1		Ti	tl	e
-	_	•••	۰.	-

Fish-Hunting by Wild Japanese Macaques in Riverine Environments: Behavioral 2 and Demographic Patterns with Implications for Sex-Invariant Foraging in Early 3 Hominins 4 5 Authors 6 Ayaka Tsuchihashi^{1#}, Takuya Matusmoto^{1, 2#*}, Ema Nagahara¹, Kosuke Hayashi³, 7 Genki Yamada⁴, Takayuki Ogura⁵, Mone Ito⁵, Shohei Isokado⁶, Koji Tojo^{1, 2}, 8 Masaki Takenaka^{1, 2, 7} 9 ¹ Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, 10 Matsumoto 390-8621, Japan. 11 ² Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, 12 Nagano 390-8621, Japan. 13 ³ NHK Enterprises, Inc., Kamiyama 4-14, Shibuya, Tokyo 150-0047, Japan. 14 ⁴ G-Vision, Inc., Nishitsutsujigaoka 1-54-12, Chofu, Tokyo 182-0006, Japan. 15 ⁵ Kozo Production, Udagawa-cho 37-10-301, Shibuya, Tokyo 150-0042, Japan. 16 ⁶ ACCEL24 ltd., Shiroishi-ku 9-1-10-12, Sapporo, Hokkaido 003-0829, Japan. 17 ⁷ Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 18

- 19 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- 20

21	# Co-First	Author
<u> </u>		Additor

22 ***Corresponding author**

- 23 Takuya Matsumoto: Phone: +81 263 37 2532; E-mail: matsumoto_t@shinshu-
- 24 u.ac.jp
- 25
- 26 ORCID: Tsuchihasi A, 0009-0008-2068-897X; Matsumoto T, 0000-0003-1363-
- 27 9455; Nagahara E, 0009-0009-3509-7117; Tojo K, 0000-0002-9362-604X;
- 28 Takenaka M, 0000-0002-9565-524X.
- 29
- 30 Keywords: mountain ecology, hunting, primatology, Japanese macaques,
- 31 human evolution, sex differences
- 32

33 ■Abstract

34 Fish-hunting, rare among nonhuman primates, has been hypothesized to markedly influence hominin evolution. We report 71 cases of fish-hunting by 35 wild Japanese macaques (Macaca fuscata) inhabiting a subalpine riverine 36 environment. Behavioral sequences were categorized into the exploration, 37 attempt, and processing phases. All events were solitary and tool-free. No 38 behavioral evidence indicated the facilitation of successful fish catching by 39 conspecific presence. Most preyed fish were salmonids, and nearly all were fully 40 consumed. Significant sex differences in fish-hunting frequency were not 41 42 observed, and certain juveniles also engaged in fish catching. The absence of visible bone remains in fecal samples with confirmed fish DNA suggests that 43 44 tool-free fish consumption leaves limited archaeological traces. These findings provide novel comparative data on primate aquatic foraging and suggest the 45 feasibility of solitary, non-tool-assisted fish-hunting under certain ecological 46 conditions, offering new perspectives on early hominin subsistence strategies. 47

48 **Introduction**

The earliest evidence of aquatic fauna consumption by early hominins dates 49 to approximately 3.0–2.6 million years ago¹. The proposed role of aquatic fauna 50 51 as animal-based food sources in hominin diets reflects post-bipedalism dietary shifts². The oldest archaeological evidence of fish consumption dates to 52 approximately 1.95 million years ago during the early Pleistocene³. Among 53 aquatic fauna, fish are particularly rich in long-chain polyunsaturated fatty acids, 54 including eicosapentaenoic and docosahexaenoic acids, compared to terrestrial 55 fauna. The proposed contribution of fish consumption to early brain volume 56 expansion in the genus Homo has been linked to its nutritional profile⁴ (but 57 see⁵). Despite the hypothesized significance of fish consumption in hominin 58 59 evolution, evidence remains scarce regarding the origins, diffusion, capture strategies, and demographic patterns of fish-hunting individuals. 60 To better understand the evolutionary trajectory of human behavior, biological 61 anthropology has long utilized behavioral comparisons with extant nonhuman 62 primates^{6,7}. However, many primate species range from arboreal to 63 64 predominantly terrestrial lifestyles, and only a small proportion—approximately 10% (~30 species)—regularly interact with aquatic environments⁸. Reports of 65

66	fish consumption among extant nonhuman primates remain scarce. Based on a
67	list of studies addressing the consumption of aquatic fauna by nonhuman
68	primates ^{8_11} , we compiled a comprehensive literature survey on fish-catching
69	and consumption in non-human primates (Table 1; $^{12}-^{28}$). Including suggestive
70	evidence such as opportunistic observations by field assistants in wild and
71	captive settings, fish-catching and/or consumption have been reported in 13
72	primate species to date. Among these, only seven species have been
73	documented to catch and consume live fish under natural conditions.
74	These findings from nonhuman primates offer important insights: fish may
75	function as a fallback food when other resources are scarce ^{17, 21} ; fish-eating
76	behavior may be socially transmitted within groups ¹⁵ ; and, in some cases, tool
77	use accompanies fish-hunting ¹⁰ . However, consistent patterns across ecological
78	or behavioral factors remain elusive. While this may reflect phylogenetic
79	differences across species or ecological and genetic variations within species,
80	several methodological and contextual limitations challenge broad
81	interpretations. For instance, some studies report only a handful of fish-hunting
82	events over extensive observation periods (e.g., three cases over 20,000
83	observation hours in long-tailed macaques ¹⁷). Others document substantial

