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We propose a classical integrable system exhibiting tsunami-like solitons with a rocky-desert-like disordered station-
ary background. One of the Lax operators describing this system is interpretable as a Bogoliubov–de Gennes Hamil-
tonian in parity-mixed superconductors. The family of integrable equations is generated from this seed operator using
Krichever’s method, whose pure s-wave limit includes the coupled Schrödinger–Boussinesq hierarchy applied to plasma
physics. A linearly unstable finite background with a superconducting gap supports the tsunami-soliton solution, where
the propagation of the step structure turns back at a certain moment, accompanied with the oscillation on the opposite
side. In addition, the equation allows inhomogeneous stationary solutions with an arbitrary number of bumps at arbitrary
positions, which we term the Korteweg–de Vries (KdV) rocks. In the Zakharov–Shabat scheme, the tsunami solitons are
created from the Bogoliubov quasiparticles in the energy gap and the KdV rocks from normal electrons/holes. The unex-
pected large space of stationary solutions originates from the non-coprime Lax pair and the multivalued Baker–Akhiezer
functions on the Riemann surface, formulated in terms of higher-rank holomorphic bundles by Krichever and Novikov.
Furthermore, the concept of isodispersive phases is introduced to characterize quasiperiodic multi-tsunami backgrounds
and consider their classification.

The study of rogue waves has introduced a new interdisci-
plinary trend between classical integrable systems and non-
linear physics.1–3) As a prime example, the attractive non-
linear Schrödinger (NLS) equation has three kinds of funda-
mental solitons: spatially localized and temporally oscillat-
ing Kuznetsov–Kawata–Inoue–Ma soliton,4–6) temporally lo-
calized and spatially periodic Akhmediev breather (AB),7, 8)

and spatiotemporally localized Peregrine soliton,9) the most
famous rogue wave. Several integrable systems with modula-
tional instability also exhibit similar solutions.10–12)

The statistical properties of integrable turbulence have also
been investigated from the perspective of rogue wave for-
mation.13) Other notable wave phenomena studied in inte-
grable systems include the dispersive shock waves based on
Whitham’s method.14) Under these circumstances, the ques-
tion arises as to whether it is possible to describe a wider range
of hydrodynamic instability phenomena within the frame-
work of the exact analysis of classical integrable systems.
This paper proposes a classical integrable equation possess-
ing tsunami-like soliton solutions propagating on bumpy and
disordered backgrounds, emerging, surprisingly, as a byprod-
uct of the study of superconductivity.

Our system is described by the Lax pair

iL̂t = [L̂, M̂], (1)

L̂ = −∂2
xσ3+ {∂x, ξσ+− ησ−}− uσ3 + v12 + qσ++ rσ−, (2)

M̂ = (−∂2
x − u + 2ξη)12 + vσ3 + 2(ξxσ+ + ηxσ−), (3)

where 12 and σ1,2,3 are the 2 × 2 identity and Pauli matrices,
respectively, σ± = σ1±iσ2

2 , and {X,Y} is the anti-commutator.
Here, we restrict ourselves to the case u = u∗, v = v∗, r = q∗,
and η = ξ∗, where L̂ and M̂ become self-adjoint. The resultant
equations are given by

iut = 2(q∗ξx − qξ∗x), ivt = 2(ξξ∗x − ξ∗ξx)x, (4)

*daisuke.takahashi@keio.jp

iξt = −2vξ + qx, (5)

iqt = −2vq − 2ξux − 4ξxu + 4ξ(|ξ|2)x − ξxxx. (6)

The physical/mathematical backgrounds that yielded Eqs. (1)-
(6) are described below.

First, L̂ [Eq. (2)] can be viewed as the Bogoliubov–de
Gennes (BdG) Hamiltonian15, 16) in parity-mixed supercon-
ductors (SCs), and the physical interpretations of the coef-
ficient functions by the Hartree–Fock (HF) mean fields and
the Cooper pairs (gap functions) are summarized in Table I.
The mean-field theory with omitted HF fields is formulated in
Ref. 17. The parity-mixed SCs appear in noncentrosymmetric
materials18) and the surface of topological SCs.19) Figure 1
shows a schematic of the dispersion relation with/without an
s-wave gap q = q0.

