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Abstract 

The key to forecasting is information, almost all forecasting problems are caused by incomplete information. In this 

paper we propose a quantum-like evolutionary algorithm for time series forecasting from an information perspective. 

Based on reward learning, the quantum-like evolutionary algorithm gains valuable information from time series data 

to produce probabilistic forecasts. The quantum-like evolutionary algorithm utilizes operation matrixes to generate a 

population of virtual trajectories to simulate time series data, then compute the returns of each virtual trajectory 

generated, and finally by means of Genetic Programming to evolve the virtual trajectory with the maximum returns 

that is most approximate to the observed time series data as possible. The operation matrix with maximum returns is 

the one utilized to produce the probabilistic forecast. By using historical data from the Dow Jones Index and Crude 

Oil Prices, we show that our methodology is able to produce reasonable forecasts. 

Keywords: time-series forecasting, machine learning, genetic programming, quantum superposition, natural selection, 

quantum-like evolutionary algorithm 
 

 
 

1. Introduction 

Time-series forecasting plays a crucial role in commercial business and academic research. In industries such as; 

forecasting stock market indexes [1-4], forex [5-6], cryptocurrency [7-10], electricity consumption [11-14], retail 

demand [15-16], wholesale prices [17], and raw data yield [18]. In applications of research topics such as; biological 

science [19], medicine [20-22], climate modelling [23-27], precipitation [28], semiconductor anomaly detection [29-

32], neural spiking [33-35], neuronal behavior predictions [36-37], ECG readings [38-41], and earthquake seismic 

activity [42-45]. Other fields include predicting tidal waves [46-47] and traffic congestion data [48-49]. 

Of the traditional methods formulated for time-series forecasting [50], the first systematic approach is the Box-

Jenkins model [51], which integrated the existing knowledge of the autoregressive and moving average 

methodologies. There have also been many other mathematical methods formulated such as autoregressive [52], 

exponential smoothing [53-55], and other structural models [56]. Many attempts to automate time series forecasting 

have been made [57-60], such as the development of various packages for Python [61-62] and R [63], as well as a 

plethora of open-source software tools [64]. Various competitions have been hosted with the aim of achieving the 

highest accuracy for time series forecasting [65-68]. With the increasing availability of data and access to 

computing power, machine and deep learning has been thrust to the forefront of many next generation and state-of-

the-art forecasting methods and models [69-72]. The rising popularity of AI and generative AI tools has also seen 

the releases of commercial tools such as Amazon SageMaker AI DeepAR [73-74], Facebook Prophet [75], and 

Nixtla TimeGPT [76] for time series forecasting that all leverage some sort of machine and deep learning. 

All the problems that arise for forecasting are due to incomplete information. This incomplete information 

phenomena are inherent in all uncertain environments (non-linear systems), such as the financial market. Because of 

the lack of complete information in an observed time series, we aren’t able to accurately reconstruct the historical 

data and predict the future. Thus, the best we can to do is to “guess” what is to come – be able to make the most 

reasonable prediction among the many possible outcomes. 

Essentially forecasting is a form of decision-making under uncertainty due to incomplete information. The main 

challenge for decision-making is that of a dual uncertainty: the first uncertainty (the external world) is the inherent 
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unpredictability of mother nature; the second uncertainty (human nature) is the unpredictable irrational behavior that 

we sometimes act in. The uncertainty of the world clouds our judgement of exactly what action to take when 

making a decision, and in certain contexts, our actions influence and affect the ever-changing external world to 

some degree, thus presenting a significant challenge of modelling both the uncertainty of the objective and the 

subjective. 

This work presents a quantum-like evolutionary algorithm [77-78] for time-series forecasting; the quantum-like 

evolutionary algorithm incorporates the quantum superposition principle to model the dualistic uncertainty of the 

external world and internal mind all under unified complex Hilbert Space. Based on reward learning, the quantum-

like evolutionary algorithm scours out the most valuable information by studying the historical data to produce 

probabilistic forecasts. The quantum-like evolutionary algorithm that we’ve proposed does this in two parts: first, 

generate a population of simulated virtual trajectories and compute the returns of each simulated virtual trajectory, 

then second, genetic programming is applied to evolve the population of simulated virtual trajectories and output the 

one that has the maximum returns. This ensures that the outputted simulated virtual trajectory is the most 

approximate one to the actual observed time series data. 