84	anthropogenic influence, such as individuals exploiting discarded fish or using
85	fishing tools left behind by humans ⁹ . Furthermore, in orangutans—a species
86	with relatively frequent fish-hunting reports—provisioning is common, and
87	individuals often refrain from consuming their captured fish ¹⁰ . These issues
88	complicate biological anthropological efforts to understand the adaptive
89	significance and evolutionary origins of fish consumption in the human lineage.
90	Against this backdrop, the present study focuses on a wild population of
91	Japanese macaques (Macaca fuscata) in Kamikochi, central Japan, where
92	individuals have been observed catching and consuming live fish from both a
93	flowing river and spring-fed pools with a relatively high frequency since 2021.
94	This unprovisioned population offers a rare opportunity to investigate fish-
95	hunting behavior under natural foraging conditions. In 2021, a molecular dietary
96	analysis revealed the presence of salmonid DNA in 7 out of 38 winter fecal
97	samples collected from this group ¹³ . Subsequent direct behavioral observations
98	and camera-trap footage confirmed winter fish-hunting by these macaques,
99	with such events occurring at a relatively high frequency ¹² .
100	This study investigates the behavioral traits (e.g., presence or absence of tool
101	use and cooperation in hunting) and demographic factors (e.g., sex differences

and developmental variation) associated with fish-hunting behavior in a wild
 population of Japanese macaques in Kamikochi. Through analysis of behavioral
 patterns and demographic factors among fish-hunting individuals, this study
 clarifies the origins and diffusion of fish consumption in primates.

106 Despite accumulating anecdotal reports, systematic data on sex-specific fishhunting patterns in wild primates remain sparse. In particular, sex differences in 107 hunting behavior are central to anthropology for their potential to inform the 108 evolutionary origins of the sexual division of labor in human societies²⁹. Among 109 our closest living relatives, chimpanzees, red colobus monkey hunting and the 110 exploitation of aquatic faunal resources—exemplified by crab fishing—occur 111 more frequently in males and females, respectively^{30,9}. These findings 112 113 corroborate patterns observed in extant human foraging societies-male-biased hunting frequency and female targeting of more predictable³¹. These patterns 114 have led to the hypothesis that sex differences in aquatic resource exploitation 115 existed in the hominin lineage⁹ and that hunting disparities may have preceded 116 the evolution of the sexual division of labor in modern humans³⁰. Despite these 117 118 insights, consistent patterns of sex differences in fish-hunting behavior among nonhuman primates remain unidentified (Table 1). Therefore, detailed 119

120	quantitative analyses of sex-specific fish-hunting patterns are needed to clarify
121	the origins of hunting-related sex differences, including those related to aquatic
122	resource exploitation, and the evolutionary sexual division of labor. The
123	Japanese macaques of Kamikochi, with observable and measurable variations in
124	fish-hunting behavior in the wild, offer a valuable model to address this gap.
125	
126	■Methods
127	Study site
128	This study was conducted in Kamikochi, located in the city of Matsumoto,
129	Nagano Prefecture, Japan. Kamikochi lies within the Chubu Sangaku National
130	Park and is situated in a subalpine zone at ~1,500 m above sea level. The Azusa
131	River, which runs through Kamikochi, is characterized by an extremely gentle
132	gradient of ~8‰, rising only 80 m over a 10 km stretch from 1,490 m to 1,570
133	m. This topography partly results from historical volcanic activity in the region ³² .
134	In addition, numerous springs throughout the area ensure the year-round
135	presence of small streams and pools, even during the winter season. Kamikochi
136	is also a popular tourist destination, attracting over 1 million visitors annually. As
137	a result, local Japanese macaques (Macaca fuscata) are human-habituated

138	without intentional provisioning, enabling direct behavioral observation and
139	continuous tracking. The area thus provides a unique opportunity to conduct
140	detailed field observations of wild primates, even under severe winter
141	conditions.
142	
143	Study period and observation methods
144	Direct behavioral observations were conducted for two winter periods: 19–30
145	January 2022 and 11 January–22 February 2023. The total number of
146	observation days was 50. Each day, observers (the authors) conducted fieldwork
147	from approximately 09:00 to 16:00, either in a single group or divided into two
148	teams. The observational subjects comprised three groups of wild Japanese
149	macaques inhabiting the Kamikochi region. These groups were designated as
150	KT, KK, and KM, in order from west to east based on their ranging areas. The
151	home ranges of the KT and KK groups—and those of KK and KM—were either
152	overlapping or adjacent.
153	Researchers searched for signs of macaque presence (e.g., footprints and
154	feeding traces) while driving a survey vehicle along the main road. Upon
155	detecting such signs, the macaques were located by tracking on foot. Once

156	located, each group was followed, and when individuals appeared near aquatic
157	environments—such as rivers or pools—the protocol shifted to individual-
158	following for detailed behavioral monitoring ³³ .
159	To maximize fish-hunting observation opportunities, researchers prioritized
160	tracking groups located in riverine areas. When a followed group moved away
161	from aquatic locations, the observers occasionally discontinued the follow and
162	searched for other groups instead.
163	Behavioral events near aquatic habitats were recorded using high-definition
164	video equipment, including a 4K 2/3-type 3-chip CMOS shoulder-mount
165	camcorder (PXW-Z750, SONY), a 4K expert handy camera (FDR-AX100, SONY),
166	and a Phantom Flex4K digital cinema camera (Flex4K, PHANTOM).
167	
168	Definition of fish catching and dataset
169	From the collected video footage, we extracted instances of visible
170	interactions between Japanese macaques and fish, including cases with clearly
171	discernible fish bodies or silhouettes. Fish-catching was operationally defined as
172	the successful transfer of a fish by a macaque from below the water surface to
173	physical control, typically by hand or mouth, at or above the surface. Each fish-