When the chemical potential µ is large, Andreev’s dis-
persion linearization20) around the Fermi points (see Fig.
1 of Ref. 21) works well. Physical systems equivalent to
this one appear in diverse fields, including the Peierls prob-
lem in conducting polymers22–30) and the Gross–Neveu mod-
els,31–33) and the reflectionless/finite-gap potentials in the
NLS hierarchy have been applied to determine the exact self-
consistent soliton dynamics and the phase diagram of the
Larkin–Ovchinnikov (LO) and Fulde–Ferrell (FF) soliton lat-
tices.34–43)

On the other hand, the treatment without dispersion
linearization has become important in (i) the BCS-BEC
crossover,44, 45) where the BEC side corresponds to a small
µ, (ii) eliminating cutoff-dependence, and (iii) comparing
with the quantum many-body counterpart described by the
Gaudin–Yang model.46–49) In particular, (iii) will play a key
role in the construction of the fermionic many-body quan-
tum solitons, whose bosonic analog has been studied.50–55)

The quadratic dispersion also contributes to the spectral func-
tions and lifetime of quasiparticles in Tomonaga–Luttinger
liquids.56, 57)

Next, we explain how to determine M̂ in Eq. (3). Accord-
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Table I. Physical interpretation of the potentials in L̂, describing the parity-
mixed SCs. Here, ψ̂s, s =↑, ↓ represents fermionic field operators with up and
down spin, g and g′ are s- and p-wave coupling constants, respectively, and
the bracket indicates the expectation value for a certain quantum many-body
state.

Interpretation in SCs
u µ + 1

2 g ⟨ψ̂†↑ψ̂↑ + ψ̂
†
↓ψ̂↓⟩ chemical potential + HF mean field

v −h + 1
2 g ⟨ψ̂†↑ψ̂↑ − ψ̂

†
↓ψ̂↓⟩ magnetic field + HF mean field

q g ⟨ψ̂↓ψ̂↑⟩ s-wave Cooper pair
ξ g′ ⟨ψ̂↑∂xψ̂↓ + ψ̂↓∂xψ̂↑⟩ p-wave Cooper pair
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Fig. 1. (Color online) Dispersion relation ϵ(k) for plane-wave eigenfunc-
tions L̂ϕ = ϵϕ, ϕ ∝ eikx, with a uniform background (u, v, q, ξ) =
(u0, 0, q0, 0). The red solid and blue dashed lines represent the relations with
(q0 , 0) and without (q0 = 0) the s-wave superconducting gap, respectively.
The triangle and square markers show exponentially divergent seed solutions
used to construct soliton solutions.

ing to Krichever,58) we can find a family of differential op-
erators M̂n,±, n = 0, 1, 2, . . . commuting with L̂, and obtain
the sequence of ordinary differential equations determined
by [L̂, M̂] = 0, called the Novikov equation. M̂n,± is de-
fined by its highest-order term M̂n,+ = (−i∂x)n12 + · · · and
M̂n,− = (−i∂x)nσ3 + · · · . If commutators are proportional to
the time derivative L̂t, we obtain the hierarchy of classical in-
tegrable systems. Here, we use M̂ = M̂2,+ in Eq. (3), because
it provides the lowest-order equation supporting the station-
ary background with a superconducting gap shown in Fig. 1.
The Mathematica code for generating Novikov equations is
available,59, 60) including expressions up to M̂5,±.

