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Abstract 

Languages evolve through diffusion processes similarly to biological evolution, forming linguistic 

clusters based on geographic proximity. A few mathematical modeling studies have tested the 

classical theory on the occasional formation of a peripheral distribution of words, which originally 

assumed two conditions: (i) new words are innovated exclusively at a cultural center and (ii) these 

words spread outward due to the prestige of the cultural center. However, it is known that these 

special conditions are often not met. We examined whether and how the presence or absence of 

each condition influences the outcome using an extended Bayesian Iterated Learning Model. Our 

agent-based simulations and mathematical analyses revealed that peripheral distributions can 

emerge not only when both conditions are present but also when one of the two is absent. 

Furthermore, the satisfaction of one or both conditions in a population can be predicted by 

investigating the word age distribution there. 
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Introduction 

There is variation in languages, more specifically variation in linguistic forms such as morphemes, 

words, and grammars, at a wide range of levels (from global to local). Similarity between languages 

typically correlates with geographic closeness (De Gregorio et al., 2024). This would reflect the 

process by which a new variant generated in one subpopulation spreads between subpopulations, 

similar to the gene flow observed in biological evolution (Bromham, 2025). As a result, 

geographically close languages or dialects form a cluster.  

 An example of such a distribution pattern is the "peripheral distribution" proposed in the 

theory of Hōgen Shūkenron (theory of peripheral distribution of dialectal forms) (Yanagita, 1930). 

The theory is originally based on two assumptions: (1) new words are generated exclusively at a 

cultural center (hereafter referred to as centralized neologism creation), and (2) people in 

surrounding areas perceive a "prestige of center" for a word introduced from the center side and 

accept it. These assumptions explain how new words spread outward from the center, forming a 



 

peripheral distribution of each word, with older ones further from the cultural center. 

 Recently, not many but several mathematical modeling studies quantitatively evaluated 

the validity of verbal arguments based on the theory of peripheral distribution of dialectal forms. 

Lizana et al., (2011) incorporated both of the aforementioned key conditions to obtain the 

peripheral distribution in their simulations. Takahashi & Ihara, (2020) claimed that the realistic word 

distribution can be even formed only with the first condition that new words emerge solely at the 

center. 

 However, language change does not necessarily conform to the assumption that new 

words are created only in cultural centers. Indeed, there are documented examples of linguistic 

innovations originating in peripheral regions and subsequently diffusing back into cultural centers. 

For instance, the Japanese word uzattai, originally used only in the western suburbs of Tokyo, later 

diffused inward to central Tokyo and eventually nationwide, providing clear evidence of linguistic 

innovation flowing from peripheral regions into cultural centers (Inoue, 2010). Therefore, it is 

worthwhile to investigate whether peripheral distributions emerge even when the center does not 

play a special role in neologism creation. 

 In this study, an extended Iterated Learning Model (ILM) was developed to clarify the 

conditions under which peripheral distributions are formed. Previous studies have employed ILMs 

to explain the evolution of linguistic variants through cultural transmission processes (Kirby, 2001; 

Kirby et al., 2007). Although these studies have an advantage of simulating individual-level 

decision-making, they did not address questions concerning the geographic diffusion patterns, as 

they have considered an unstructured population. In contrast, the present ILM, by considering 

multiple subpopulations, has the capability to (analytically and mathematically) analyze how 

linguistic variations spread within a structured population. We specifically address the question of 

whether the two core assumptions of theory of peripheral distribution of dialectal forms are each 

independently or jointly sufficient for the formation of peripheral distributions. 

 

Model 

The Iterated Learning Model (ILM) framework simulates language transmission across 

generations. In this model, agents-representing subpopulation-acquire linguistic knowledge from 

data generated by the previous generation and subsequently produce data for the next generation. 

This process of intergenerational transmission, characterized by imperfect learning and production, 

drives language change through linguistic drift (Reali & Griffiths, 2010). 