174	hunting event was defined as a behavioral sequence comprising at least one
175	fish-catching act. Multiple fish-catching acts occurring within a 10-second
176	interval were classified as a single event—for example, repeated attempts
177	involving escape and recapture were counted as one fish-hunting event.
178	In total, we recorded 57 fish-hunting events during focal follows. We
179	incorporated footage previously reported by Takenaka <i>et al.</i> ¹² , comprising six
180	focal-follow events and eight camera-trap recordings. The final dataset included
181	71 fish-hunting events used for detailed behavioral analyses.
182	
183	Individual identification, group assignment, and fish species identification
183 184	Individual identification, group assignment, and fish species identification During group follows, individual identification was conducted for macaques
184	During group follows, individual identification was conducted for macaques
184 185	During group follows, individual identification was conducted for macaques bearing conspicuous physical features, such as scars, or equipped with VHF
184 185 186	During group follows, individual identification was conducted for macaques bearing conspicuous physical features, such as scars, or equipped with VHF radio collars attached to at least one adult female per group ³⁴ . Group identity
184 185 186 187	During group follows, individual identification was conducted for macaques bearing conspicuous physical features, such as scars, or equipped with VHF radio collars attached to at least one adult female per group ³⁴ . Group identity was inferred based on confirmation of these individually identified macaques.
184 185 186 187 188	During group follows, individual identification was conducted for macaques bearing conspicuous physical features, such as scars, or equipped with VHF radio collars attached to at least one adult female per group ³⁴ . Group identity was inferred based on confirmation of these individually identified macaques. For camera-trap footage, when individually recognized macaques appeared,

above the water surface were identified based on body markings and the

193 remains left uneaten by the macaques.

194

Determination of sex and age class

Age was estimated based on physical features, such as body size, and

197 comparison with individuals of known age. Infants were defined as individuals

198 estimated to be within their first year of life. Adults were defined as individuals

199 judged to be at least five years without hair on the sexual skin; all remaining

200 individuals were classified as juveniles.

201 Macaques with visible testes were classified as male. Individuals whose genital

202 regions could be clearly observed but lacked visible testes were classified as

203 females. In addition, individuals with elongated nipples or those observed

204 nursing young were identified as adult females. Individuals not meeting any of

205 these criteria were categorized as sex unknown.

206

207 Group composition data collection

To assess the sex and age composition of each group during the 2023

209 observation period, observers conducted full group scans when many

210	individuals were resting or grooming together. The observers walked along the
211	edge of the group and counted individuals from one end to the other. When
212	individually identified macaques were not encountered during these scans, their
213	presence was added to the total group count. Due to the need for rapid counts
214	during stationary periods, sex was recorded only for adults; subadult and
215	juvenile sex were not determined.
216	
217	Analysis of sex differences in fish-hunting behavior
218	To assess sex differences in fish-hunting behavior, we compared the sex ratio of
219	fish-hunting adults with each group's overall adult sex ratio using Fisher's exact
220	test. All statistical analyses were performed using R software ³⁵ .
221	
222	Results
223	Overview of observed fish-hunting events
224	Among the 71 documented fish-hunting events, 57 were conducted by
225	adults, 8 by juveniles, 6 by subadults, and none by infants. All events were
226	solitary and tool-free.

Each event was classified into exploration, attempt, and processing phases based on pre- and post-capture behavioral sequences. We compiled an ethogram of behavioral elements observed at least once in each phase (Figure 1).

231

232 **Exploration phase**

In five of the 71 fish-hunting events, another individual—an infant in three 233 events, a subadult in one, and an adult in four-was observed within 3 m of the 234 focal animal at the moment of fish catching. An additional seven events 235 involved another individual appearing within 10 m of the focal animal (all 236 adults), within a visible range of the fish-catching action. However, variation in 237 238 the video field of view may have led to underestimation of fish-hunting events involving nearby individuals. 239 In the 10 events where another individual was visibly present within the 240 observable range, no evidence indicated a positive effect of others on fish-241 catching success. For example, no instances were observed of one individual 242 243 capturing a fish flushed by another or of a fish being driven toward another macague in a seemingly cooperative manner. 244

245	Transitions between aquatic foraging behaviors, such as feeding on aquatic
246	plants or aquatic insects, and the fish-exploration phase occurred seamlessly.
247	Several instances of supplanting at aquatic sites were observed during the
248	exploration phase—involving, presumably, dominant male and female
249	individuals. Here, supplanting refers to one individual displacing another from a
250	location or resource, typically without overt aggression but implying a
251	dominance relationship.
252	Because many exploration-phase behaviors could not be conclusively
253	attributed to fish targeting, attempts were not reliably countable; consequently,
254	fish-hunting success rates could not be calculated.
255	
256	Attempt phase
257	During the attempt phase, the estimated body lengths of the targeted fish
258	were approximately 5–20 cm. Based on distinctive body markings, 15 individuals
259	were identified as salmonids. In only one case, an adult female was observed
260	catching a Rhynchocypris lagowskii. No fish species other than salmonids and
261	Rhynchocypris were recorded.
262	

263 **Processing phase**

264 During the processing phase, no bone- or head-removal behavior was observed regarding the captured fish. In four instances—three involving adult 265 females and one involving an adult male—the captured fish escaped from the 266 surface back into the water during the manipulation process. In a separate case, 267 an adult female repeatedly bit and spat out a captured Rhynchocypris fish, 268 ultimately discarding it with minimal consumption. Skin-removal behavior was 269 observed in a single instance, and the discarded skin was not consumed. 270 Excluding these cases, the remaining 66 events involved the full consumption of 271 272 the captured fish. Notably, even in fecal samples that later tested positive for fish DNA via metabarcoding, fish bones were not visually identifiable. No direct 273 274 inter-individual food transfer was observed during the processing phase. In one instance, immediately after an adult female captured a fish, another adult 275 female approached her at close range. The fish-capturing individual guickly 276 moved away, and the fish was not taken. This was the only observed case that 277 suggested a potential risk of conspecific interference, although no actual 278 279 scrounging or food transfer occurred.