While in today’s era of big data where huge amounts of data seem to be better, we believe for short horizon 

forecasting under uncertain environments a small data sample is good enough; the far distant past and remote future 

don't have an impact on the short horizon forecast; the far past doesn't influence what is happening now, and in the 

long term the far future is unpredictable. By studying more recent historical data the quantum-like evolutionary 

algorithm focuses on producing short horizon forecasts which is more in line with real world scenarios. 

In this paper we used historical data of two real-world datasets: the Dow Jones Index and Crude Oil Prices. By 

deliberately selecting these two non-linear datasets with great uncertainty, we demonstrate the short horizon forecast 

capabilities of the quantum-like evolutionary algorithm with datasets that don’t have complete information, which 

other forecasting methods can’t handle well. We trained around 60 data points for each and produced a short 

horizon forecast of 15 points on each time series dataset, and the results of each forecast produced are reasonable. 

The structure of this paper as follows: Section 2 details the methodology. Section 3 are the results. Section 4 is 

the discussion. Section 5 is the conclusion. 

 
2. Methods 

For any given time series, the data points recorded can be described as in (1). 

{(tk, xk, qk)} k = 1,… , N (1a) 

qk = {
0, xk > xk−1
1, xk < xk−1

 (1b) 

Where tk is time, xk are the observed data points of what is being recorded, qk is the trend (0: up or 1: down) of the 

time series. 

For quantum-like evolutionary algorithm applied to time series forecasting there are three main components: 

(1) Time series data {(tk, xk)}: the trajectory of the observed data needs to be forecasted. 

(2) Operation matrix ρmatrix: a density operator to simulate the trajectories of time series data. 

(3) Returns Rreturns: the evaluation metric that evaluates how effective the simulated trajectory is to the actual 

observed trajectory of the time series data. 

For the quantum-like evolutionary algorithm, the main challenge faced from the beginning is the incomplete 

information presented by the observed time series. The way that the quantum-like evolutionary algorithm does so is 

to create a population of operation matrixes, with each operation matrix generating a single simulated virtual 

trajectory, and then the quantum-like evolutionary algorithm computes the returns of each operation matrix. After 

generations of evolution, the operation matrix with the maximum returns (most “adapted” to the observed trajectory) 

will be outputted and be used for the forecast of the time series. 

Due to the infinite possibilities that arise from the uncertain trend of the time series (“external world”), the 

quantum-like evolutionary algorithm (“decision-maker”) has to make an “educated guess” on whether the trajectory 

is up or down, thus there needs to be a way to effectively model both the trend of the “external world” and the 

actions that can be taken by the “decision-maker”. To do so, we’ve called on the principle of quantum superposition, 

by drawing off of the concept that something can be “superposed” in multiple states “simultaneously”; we can 

“superpose” the trend of the “external world” (up and down) and the actions that can be taken by the “decision-

maker” (believe whether trend is up and down) altogether under a unified complex Hilbert Space. Then to find the 

“best” most satisfactory operation matrix, we evolve the “fittest” one from the population of all generated operation 

matrixes by using Genetic Programming (GP), an algorithm based on Darwinian Natural Selection. 
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In this section, we first go over how to model the dual uncertainty of the “external world” and the “decision-

maker’s” actions with the concept of quantum superposition, then we detail how to apply GP to optimize the most 

satisfactory operation matrix to use for the forecast. 

2.1 Modeling dual uncertainty with quantum superposition 

The dual uncertainty of the trend of the time series and the actions that can be taken by the operation matrix both 

can be modeled under a unified Hilbert Space [79-80] as (2). 

|Q⟩ = c1|q1⟩ + c2|q2⟩ (2a) 

|A⟩ = μ1|a1⟩ + μ2|a2⟩ (2b) 

Where |q1⟩ denotes at any observed point the trajectory of the time series is going up; |q2⟩ denotes the trajectory is 

going down; ω1 =  |c1|
2 is the frequency of the increase; ω2 =  |c2|

2 is the frequency of the decrease. |a1⟩ denotes 

that the operation matrix believes that the trajectory is going up; |a2⟩ denotes that the operation matrix believes the 

trajectory is going down; p1 = |μ1|
2 are the degree of beliefs that the operation matrix “thinks” the trajectory is 

going up; p2 = |μ2|
2 are the degree of beliefs that the operation matrix “thinks” the trajectory is going down. 