When v = ξ = 0, the above hierarchy reduces to the
one including the coupled Schrödinger–Boussinesq equa-
tion,12, 61–66) which has been applied to plasma physics. There-
fore, while the time evolution governed by M̂ is different from
those in condensed-matter systems mentioned above, whose
time evolution is based on the self-consistent determination of
potentials and eigenfunctions17, 41–44, 67) or effective field the-
ories,68) the present equations (4)-(6) are expected to be de-
rived by applying the reductive perturbation method61, 62, 69–71)

to multicomponent plasmas or fluids.
Now, let us discuss the construction of the concrete multi-

soliton solutions using the Zakharov–Shabat (ZS) scheme.72)

We extract the minimal formulas for the higher-order ZS
scheme:73) Let wi, i = 1, . . . , n be an eigenfunction of the
Lax pair (L̂ − ϵi)wi = (M̂ + i∂t)wi = 0 with asymptotic
behavior ∥wi∥ → 0 (resp. ∞) at x → −∞ (resp. +∞),
which are called the seed solutions. Writing their array as
W = (w1,w2, . . . ,wn), we introduce an n × n Gram matrix

G(x) =
∫ x
−∞ dxW(x)†W(x), and define K(x, y) = −W(x)[1n +

G(x)]−1W(y)†. Then, the new solution with n solitons added
from the known one is given by

ξnew = ξ + K12, (7)

qnew = q − 2K12K22 + (Kx − Ky)12 + 2ξ(K11−K22), (8)

unew = u − 2|ξ|2 + 2|ξnew|2 + [ln det(1n +G)]xx, (9)

vnew = v + tr[(Kx + Ky)σ3], (10)

where K = K(x, x), Kx = [∂xK(x, y)]y=x, Ky = [∂yK(x, y)]y=x,
and subscripts 1 and 2 represent the matrix components.
The formulas (7)–(10) might be expressed elegantly using a
quasideterminant.74)

Let us apply the above general formula to the uniform state
with an s-wave gap (u, v, q, ξ) = (u0, 0, q0, 0), u0, q0 > 0. The
eigenfunction with the real eigenvalue ϵ is given by

w(x, t, ϵ, k, φ) =
√

2|Re k|
(
w0(ϵ, k)ekx−ω(k)t+iφ + c.c.

)
, (11)

where w0(ϵ, k) = 1√
2

1
[(ϵ+q0)2+|ω(k)|2]1/2

(
ϵ+q0+iω(k)
ϵ+q0−iω(k)

)
, ω(k) = i(k2 +

u0), and k = k(ϵ) B [(ϵ2 − q2
0)1/2− u0]1/2. Then, the seed solu-

tion is generally given by wi = w(x − xi, t − ti, ϵi, ki, φi), ki =

k(ϵi), possessing four real parameters xi, ti, φi, and ϵi. The soli-
ton velocity becomes Vi =

Reω(ki)
Re ki

. Below, we determine the
two types of one-soliton solutions by the choice of ϵ1 (Fig. 1).

The first type is determined from the superconducting gap
|ϵ| < q0 (Fig. 1), which we call the tsunami soliton, whose
behavior is shown in Fig. 2. In this solution, we observe the
propagation of the step structure, which suddenly turns back
at (x, t) = (x1, t1). At the moment of turning back, the oppo-
site side of the soliton experiences an oscillation.

Taking various limits of (x1, t1), we can obtain different so-
lutions. If both x1, t1 are set to infinity, we obtain a solution
without the propagation turning back. If we fix t1 and take
x1 → −∞, we obtain a solution with sudden oscillation occur-
ring at t = t1, similar to the AB, but it now emerges from the
self-adjoint Lax pair. We note the unpredictability of the mo-
ment of turning back from the observation data—it depends
on a subtle difference in the initial condition and is difficult
to detect. Unlike rogue waves,13) the background with finite
u0, q0 is linearly unstable against a short-wavelength pertur-
bation; the onset of instability appears at k = 2kF = 2

√
u0

with a Fermi wavenumber kF , which explains the oscillation
period occurring at t = 0 in Fig. 2. The 2kF-oscillation around
a local defect is called the Friedel oscillation in condensed-
matter context.75, 76)

Figure 2 also recalls the soliton resonance phenomena
in (2+1)-dimensional integrable systems,71, 77, 78) where Y-
shaped and more divaricate structures of line solitons are
formed, using large degrees of freedom, including functional
parameters.79) These structures are constructed by a linear
combination of multiple seed solutions, but in the present
case, the maximum number of seeds is two [Eq. (11)] owing
to the limitation of (1+1)-dimensional systems. An oscillation
profile similar to Fig. 2 can be found in two-layer fluids.71)