280

281

282	Sex and age composition
283	Figure 3 presents the sex-age composition of individuals involved in fish-
284	hunting events and the overall group composition across the three study
285	groups. No significant difference was found between adult males and females in
286	the number of fish-hunting events or in their proportions within each group
287	(Fisher's exact test, $p > 0.5$). Fish-hunting behavior was observed in all three
288	groups (KT, KK, and KM). While many events involved individuals with
289	unconfirmed identities, fish-hunting was documented in at least six adult males
290	and seven adult females. The youngest individuals of both sexes observed
291	catching fish were estimated to be 3 to 4 years old, although their exact age
292	could not be determined.
293	

294 **Discussion**

This study provides the first detailed account of the behavioral characteristics and demographic factors associated with fish-hunting in wild nonhuman primates under natural conditions (see Table 1). Our findings highlight several notable features: (i) no tool use or overt cooperation was observed; (ii) captured

299	fish were typically consumed in their entirety; (iii) no clear sex differences were
300	found in fish-hunting frequency among adults; (iv) predispersal males also
301	engaged in fish hunting. Japanese macaques exhibit a broad dietary repertoire
302	encompassing plant and animal foods ³⁶ , a relatively terrestrial lifestyle among
303	primates ³⁷ , and a capacity to inhabit cold, temperate environments ³⁸ . These
304	characteristics parallel key aspects of human ecological flexibility. In addition, as
305	demonstrated in this study, their relatively frequent engagement in fish-
306	hunting—rare among extant nonhuman primates—positions Japanese
307	macaques as a valuable comparative model for understanding the evolutionary
308	roots of aquatic resource exploitation, alongside great apes and baboons ³⁹ .
309	

310 Behavioral traits of fish-hunting

Across all observed instances of fish-hunting, no tool use was documented. Although other individuals were occasionally present near the focal animal during fish-catching, successful captures also occurred in solitary contexts. Moreover, no behavioral evidence suggested that the presence of conspecifics positively influenced hunting success. Discussions of hominin hunting behavior have emphasized tool use⁴⁰ and cooperative strategies rooted in advanced

317	cognitive capacities linked to encephalization ⁴¹ . However, our findings suggest
318	that neither tool use nor cooperation is necessary for successful fish-hunting in
319	riverine environments.
320	To the extent identifiable, nearly all fish consumed by Japanese macaques
321	were salmonids. In Kamikochi, three salmonid species have been confirmed:
322	white-spotted charr (Salvelinus leucomaenis), brook trout (Salvelinus fontinalis),
323	and brown trout (Salmo trutta) ⁴² . Although the salmonid family was identifiable
324	from behavioral footage, species-level identification remained unfeasible ^{43,44} .
325	When a Japanese macaque captured a non-salmonid fish, Rhynchocypris
326	lagowskii (a cyprinid species), the individual displayed aversive behaviors and
327	ultimately discarded the fish after minimal consumption. The bile from cyprinid
328	fish contains cyprinol sulfate, a compound toxic to mammals ⁴⁵ , suggesting that
329	the macaque's rejection results from a response to taste or toxicity. This case
330	provides potential evidence for species-specific dietary selectivity in Japanese
331	macaques' fish consumption.
332	

333 Demographic factors of fish-hunting

334 Previous studies on fish-hunting in nonhuman primates have not identified

335	consistent patterns regarding sex or age class (Table 1). Our current analysis of
336	71 fish-hunting events revealed no significant sex differences in fish-hunting
337	frequency among adult Japanese macaques. Although the observed fish-
338	hunting frequency in younger individuals (estimated to be 3–4 years old or
339	older) was lower than would be expected based on group composition, these
340	juveniles did engage in successful fish-catching. No fish catching was observed
341	in infants (0–2 years old), although several events involved an infant being
342	within 3 m of the focal fish-catching individual. Such close-range exposure may
343	offer opportunities for social learning, potentially contributing to the emergence
344	of successful fish-hunting behavior by ages 3–4.
345	A key direction for future research is the complete identification of all
346	individuals in the Kamikochi macaque population. This would allow researchers
347	to investigate whether fish-hunting frequency varies by individual or matriline,
348	and whether individual-level differences exist in the behavioral repertoire
349	associated with fish-hunting (see Figure 1).
350	
351	When and how fish-hunting behavior emerged and spread

352 Long-term studies of Japanese macaques in Kamikochi have been ongoing

353	since 1986, including home-range tracking using collar-mounted radio
354	transmitters ³⁴ . However, direct behavioral observations during winter were rarely
355	conducted. Prior to the 2021 report of fish consumption via fecal
356	metabarcoding ¹³ , fish-catching and consumption had remained undocumented
357	in this population.
358	Although the exact emergence location and spread extent of fish-hunting
359	behavior remain unclear, Kamikochi's unique geographical–geological
360	characteristics—such as flat riverbeds formed by dammed lakes from volcanic
361	activity and the presence of spring-fed streams that remain unfrozen in winter—
362	may have created ecological conditions facilitating the innovation of fish-
363	hunting behavior ¹² . As in the case of the Koshima macaques, where the
364	consumption of dead fish spread rapidly within the group (with 75% of
365	individuals engaging in the behavior within seven years of its initial observation
366	in 1979 ¹⁵), fish-hunting in Kamikochi may also have spread socially within
367	groups after its innovation. Moreover, the fish-hunting presence across all three
368	study groups suggests potential intergroup transmission. Given typical male
369	Japanese macaque dispersal around age five ⁴⁶ , fish-hunting observation by
370	predispersal males is particularly suggestive. While primate behavioral

353 since 1986, including home-range tracking using collar-mounted radio

innovations may undergo loss and reinvention⁴⁷, our findings support the

372 potential intergroup spread of fish-hunting innovation via dispersing males⁴⁸.

