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We propose a classical integrable system exhibiting the tsunami-like solitons with rocky-desert-like disordered station-
ary background. One of the Lax operators describing this system is interpretable as a Bogoliubov-de Gennes Hamiltonian
in parity-mixed superconductor. The family of integrable equations is generated from this seed operator by Krichever’s
method, whose pure s-wave limit includes the coupled Schrödinger-Boussinesq hierarchy applied to plasma physics. A
linearly unstable finite background with superconducting gap supports the tsunami-soliton solution, where the propa-
gation of the step structure turns back at a certain moment, accompanied with the oscillation on the opposite side. In
addition, the equation allows inhomogeneous stationary solutions with arbitrary number of bumps at arbitrary positions,
which we coin the KdV rocks. In the Zakharov-Shabat scheme, the tsunami solitons are created from the Bogoliubov
quasiparticles in energy gap and the KdV rocks from normal electrons/holes. The unexpected large space of stationary
solutions comes from the non-coprime Lax pair and the multi-valued Baker-Akhiezer functions on the Riemann surface,
formulated in terms of higher-rank holomorphic bundles by Krichever and Novikov. Furthermore, the concept of isodis-
persive phases is introduced to characterize quasiperiodic multi-tsunami backgrounds and consider its classification.

The study of rogue waves has brought a new interdisci-
plinary trend between classical integrable systems and non-
linear physics.1–3) As a prime example, the attractive non-
linear Schrödinger (NLS) equation has three kinds of funda-
mental solitons; spatially localized and temporally oscillat-
ing Kuznetsov-Kawata-Inoue-Ma soliton,4–6) temporally lo-
calized and spatially periodic Akhmediev breather (AB),7, 8)

and spatiotemporally localized Peregrine soliton,9) the most
famous rogue wave. Many integrable systems with modula-
tional instability also exhibit similar solutions.10–12)

The statistical properties of integrable turbulence has also
been investigated from the view of rogue wave formation.13)

Other notable wave phenomena studied in integrable sys-
tems are the dispersive shock waves based on Whitham’s
method.14) Under these circumstances, the question arises as
to whether it is possible to describe a wider range of hydrody-
namic instability phenomena within the frame work of exact
analysis of classical integrable systems. The aim of this pa-
per is to propose the classical integrable equation possessing
tsunami-like soliton solutions propagating on bumpy and dis-
ordered backgrounds, emerging, surprisingly, as a by-product
of the study of superconductivity.

Our system is described by the Lax pair

iL̂t = [L̂, M̂], (1)

L̂ = −∂2
xσ3+ {∂x, ξσ+− ησ−}− uσ3 + v12 + qσ++ rσ−, (2)

M̂ = (−∂2
x − u + 2ξη)12 + vσ3 + 2(ξxσ+ + ηxσ−), (3)

where 12 and σ1,2,3 are the 2 × 2 identity and Pauli matrices,
σ± =

σ1±iσ2
2 , and {X,Y} is the anti-commutator. Here, we re-

strict ourselves to the case u = u∗, v = v∗, r = q∗, and η = ξ∗,
where L̂ and M̂ become self-adjoint. The resultant equations
are given by

iut = 2(q∗ξx − qξ∗x), ivt = 2(ξξ∗x − ξ∗ξx)x, (4)

iξt = −2vξ + qx, (5)
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iqt = −2vq − 2ξux − 4ξxu + 4ξ(|ξ|2)x − ξxxx. (6)

The physical/mathematical backgrounds which led us to
Eqs. (1)-(6) are to be confessed below.

First, L̂ [Eq. (2)] can be viewed as the Bogoliubov-de
Gennes (BdG) Hamiltonian15, 16) in parity-mixed supercon-
ductors (SCs) and physical interpretations of the coefficient
functions by the Hartree-Fock (HF) mean fields and the
Cooper pairs (gap functions) are summarized in Table I. The
mean-field theory with omitted HF fields is formulated in
Ref. 17. The parity-mixed SCs appear in noncentrosymmet-
ric materials18) and the surface of topological SCs.19) Fig-
ure 1 shows a schematic picture of the dispersion relation
with/without s-wave gap q = q0.