In this paper, we use Bayesian inference as individual learning (Kirby, 2001; Kirby et 

al., 2007). A learner receives data containing the number of linguistic forms 𝑣𝑘 such as sounds, 

words, or grammatical constructions, and infers the frequency distribution of variants following 

Bayes' theorem (Christian P. Robert, 1994). The variables 𝒙 and 𝜽 are K dimensional vectors 

(𝒙 = [𝑥1, 𝑥2, . . . 𝑥𝐾] and 𝜽 = [𝜃1, 𝜃2, . . . 𝜃𝐾]), where K is the total number of variants. The 

elements 𝑥𝑘 and 𝜃𝑘 denote frequency and the estimated probability, respectively, of 𝑣𝑘. 

𝑝(𝜽 ∣ 𝒙) =
𝑝(𝒙 ∣ 𝜽)𝑝(𝜽)

∫ 𝑝(𝒙 ∣ 𝜽)𝑝(𝜽)𝑑𝜽
, 

where 𝑝(𝜽) is the prior distribution, indicating the innate biases common in the focal 

population. The likelihood 𝑝(𝒙 ∣ 𝜽) is a multinomial distribution, which is the probability of 



 

observed data 𝒙 from the parameter 𝜽.  

We assume that the prior distribution is a symmetric K-dimensional Dirichlet 

distribution, which means that there is no selection of variants. Agents are neutral between variants. 

The distribution is determined only by parameter 𝛼 and 𝐾. 

𝑝(𝜽) ∝∏ 𝜃𝑘
𝛼/𝐾−1

𝐾

𝑘
, 

The parameter 𝛼/𝐾  moderates the learner's preference for diversity: the larger 𝛼/𝐾  value 

represents a tendency to retain the greater number of variants. Since the Dirichlet distribution is the 

conjugate prior of a multinomial distribution, it belongs to the same family as the prior.  

It can be shown that probability that an agent produces a 𝑣𝑘 is calculated as 

𝑥𝑘 +
𝛼
𝐾

𝑁 + 𝛼
 

See (Reali & Griffiths, 2010) for details. 

We extend this model to the extreme case of 𝛼 = 0 by taking limit as 𝛼 → 0. In this case, the 

Dirichlet prior formally approaches 

𝑝(𝜽) ∝∏ 𝜃𝑘
−1

𝐾

𝑘=1
, 

which corresponds to the Haldane prior. Under this limiting assumption, the posterior distribution 

is given by 

𝑝(𝜽 ∣ 𝒙) ∝∏ 𝜃𝑘
𝑥𝑘−1

𝐾

𝑘=1
, 

and the production probability for variant 𝑣𝑘 simplifies to 

𝑥𝑘
𝑁

 

Which holds even if 𝑥𝑘 = 0. 

We extended the aforementioned model to scenarios where each generation consists of 

multiple agents. In this model, each agent probabilistically selects a parent agent and samples a 

piece of data from the data pool generated by that parent agent for its learning process. We assume 

that the data pool generated by the parent agents is sufficiently large, so the data received by each 

agent in the subsequent generation can be considered independently generated.  The probability 

that the i-th agent in generation 𝑡  receives 𝑣𝑘   depends only on the number of times 𝑣𝑘 

received by each agent of generation 𝑡 − 1, denoted as 𝑥𝑘(𝑡−1)
(𝑗)

. 

∑
𝑊𝑖𝑗

𝑥𝑘(𝑡−1)
(𝑗)

+
𝛼(𝑗)

𝐾
𝑁(𝑗) + 𝛼(𝑗)

 
𝑀

𝑗
 , 

where 𝑊𝑖𝑗 is the probability that 𝑖-th agent adopts a data element produced by 𝑗-th agent of the 

parent generation. In other words, 𝑊𝑖𝑗 represents the degree of connection between agents. 

 

Insert Figure 1 here 

Figure 1. Each agent updates its hypothesis by receiving data generated by the previous generation 



 

with a weighted probability and then generates data for the next generation. 

 

Consider the case where every mutation produces a variant that has never been observed in the 

population. In this case, the number of variants is potentially infinite, which yields the use of an 

infinite dimensional Dirichlet distribution for the prior distribution. The agents generate already 

existing variant 𝑘 with probability 𝑥𝑘/(𝑁 + 𝛼) under the 𝑥𝑘. It also generates a completely 

novel word with probability 𝛼/(𝑁 + 𝛼). As in the case of finite variants, errors generate all 

variants equally, but no longer generate existing variants because there are a finite number of 

variants that already exist, whereas there are an infinite number of variants that do not yet exist. 