In Fig. 2, we plot u − 2|ξ|2 instead of u itself, because it
is a conserved density, and it is convenient to detect the front
of the tsunami soliton. The conservation laws are derived as
follows.80) Let Φ be a 2 × 2 matrix satisfying (L̂ − λ)Φ =
(M̂+i∂t)Φ = 0. DefiningΨ =

(
Φ
∂xΦ

)
, we have a zero-curvature

2



J. Phys. Soc. Jpn. LETTERS

(a) (b)

(c) (d)

x

0.5 t � ±6

x

0.5 t � ±4

x

0.5 t � ±2

�q�2 ���2
x

0.5 t � 0

-20 20

x

-0.5

0.5 t � ±6

x

-0.5

0.5 t � ±4

x

-0.5

0.5 t � ±2

x

-0.5

0.5

u - 2 ���2 - u0 v

t � 0

-20 20

Fig. 2. (Color online) One-tsunami solution. The background parame-
ters are (u0, q0) = (1, 2

3 ), and the soliton parameters are (ϵ1; x1, t1, φ1) =
( 1

3 ; 0, 0, 0). (a) and (b) are contour plots for |q|2 and u−2|ξ|2. (c) and (d) show
snapshots at special t for |q|2, |ξ|2, u − 2|ξ|2 − u0, and v. The gif animation for
(c) and (d) is available.59, 81)

expression ∂xΨ = UΨ, ∂tΨ = VΨ using some λ-dependent
4×4 matrices U and V . Substituting λ = k2 and expanding the
Riccati equation for Γ = ΦxΦ

−1 by powers ( 1∓i
k )n, we obtain

∂

∂t
(ρR

n ± iρI
n) +

∂

∂x
(JR

n ± iJI
n) = 0, n = 1, 2, . . . , (12)

whose first few examples are ρR
1 = −v, ρI

1 = u − 2|ξ|2, ρR
2 =

2(|ξ|2)x, ρ
I
2 = −vx, . . . , and JR

1 = 2i(ξ∗ξx−ξξ∗x), JI
1 = 2i(q∗ξ−

qξ∗), JR
2 = 2i(ξ∗qx−ξq∗x), JI

2 = 2i(ξ∗ξxx−ξξ∗xx), . . . etc. For a
stationary solution, JR,I

n are constant and appear as coefficients
of the algebraic curve.58)

The second type of solitons arises from the bound states
of normal electrons/holes (Fig. 1), which has zero velocity.
We call these solitons the Korteweg–de Vries (KdV) rocks, be-
cause L̂ with q = ξ = 0 reduces to the double Schrödinger op-
erator, and hence, the time evolution based on the third-order
M̂3,± instead of M̂2,+ becomes the famous KdV equation.
These solitons are immobile under M̂2,+, but could be moving
KdV solitons if the time evolution were defined by M̂3,±. The
hybrid multisoliton solution with coexisting tsunami solitons
and KdV rocks is shown in Fig. 3, like a flood in the desert.

The lack of time dependence for the KdV rocks does not
imply that this solution is boring—the fact that we can add
an arbitrary number of stationary KdV rocks at any posi-
tion is curious, because it allows the present system (4)-(6)
to have an anomalously large stationary-solution space. This
should be compared with the typical known classical inte-
grable systems, where general stationary solutions are given
by elliptic functions and the entire solution space has at most
a finite number of adjustable constants. As we will see be-
low, this anomaly can happen because the orders of L̂ and M̂
[Eqs. (2) and (3)] are not coprime. Recall that, in the KdV

hierarchy, only odd-order differential operators generate the
higher-order KdV equations;82, 83) therefore, there is no coun-
terpart for even-order M̂n,±.