The time series can be treated as a classical entity, which can be represented by a classical statistics operator as 

in (3). 

ρworld = ω1|q1⟩⟨q1| + ω2|q2⟩⟨q2| (3) 

The operation matrix is treated as a quantum-like entity because it can’t “decide” whether what’s being observed 

is up or down, it could be in a state of “believing” the trajectory of the time series is up and down “simultaneously” 

[81], which can be represented by a pure density operator as in (4). 

ρmatrix = |A⟩⟨A| = p1|a1⟩⟨a1| + p2|a2⟩⟨a2| + μ1μ2
∗ |a1⟩⟨a2| + μ1

∗μ2|a2⟩⟨a1| (4) 

The first term is where the operation matrix believes that the trajectory is up with probability p1, second term is 

where the operation matrix believes that the trajectory is down with probability p2 , third and fourth terms are 

“quantum interference” terms, the operation matrix is in a “undecided” state of “simultaneously” believing that the 

trajectory is “up and down” [82-83]. 

Once the operation matrix “takes an action”, it then either believes the trajectory is up or down and not both; this 

can be seen as the equivalent to the “collapse” when a “quantum measurement” is executed [84], as in (5). 

ρmatrix
decide
→      p1|a1⟩⟨a1| + p2|a2⟩⟨a2| (5) 

The complex system of the “external world” and operation matrix can be described as (6). 

ρworld⊗ ρmatrix = ω1p1|q1⟩⟨q1| ⊗ |a1⟩⟨a1| + ω1p2|q1⟩⟨q1| ⊗ |a2⟩⟨a2| +

ω2p1|q2⟩⟨q2| ⊗ |a1⟩⟨a1| + ω2p2|q2⟩⟨q2| ⊗ |a2⟩⟨a2| (6)
 

Where the first term denotes the trajectory of the time series (“external world”) is up and the operation matrix 

“believes” that the trajectory is up, it guesses right and is rewarded; the second term denotes the trajectory is up and 

the operation matrix believes that the trajectory is down, it guesses wrong and is punished; the third term denotes 

that the trajectory is down and the operation matrix believes that the trajectory is up, it guesses wrong and is 

punished; the fourth term denotes that the trajectory is down and the operation matrix believes that the trajectory is 

down, it guesses right and is rewarded. 

Based on (6), the return of the operation matrix “action taken” at any time t is as (7). 

rt =

{
 
 

 
 ω1p1xt,t−1, trajectory is up and the operation matrix believes with probaility p1
−ω1p2xt,t−1, trajectory is up and the operation matrix doesn

′t with probability p2
−ω2p1xt,t−1, trajectory is down and the operation matrix doesn

′t with probability p1
ω2p2xt,t−1, trajectory is down and the operation matrix believes with probability p2

 (7) 

Where xt,t−1 = |xt − xt−1| is the absolute difference between the value of the current point and the previous point. 

The total returns as in (8) is the sum of all the individual returns as in (7). 

Rreturns =∑rt

N

t=1

 (8) 

2.2 Optimize operation matrix by Genetic Programming (GP) 

ρmatrix is just a 2x2 matrix, (5) can be described as (9). 

ρmatrix = [
ρ11 ρ12
ρ21 ρ22

]
decide
→    [

p1 0
0 p2

] = p1|a1⟩⟨a1| +p2|a2⟩⟨a2| (9a) 

|a1⟩ = [
1
0
] , |a2⟩ = [

0
1
] ; |a1⟩⟨a1| = [

1 0
0 0

] , |a2⟩⟨a2| = [
0 0
0 1

] (9b) 
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{
 H =

1

√2
[
1 1
1 −1

]  X = [
0 1
1 0

]  Y = [
0 −i
i 0

]  Z = [
1 0
0 −1

]

S = [
1 0
0 i

]  D = [
0 1
−1 0

]  T = [
1 0
0 eiπ 4⁄ ]  I = [

1 0
0 1

]

} (9c) 

We can approximately construct this density operator ρmatrix with the eight most basic quantum gates as (9c). 