The probability of receiving an already produced variant is given by 

∑ 𝑊𝑖𝑗

𝑀

𝑗

𝑥𝑘(𝑡−1)
(𝑗)

𝑁𝑗 + 𝛼𝑗
  

the probability of receiving a novel variant is given by  

∑ 𝑊𝑖𝑗

𝑀

𝑗

𝛼(𝑖)

𝑁(𝑖) + 𝛼(𝑖)
 

We confirmed that our model can reproduce the peripheral distribution predicted by 

theory of peripheral distribution of dialectal forms, which explains how linguistic changes diffuse 

from cultural centers to peripheral areas, under certain parameter settings. According to this theory, 

new linguistic features emerge in influential cultural centers and gradually spread to surrounding 

regions due to the prestige associated with these centers (Yanagita, 1930). Consequently, newer 

linguistic forms cluster near the center, while older forms persist in the outer areas, resulting in a 

pattern of concentric circles. 

To examine the effects of specific conditions on this distribution, we conducted four sets 

of simulations, each with and without the following two conditions: 

centralized neologism creation: New words are generated exclusively at a cultural center. 

center prestige: People in surrounding areas perceive a "prestige of center" for a word introduced 

from the center side and accept it.  

We performed simulations on a one-dimensional lattice, where agents are arranged in a 

line and can only interact with their immediate neighbors. A designated cultural center was 

established along this line, and we analyzed how the above conditions affect the distribution of 

linguistic features. 

In the scenario without the center prestige (condition 2), each agent 𝑖 receives input 

from both its left neighbor 𝑖 − 1 and right neighbor 𝑖 + 1, with appropriate adjustments at the 

boundaries. The interaction weight matrix is defined as follows: 

𝑊𝑖𝑗 =

{
 
 

 
 1 −

𝑚

2
, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 (𝑖 = 1 𝑜𝑟 𝑖 = 𝑛)

1 − 𝑚, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 1 < 𝑖 < 𝑛
𝑚

2
, 𝑖𝑓 |𝑖 − 𝑗| = 1

0, 𝑜ℎ𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

 



 

When the center prestige is applied, the matrix 𝑊 becomes asymmetric. Specifically, 

we define the cultural center at position 

𝑐 =
𝑀 + 1

2
 

where 𝑀 is restricted to odd numbers to ensure that a unique center exists. The weight matrix is 

redefined as: 

𝑊𝑖𝑗 =

{
 
 

 
 
1, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑖 = 𝑐
1 − 𝑚, 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑖 ≠ 𝑐
𝑚, 𝑖𝑓 𝑗 ≤ 𝑐 𝑎𝑛𝑑 𝑖 = 𝑗 − 1
𝑚, 𝑖𝑓 𝑗 ≥ 𝑐 𝑎𝑛𝑑 𝑖 = 𝑗 + 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

We define the linguistic distance between agents as the Manhattan distance, calculated 

based on the frequency of the data each agent receives. In addition, a peripheral distribution is said 

to be realized when at least one agent has a partner agent that is geographically more distant and 

linguistically closer to it than the center agent.    

 

Results 

Our analysis revealed that the most pronounced peripheral distribution of linguistic features 

emerged when two key factors were simultaneously applied: the centralized neologism creation in 

the cultural center and the center prestige (Figure 2, bottom right). Interestingly, we also observed 

peripheral distributions when only one of these two conditions was present, as illustrated in Figure 

2. This finding suggests that the mechanisms underlying the formation of peripheral distribution 

may be simpler than previously thought. Distribution is qualitatively different for each condition. 

The top left panel of Figure 2 is the case where none of the two conditions are present, and the 

linguistic distance is simply greater the farther away the group is. The result shows that the model 

setup is sufficient to represent the peripheral distribution. 