373

374 Implications for hominin evolution

- 375 This study offers three main insights into the potential behavioral ecology of 376 early hominins regarding fish-hunting.
- 377 First, unlike baboons often leaving behind fish bones or skin post-feeding²¹,

378 Japanese macaques in Kamikochi typically consume fish entirely. Fish bones

- 379 were also visually unidentifiable even in fecal samples that later tested positive
- 380 for fish DNA via metabarcoding. As recent studies emphasize the importance of
- 381 evaluating the archaeological visibility of tool-free foraging behaviors in extant
- 382 primates⁴⁹, our findings suggest that tool-free fish consumption leaves minimal
- 383 or no archaeological traces⁵⁰. This implies that the contribution of fish to
- 384 hominin diets may be underestimated in the archaeological record and supports
- 385 the hypothesis that fish consumption was more widespread than previously
- thought, possibly predating the earliest known evidence of fish use by hominins

387 at 1.95 million years ago¹⁰.

388	Second, transitions between foraging on aquatic insects and plants and the
389	exploration phase of fish-hunting were observed to occur fluidly without clear
390	behavioral boundaries. This supports the hypothesis that the consumption of
391	more readily accessible aquatic organisms, such as aquatic insects and plants,
392	may have served as a preadaptive stage from which tool-free fish-hunting
393	behavior subsequently emerged ⁵¹ . Stable carbon isotope analyses of pedogenic
394	carbonates, isotopic reconstruction of diet from tooth enamel, and taxonomic
395	frequencies of bovids suggest that hominin activities happened in woodland
396	grasslands, grassland–woodland mosaics, and shrublands along riverine valleys
397	within humid savanna biomes rich in C ₄ grasses and herbaceous vegetation ¹ . In
398	such ecologically diverse and riverine environments, fish-hunting may have
399	developed as a routinized behavior in early hominins, without requiring tool use
400	or cooperation, following the acquisition of more easily accessible aquatic
401	organisms such as aquatic insects and plants. The observation of predispersal
402	individuals (juveniles) performing fish-hunting suggests potential behavioral
403	transmission across groups via dispersing individuals, facilitating the spread and
404	maintenance of the behavior.

405	Finally, our findings challenge two influential hypotheses concerning the
406	evolution of sex foraging differences. One hypothesis suggests that sex
407	differences in aquatic resource exploitation exist in the hominin lineage ⁹ .
408	Another proposes that sex differences in hunting preceded the emergence of
409	the human sexual division of labor ³⁰ . In contrast to these ideas, we found no
410	significant sex differences in fish-hunting among adult male and female
411	Japanese macaques. Existing data on fish consumption in nonhuman primates
412	also show no consistent patterns of sex differences. Our findings therefore
413	suggest that female primates, including humans, are not universally risk-averse
414	even in foraging contexts that involve unpredictable outcomes, such as hunting.
415	Accordingly, hunting—particularly fish-hunting—may not inherently exhibit sex-
416	based differences.

417	a Ava	vilak	sili	i+v/
41/	.a Avc	mar	וווע	ιιy

418	The datasets generated and analyzed during the current study are available
419	from the corresponding author on reasonable request. Video recordings used
420	for behavioral analyses are not publicly available due to file size limitations and
421	copyright considerations, but are available from the corresponding author upon
422	reasonable request.
423	
424	Reference
425	1. Plummer, T. W. et al. Expanded geographic distribution and dietary strategies
426	of the earliest Oldowan hominins and Paranthropus. Science 379 , 561-566
427	(2023).
428	2. Archer, W., Braun, D. R., Harris, J. W., McCoy, J. T. & Richmond, B. G. Early
429	Pleistocene aquatic resource use in the Turkana Basin. J. Hum. Evol. 77, 74-87
430	(2014).
431	3. Braun, D. R. et al. Early hominin diet included diverse terrestrial and aquatic
432	animals 1.95 Ma in East Turkana, Kenya. Proc. Natl Acad. Sci. U.S.A. 107 ,
433	10002-10007 (2010).

434	4. Joordens, J. C., Kuipers, R. S., Wanink, J. H. & Muskiet, F. A. A fish is not a fish:
435	patterns in fatty acid composition of aquatic food may have had implications
436	for hominin evolution. J. Hum. Evol. 77 , 107-116 (2014).
437	5. Carlson, B. A. & Kingston, J. D. Docosahexaenoic acid, the aquatic diet, and
438	hominin encephalization: difficulties in establishing evolutionary links. Am. J.
439	<i>Hum. Biol.</i> 19 , 132-141 (2007).
440	6. Washburn, S. L. Section of anthropology: the new physical anthropology.
441	Trans. N. Y. Acad. Sci. 13 , 298-304 (1951).
442	7. Washburn, S. L. The promise of primatology. Am. J. Phys. Anthropol. 38, 177-
443	182 (1973).

- 444 8. Kempf, E. Patterns of water use in primates. *Folia Primatol.* **80**, 275-294 (2009).
- 445 9. Koops, K. *et al.* Crab-fishing by chimpanzees in the Nimba mountains, Guinea.
- 446 J. Hum. Evol. **133**, 230-241 (2019).
- 10. Russon, A. E., Compost, A., Kuncoro, P. & Ferisa, A. Orangutan fish eating,
- 448 primate aquatic fauna eating, and their implications for the origins of
- ancestral hominin fish eating. J. Hum. Evol. 77, 50-63 (2014).