When chemical potential µ is large, Andreev’s dispersion
linearization20) around the Fermi points (see Fig. 1 of Ref. 21)
works well and physical systems equivalent to this one appear
in diverse fields, including the Peierls problem in conduct-
ing polymers22–30) and the Gross-Neveu models,31–33) and the
reflectionless/finite-gap potentials in the NLS hierarchy have
been applied to determine the exact self-consistent soliton
dynamics and the phase diagram of the Larkin-Ovchinnikov
(LO) and Fulde-Ferrell (FF) soliton lattices.34–43)

On the other hand, the treatment without disper-
sion linearization become important in (i) the BCS-BEC
crossover44, 45) where the BEC side corresponds to small µ,
(ii) eliminating cutoff-dependence, and (iii) comparsion with
quantum many-body counterpart described by the Gaudin-
Yang model.46–49) In particular, (iii) will play a key role in
construction of the fermionic many-body quantum solitons,
whose bosonic analog has been studied.50–55) The quadratic
dispersion also contributes to spectral functions and lifetime
of quasiparticles in Tomonaga-Luttinger liquids.56, 57)

Next, we explain how to find M̂ in Eq. (3). Following
Krichever,58) we can find a family of differential operators
M̂n,±, n = 0, 1, 2, . . . commuting with L̂, and obtain the
sequence of ordinary differential equations determined by
[L̂, M̂] = 0, called the Novikov equation. M̂n,± is defined by
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Table I. The physical interpretation of the potentials in L̂, describing the
parity-mixed SC. Here, ψ̂s, s =↑, ↓ represent fermionic field operators with
up and down spin, g and g′ are s- and p-wave coupling constants, and the
bracket means the expectation value for a certain quantum many-body state.

Interpretation in SCs
u µ + 1

2 g ⟨ψ̂†↑ψ̂↑ + ψ̂
†
↓ψ̂↓⟩ chemical potential + HF mean field

v −h + 1
2 g ⟨ψ̂†↑ψ̂↑ − ψ̂

†
↓ψ̂↓⟩ magnetic field + HF mean field

q g ⟨ψ̂↓ψ̂↑⟩ s-wave Cooper pair
ξ g′ ⟨ψ̂↑∂xψ̂↓ + ψ̂↓∂xψ̂↑⟩ p-wave Cooper pair
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Fig. 1. The dispersions relation ϵ(k) for plane-wave eigenfunctions L̂ϕ =
ϵϕ, ϕ ∝ eikx, with uniform background (u, v, q, ξ) = (u0, 0, q0, 0). The red
solid and blue dashed lines represent the relation with (q0 , 0) and without
(q0 = 0) the s-wave superconducting gap. The triangle and square markers
show exponentially-divergent seed solutions used to construct soliton solu-
tions.

its highest-order term M̂n,+ = (−i∂x)n12 + · · · and M̂n,− =
(−i∂x)nσ3 + · · · . If commutators are proportional to the time
derivative L̂t, we obtain the hierarchy of classical integrable
systems. Here we use M̂ = M̂2,+ in Eq. (3), because it
provides the lowest-order equation supporting the stationary
background with superconducting gap shown in Fig. 1. The
Mathematica code for generating Novikov equations is avail-
able,59, 60) including expressions up to M̂5,±.

When v = ξ = 0, the above hierarchy reduces to
the one including the coupled Schrödinger-Boussinesq equa-
tion,12, 61–66) which has been applied to plasma physics. There-
fore, while the time evolution governed by M̂ is different from
those in condensed-matter systems mentioned above whose
time evolution is based on the self-consistent determination of
potentials and eigenfunctions17, 41–44, 67) or effective field the-
ories,68) the present equations (4)-(6) are expected to be de-
rived by applying the reductive perturbation method61, 62, 69–71)

to multicomponent plasmas or fluids.
Now, let us move on to the construction of the con-

crete multi-soliton solutions by the Zakharov–Shabat (ZS)
scheme.72) We extract the minimal formulas for the higher-
order ZS scheme:73) Let wi, i = 1, . . . , n be an eigenfunc-
tion of the Lax pair (L̂ − ϵi)wi = (M̂ + i∂t)wi = 0 with
asymptotic behavior ∥wi∥ → 0 (resp. ∞) at x → −∞ (resp.
+∞), which are called the seed solution. Writing their array
as W = (w1,w2, . . . ,wn), we introduce an n × n Gram matrix
G(x) =

∫ x
−∞ dxW(x)†W(x), and define K(x, y) = −W(x)[In +

G(x)]−1W(y)†. Then, the new solution with n solitons added
from the known one is given by

