
 

 

1 

 

Abstract— This paper addresses the challenge of improving the 

performance of interpretable linear models for real-time process 

control in industrial and chemical systems. While black-box 

models such as Random Forest and XGBoost achieve high 

predictive accuracy, their lack of interpretability and limited 

suitability for real-time applications make them difficult to 

integrate into production environments. To overcome this 

limitation, we propose a novel feature engineering approach that 

leverages Partial Dependence Plots (PDP) to capture the complex 

nonlinear relationships learned by black-box models and convert 

them into features appropriate for linear regression. We evaluate 

the proposed methodology using the well-known publicly 

available wine quality dataset, which provides a strong 

benchmark due to its multivariate and nonlinear characteristics 

that are analogous to those observed in industrial processes. Our 

results show that PDP-based feature transformation substantially 

improves the predictive accuracy of linear models, achieving an 

R² score comparable to that of black-box models. This study 

proposes a practical solution for building high-performance yet 

interpretable models, showing strong potential for real-time 

deployment in process control and monitoring. 

 
Index Terms— Partial Dependence Plots (PDP), Linear 

regression, Feature engineering, Real-time control, Industrial 

process 

 

I. INTRODUCTION 

In modern industrial processes, the demand for real-time 

control and predictive maintenance has led to the widespread 

adoption of data-driven models for quality monitoring and 

process optimization. While complex, non-linear models such 

as Random Forest (RF) and XGBoost have demonstrated high 

predictive accuracy for multivariate datasets, they are often 

considered "black-box" models due to their inherent lack of 

transparency and interpretability [1, 2]. Their lack of 

interpretability presents a significant challenge for their 

deployment in critical production environments, where 

understanding the relationship between input features and 

model outputs is essential for diagnostics, quality assurance, 

and regulatory compliance [1, 3, 4]. Furthermore, the 

computational complexity of these models can make them 

unsuitable for low-latency, real-time control applications where 

rapid and reliable predictions are paramount. 

On the other hand, linear regression models offer a high 

degree of interpretability, as the impact of each feature on the 

final prediction is directly represented by its coefficient. This 

makes them ideal for implementation in control systems where 

the logic must be both transparent and simple. However, linear 

models are inherently limited in their ability to capture and 

model complex, non-linear relationships present in real-world 

data, often resulting in lower predictive performance compared 

to their black-box counterparts. 

This study proposes a novel feature engineering approach to 

bridge the gap between the predictive power of black-box 

models and the interpretability of linear models. Our method 

utilizes Partial Dependence Plots (PDPs), a model-agnostic 

technique for visualizing the marginal effect of one or two 

features on the predicted outcome of a black-box model. By 

fitting simple, interpretable functions to these PDPs, we can 

effectively extract the non-linear relationships learned by a 

complex model (e.g., RF or XGBoost) and transform them into 

new features. These newly engineered features can then be used 

to significantly improve the performance of a linear regression 

model, enabling it to capture non-linear patterns without 

sacrificing interpretability. 

To validate this approach, we use the publicly available 

Wine Quality dataset [5]. This dataset is a suitable benchmark 

for our methodology as its multi-variate and non-linear 

characteristics are analogous to those of real-world industrial 

processes. The objective of this paper is to demonstrate that by 

leveraging insights from black-box models, we can develop a 

simple, interpretable linear model that achieves predictive 

accuracy comparable to that of complex models, making it a 

viable and practical solution for real-time process control and 

monitoring. 

 

II. METHODOLOGY 

A. Dataset and Experimental Environment 

This study utilizes the publicly available Wine Quality 

dataset, a widely recognized benchmark for regression tasks. 

The dataset comprises 11 physicochemical features (e.g., 

alcohol content, pH, fixed acidity) and a quality score, which 

serves as the target variable. The multivariate and non-linear 
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relationships within this dataset make it an ideal benchmark for 

evaluating our methodology, since these characteristics are 

closely analogous to those found in industrial processes. All 

data preprocessing, model training, and analysis were 

performed using Python with the following key libraries: 

pandas for data manipulation, scikit-learn for machine learning 

models, and matplotlib for data visualization. The complete 

code and detailed procedures are available in the accompanying 

Jupyter Notebook on our GitHub repository at 

[https://github.com/kentaoshimashr-maker/PDPs-study]. 

B. Proposed Partial Dependence Plot-based Feature 

Engineering 

To enhance the performance of a simple, interpretable linear 

model, we propose a novel feature engineering approach 

informed by insights from black-box models. Our methodology, 

as implemented in the Jupyter Notebook, follows a three-step 

process: 

1. Black-Box Model Training: We first train 

high-performance black-box models, including a 

Random Forest Regressor, an XGBoost Regressor, and 

a Multi-layer Perceptron (MLP) Regressor, on the 

original Wine Quality dataset. These models are chosen 

for their proven ability to capture complex, non-linear 

feature interactions, which a traditional linear model 

cannot. 