Consider the stationary problem for Eq. (1), i.e., [L̂, M̂] =
0. By the Burchnall–Chaundy lemma,58, 83–87) the commuting
differential operators satisfy a polynomial relation P(L̂, M̂) =
0, which defines an algebraic curve (or Riemann surface).
Writing the simultaneous eigenvalue problem

L̂ϕ = λϕ, M̂ϕ = ωϕ, (13)

the algebraic curve satisfied by (2) and (3) is

P(λ, ω) = (λ2 − ω2 − a)2 + bλ + cω + d = 0, (14)

where a, b, c, d are expressed by the rational functions of
the constants JR,I

n ’s in Eq. (12). If the values of a, b, c, d are
generic, Eq. (14) represents the genus-one elliptic curve. The
stationary solutions are then divided into two classes, which
we call regular and irregular below.

The regular solutions are described as follows. Assume that
JR

1 , 0 and set α = JI
1/JR

1 and β3 = JR
3 /JR

1 . The stationary so-
lution is then given by q = −αξx, u ± v = 1±α

1∓α (β3 − 2|ξ|2),
and (1 − α2)ξxx + 4(β3 − 2|ξ|2)ξ = 0. The last equation is
the stationary NLS equation, whose solution is given by theta
functions.88, 89) The algebraic curve (14) for regular solutions
has genus g = 1, except for the elementary limit. These re-
sults are familiar and typical.

On the other hand, the irregular solutions emerge when
JR

1 = JI
1 = 0. We have general solutions ξ∗ = c1ξ, q∗ =

c1q, v = qx
2ξ , and u = c2

ξ2 − q2

4ξ2 +c1ξ
2+

ξ2
x

4ξ2 − ξxx
2ξ , where c1, c2 are

integration constants. Thus, the irregular solutions have two
arbitrary real-valued (up to overall phase) functions ξ and q,
which include the multi-KdV-rock states as a particular solu-
tion. This result also suggests that the irregular solution need
not generally be a reflectionless potential. With this solution,
the algebraic curve (14) has the squared form

P(λ, ω) = (λ2 − ω2 − 4c1c2)2 = 0, (15)

suggesting the double-valuedness of the Baker–Akhiezer
(BA) function discussed below.

If the orders of L̂ and M̂ are coprime, the BA function,
i.e., the simultaneous eigenfunction ϕ in Eq. (13) defined as
a function on the Riemann surface, becomes a single-valued
meromorphic (excepting the essential singular point) func-
tion, whose uniqueness under a certain condition guarantees
the algebro-geometric approach.58, 83, 90, 91) However, if not,
it can be (not necessarily) a multi-valued function, and re-
garded as a section of the higher-rank holomorphic vector
bundle.86, 92, 93) In such a case, the solution of the differen-
tial equation may have the arbitrariness of functional parame-
ters.93)

To illustrate the above theories, let us observe that the
spatially uniform state belonging to regular solutions does
not allow a time-independent KdV rock. Take the FF state
(u±v, q, ξ) = (p2(1±α)2,−2iαpξ0e2ipx, ξ0e2ipx), where p, ξ0, α
are real. We only discuss α = 0 for brevity and assume p , 0.
The eigenfunction is obtained by substituting ϕ ∝ ei(k+pσ3)x

into Eq. (13), yielding the dispersion relations (λ − 2kp)2 =

k4 + 4ξ2
0k2, (k2 + 2ξ2

0 − ω)2 = 4p2(k2 + 4ξ2
0). Eliminat-

ing k from these two relations, we revisit a relation of the
form (14), whose genus is now zero because of the elemen-
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Fig. 3. (Color online) Five-soliton solution with two tsunami solitons and three KdV rocks.59, 81) The plotted objects are the same as those in Fig. 2. The
parameters are (u0, q0) = (1, 2

3 ) for background, (ϵ1; x1, t1, φ1) = ( 1
3 ; 0,−5, 0), (ϵ2; x2, t2, φ2) = ( 3

5 ;−3, 13, 0) for tsunami solitons, and (ϵ3; x3, t3, φ3) =
(− 9

5 ;−5, 0, π6 ), (ϵ4; x4, t4, φ4) = ( 5
2 ; 10, 0, π6 ), (ϵ5; x5, t5, φ5) = ( 5

4 ; 19, 0, π6 ) for KdV rocks. The gif animation for (c) and (d) is available.59, 81)

tary limit, parametrized by the uniformization parameter s:
(λ, ω) = (X + Y, X − Y), X = 4p2s(s − 1), Y = ξ2