ξnew = ξ + K12, (7)

qnew = q − 2K12K22 + (Kx − Ky)12 + 2ξ(K11−K22), (8)

unew = u − 2|ξ|2 + 2|ξnew|2 + [ln det(In +G)]xx, (9)

vnew = v + tr[(Kx + Ky)σ3], (10)

where K = K(x, x), Kx = [∂xK(x, y)]y=x, Ky = [∂yK(x, y)]y=x

and subscripts 1,2 represent the matrix components. The for-
mulas (7)-(10) might be expressed elegantly using quasideter-
minant.74)

Let us apply the above general formula to the uniform state
with s-wave gap (u, v, q, ξ) = (u0, 0, q0, 0), u0, q0 > 0. The
eigenfunction with real eigenvalue ϵ is given by

w(x, t, ϵ, k, φ) =
√

2|Re k|
(
w0(ϵ, k)ekx−ω(k)t+iφ + c.c.

)
, (11)

where w0(ϵ, k) = 1√
2

1
[(ϵ+q0)2+|ω(k)|2]1/2

(
ϵ+q0+iω(k)
ϵ+q0−iω(k)

)
, ω(k) = i(k2 +

u0), and k = k(ϵ) B [(ϵ2 − q2
0)1/2− u0]1/2. Then, the seed solu-

tion is generally given by wi = w(x − xi, t − ti, ϵi, ki, φi), ki =

k(ϵi), possessing four real parameters xi, ti, φi and ϵi. The soli-
ton velocity becomes Vi =

Reω(ki)
Re ki

. Below, we find the two
types of one-soliton solution by the choice of ϵ1 (Fig. 1).

The first type is found from the superconducting gap |ϵ| <
q0 (Fig. 1), which we call the tsunami soliton, whose behav-
ior is shown in Fig. 2. In this solution, we observe the prop-
agation of the step structure, which suddenly turns back at
(x, t) = (x1, t1). At the moment of turning back, the opposite
side of soliton experiences an oscillation.

Taking various limits of (x1, t1), we can obtain different so-
lutions. If both x1, t1 are set infinity, we get a solution without
turning back. If we fix t1 and take x1 → −∞, we obtain a so-
lution with sudden oscillation occurring at t = t1, similar to
the AB, but now emerges from the self-adjoint Lax pair. We
note the unpredictability of the moment of turning back from
the observation data — it depends on a very subtle difference
of the initial condition and difficult to detect. Unlike rogue
waves,13) the background with finite u0, q0 is linearly unstable
against a short-wavelength perturbation; the onset of instabil-
ity appears at k = 2kF = 2

√
u0 with kF a Fermi wavenumber,

which explains the oscillation period occurring at t = 0 in
Fig. 2. The 2kF-oscillation around a local defect is called the
Friedel oscillation in condensed-matter context.75, 76)

Figure 2 also reminds us of the soliton resonance phenom-
ena in (2+1)-dimensional integrable systems,71, 77, 78) where
Y-shaped and more divaricate structures of line solitons are
formed, using large degree of freedom including functional
parameters.79) Both are constructed by linear combination of
multiple seed solutions, but in the present case, the maximum
number of seeds is two [Eq. (11)] due to limitation of (1+1)-
dimensional system. The oscillation profile similar to Fig. 2
can be found in two-layer fluid.71)

In Fig. 2, we plot u − 2|ξ|2 instead of u itself, because
it is a conserved density and convenient to detect the front
of the tsunami soliton. The conservation laws are derived as
follows.80) Let Φ be a 2 × 2 matrix satisfying (L̂ − λ)Φ =
(M̂+i∂t)Φ = 0. DefiningΨ =

(
Φ
∂xΦ

)
, we have a zero-curvature

expression ∂xΨ = UΨ, ∂tΨ = VΨ using some λ-dependent
4 × 4 matrices U and V . Putting λ = k2 and expanding the
Riccati equation for Γ = ΦxΦ

−1 by powers ( 1∓i
k )n, we obtain

∂

∂t
(ρR

n ± iρI
n) +

∂

∂x
(JR

n ± iJI
n) = 0, n = 1, 2, . . . , (12)
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Fig. 2. One-tsunami solution. The background parameters are (u0, q0) =
(1, 2