2. Partial Dependence Plot (PDP) Generation: For each 

feature, we generate a Partial Dependence Plot using the 

trained black-box model. A PDP illustrates the marginal 

effect of a feature on the predicted outcome, providing a 

visual representation of the non-linear relationship the 

black-box model has learned. This step effectively 

makes the black-box model's learned behavior 

interpretable. 

3. Feature Transformation: We analyze the shape of 

each PDP and identify a corresponding simple, 

interpretable function (e.g., polynomial, logarithmic, or 

piecewise linear) that best approximates the relationship. 

This function is then used to transform the original 

feature into a new, engineered feature. For instance, if 

the PDP for 'alcohol' shows a sigmoidal relationship, we 

apply a sigmoid function to the 'alcohol' feature to create 

a new one. 

C. Experimental Setup 

To evaluate the effectiveness of our proposed approach, we 

conducted a comparative analysis of model performance using 

three distinct configurations: 

• Baseline Linear Model: A linear regression model 

trained on the original dataset without any feature 

transformation. 

• Transformed Linear Model: A linear regression 

model trained on the dataset augmented with the new, 

PDP-based engineered features. 

• Black-Box Models: The original Random Forest, 

XGBoost, and MLP models, serving as a performance 

benchmark for the transformed linear model. 

Model performance was evaluated using two standard 

metrics: R-squared (R²), which measures the proportion of 

variance in the dependent variable that is predictable from the 

independent variables, and Root Mean Squared Error (RMSE), 

which indicates the average magnitude of the errors. All models 

were trained and evaluated using a train-test split approach, to 

ensure the robustness and generalizability of the results. 

 

III. RESULTS 

We present the results of our experimental analysis 

comparing the performance of the baseline linear model, the 

black-box models, and the linear model enhanced with 

PDP-based feature engineering. Model performance was 

evaluated using R² and RMSE. 

The initial performance of all models on the original dataset 

is summarized in Table 1. As expected, the non-linear 

black-box models such as Random Forest and XGBoost 

achieved higher predictive accuracy than the baseline linear 

regression model, which is limited in its capacity to capture 

complex relationships. Particularly, the Random Forest model 

demonstrated the highest R² score of 0.4628, confirming its 

strong ability to capture the underlying patterns within the data. 

Our main findings concerning the proposed PDP-based 

feature engineering approach are presented in Table 2. The 

results indicate that the effectiveness of the feature 

transformation highly depends on the black-box model used to 

generate the PDPs. When the features were transformed based 

on the Random Forest model's PDPs, the linear model's 

performance significantly improved, with the R² score 

increasing from 0.3171 to 0.3891. This indicates that the 

method successfully extracted valuable non-linear information 

from the Random Forest model and made it accessible to the 

interpretable linear model, outperforming the original XGBoost 

model (R²: 0.3431). 

In contrast, feature transformations based on the PDPs from 

the XGBoost and MLP models resulted in a decline in 

performance for the linear model. The R² score for the 

XGBoost-transformed model dropped sharply to 0.0518, while 

the MLP-transformed model yielded a negative R² of -2.1545. 

These differing behaviors are visually represented by their 

respective PDPs, as shown in Figure 1, illustrating the varying 

shapes and complexities of the relationships learned by these 

models. 

TABLE 1 

PERFORMANCE COMPARISON OF ORIGINAL DATASET 

Model R2 Score RMSE 

Liner Regression (Baseline) 0.3171 0.6165 
Random Forest 0.4628 0.5468 

XGBoost 0.3431 0.6046 

MLP (Neural Network) 0.2983 0.6249 

 

TABLE 2 
PERFORMANCE COMPARISON OF PDP-TRANSFORMED DATASET 

Model R2 Score RMSE RMSE 

LR with RF PDP-transformed features 0.3891 0.5831 0.6165 

LR with XGBoost PDP-transformed features 0.0518 0.7264 0.5468 

LR with MLP PDP-transformed features -2.1545 1.3249 0.6249 
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IV. DISCUSSION 

Our analysis of the experimental results reveals key insights 

into the effectiveness and limitations of the proposed feature 

engineering method. The primary finding is that the success of 

the PDP-based transformation depends on two key factors: the 

predictive accuracy of the black-box model and the 

interpretability of its learned relationships. 