- 450 11. Watts, D. P. Meat eating by nonhuman primates: a review and synthesis. *J*.
- 451 *Hum. Evol.* **149**, 102882 (2020).
- 452 12. Takenaka, M. *et al.* Behavior of snow monkeys hunting fish to survive winter.
- 453 Sci. Rep. **12**, 20324 (2022).
- 454 13. Milner, A. M., Wood, S. A., Docherty, C., Biessy, L., Takenaka, M. & Tojo, K.
- 455 Winter diet of Japanese macaques from Chubu Sangaku National Park, Japan
- 456 incorporates freshwater biota. *Sci. Rep.* **11**, 23091 (2021).
- 457 14. Leca, J. B., Gunst, N., Watanabe, K. & Huffman, M. A. A new case of fish-
- 458 eating in Japanese macaques: implications for social constraints on the
- diffusion of feeding innovation. Am. J. Primatol. 69, 821-828 (2007).
- 460 15. Watanabe, K. Fish: a new addition to the diet of Japanese macaques on
- 461 Koshima Island. *Folia Primatol.* **52**, 124-131 (1989).
- 462 16. Zeeve, S. R. Swamp monkeys of the Lomako forest, central Zaire. *Primate*
- 463 *Conserv.* **5**, 32-33 (1985).

464	17. Stewart, AM. E., Gordon, C. H., Wich, S. A., Schroor, P. & Meijaard, E. Fishing
465	in Macaca fascicularis: a rarely observed innovative behavior. Int. J. Primatol.
466	29 , 543-548 (2008).
467	18. Welker, C. Fishing behaviour in <i>Galago crassicaudatus</i> E. Geoffroy, 1812
468	(Prosimiae; Lorisiformes; Galagidae). <i>Folia Primatol</i> . 26 , 284-291 (1976).
469	19. Matsumoto-Oda, A. & Collins, A. D. Two newly observed cases of fish-eating
470	in anubis baboons. <i>Lett. Evol. Behav. Sci.</i> 7 , 5-9 (2016).
471	20. Hamilton, W. J., Buskirk, R. E. & Buskirk, W. H. Defense of space and
472	resources by chacma (Papio ursinus) baboon troops in an African desert and
473	swamp. <i>Ecology</i> 57 , 1264-1272 (1976).
474	21. Hamilton, W. J. & Tilson, R. L. Fishing baboons at desert waterholes. Am. J.
475	Primatol. 8 , 255-257 (1985).
476	22. Nishida, T. Preliminary information of the pygmy chimpanzees (Pan paniscus)
477	of the Congo Basin. <i>Primates</i> 13 , 415-425 (1972).

- 478 23. Sugiyama, Y. & Koman, J. A preliminary list of chimpanzees' alimentation at
- 479 Bossou, Guinea. *Primates* **28**, 133-147 (1987).

480	24. Clarke, S. & Mitchell, G. Characteristics of predation by captive primates.	Lab
481	Prim. Newsl. 21 , 1-7 (1982).	

- 482 25. Mendes, F. D. C., Martins, L. B. R., Pereira, J. A. & Marquezan, R. F. Fishing
- with a bait: a note on behavioural flexibility in *Cebus apella. Folia Primatol.*71, 350-352 (2000).
- 485 26. Niemitz, C. Outline of the behavior of *Tarsius bancanus*. In *The Study of*
- 486 Prosimian Behavior (eds Doyle, G. A. & Martin, R. D.) 631-660 (Academic
- 487 Press, Cambridge, 1979).
- 488 27. Niemitz, C. *Biology of Tarsiers* (G. Fischer, Switzerland, 1984).
- 489 28. Cook, N. Notes on captive *Tarsius carbonarius*. *J. Mammal.* **20**, 173-178
 490 (1939).
- 491 29. Barry, H. III, Bacon, M. K. & Child, I. L. A cross-cultural survey of some sex
- differences in socialization. J. Abnorm. Soc. Psychol. 55, 327-332 (1957).
- 493 30. Gilby, I. C. et al. Predation by female chimpanzees: toward an understanding
- 494 of sex differences in meat acquisition in the last common ancestor of *Pan*
- 495 and *Homo. J. Hum. Evol.* **110**, 82-94 (2017).

496	31. Marlowe, F. W. Hunting and gathering: the human sexual division of
497	foraging labor. <i>Cross-Cult. Res.</i> 41 , 170-195 (2007).

- 32. Harayama, S. Geomorphic development of the Kamikochi Basin, and 498
- quaternary Yari-Hotaka Caldera and Takidani granodiorite complex (in 499
- Japanese). J. Geol. Soc. Jpn 121, 373-389 (2015). 500

- 33. Altmann, J. Observational study of behavior: sampling methods. Behaviour 501
- **49**, 227-266 (1974). 502
- 503 34. Izumiyama, S., Mochizuki, T. & Shiraishi, T. Troop size, home range area and
- 504 seasonal range use of the Japanese macaque in the Northern Japan Alps.
- Ecol. Res. 18, 465-474 (2003). 505
- 506 35. R Core Team. R: A Language and Environment for Statistical Computing (R
- Foundation for Statistical Computing, Vienna, 2025). https://www.R-507
- project.org/. 508
- 36. Tsuji, Y. Regional, temporal, and interindividual variation in the feeding 509
- ecology of Japanese macaques. In The Japanese Macaques (eds Nakagawa, 510
- N., Nakamichi, M. & Sugiura, H.) 99-127 (Springer, 2010). 511

512 37. Estrada, G. R. & Marshall, A. J. Terrestriality across the primate order: a

- review and analysis of ground use in primates. *Evol. Anthropol.* 33, e22032
 (2024).
- 38. Ito, T. *et al.* Phylogeographic history of Japanese macaques. *J. Biogeogr.* 48,
 1420-1431 (2021).
- 517 39. Swedell, L. & Plummer, T. Social evolution in Plio-Pleistocene hominins:
- 518 insights from hamadryas baboons and paleoecology. J. Hum. Evol. 137,
- 519 102667 (2019).
- 40. Harmand, S. & Arroyo, A. Linking primatology and archaeology: the
- 521 transversality of stone percussive behaviors. J. Hum. Evol. **181**, 103398 (2023).
- 41. Smith, J. E., Swanson, E. M., Reed, D. & Holekamp, K. E. Evolution of
- 523 cooperation among mammalian carnivores and its relevance to hominin
- 524 evolution. *Curr. Anthropol.* **53**, S436-S452 (2012).
- 42. Peterson, M. I., Kitano, S., Yamamoto, S., Kando, T. & Tsuda, Y. Species-
- 526 specific foraging behavior and diets of stream salmonids: an implication for
- 527 negative impacts on native charr by nonnative trout in Japanese mountain
- 528 streams. *Ecol. Res.* **39**, 169-181 (2023).