 

Insert Figure 2 here 

Figure 2. Heatmap showing the time-averaged linguistic distance between subpopulations during 

the simulation. Four conditions were examined based on the presence or absence of two factors: 

the centralized neologism creation and the center prestige. For all simulations, parameter values 

were set to 𝑀  = 15, 𝑚  = 0.01, and 𝑁(𝑖)  = 100 for all 𝑖 . For the parameter 𝛼 , when the 

centralized neologism creation was enabled, only the central subpopulation 𝑖  =  (𝑛 + 1)/2 was 

assigned 𝛼𝑖 = 0.1  while all other subpopulations were set to 0 ; when it was disabled, all 

subpopulations had 𝛼𝑖 = 0. Data were time-averaged over the final 90% of 1,000,000 generations 

and ensemble-averaged over 200 independent runs. 

 

The tendency for peripheral areas to retain older words was found to be driven solely by the 

centralized neologism creation and not by the prestige of the center alone (Figure 2). However, the 

distribution is different when only the centralized neologism creation is applied and when both two 

conditions are applied. With the center prestige, the age of words increases linearly with distance 

from the center. 



 

 

Insert Figure 3 here 

Figure 3. Expected age of variants (i.e., the number of generations since the variant first emerged) 

across subpopulations under four different conditions. The blue solid line represents the time-

averaged simulation results (with the colored regions indicating the variance, computed as the 

variance of the means from 200 independent runs), while the red dashed line indicates the analytical 

solution. For all simulations, parameter values were set to 𝑀 = 15, 𝑚 = 0.01, and 𝑁(𝑖) = 100 for 

all 𝑖. For the parameter 𝛼, when the centralized neologism creation was enabled, only the central 

subpopulation 𝑖  =  (𝑛 + 1)/2 was assigned 𝛼𝑖 = 0.1 while all other subpopulations were set 

to 0; when it was disabled, all subpopulations had 𝛼𝑖 = 0. Data were time-averaged over the 

final 90% of 1,000,000 generations and ensemble-averaged over 200 independent runs. 

The expected value of oldness can be obtained analytically. Derivation is performed 

below. Let 𝑎𝑖(𝑡)  be the expected age of the variants possessed by the 𝑖-th subpopulation at time 

𝑡. 

𝑎𝑖(𝑡 + 1) =∑ 𝑊𝑖𝑗 (0 ⋅ 𝜇𝑗 + (𝑎𝑗(𝑡) + 1)(1 − 𝜇𝑗)
𝑗

) 

where 𝜇𝑖  =  𝛼𝑖 / (𝑁𝑖  + 𝛼𝑖) . Let us introduce the state vector 𝒂 = (𝑎1, 𝑎2, … , 𝑎𝑀)
𝑇  and 

denote by 𝟏 the vector with all entries equal to one. Define the diagonal matrix 

diag(𝟏 − 𝝁) = (
1 − 𝜇1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1 − 𝜇𝑀

) 

In this notation, the stationary condition becomes 

𝒂 = 𝑊 diag(𝟏 − 𝝁)(𝒂 + 𝟏) 

Rearranging the terms, we obtain 

(𝐼 −  𝑊 diag(𝟏 − 𝝁))𝒂 = 𝑊 diag(𝟏 − 𝝁)𝟏 

where 𝐼  is the identity matrix. Assuming that the matrix 𝐼 −  𝑊 diag(𝟏 − 𝝁) is invertible, 

which is typically guaranteed if the spectral radius of 𝑊 diag(𝟏 − 𝝁)is less than one, the solution 

for 𝒂 is given by 

𝒂 = (𝐼 −  𝑊 diag(𝟏 − 𝝁))
−𝟏
𝑊 diag(𝟏 − 𝝁)𝟏 

Consider the case where there is not a condition of the centralized neologism creation. 

In this case 𝜇 and 𝑎(𝑡) are constant across all subpopulations, and it is clear that 𝑎(𝑡 + 1) is 

equal for all subpopulations. Therefore, under the condition 𝑎𝑖(0) = 𝑎𝑗(0) (∀𝑖, 𝑗), we have 

𝑎𝑖(𝑡) = 𝑎𝑗(𝑡) (∀𝑖, 𝑗, 𝑡). 