3 ) and soliton parameters are (ϵ1; x1, t1, φ1) = ( 1
3 ; 0, 0, 0). (a) and (b) are

contour plots for |q|2 and u−2|ξ|2. (c) and (d) show snapshots at special t’s for
|q|2, |ξ|2, u−2|ξ|2−u0, and v. The gif animation for (c) and (d) is available.59, 81)

whose first few examples are ρR
1 = −v, ρI

1 = u − 2|ξ|2, ρR
2 =

2(|ξ|2)x, ρ
I
2 = −vx, . . . , and JR

1 = 2i(ξ∗ξx − ξξ∗x), JI
1 =

2i(q∗ξ − qξ∗), JR
2 = 2i(ξ∗qx − ξq∗x), JI

2 = 2i(ξ∗ξxx − ξξ∗xx), . . .
etc. For stationary solution, JR,I

n ’s are constant and appear as
coefficients of the algebraic curve.58)

The second type of solitons arises from the bound states
of normal electrons/holes (Fig. 1), which has zero velocity.
We call them the Korteweg-de Vries (KdV) rocks, because L̂
with q = ξ = 0 reduces to the double Schrödinger operator,
and hence the time evolution base on the third order M̂3,± in-
stead of M̂2,+ becomes the famous KdV equation. They are
immobile under M̂2,+, but could be a moving KdV soliton if
time evolution were defined by M̂3,±. The hybrid multi-soliton
solution with coexisting tsunami solitons and KdV rocks is
shown in Fig. 3, like a flood in the desert.

The lack of time-dependence for the KdV rocks does not
mean that this solution is boring — the fact that we can add
arbitrary number of the stationary KdV rocks at any position
is curious, because it allows the present system (4)-(6) to have
anomalously large stationary-solution space. This should be
compared with the typical known classical integrable systems,
where general stationary solutions are given by elliptic func-
tions and the whole solution space has at most a finite number
of adjustable constants. As we will see below, this anomaly
can happen because the orders of L̂ and M̂, which are now
both two [Eqs. (2) and (3)], are not coprime. Recall that, in
the KdV hierarchy, the only odd-order differential operators
generate the higher-order KdV equations,82, 83) so there is no
counterpart for even-order M̂n,±’s.

Consider the stationary problem for Eq. (1), i.e., [L̂, M̂] =
0. By the Burchnall-Chaundy lemma,58, 83–87) the commuting
differential operators satisfy a polynomial relation P(L̂, M̂) =
0 which defines an algebraic curve (or Riemann surface).

Writing the simultaneous eigenvalue problem

L̂ϕ = λϕ, M̂ϕ = ωϕ, (13)

the algebraic curve satisfied by (2) and (3) is

P(λ, ω) = (λ2 − ω2 − a)2 + bλ + cω + d = 0, (14)

where a, b, c, d are expressed by rational functions of the con-
stants JR,I

n ’s in Eq. (12). If the values of a, b, c, d are generic,
Eq. (14) represents the genus-one elliptic curve. The station-
ary solutions are then divided into two classes, which we call
regular and irregular below.

The regular solutions are described as follows. Assume that
JR

1 , 0 and write α = JI
1/JR

1 and β3 = JR
3 /JR

1 . The stationary
solution is then given by q = −αξx, u±v = 1±α

1∓α (β3−2|ξ|2), and
(1 − α2)ξxx + 4(β3 − 2|ξ|2)ξ = 0. The last one is the stationary
NLS equation whose solution is given by theta functions.88, 89)

The algebraic curve (14) for regular solutions has genus g = 1
except for elementary limit. These results are familiar and typ-
ical.

The irregular solutions, on the other hand, emerge when
JR

1 = JI
1 = 0. We have general solution ξ∗ = c1ξ, q∗ =

c1q, v = qx
2ξ , and u = c2

ξ2 − q2

4ξ2 +c1ξ
2+

ξ2
x

4ξ2 − ξxx
2ξ , where c1, c2 are

integration constants. Thus, the irregular solutions have two
arbitrary real-valued (up to overall phase) functions ξ and q,
which include the multi-KdV-rock states as a particular solu-
tion. This result also suggests that the irregular solution need
not generally be a reflectionless potential. With this solution,
the algebraic curve (14) has the squared form

P(λ, ω) = (λ2 − ω2 − 4c1c2)2 = 0, (15)

suggesting the double-valuedness of the Baker-Akhiezer (BA)
function discussed below.