0
s −

ξ4
0

4p2 s2 .
Moreover, the wavenumber k is written as a rational function
of the same parameter: k = −2ps + ξ2

0
2ps , indicating that the

BA function ϕ is single-valued on the Riemann surface. In-
deed, ω = −λ − 4i|p|ξ2

0λ
−1/2 + O(λ−1) for a large λ has both

nonzero real and imaginary parts; hence, the KdV soliton cre-
ated by the ZS scheme has finite velocity, and is no longer a
“rock.” Hence, no large arbitrariness in the stationary solution
exists.

On the other hand, the s-wave uniform state (u, v, q, ξ) =
(u0, 0, q0, 0), which has been mainly considered in this study,
belongs to the irregular solution. The dispersion relations for
ϕ ∝ eikx become λ2 = (k2−u0)2+q2

0, ω = k2−u0. Eliminating
k, we find λ2 −ω2 − q2

0 = 0, corresponding to Eq. (15), which
is easily parametrized as λ = q0

2 (s + s−1), ω = q0
2 (s − s−1).

However, the wavenumber k =
√

q0
2 (s − s−1) + u0 cannot be

expressed as a rational function of the parameter s; thus, the
BA function ϕ becomes a double-valued function on the Rie-
mann surface owing to the square root, implying the existence
of rank-2 solutions.93)

Finally, we introduce the concept of isodispersive phases
to characterize the oscillating region of the tsunami soliton
(Fig. 2). For a given reflectionless potential of differential op-
erator L̂, we define the backgrounds of the left and right sides
far from the potential (x → ±∞) as isodispersive. This term
is used because both states share the same dispersion relation
λ(k) via the Jost solution ϕnew(x) = ϕ(x) +

∫ x
−∞ K(x, y)ϕ(y)dx.

For spatially uniform backgrounds, isodispersive phases are
typically connected by trivial gauge transformations; for ex-
ample, in the integrable spinor Bose condensates with fi-
nite density,94, 95) the backgrounds before and after the soli-
ton passes are both polar phases96, 97) at different angles, con-
nected by the U(1) ⊗ S O(3) group.98) The same phases with
various angles form the order parameter manifold, whose ho-
motopy groups classify the topological defects.98, 99) On the
other hand, the tsunami soliton near the oscillation time t ≃ 0
(Fig. 2) shows a reflectionless potential such that the left
side is uniform but the right side is oscillating. The multiple
tsunami-soliton state (Fig. 3) can support more complicated
quasiperiodic backgrounds. In these cases, the set of isodis-

persive phases may not be compact, and the physical inter-
pretation of the transformation group is unclear. While the
uniform phases are classified by values ρI

1 = u − 2|ξ|2 and
(ρI

3)uniform = |q|2 + u2+v2

2 + 2u|ξ|2 − 2|ξ|4, characterizing all
quasiperiodic isodispersive phases might require higher-order
ρR,I

n , which remains an open problem.
In summary, we presented the tsunami-soliton and station-

ary KdV-rock solutions in a classical integrable equation aris-
ing from the BdG operator in parity-mixed SCs. The family
of Novikov equations constituting a hierarchy was generated
using Krichever’s method. The tsunami solitons provide not
only the turning-back dynamics but also the characterization
problem of isodispersive quasiperiodic states, which might be
used for new types of momentum-dependent topological de-
fects and exotic Josephson junctions with transparent scatter-
ing properties. The irregular solutions, which are allowed by
the non-coprime Lax pair and include the multi KdV rocks,
will open up a new application of classical integrable models
to physical systems with disordered backgrounds.

The unified treatment of the entire hierarchy, the derivation
from multicomponent plasmas and fluids by reductive pertur-
bation, and the application to the quadratic-dispersion BdG
systems toward full many-body treatment are all left as future
tasks.

The data that support the findings of this article are openly
available.60, 81)
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