
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Moreover, the relative fitness rnet (Ni) of the mutant subpopulation to the wild-type subpopulation is 

then calculated as 

               (A176) 

Therefore, the increase in the fitness εnet (Ni) when |ΔMI0| ≪ 1 and |ΔMI1| ≪ 1 is expressed as 

               (A177) 

In particular, when ΔMI0 ≃ 0,  

 .                           (A178) 

Moreover, if we calculate the average (λr)avg of the rise in the rank of all the other N−1 genes, 

then 

         (A179) 

In particular, when B = 0 as in Fig.16, 

 .                         (A180) 

When ΔMI0 ≃ 0 and |ΔMI1| ≪1, the expectation value of the increase in fitness over the N−1 genes is 

 .                (A181) 

Thus, the increase in the fitness εnet (Ni) is approximately proportional to the average increase in MI 

per unit time and the number of genes N. 
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28. Pareto distribution of intergenic MI 

As described in Section (h) of Chapter 3, we consider the case that mutations of a gene Gi appreciably 

affect the distribution of MI(Gi;Gj) with other genes Gj . Then, in the course of evolution, MI(Gi;Gj) 

can transition from the original infocanonical distribution and approach the Pareto distribution. Here, 

we provide an analytical explanation of this phenomenon as follows. 

Let us assume an initial condition in which MI(Gi;Gj) follows the infocanonical distribution with 

a probability density function p1(x) = (1/λ1)exp(−x/λ1) for x ≥ 0, where x = MI(Gi;Gj) and λ1 is the 

initial expectation value of x. 

Next, we further assume that a mutation occurs in Gi that strengthens the relationship with a 

restricted number of Gj that have greater association with Gi. To represent this situation, we introduce 

another probability density function p2(x) = (1/λ2)exp[−(x − n)/λ2] for x ≥ n > 0, where λ2 (> λ1) is the 

secondary expectation value of x − n. We here suppose that the affected interaction is under the 

influence of both the initial and second relationships with expectation values of λ1 and λ2, respectively. 

Hence, we consider a composite probability density function p(x) as p(x) = p1(x) for 0 ≤ x ≤ n and p(x) 

= p1(x) p2(x) for x ≥ n. Then, 

 .         (A182) 

The integration of p(x) from zero to infinity is 1 + ቀ ଵఒభାఒమ − 1ቁ exp ቀ− ௡ఒభቁ, which approaches a value 

of 1 as n tends to infinity. The interactions of Gi with the strongly interacting genes become much 

stronger because λ2 is greater than λ1. 

Generally, the exponential distribution f(0, b, b/a)(x) = (a/b)exp[−a(x − b)/b] is approximated by the 

Pareto distribution f(a, b)(x) = aba/(xa + 1). Therefore, if we set a/b = (λ1 + λ2)/(λ1λ2) and b = nλ1/(λ1 + λ2), 

then p1(x) p2(x) is approximated by the Pareto distribution p3(x) as 

 .                     (A183) 

The Pareto distribution is defined in the domain x ≥ b > 0, and x thus has a positive lower bound. This 

requirement is fulfilled by the above conditions, in which the probability distribution function p2(x) is 
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defined in the domain x ≥ n. Hence, the infocanonical distribution p1(x) is transformed into the Pareto 

distribution p3(x) for x ≥ n, where Gi has much MI with other genes Gj . 

Finally, if we define a new composite probability density function p4(x) as p4(x) = p1(x) for 0 ≤ x 

≤ n and p4(x) = p3(x) for x ≥ n, then p4(x) approaches the Pareto distribution as a whole. If similar 

changes occur repeatedly and frequently in the course of evolution, then the original infocanonical 

distribution approaches the Pareto distribution more and more. 

Hence, this example demonstrates the change of the infocanonical distribution into the Pareto 

distribution with time. 

 

29. Multivariate central limit theorem 

For the cancer tissues included in the TCGA, the time after onset and fitness are different in each case 

and vary greatly. However, if the number of cases is sufficiently large, the multivariate central limit 

theorem guarantees that the data fit the theory of the Moran process through the use of mean values. 

The theorem is stated as follows. 

Let X1, X2, …, Xn be d-dimensional random variables that are independent and follow identical 

distributions. If X1 = (X11, X12, …, X1
d), E(X1

i) = 0 (1 ≤ i ≤ d), and we let Σ be a d-dimensional square 

matrix with entries E(X1
i X1

 j) (1 ≤ i, j ≤ d), then the distribution of (X1+X2+…+Xn)/n0.5 converges to 

the normal distribution N(0, Σ) as n tends to infinity. The probability density function p of N(0, Σ) is 

expressed as  

                 (A184) 

for X = (X1, X2, …, Xd), where X t is the transposed column vector of X. 

Therefore, if the number of cases is sufficiently large, like in the case of the TCGA, then the 

averages of the time, fitness, and relative frequencies of genotypes for all the cases approach the true 

theoretical averages. Additionally, the differences between them (i.e., error) diminish in inverse 

proportion to the square root of the case number. 
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30. Integration theory of the Moran process and branching process 

We consider a precancerous population of N cells that at first divides according to the Moran process, 

described by Eq. (200). Upon initiation of carcinogenesis, the heterogeneous cell population proceeds 

to the branching process. At this time point, the numbers of cells of types 0 to 3 are nearly equal to 

NX0 to NX3, respectively. 

In the next branching process, the cell of type 3 divides with probability r3/2 and dies with 

probability 1 − r3/2. When it divides, a daughter cell undergoes another mutation with probability u, 

which increases the fitness by s. At time t after the transition into the branching process, the expected 

number of the cells of type 3 without another mutation is 

 ,                            (A185) 

and that with another mutation is 

                       (A186) 

by elementary calculations. Similarly, the expected number of the cells of type 1 without another 

mutation is 

 ,                           (A187) 

and that with another mutation is 

 .                     (A188) 

Therefore, if r1 is nearly equal to r3, and s is sufficiently larger than r1 − 1 and r3 − 1, then the ratio of 

the number of the type-3 cells to the number of type-1 cells with another mutation is approximately 

equal to X3/X1. Similar arguments hold for the case that the cells undergo plural mutations in the 

branching process. Thus, the initial ratio of the number of cells in the Moran process remains almost 

constant after progression to the branching process. 
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31. Examples of the ab initio GO calculation 

We present other examples of the ab initio GO calculation in Fig. A1. With extremely high sensitivity, 

the calculation is readily applicable to the analysis of intermolecular interactions, pathway analysis, 

prospect of relations to diseases, and the specification of disease markers and therapeutic targets. The 

results in Fig. A1 demonstrate that our method successfully predicted functions of genes that act in 

various tissues that range from neuron to immune cells. Moreover, the analyzed genes are of various 

categories, such as enzymes, signal transduction factors, and epigenetics. 
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Figure A1 | Functions of 10 genes calculated using the ab initio GO method and the Canonical 
Pathways analysis of IPA. The bars express the p-values for the null hypotheses that the genes are not 
involved in the pathways. The pathways whose p-values are less than 1E−7 are represented for up to 25 
pathways for each gene. a, CCNB1. b, CSF2. c, CXCR4. d, DNMT3A. e, IL2RA. f, ITGB2. g, PDCD1. h, 
PLK1. i, RAD21. j, UHRF1. 
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