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Abstract 
Artificial intelligence (AI) is predominantly most discussed topic of 
recent times in scientific research. In an ecological context, animal 
behaviour is documented complex and dynamic, and analysis often 
requiring substantial investment of manual efforts and rigorous tasks. 
With the integration of emerging technologies, such as AI, the tools 
and techniques available to study animal behaviour have broadened 
and deepened the research domain. AI integration has accelerated 
the automation of tasks performance in behavioural classification, 
detection, tracking, pose estimation and action recognition in 
animals. In this paper, I concisely review the current progress in AI 
methods applied to understand animal behaviour, and discuss their 
potential impact on ecological research. 
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AI into animal behavioural ecological research 
 
Artificial intelligence (popularly known as AI), machine learning 
(ML), and deep learning (DL), in recent times, without any doubt, 
are the most discussed and explored tools compared to any others in 
both scientific and non-scientific communities [1], [2], [3], and 
overlap with the interests of almost all core disciplines such as 
biological [3], [4], chemical [5], and physical sciences [6]. AI further 
extends into medicine [7], imaging [8], drug development [9], as 
well as ecological, and wildlife conservation sciences [10], [11], 
[12], [13], [14], [15]. It is, therefore, worth mentioning that, robust 
use of AI in the diagnosis of pathological conditions such as cancer, 
and other rare diseases is encouraged [16]. 
 
In a broader context of ecology, researchers investigate a wide 
spectrum of questions, ranging from theoretical understanding to 
applied ecological processes [13], which are further divided into 
various lines of research, such as population, ecosystem, physiology, 
conservation, and behavioural ecology. In specific context of animal 
behaviour, various aspects, including evolutionary patterns, social 
structure and responses, foraging, and the effects analysis of 
environmental factors on animals, among others, are studies [17], 
[18], [19]. 
 
In the conceptual framework of AI, a transformative technology, it 
has further evolved into ML, and DL [3], [13]. Therefore, in 
terminological terms, ML and DL come under the umbrella 
overview of AI. In brief, ML applications (often referred to as 
algorithms) help to predict the outcomes of specific tasks based on 
trained datasets. However, DL has further advanced into a 
specialized tool for performative tasks, using neural networks to 
process complex datasets. Artificial neural networks (ANNs), 
convolution neural networks (CNNs), recurrent neural networks 
(RNNs), long short-term memory networks (LSTM) and generative 
adversarial networks (GANs) are specific mechanisms of DL’s 
processing capabilities. In a combined boarder overview, the use of 
AI technologies in ecological research can primarily enhance tasks 
productivity, although often comes with challenges as well [12], 
[20]. 
 
In the dynamic scenarios of emerging technologies adaptation, 
behavioural analysis whether focused on an individual animal or a 
group, consider various approaches and their associated behavioural 
phenomena, which offer significant insights into the ecological and 
behavioural contexts of animals [21]. In the changing landscape of 
animal behavioural analysis, recent work shows the overlap and 
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integration of AI, as illustrated in graphical abstract. Growing 
interests in AI, has also accelerated ecological research in animal 
behaviour, conceptually broadening and deepening the fundamental 
understanding of the subject [10], [11], [14], [22], [23], [24], [25], 
[26], [27], [28], [29], [30]. Animal behavioural analysis and the 
associated information are far more complex and dynamic in nature, 
and therefore require multi-dimensional approaches to study in an 
ecological context [18], [19]. AI accelerated key progress in animal 
behavioural studies, particularly in automated detection, tracking, 
post estimation, behavioural classification, camouflage object 
detection (COD) from videos and images, both in controlled 
experimental conditions, and in real-time scenarios in the wild [12], 
[30], [31], [32], [33], [34]. 
 
In this article, I discuss and highlight the recent progress in animal 
behavioural research by leveraging the emerging technologies of AI. 
Given the scope and nature of the topic, a concise overview is 
provided, focusing on recent studies of animal behaviour analysis, 
methods integration, and advancements using artificial intelligence, 
machine and deep learning techniques, particularly in animal 
behavioural classification, pose estimation, tracking and 
camouflage object detection. 
 