After constructing an individual operation matrix, we can then construct a population of operation matrixes, and 

then by using the fitness function as the evaluation criteria, the most satisfactory density matrix ρmatrix from the 

population is evolved through generations of natural selection. The fitness function is defined as the total returns in 

(10). 

ffitness = Rreturns (10) 
If there are M number of individuals in a population of operation matrixes, the most satisfactory operation 

matrix is the one that possess the maximum fitness function that can be described as in (11). 

ρmatrix
output

= arg max
a
{ffitness
k , k = 1,⋯ ,M} (11) 

After finding the operation matrix with the highest returns, the simulated value x′k for the virtual trajectory can 

be iteratively computed as in (12). dk,k−1
′  in (12c) is the simplest way to calculate the absolute difference value 

between two observed points used by the quantum-like evolutionary algorithm, for a more advanced way please 

refer to Xin L, et al (2023) [78]. 

qk
′ = {

0, operation matrix believes trajectory is going up
1, operation matrix believes trajectory is going down

 (12a) 

xk
′ = {

xk−1
′ + dk,k−1

′ , if qk
′ = 0)

xk−1
′ − dk,k−1

′ , if qk
′ = 1)

 (12b) 

dk,k−1
′ = (∑|xk − xk−1|

N−1

k=0

) N⁄  (12c) 

GP uses random crossover, selection, and mutation to formulate an executable program that solves problems 

accordingly [85-87]. First by randomly generating a certain number of individuals that comprise of a population, the 

algorithm obtains the fitness of each individual in the group and then by utilizing the principles of natural evolution 

for a number of generations it will optimize a most “satisfactory” solution to be used. The fittest ones that survive 

are the ones utilized, in line with the theory of natural evolution that states life has evolved through generations of 

selection, mutation, and crossover, the ones most adapted to the environment survive long enough to pass their 

genes off to the next generation [88]. 

The GP algorithm is shown in Algorithm 1. 

 

Algorithm 1. GP Algorithm 

Input: 

⚫ Historical dataset  {(tk, xk), k = 0,⋯ , N}; 

⚫ Setting: 

(1) Operation set F = {+,∗,//}; 

(2) Dataset T = {H, X, Y, Z, S, D, T, I}; 

(3) Crossover Probability = 70%; Mutation probability = 5%. 

Initialization: 

⚫ Population: randomly create 300 individuals. 

Evolution: 

⚫ Loop: for i = 0 to 80 generations. 

a) Calculate fitness for each individual based on the historical dataset; 

b) According to the quality of fitness: 

i. Selection: selecting parents. 

ii. Crossover: generate a new offspring using the roulette algorithm based on crossover 

probability. 

iii. Mutation: randomly modify the parent based on mutation probability. 

⚫ Output: An individual of the best fitness. 
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3. Results 

All the training and forecasting was performed on a single general-use laptop. We trained and predicted on a 

relatively small dataset of about 75 data points, which was completed in a few hours. The parameters were set to a 

population of 300 individuals, evolving 80 generations, with the crossover probability at 70%, and the mutation 

probability at 5%. 

3.1 Datasets 

Two datasets – Dow Jones Industrial Average and Crude Oil Prices: West Texas Intermediate (WTI) – Cushing, 

Oklahoma – downloaded from the Federal Reserve Economic Data (FRED) and were used for all evaluations. The 

first 80% of the data was used for training and the remaining 20% of the data was used for verification (validation 

forecast). Regarding the forecast results of both datasets, the quantum-like evolutionary algorithm does two things: 

(1) forecast the one possibility that has the greatest chance of happening, and (2) forecast the trend curve. For (1), 

the quantum-like evolutionary algorithm generates 10,000 possibilities and runs each one once, then it selects the 

one that incurs the most frequently (yellow line). The one that is selected is then applied in the forecast process. For 

(2), quantum-like evolutionary algorithm generates 1,000 possibilities and runs them once each, then averages them 

all, which is then the result of the trend curve (red line). 

3.2 Forecast results 

Data used for the Dow Jones was from January 2nd, 2025 to April 25th, 2025; 80% of the data (Jan. 2nd, 2025-Apr. 