If orders of L̂ and M̂ are coprime, the BA function, i.e., the
simultaneous eigenfunction ϕ in Eq. (13) defined as a function
on the Riemann surface, becomes a single-valued meromor-
phic (excepting the essential singular point) function, whose
uniqueness under a certain condition guarantees the algebro-
geometric approach.58, 83, 90, 91) If not, however, they can be
(but not always) a multi-valued function, and regarded as a
section of the higher-rank holomorphic vector bundle.86, 92, 93)

In such a case, the solution of the differential equation may
have arbitrariness of functional parameters.93)

To illustrate the above theories, let us observe that the
spatially uniform state belonging to regular solutions does
not allow a time-independent KdV rock. Take the FF state
(u±v, q, ξ) = (p2(1±α)2,−2iαpξ0e2ipx, ξ0e2ipx), where p, ξ0, α
are real. We only discuss α = 0 for brevity and assume p , 0.
The eigenfunction is obtained by substituting ϕ ∝ ei(k+pσ3)x

to Eq. (13), yielding the dispersion relations (λ − 2kp)2 =

k4 + 4ξ2
0k2, (k2 + 2ξ2

0 − ω)2 = 4p2(k2 + 4ξ2
0). Eliminat-

ing k from these two relations, we revisit a relation of the
form (14), whose genus is now zero because of elemen-
tary limit, parametrized by the uniformization parameter s:
(λ, ω) = (X+Y, X−Y), X = 4p2s(s−1), Y = ξ2

0
s −

ξ4
0

4p2 s2 . More-
over, the wavenumber k is also written as a rational function
of the same parameter: k = −2ps+ ξ2

0
2ps , implying that the BA

function ϕ is single-valued on the Riemann surface. Indeed,
ω = −λ − 4i|p|ξ2

0λ
−1/2 + O(λ−1) for large λ has both nonzero

real and imaginary parts, so the KdV soliton created by the
ZS scheme has finite velocity, no longer a “rock”. Hence, no
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Fig. 3. Five-soliton solution with two tsunami solitons and three KdV rocks.81) The plotted objects are the same as Fig. 2. The parameters are (u0, q0) = (1, 2
3 )

for background, (ϵ1; x1, t1, φ1) = ( 1
3 ; 0,−5, 0), (ϵ2; x2, t2, φ2) = ( 3

5 ;−3, 13, 0) for tsunami solitons, and (ϵ3; x3, t3, φ3) = (− 9
5 ;−5, 0, π6 ), (ϵ4; x4, t4, φ4) =

( 5
2 ; 10, 0, π6 ), (ϵ5; x5, t5, φ5) = ( 5

4 ; 19, 0, π6 ) for KdV rocks. The gif animation for (c) and (d) is available.59, 81)

large arbitrariness in stationary solution exists.
On the other hand, the s-wave uniform state (u, v, q, ξ) =

(u0, 0, q0, 0), which has been mainly considered in this paper,
belongs to the irregular solution. The dispersion relations for
ϕ ∝ eikx become λ2 = (k2−u0)2+q2

0, ω = k2−u0. Eliminating
k, we find λ2 −ω2 − q2

0 = 0, corresponding to Eq. (15), which
is easily parametrized as λ = q0

2 (s + s−1), ω = q0
2 (s − s−1).

However, the wavenumber k =
√

q0
2 (s − s−1) + u0 cannot be

expressed as a rational function of the parametrizer s, thus the
BA function ϕ becomes a double-valued function on the Rie-
mann surface due to the square root, implying the existence
of rank-2 solutions.93)

Finally, we introduce the concept of isodispersive phases
to characterize the oscillating region of the tsunami soliton
(Fig. 2). For a given reflectionless potential of differential
operator L̂, we define that the backgrounds of the left and
right sides far from the potential (x → ±∞) are isodisper-
sive. This name is used because both states share the same
dispersion relation λ(k) via the Jost solution ϕnew(x) = ϕ(x) +∫ x
−∞ K(x, y)ϕ(y)dx. For spatially uniform backgrounds, isodis-

persive phases are typically connected by trivial gauge trans-
formations; for example, in the integrable spinor Bose con-
densates with finite density,94, 95) the backgrounds before and
after the soliton passes are both polar phases96, 97) at differ-
ent angles, connected by U(1) ⊗ S O(3) group.98) The same
phases with various angles forms the order parameter man-
ifold, whose homotopy groups classify the topological de-
fects.98, 99) On the other hand, the tsunami soliton near the
oscillation time t ≃ 0 (Fig. 2) shows a reflectionless poten-
tial such that the left side is uniform but the right side is os-
cillating. The multiple tsunami-soliton state (Fig. 3) can sup-
port more complicated quasiperiodic backgrounds. In these
cases, the set of isodispersive phases may not be compact
and physical interpretation of the transformation group is
unclear. While the uniform phases are classified by values
ρI