 
Automated animal behavioural analysis 
 
Tracking and pose-estimation 
 
Animal behaviour in classical settings, is more complex and 
dynamic, with various approaches adopted to study it [17], [19], [35], 
among others, for example, detection, tracking, pose-estimation and 
classification using computer vision [36], [37], [38], with specific 
interests to aquatic and terrestrial animals [39], [40], [41], [42], [43]. 
Computer vision, however, involves a combination of specialized 
tools and techniques to analyze animal behavioural through images 
and videos processing tasks. It is considered a powerful method 
employed by ecological researchers [32], [42], [44]. Recent 
advancements have demonstrated tremendous progress in computer 
vision techniques, and numerous tools are, now, available that are 
specific to different species of both aquatic and terrestrial animals 
[42], [44]. These tools can be applied directly in the wild or under 
controlled laboratory conditions, using recorded videos and images, 
and in real-time scenarios. Behavioural analysis through videos and 
images for tasks like detection, tracking and pose estimation, with 
the integration of AI, can significantly advance computer vision 
research in animal behaviour [27], [32], [39], [41], [44]. Although, 
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the field of computer vision has made incredible strides in enhancing 
the performance of behavioural tasks analysis, yet only a limited 
number of software offer automated or substantial integration of 
advanced intelligence techniques, such as machine and deep 
learning pipelines. It is notable, most of computer vision tools, 
regardless of their behavioural task performance, require a highly 
powerful hardware setup, and therefore increase the cost associated 
[31], [45], [46]. 
 
As mentioned earlier, due to the scope of this paper, I focus on 
highlighting and discussing some of recent studies, focused on 
computer vision tools integrated with artificial intelligence 
approaches, including ML and DL. Chen et al., developed a ML-
based pipeline for behavioural task performance called 
AlphaTracker, that facilitates the analysis of multiple animals’ 
behaviour [47]. This system further incorporates pose-estimation 
with unsupervised ML algorithms, such as clustering, and enable 
tracking of unmarked animals. Therefore, this pipeline improves the 
computer vision task with minimal hardware requirements, aiding 
the understand the socially complex and dynamic behaviour of 
animals [47]. To further exploration, it is highlighted that use of 
CNNs-based models for animal behaviour analysis from videos, 
using top-down or bottom-up convolutional pose estimation in 
various animals, including mice and flies [28], [48], [49], [50]. 
Integrating AI methods into computer vision can reduce the 
laborious tasks, with outputs significantly surpassing those of 
traditional manual methods [3]. 
 
In animals, pose estimation serves as an effective marker for 
identifying them within complex and cluttered natural environments. 
In this attempt, Biderman et al., proposed ‘Lightning Pose’, a semi-
supervised method integrated with Bayesian ensembling tools to 
enhance the analysis in behavioural ecology [51]. To further support, 
the integration of advanced intelligence tools and techniques in 
computer vision tasks, it is emphasized that, such pipeline methods 
can significantly reduce manual labor through automatic 
segmentation and grouping of repeated action patterns, facilitating 
the study of animal behaviour. In animal post estimation research, 
Dunn et al., employed three-dimensional geometric DL-based 
technique for multi-view pose estimation, and introduced DANNCE, 
a volumetric convolutional network method, that infers 3D 
coordinates of freely moving animals [52]. Notably, DANNCE was 
trained with datasets of over 7 million-frames of rat behaviour 
(Rat7M), and outperformed standard two-dimensional triangular 
methods, and further reduced the manual engagement in labelling of 
datasets, as claimed [52], [53]. 



 5 

 
With the recent progress of AI, newly developed tools and 
applications for animal detection, tracking, and pose estimation, 
either for single or multiple animals, now offer integration of AI 
advancements [47], [49], [50], [51], [52], [53]. These improvements 
ease the implementation of traditional methods, and therefore, 
allowing researchers to exert minimal efforts while benefiting from 
a more robust and user-friendly interface [3]. However, due to 
diverse morphological, behavioural, and habitual characteristics of 
animals, a single software application may not always be effective, 
or may produce minimal outputs than initially expected, even if it is 
claimed to be highly efficient in specific scenarios [20]. For example, 
a newly developed animal tracker integrated with AI may worked 
effectively in detecting and tracking for animal A, but might be less 
effective for animal B, due to trained datasets specifically for 
Animal A. Therefore, it is essential to understand and choose 
trackers that are specifically suited to the needs of different animals, 
regardless the integration of the AI or ML tools, and to carefully 
review the fundamentals of such animal trackers [54]. AI-integrated 
techniques promise to provide more informative and detailed 
kinematic profiles of posture and motion across species, including 
in the wildlife and natural habitat. 
 
 
Behavioural classification and recognition 
 
To extend, AI integration in animal behavioural analysis, just 
beyond detection and tracking tasks, several studies have 
demonstrated significant progress in behavioural classification and 
action recognition from various-types of videos and images, 
including camera traps in the wild. Schindler et al., in their study, 
introduced an end-to-end “action detection” pipeline for camera trap 
videos, that is considered highly useful in wildlife and 
conservational studies. Their approach involved segmenting with 
filters of tracklets using a method called SWIFT [55], to track 
wildlife animals from videos. This method was further enhanced by 
integrating the mask-guided action recognition network, called as 
MAROON [56] which automated and improves the pipeline with 
more accurate recognition of animals, particularly datasets of deer 
species, even when multiple animals are present simultaneously [55], 
[56]. 
 