3rd, 2025) was used as training data, while the remaining 20% (Apr. 4th, 2025-Apr. 25th, 2025) was used as 

verification. The entire training time took 5 hours, 45 minutes for the Dow Jones Index. 

Data used for Crude Oil was from January 2nd, 2025 to April 21st, 2025; 80% of the data (Jan. 2nd, 2025-Mar. 

28th, 2025) was used as training data, while the remaining 20% (Mar. 31st, 2025-Apr. 21st, 2025) was used as 

verification. The entire training time took 5 hours, 21 minutes for the Crude Oil Prices. 

The key to all the graphs is: the blue line is the original data points of each dataset, the yellow line in the train 

graph is the fitting curve while the yellow line in the forecast graph is the predicted curve, and the red line is the 

trend curve. 

 
Figure 1: The training (left) and forecast (right) results of the Dow Jones Index. 

 

Date Observed 
closing price 

Predicted 
closing price 

2025-04-03 40545.93 40545.93 

2025-04-04 38314.86 40361.38 

2025-04-07 37965.60 39908.01 

2025-04-08 37645.59 40101.56 

2025-04-09 40608.45 40295.10 

2025-04-10 39593.66 40754.47 

2025-04-11 40212.71 40301.10 

2025-04-14 40524.79 40760.47 

2025-04-15 40368.96 40572.93 

2025-04-16 39669.39 40119.56 

2025-04-17 39142.23 39932.01 

2025-04-21 38170.41 40125.56 

2025-04-22 39186.98 40319.10 

2025-04-23 39606.57 39865.74 

2025-04-24 40093.40 40325.10 

2025-04-25 40113.50 40784.47 

Table 1: Result of the Dow Jones Index forecast outcomes 
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Figure 2: The training (left) and forecast (right) results of Crude Oil Prices. 

 

Date Observed 

closing price 

Predicted 

closing price 

2025-03-28 69.74 69.74 

2025-03-31 71.87 70.19 

2025-04-01 71.61 68.88 

2025-04-02 72.12 68.42 

2025-04-03 67.43 67.96 

2025-04-04 62.42 68.42 

2025-04-07 61.05 67.10 

2025-04-08 60.04 65.78 

2025-04-09 62.63 64.46 

2025-04-10 60.57 64.92 

2025-04-11 61.91 66.24 

2025-04-14 61.99 65.78 

2025-04-15 61.74 64.46 

2025-04-16 62.88 65.78 

2025-04-17 65.07 67.10 

2025-04-21 63.48 65.78 

Table 2: Result of Crude Oil Prices forecast outcomes 

Figure 1 (Dow Jones Industrial Index) and Figure 2 (Crude Oil Prices) shows the training and forecast results by 

the quantum-like evolutionary algorithm. Table 1 shows the verification results of the Dow Jones Index; Table 2 

shows the verification results of the Crude Oil Prices. 

The forecast produced are reached by the principle of majority rules like in a system of court or voting 

procedure, the minority of people must obey the majority’s opinion. In the case of the forecast, the operation matrix 

generates an action sequence which provides a judgement of whether the trajectory is going up or down for each 

predicted point; the operation matrix with the maximum returns produces 12 action sequences, then by taking all of 

them into account, majority rules are applied to generate a final action sequence. This final action sequence is what 

is applied to produce the virtual trajectory in (12). 

3.3 Analysis 

MAPE and RMSE metrics are used to evaluate the accuracy of the forecast results, they are defined as: 

MAPE =  
∑ |(oi − pi) oi⁄ |N
i=1

N
× 100 

RMSE =  
√∑ (oi − pi)

2N
i=1 N⁄

∑ |oi|
N
i=1 N⁄

 

Where oi is the observed value for item i, pi is the predicted value for item i, and N is number of intervals that are 

going to be predicted. Table 3 shows the MAPE, RMSE, and Odds statistics for the Dow Jones and Crude Oil 

forecasts. 
 