1 = u−2|ξ|2 and (ρI
3)uniform = |q|2+ u2+v2

2 +2u|ξ|2−2|ξ|4, char-
acterizing all quasiperiodic isodispersive phases might require
higher-order ρR,I

n ’s, remaining to be an open problem.
Summarizing, we have presented the tsunami-soliton and

stationary KdV-rock solutions in a classical integrable equa-
tion, arising from the BdG operator in parity-mixed SCs.

The family of Novikov equations constituting a hierarchy
has been generated by Krichever’s method. The tsunami soli-
tons provide not only the turning-back dynamics but also
the characterization problem of isodispersive quasiperiodic
states, which might be used for a new kind of momentum-
dependent topological defects and exotic Josephson junctions
with transparent scattering properties. The irregular solutions,
which are allowed by the non-coprime Lax pair and include
the multi KdV rocks, will open up a new application of clas-
sical integrable models to physical systems with disordered
background.

The unified treatment of the whole hierarchy, the derivation
from multicomponent plasmas and fluids by reductive pertur-
bation, and applying to the quadratic-dispersion BdG systems
toward full many-body treatment, are all left as future tasks.

The data that support the findings of this article are openly
available.60, 81)

1) V. E. Zakharov and A. A. Gelash, Nonlinear stage of modulation insta-
bility, Phys. Rev. Lett. 111, 054101 (2013).

2) N. Akhmediev, Waves that Appear From Nowhere: Complex Rogue
Wave Structures and Their Elementary Particles, Frontiers in Physics 8
- 2020 (2021).

3) B. Guo, L. Ling, and Q. P. Liu, Nonlinear Schrödinger equation: Gen-
eralized Darboux transformation and rogue wave solutions, Phys. Rev.
E 85, 026607 (2012).

4) E. A. Kuznetsov, Solitons in a parametrically unstable plasma, Sov.
Phys. - Dokl. (Engl. Transl.); (United States) 22:9 (1977).

5) T. Kawata and H. Inoue, Inverse Scattering Method for the Nonlinear
Evolution Equations under Nonvanishing Conditions, J. Phys. Soc. Jpn.
44, 1722 (1978).

6) Y.-C. Ma, The Perturbed Plane-Wave Solutions of the Cubic
Schrödinger Equation, Stud. Appl. Math. 60, 43 (1979).

7) N. N. Akhmediev and V. I. Korneev, Modulation instability and peri-
odic solutions of the nonlinear Schrödinger equation, Theoretical and
Mathematical Physics 69, 1089 (1986).

8) J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Modu-
lation instability, Akhmediev Breathers and continuous wave supercon-
tinuum generation, Opt. Express 17, 21497 (2009).

9) D. H. Peregrine, Water waves, nonlinear Schrödinger equations and
their solutions, The Journal of the Australian Mathematical Society. Se-
ries B. Applied Mathematics 25, 16 (1983).

10) Y. Ohta and J. Yang, Dynamics of rogue waves in the Davey–
Stewartson II equation, J. Phys. A: Math. Theor. 46, 105202 (2013).

11) D. E. Pelinovsky and R. E. White, Localized structures on librational

4



J. Phys. Soc. Jpn. LETTERS

and rotational travelling waves in the sine-gordon equation, Proc. R.
Soc. A: Math. Phys. Eng. Sci. 476 (2020).

12) G. Mu and Z. Qin, Rogue Waves for the Coupled Schrödinger–
Boussinesq Equation and the Coupled Higgs Equation, J. Phys. Soc.
Jpn. 81, 084001 (2012).

13) D. S. Agafontsev and V. E. Zakharov, Integrable turbulence and forma-
tion of rogue waves, Nonlinearity 28, 2791 (2015).

14) M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. En-
gels, and V. Schweikhard, Dispersive and classical shock waves in
Bose-Einstein condensates and gas dynamics, Phys. Rev. A 74, 023623
(2006).

15) N. N. Bogoliubov, A new method in the theory of superconductivity. I,
Sov. Phys. JETP 7, 41 (1958).

16) P. G. de Gennes, Superconductivity of metals and alloys, (Westview
Press, Boulder, 1999).