529	43. Kitano, S	S., Hasegawa,	Κ.	& Maekawa,	K. Evidence	for intersp	ecific

- 530 hybridization between native white-spotted charr Salvelinus leucomaenis and
- 531 non-native brown trout Salmo trutta on Hokkaido Island, Japan. J. Fish Biol.
- 532 **74**, 467-473 (2009).
- 533 44. Kitano, S., Ohdachi, S., Koizumi, I. & Hasegawa, K. Hybridization between
- native white-spotted charr and nonnative brook trout in the upper Sorachi
- 535 River, Hokkaido, Japan. *Ichthyol. Res.* **61**, 1-8 (2013).
- 45. Goto, T. et al. Physicochemical and physiological properties of 5alpha-
- 537 cyprinol sulfate, the toxic bile salt of cyprinid fish. J. Lipid Res. 44, 1643-1651
- 538 (2003).
- 539 46. Matsumura, S. Intergroup affiliative interactions and intergroup transfer of
- 540 young male Japanese macaques (*Macaca fuscata*). *Primates* **34**, 1-10 (1993).
- 541 47. Perry, S. *et al.* Social conventions in wild white-faced capuchin monkeys:
- evidence for traditions in a neotropical primate. *Curr. Anthropol.* **44**, 241-268
- 543 (2003).

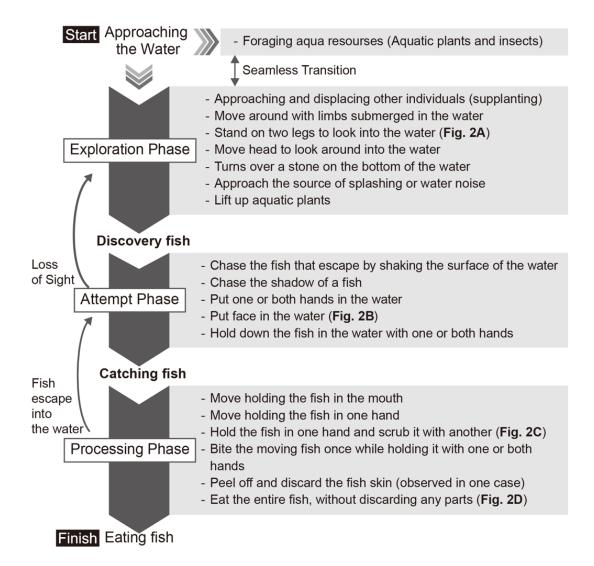
544	48. Tamura, M. Extractive foraging on hard-shelled walnuts and variation of	

- 545 feeding techniques in wild Japanese macaques (*Macaca fuscata*). *Am. J.*
- 546 *Primatol.* **82**, e23130 (2020).
- 49. Pascual-Garrido, A., Carvalho, S. & Almeida-Warren, K. Primate archaeology
 3.0. Am. J. Biol. Anthropol. 183, e24835 (2024).
- 549 50. McGrew, W. C. In search of the last common ancestor: new findings on wild
- 550 chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. **365**, 3267-3276 (2010).
- 551 51. Stewart, K. M. The case for exploitation of wetlands environments and foods
- by pre-sapiens hominins. In *Human Brain Evolution: The Influence of*
- 553 Freshwater and Marine Food Resources (eds Cunnane, S. C. & Stewart, K. M.)
- 554 137-171 (Wiley-Blackwell, New York, 2010).
- 555 Acknowledgements
- 556 This study was supported by the River Fund of the River Foundation (2023-
- 557 5311-004 to TM; 2021-5311-005, 2022-5311-016 to MT), by Grant for Agri-
- 558 transformation, Shinshu University (to TM), by a research grant from the
- 559 Institute of Mountain Science, Shinshu University (2024-1101 to TM; 2023-903,
- 560 2024-1112 to MT), by MEXT/JSPS KAKENHI (Grant Number JP23H03881,

JP24H00116, JP24K21497 to TM), by Grant for Collaborative Research in
Humanities and Social Sciences by Suntory Foundation (to TM), by the fund of
Nagano Prefecture to promote scientific activity (NPS2022319 to AT and
NPS2023317 to EN).

565	We especially thank Prof. Alexander M. Milner (Birmingham University). We
566	thank Prof. Masayuki Nakamichi (Osaka University), Prof. Shigeyuki Izumiyama
567	(Shinshu University), and Dr. Takayo Soma (Kyoto University) for sharing their
568	valuable knowledge of Japanese macaques. We thank Dr. Koichi Sakakibara
569	(Shinshu University), Dr. Yosuke Otani (Osaka University), Dr. Tomoyuki Tajima
570	(Tamagawa University), and Mr. Sohei Katori (Natural Parks Foundation) for their
571	advice and cooperation in field research. We thank Mr. Tsubasa Yamaguchi for
572	providing useful information about Japanese macaques in other regions.
573	This study was conducted with the permission of the Japanese Government
574	(Ministry of the Environment, Agency for Cultural Affairs and the Forestry
575	Agency) regarding the installation of sensor cameras in Kamikochi, a national
576	park.