 Dow Jones Crude Oil 

MAPE 2% 5% 

RMSE 0.03 0.06 

Odds 66.67% 66.67% 

Table 3: MAPE, RMSE, and Odds Metrics Accuracy 



7 

 

 
4. Discussion 

The key to forecasting is information, but unfortunately historical time series datasets usually only contain 

incomplete information. It’s difficult if not impossible to predict the absolute values for each observed data point by 

rigorous mathematical equations, for example to predict the closing prices of the Dow Jones Index. In this paper we 

proposed a methodology that first tries to simulate the up down movement at each observed point of the time series 

by an operation matrix, and then compute the absolute value; by studying the historical data with reward learning, the 

operation matrix will gain “knowledge” (valuable information) of the trend of the time series. Based on its 

“experience” the operation matrix will make a reasonable probabilistic forecast. Particularly for those datasets that 

are random, the operation matrix is more like a “mixed strategy” (with different “degrees of beliefs” to decide the 

whether the trajectory will be up or down), and as von Neumann said if your opponent is “randomly” playing cards 

then the best strategy to “counter” is to use a mixed strategy [89]. 

Majority rules according to May’s theorem as outlined by Kenneth O. May, who “proved that the simple majority 

rule is the only "fair" ordinal decision rule, in that majority rule does not let some votes count more than others or 

privilege an alternative by requiring fewer votes to pass.” The quantum-like evolutionary algorithm applies majority 

rules to increase the accuracy of forecasting, basically the operation matrix will produce a group of action sequences 

consisting of whether the trajectory is up or down at any given point, similarly in a rule of law court, from the group 

of action sequences the one with “majority rules” is the one that becomes the final action sequence. From the 

phenomena observed in the experiment, every single action sequence’s accuracy is around 50%, but by applying 

majority rules the accuracy of the final action sequence can increase to 60% or even 80%. 

Majority of traditional methods tend to focus on breaking down forecasting into three steps: (1) find a trend, (2) 

apply an interval cycle, and (3) eliminate external noise (uncertainty) as much as possible. If the said dataset can’t be 

broken down into these three parts, then that dataset is treated as an unpredictable data series filled with random 

external noise that can’t be reduced. Basically, traditional methods strive to reduce or completely eliminate external 

noise (uncertainty) by treating it as a bad thing to find a certain possible trend. 

Compared to traditional methods, our methodology doesn’t treat external noise (uncertainty) necessarily as a bad 

thing, we don’t strive to reduce or eliminate noise and uncertainty but quite the contrary, we attempt to utilize 

uncertainty to find valuable information from the constantly changing environment to formulate a trend. Thus, we 

don’t set out with the mindset of attempting to break up the data into trend, interval cycle, and noise, instead we seek 

to embrace uncertainty as a factor to help us find possible outcomes; based on reward learning the operation matrix 

with the maximum returns formulates a way to “randomly play dice” to “counter” the random walk of time series’ 

trajectories. 

 
5. Conclusion 

In this paper, the quantum-like evolutionary algorithm utilizes an operation matrix to generate a group of simulated 

virtual trajectories, then computes the returns of each virtual trajectory compared to the actual trajectory of the 

observed time series, and finally genetic programming is applied to evolve the operation matrix with the maximum 

returns for forecasting. After applying majority rules, the forecast accuracy was increased based on the experiment 

results. MAPE, RMSE, and accuracy odds were used to evaluate the accuracy of the forecast results. The accuracy 

based on the evaluation metrics of MAPE and RMSE were both 90%+ and the accuracy odds were 60%+. 

Further research work will include: increase the training time and adjust the parameters of the GP algorithm 

(crossover, mutation, selection) to see if forecast accuracy will improve; conduct more training and forecasts on the 

vast amounts of other time series datasets; a comparison to traditional time series forecasting methods and Machine 

Learning methods as well as other time series tools. 

Because the future is inherently unpredictable, a perfect universally all-encompassing crystal ball method can’t be 

found to “predict the future”, thus if a black swan suddenly alighted then no one can foresee it no matter what. In this 

paper we deliberately chose a small sample of historical data to forecast a short horizon, assuming the time series will 

“keep” its “relative” trend of the recent past in the near future. If a black swan does actually show up then our method 

is not omnipotent and fail-proof, it won’t be able to predict the landing of a black swan either, which in that case 

we’ll just have to “trust our gut” to throw the dice back and hope for the best. 
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