 

In the steady state, we can assume 𝑎𝑖(𝑡 + 1) = 𝑎𝑖(𝑡) = 𝑎 for all 𝑖. This leads to 

𝑎 = (𝑎 + 1)(1 − 𝜇) 

Solving for a: 

𝑎 =
1 − 𝜇

𝜇
 

This result shows that in the steady state, the expected age of variants is inversely proportional to 

the mutation rate 𝜇.  



 

 

Discussion 

This study investigated the dynamics of language change using an extended Iterated Learning 

Model (ILM) that incorporates multiple agents and network structures. Specifically, we examined 

the conditions under which the theory of peripheral distribution of dialectal forms holds by 

simulating the diffusion of linguistic features from a cultural center to its periphery. Unlike previous 

mathematical models (Lizana et al., 2011; Takahashi & Ihara, 2020), which have only examined the 

formation of peripheral distribution under the assumption that new words are generated exclusively 

at the center, our model extends this by evaluating whether such patterns can also emerge without 

this constraint.  

 The present study defined and calculated linguistic distance between subpopulations as 

a key measure to define a peripheral distribution. Specifically, we evaluated the expected word 

distance, which can be regarded as a measure of overall linguistic distance. A previous study 

(Takahashi & Ihara, 2020), on the other hand, used subpopulation mean age to define peripheral 

distribution. Both measures yielded the same conclusion that a peripheral distribution is achieved 

when the condition of the centralized neologism creation holds. 

 Furthermore, the present model can examine the situation in which the centralized 

neologism creation, which was inevitably built-in in the model of Takahashi & Ihara (2020), does not 

hold. Our findings suggest that even when linguistic innovation occurs at multiple locations, 

peripheral distribution patterns can emerge under certain conditions, particularly when 

transmission mechanisms emphasize prestige or other forms of differential adoption. This finding 

challenges the traditional view that both factors are essential for the peripheral distribution, 

suggesting instead that multiple mechanisms can independently produce similar macroscopic 

language patterns. 

While one of the two conditions is sufficient to generate peripheral distribution as 

discussed above, only the centralized neologism creation can explain the retention of older 

linguistic forms in peripheral regions. This was not only observed in our numerical simulations but 

also confirmed analytically: When all subpopulations generate new words equally, they exhibit the 

same expected age of variants is indifferent among subpopulations. On the other hand, when 

innovation is restricted to the center, peripheral subpopulations predominantly acquire words 

diffused from the center, resulting in the accumulation of older forms. The prestige of cultural 

center influences this process by insulating the center from surrounding subpopulations, preserving 

a lower expected age similar to the uniform innovation scenario. In contrast, without the prestige, 

new words spread less efficiently, increasing the overall expected age of variants. It follows that 

we can distinguish whether there is a centralization bias in the rate of neologism creation by 

examining the age distribution of linguistic forms. 

The assumption that linguistic innovation occurs at a single location and diffuses 

outward is echoed in a traditional geolinguistic hypothesis known as the Principle of Adjacent 

Distribution (Shibata, 1969). This principle posits that when geographically adjacent communities 

A–B–C each use a distinct word a–b–c, the historical relationship among the forms likely follows 

the geographic order: either the words were innovated in this chronological order a, b, and c, or in 

the reverse order c, b, and a. As the assumption above leads to peripheral distribution of dialect, it 



 

might be thought that the Principle of Adjacent Distribution can be applied to any population in 

which a peripheral distribution is observed. However, the results in the present study clearly 

indicated that is not true, the peripheral distribution is achieved without the centralized neologism 

creation, which results in a gradient of word age. 

  Further studies using the present model or an updated model are needed. For example, 

our simulations modeled only a unidirectional flow of linguistic data and assumed the centralized 

neologism creation as the key differentiator between cultural centers and surrounding regions. 

However, language change can be influenced by additional factors such as heterogeneous social 

networks, socioeconomic status, group ideologies, and interactions with other linguistic 

communities (Hock, 1991). Future research should incorporate these variables and validate our 

findings with historical linguistic data and real-world case studies to refine the proposed framework. 

In addition, leveraging the model's capability to represent language change in arbitrary network 

structures presents a promising avenue for exploring language evolution within complex social 

relationships, such as those observed in online communities where linguistic variations emerge and 

spread in unique ways. 
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