Author contributions


579	A.T., T.M., and M.T. conceived the study and designed the project. A.T.
580	analyzed behavioral data. A.T. and T.M. analyzed the dataset. A.T., T.M., E.N.,
581	K.H., G.Y., T.O., M.I., and S.I. conducted fieldwork and collected data. T.M. wrote
582	the first draft of the manuscript. A.T., T.M., E.N., M.T., and K.T. reviewed and
583	edited the manuscript.
584	
585	Competing interests
586	The authors declare no conflicts of interest.
587	
588	■Materials & Correspondence

- 589 Correspondence and material requests should be addressed to Takuya
- 590 Matsumoto.
- 591 Phone: +81-263-37-2532
- 592 E-mail: matsumoto_t@shinshu-u.ac.jp

593 **■Figure legends**

594 Figure 1. Sequential phases and associated behaviors in fish-hunting by

595 Japanese macaques

596

597 The fish-hunting sequence comprises exploration, attempt, and processing

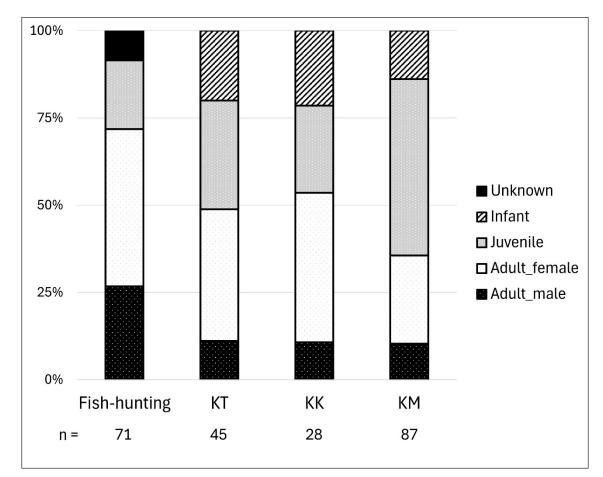
598 phases. Macaques entered the exploration phase either directly or after foraging

599	aquatic plants and insects. Transitions were often seamless. Exploration involved
600	looking into the water, turning over stones, and supplanting others. Upon
601	detecting fish, macaques moved to the attempt phase, which included chasing,
602	reaching into the water, or placing the face in the water. In the processing
603	phase, fish were handled with the mouth or hands and usually consumed
604	entirely. In rare cases, fish escaped, or the skin was peeled and discarded. The
605	behaviors shown in Figs. 2A–2C are noted in parentheses.
606	

607 Figure 2. Representative behaviors observed during fish-hunting

- 608 (A) An adult male inspects the water in a shallow stream during the exploration
- 609 phase, standing with its hindlimbs submerged.
- 610

- 611 (B) An adult male places its face in the water to catch fish, a behavior
- 612 characteristic of the attempt phase.
- 613



614 (C) An adult female holds a captured fish simultaneously in the mouth and615 both hands during the processing phase.

All images are still frames extracted from video footage filmed by NHK in

617 Kamikochi, Japan.

619 Figure 3. Composition of sex and age classes for fish-hunting events and

620 group members

The left bar shows the proportion of sex and age classes in 71 documented fishhunting events. The three right bars show the group composition of adult males, adult females, juveniles, and infants in the KT, KK, and KM groups (n = 45, 28, and 87 individuals, respectively). Individuals with an unconfirmed identity were categorized as "Unknown" in fish-hunting events.

Primate species	Wild or	Sex	Adult	Place	Hand	Tool	Fish	Fish species	Reference
	captive		or		catch	use	condition		
			young						
Macaca fuscata	wild	both	both	flowing	Yes	No	live	Salmonidae, Rhynchocypris	This study; Milner et al., 2021;
				river, pool				lagowskii steindachneri	Takenaka et al., 2022
	free-ranging,	both	both	seashore	No	No	dead	Lateolabrax japonicus (Asian	Leca et al., 2007; Watanabe
	provisioned							temperate sea bass), sardins	1989
Allenopithecus	wild	*	*	pool	Yes	No	live	*	Zeeve 1985
nigroviridis									
Cercopithecus	wild	*	*	pool	Yes	No	live	*	Zeeve 1985
neglectus									
Macaca	wild	female	Adult	pool or	Yes	No	live	unid. sp.(Teleostei)	Stewart et al., 2008
fascicularis				very slow					
				river					
Otolemur	captive	both	adult	glass	Yes	No	live	Xiphophorus sp.	Welker 1976
crassicaudatus									
Papio anubis	wild	both	both	lakeshore	No	No	dead	Stolothrissa tanganicae	Matsumoto-Oda and Collins,
								(dagaa, Tanaganian sardine),	2016
								Boulengero microlepis (Kuhe)	
Papio ursinus	wild	both	both	pool	Yes	Yes	live	Sarotherodon mossambicus	Hamilton et al., 1976; Hamilton
								(tilapia), Cyprinus carpio	and Tilson, 1985

Table 1. Fish-catching and consumption by non-human primates

								(common carp), <i>Barbus</i> anoplus (chubby head carp)	
Pan paniscus ^a	wild	*	*	pool	Yes	No	live	"mud fish," sp. unid.	Nishida 1972
Pan troglodytes ^a	wild	*	*	pool	Yes	No	live	"small fish," sp. unid.	Sugiyama and Koman, 1987
Pongo pygmaeus	free-ranging, rehabilitant	both	young	pool, riverbank	Yes	Yes	live	sheath catfish (<i>Kryptopterus</i> spp., <i>Ompok</i> spp, <i>Wallago leeri</i>), snakeheads (<i>Channa</i> sp.)	Russon et al., 2014
Sapajus apella	captive	both	both	pool?*	Yes	Yes	live	*	Clarke and Mitchell, 1982; Mendes et al., 2000
Tarsius bancanus ^b	free-ranging	*	*	*	No	No	dead	unid. spp.(Actinopterygii)	Niemitz, 1979; Niemitz 1984
Tarsius syrichta	captive	*	*	pool	Yes	No	live	"small fish," sp. unid.	Cook, 1939

* No description

a Information gathered from field assistants

b "when being fed a fish liked to eat the dead fish completely"