In natural terrestrial habitats, background complexity and the 
presence of multiple species, are quite often and common 
challenging problems researchers encounter. Given such conditions, 
this work was built on spatial-temporal features extraction using 
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three-dimensional CNNs applied to video data. 3D CNNs have been 
used in neural network-based approaches for animal action 
classification [48]. It is noted that, DL-based architectures are 
widely used methods for animal action recognition through pose 
estimation and tracking features. For example, SLEAP [49], 
DeepLabCut [50], DenseNet [57], and others software applications 
leveraging neural network architectures. Furthermore, it is 
emphasized that, methods for two-dimensional datasets using CNNs 
architectures have been started nearly a decade ago, however, earlier 
studies might comparatively limited due to limited outputs, high 
computational power costs, and scarce recourses [58]. Recently, use 
of AI has seen a sharp increase in research and applications across 
all domains, because of inexpensive computational resources 
distribution, including animal behavioural ecological and 
conservational research. 
 
Equivalently, in aquatic animals, especially in fish behavioural 
analysis, AI-based classification has highlighted the used of CNNs, 
LSTM, and GANs, within deep learning, to detect and classify fish 
in complex and dynamic underwater natural environment [59], [60]. 
It is further argued, that, recent DL-based models achieve accuracy 
comparable to human performance in species classification, not only 
limited to aquatic habitat, but also in more complex terrestrial 
environment [55], [56]. Various behavioural aspects of fish, such as 
movement, feeding, and escaping, can be recognize by DL-based 
models with greater accuracy than before. However, it is 
emphasized that, analyzing fish behavioural responses remains 
challenging due to the complexity of environmental backgrounds, 
morphological differences within species, and moreover 
unpredicted movements, among others, and AI-driven approaches 
are expected to enhance such tasks in the future [59], [60]. 
 
In another dimension, various studies suggested that AI-enabled 
platforms for controlled experimental analysis of animal behaviour, 
utilizing basic DL backbone architectures, along with various 
advanced methods, to enable automated behaviour recognition in 
animals [28], [47], [50]. Several animal behaviour features, 
including sound, visuals, or both, have been effectively extracted 
using DL-associated techniques [28]. By refining deep neural 
network parameters, along with the various algorithms used, real-
time animal behaviour classification has been successfully achieved 
[61]. Furthermore, to map behavioural analysis from 3D action 
skeletons, a novel unsupervised spectrogram UMAP-based 
temporal-link embedding method called as SUBTLE, was 
developed by a team from the Republic of South Korea [62]. This 
study further highlights the use of temporal-based behavioural 
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embedding for more accurate categorization. Some recently 
introduced graphical user interface (GUI)-based tools also 
demonstrate significant progress in AI integration for animal 
behavioural analysis, with several built upon previously available 
platforms [47], [49], [50], [62]. 
 
Ostuka et al., developed a DL-based framework for animal 
behaviour classification using animal-borne accelerometers, 
providing valuable tools for the bio-logging research domain [23]. 
Another framework, for animal recognition, ASBAR, was 
introduced for recognition of large animals, specifically in ape 
behaviour, by integrating a CNNs-based architecture with key point 
annotations method [63]. Researchers in ecological studies preferer 
using DL-based intelligence approaches for better performance 
compared to more conventional ML methods [28], [49], [50], [60], 
[61]. It is further argued that, DL-based approaches, are more 
efficient in handling large training datasets, enabling better 
predictions for unseen data, despite the high computational power 
required by these DL methods [28], [34], [60], [61]. 
 
On the contrary, most AI-based researchers come from the 
developed world rather than the global south, highlighting the need 
for powerful computational and other required resources is such 
studies. However, these arguments emphasize the unequal 
distribution of resources for AI-based research, and further, the 
centralized nature of their utilization [64], [65]. 
 
 
Camouflage object detection 
 
Color-dependent patterns elucidate various behavioural phenomena 
in animals, going beyond adaption and expression in the natural 
habitat. They also play a dynamic role in survival to the nature, 
defense against predators, body regulation, signaling associated 
with the surrounding to make social bonds, and even in evolutionary 
perspective [66], [67], [68], [69], [70]. The color-associated visual 
systems that helps animals to match background information, 
commonly referred to as camouflage, have been a focus point for 
ecology and evolutionary researchers for decades [69], [70]. As a 
results, integration of AI tools and techniques, therefore, is indeed 
becoming increasingly essential in current research scenarios in 
camouflage object detection. 
 