First, the notable performance of the linear model with 

Random Forest-transformed features demonstrates that our 

approach can effectively extract valuable non-linear 

information from a powerful black-box model and translate it 

into an interpretable feature representation. This not only 

significantly improves the linear model's performance but also 

allows it to outperform the original XGBoost model, 

confirming the method's practical utility for developing 

high-performance yet transparent systems for real-time process 

control. 

However, the results from XGBoost and MLP-based 

transformations highlight the method's limitations. As 

illustrated in Figure 1, the PDPs from the XGBoost model 

exhibited a highly irregular and complex shape. This suggests 

that the model, while achieving high native accuracy, learned 

patterns that were too intricate to be captured by a simple, 

interpretable function. This indicates that the model's complex 

decision-making process is not well-represented by a simplified 

PDP, making it difficult to translate into a linear model. The 

result is a substantial degradation in performance when using 

the transformed features. 

Conversely, the MLP model's PDPs were smoother and more 

amenable to fitting, as seen in Figure 1. This indicates that the 

model learned a more generalizable, less complex relationship. 

However, since the MLP's initial performance was 

low—comparable to that of the baseline linear model—the 

information it extracted was not of sufficient quality to improve 

the transformed linear model. This leads to our second key 

finding: the PDP-based transformation is only as good as the 

black-box model's ability to learn meaningful and high-quality 

relationships, not just simple or noisy ones. 

In summary, for our method to be successful, it is essential to 

use a black-box model that not only achieves high predictive 

accuracy but also learns relationships that are good candidates 

for simplification. The Random Forest model proved ideal in 

this regard, offering a balance between predictive power and a 

relationship structure that could be effectively simplified and 

leveraged by a linear model. This study provides a practical 

blueprint for integrating powerful insights from black-box 

models into interpretable linear systems. 

While this study demonstrates the potential of PDP-based 

feature engineering, its findings provide several important 

avenues for future work  First, our experiments were conducted 

on a single dataset, and the generalizability of our findings 

needs to be validated across a wider range of industrial and 

chemical process data. Future work will involve applying this 

methodology to other datasets, such as those related to 

chemical reactions or manufacturing defect rates, to confirm its 

robustness. 

Second, the process of manually identifying and fitting 

functions to the PDPs can be labor-intensive. Future research 

could focus on developing an automated algorithm that 

analyzes the shape of a PDP and automatically selects the 

best-fitting interpretable function. This would significantly 

enhance the practicality and scalability of our proposed method. 

Finally, exploring the integration of other Explainable AI 

(XAI) techniques, such as SHAP or LIME, could provide a 

more comprehensive framework for building high-performance 

and fully transparent models. 

 

V. CONCLUSION 

This study presents a novel and practical approach for 

enhancing the performance of interpretable linear models by 

leveraging insights from black-box models. We demonstrate 

that by using Partial Dependence Plots (PDP) to transform 

features, a simple linear regression model can achieve 

predictive accuracy comparable to that of complex models such 

as Random Forest and XGBoost. Our results reveal that the 

success of this method is highly dependent on both the 

predictive power of the black-box model and the nature of the 

relationships it learns. Specifically, transforming features based 

on a high-performing and smoothly behaving model such as 

Random Forest yields significant performance gains, enabling 

the linear model to surpass the original XGBoost model. 

The proposed methodology offers a viable solution for 

building high-performance yet transparent models that can be 

effectively deployed in critical environments such as real-time 

process control. This work bridges the critical gap between 

model performance and interpretability, providing a pathway to 

integrate the predictive power of black-box models into 

systems where transparency and simplicity are paramount. 

While this study demonstrates promising results, its 

 
Figure 1: Partial Dependence Plots for 'fixed acidity' from Random Forest, XGBoost, and MLP models 
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validation is limited to a single dataset, and further 

investigations are necessary to confirm the approach’s 

generalizability across diverse industrial and chemical 

processes. Additionally, although the current automated feature 

transformation considers only linear, quadratic, cubic, and 

logarithmic functions, exploring other functional forms—such 

as piecewise linear, sigmoid, or spline functions—could 

capture more complex non-linear behaviors more effectively. 

Advancing automated strategies for selecting the most suitable 

transformation functions will be essential to improving the 

method’s scalability, flexibility, and predictive performance. 

Future work will involve applying the proposed 

methodology to other datasets from various industrial 

applications, such as chemical reactions and manufacturing 

defect analysis, to assess robustness and expand applicability. 

Moreover, integrating automated algorithms for analyzing PDP 

shapes and fitting interpretable functions will enhance 

efficiency and objectivity. Finally, exploring complementary 

Explainable AI (XAI) methods like SHAP and LIME may 

provide a more comprehensive framework for developing 

high-performance yet fully transparent models. 
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