17) D. A. Takahashi, Bogoliubov-de Gennes soliton dynamics in unconven-
tional Fermi superfluids, Phys. Rev. B 93, 024512 (2016).

18) T. Yoshida, M. Sigrist, and Y. Yanase, Parity-Mixed Superconductivity
in Locally Non-centrosymmetric System, J. Phys. Soc. Jpn. 83, 013703
(2014).

19) T. Mizushima, A. Yamakage, M. Sato, and Y. Tanaka, Dirac-fermion-
induced parity mixing in superconducting topological insulators, Phys.
Rev. B 90, 184516 (2014).

20) A. F. Andreev, The thermal conductivity of the intermediate state in
superconductors, Sov. Phys. JETP 19, 1228 (1964).

21) D. A. Takahashi and M. Nitta, On Reflectionless Nature of Self-
Consistent Multi-Soliton Solutions in Bogoliubov-de Gennes and Chi-
ral Gross-Neveu Models, J. Low Temp. Phys. 175, 250 (2014).

22) H. Takayama, Y. R. Lin-Liu, and K. Maki, Continuum model for soli-
tons in polyacetylene, Phys. Rev. B 21, 2388 (1980).

23) S. A. Brazovskii, S. A. Gordynin, and N. N. Kirova, An exact solution
of the Peierls model with an arbitrary number of electrons in the unit
cell, JETP Lett. 31, 456 (1980).

24) S. A. Brazovskii and N. N. Kirova, Excitons, polarons, and bipolarons
in conducting polymers, JETP Lett. 33, 4 (1981).

25) S. A. Brazovskii, N. N. Kirova, and S. I. Matveenko, Peierls effect in
conducting polymers, Sov. Phys. JETP 59, 434 (1984).

26) J. Mertsching and H. J. Fischbeck, The Incommensurate Peierls Phase
of the Quasi-One-Dimensional Fröhlich Model with a Nearly Half-
Filled Band, Phys. Status Solidi 103, 783 (1981).

27) Y. Onodera and S. Okuno, Two-Polaron Solution and Its Stability in the
Continuum Model of Polyacetylene, J. Phys. Soc. Jpn. 52, 2478 (1983).

28) S. Okuno and Y. Onodera, Coexistence of a Soliton and a Polaron in
Trans-Polyacetylene, J. Phys. Soc. Jpn. 52, 3495 (1983).

29) S. Brazovskii, I. Dzyaloshinskii, and I. Krichever, Exactly soluble
peierls models, Phys. Lett. A 91, 40 (1982).

30) I. E. Dzyaloshinskii, I. M. Krichever, and J. Chronek, New method of
finding dynamic solutions in the Peierls model, Sov. Phys. JETP 68,
1492 (1988).

31) R. F. Dashen, B. Hasslacher, and A. Neveu, Semiclassical Bound States
in an Asymptotically Free Theory, Phys. Rev. D 12, 2443 (1975).

32) S.-S. Shei, Semiclassical bound states in a model with chiral symmetry,
Phys. Rev. D 14, 535 (1976).

33) J. Feinberg, Marginally stable topologically nontrivial solitons in the
Gross-Neveu model, Phys. Lett. B 569, 204 (2003).

34) K. Machida and H. Nakanishi, Superconductivity under a ferromag-
netic molecular field, Phys. Rev. B 30, 122 (1984).

35) G. Basar and G. V. Dunne, Self-consistent crystalline condensate in chi-
ral Gross-Neveu and Bogoliubov-de Gennes systems, Phys. Rev. Lett.
100, 200404 (2008).

36) G. Basar and G. V. Dunne, A Twisted Kink Crystal in the Chiral Gross-
Neveu model, Phys. Rev. D 78, 065022 (2008).

37) G. Basar, G. V. Dunne, and M. Thies, Inhomogeneous Condensates
in the Thermodynamics of the Chiral NJL(2) model, Phys. Rev. D 79,
105012 (2009).

38) F. Correa, G. V. Dunne, and M. S. Plyushchay, The Bogoliubov/de
Gennes system, the AKNS hierarchy, and nonlinear quantum mechani-
cal supersymmetry, Annals Phys. 324, 2522 (2009).

39) D. A. Takahashi, S. Tsuchiya, R. Yoshii, and M. Nitta, Fermionic so-
lutions of chiral Gross-Neveu and Bogoliubov-de Gennes systems in
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