Natural conditions in the wild, the complexity of backgrounds, and 
noise interference are among the major challenging tasks in 
detection of animals. The integration of more advancement 
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intelligence system, such as residual deep neural network combined 
with genetic algorithms, has gained attentions among researchers 
[33], [70], [71]. 
 
Fennell et al., used a method called “Camouflage Machine” to 
extract various color-dependent phenotypes in animal associated 
with conspicuous signals [71]. In this study, they tested a novel 
approach, to understand the complex phenomena associated with 
animal camouflage [70], aiming to improve conventional methods 
for detecting and identifying pattern more realistically in natural 
environments [71], [72]. This task is often the most challenging in 
some scenarios, especially when dealing with general camouflage 
[70]. By using both trichromatic and dichromatic color-dependent 
vision systems, along with genetic algorithms and deep neural 
networks, they enhanced the optimization of parameters, achieving 
reasonable success in the task of animal identification [71], [73]. 
Such studies not only enhance the fundamental understanding of the 
core domain but also broaden the horizon by incorporating modern 
state-of-the-art techniques integrated with advanced AI [3], [70], 
[71]. 
 
Ike et al., proposed a DL-based framework, called Discriminative 
Context-Aware Network (DiCaNet), which combines ARB-Net and 
CDB for COD, and therefore, significantly improving the visible 
sensitivity of detection [72], [74]. Furthermore, a more robust 
pipeline was employed with additional attention weights used for 
feature maps in convolution network, focusing on localization and 
segmentation of the objects. This process effectively modulates 
evaluation metrics, enhancing camouflage object detection [74]. 
 
Wen et al., introduced a method based on DL techniques, utilizing 
attention-guided edge detection and multi-scale context fusion [75]. 
Guo et al. 2025, showed Contrastive Learning with Augmented Data 
(CLAD) to improve, and addressing the significant challenges in 
COD [76]. In addition, other studies have incorporated informative 
artificial intelligence along with other intelligence tools and 
techniques, to effectively enhance the detection of the objects or 
animals, adding the segmentation to visually complex camouflage 
scenarios [76], [77], [78]. It is, further, evident that, combining 
various DL methods, can enhance detection tasks in COD. for 
example, CNNs combined with ANNs provide more accurate 
outputs than any standalone deep learning techniques, including 
LSTMs, in camouflage object detection [78], [79], [80]. 
 
Although, Zhang et al., argued the limited availability of real-time 
datasets, that hinders the improvement of AI models in COD, and, 
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therefore, emphasized the use of generative camouflage images 
matched to natural scenes and background complexity [81]. Their 
study demonstrated more effective object detection in camouflage 
images using generative images. These findings open new avenues 
for researchers to use synthetic images, and such concepts therefore 
should not be limited to camouflage object detection only, but also 
apply to other research domains as well, to improve their AI models 
and achieve better results [3], [14], [78], [80], [81], [82]. Such 
studies also highlight the importance of generative AI in ecological 
research [81], [82]. Interestingly, a comprehensive analysis by Xiao 
et al., pointed out that, COD research has sharply shifted the 
paradigm from traditional to deep learning methods, and notably, 
traditional approaches to study COD have almost vanished over the 
last half-decade [72]. These findings further support the idea of 
improving COD using AI models, and further experimenting 
exclusively with AI-dependent models, while also raising concerns 
about the potential disappearance of fundamental techniques [72], 
[80], [82]. 
 
 
Conclusion 
 
To summarize the recent developments within the field of animal 
behavioural ecology, it is evident that, AI techniques, particularly 
DL, have made incredible progress. Researchers are continuously 
improving existing AI models in terms of accuracy, and predictions, 
consistent with other research fields [3], [28], [60], [79], [83]. The 
integration of AI tools further enhances productivity and precision, 
and further reducing the need for manual annotations in animal 
behavioural classification, detection, tracking and pose estimation, 
among others. While automated tasks using AI in animal 
behavioural studies, have significantly progressed, however, still 
space remains for the potential use of AI. In the wild, animals live 
in complex and noisy environments, and research integrating 
various approaches of AI, thus has improved the accuracy of animal 
identification, with models consistently developing for better 
precision than before. AI can help not only with the real-time data 
but also in generative datasets [72], [81], [82]. It is, often, arguable 
that of using specific machine or deep learning techniques, rather 
than addressing just in umbrella term as AI. However, in most of 
given scenarios, AI techniques are most effective in terms of 
accuracy and model performance than traditional methods in visual 
ecological tasks associated with animal behaviors. Integrating AI 
techniques, not only enhances performance but also automate the 
process with less laborious efforts. 
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