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Abstract 42 

Particle filter (PF) is a powerful data assimilation method that does not assume the 43 

linearity in the time evolution of errors or Gaussian error distributions. However, the number 44 

of particles required increases exponentially with the dimensions of the dynamical system, 45 

which is a bottleneck when applying the PF to numerical weather prediction (NWP) models. 46 

Local particle filter (LPF) realizes the PF in high-dimensional systems by the localization, 47 

but it has high parameter sensitivity and is challenging to operate stably. On the other hand, 48 

when using a nonlinear observation operator, it is possible to estimate the analysis with 49 

higher accuracy than the local ensemble transformation Kalman filter (LETKF) by setting the 50 

weight inflation factor, which smooths the weights among particles, and the localization scale, 51 

to the optima. Therefore, an efficient parameter estimation method is required. 52 

Bayesian optimization (BO) is a method for efficiently solving optimization problems of 53 

black box functions with high computational costs, and is used for parameter optimization of 54 

neural networks. Therefore, we estimated the weight inflation factor and localization scale 55 

that minimize the root mean square error between the observations and the forecasts 56 

(RMSE(o vs. f)) in the LPF using the BO in the Lorenz-96 40-variable model (L96). As a 57 

result, the BO was able to model the response surface with high accuracy and estimate the 58 

weight inflation factor and localization scale with accuracy equal to or better than random 59 

sampling (RS). In addition, this result was robust to changes in the observation set. However, 60 

as the number of parameters to be estimated increased, the BO did not always obtain 61 
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estimations close to the optima, depending on the observation set. 62 

This study has clarified that the BO contributes to improving the practicality of the LPF, 63 

and it has also provided suggestions on how the BO should be developed in the future. 64 

Since the LPF can estimate high-precision analysis even in strongly nonlinear phenomena, 65 

the development of the technology in this study is expected to improve the accuracy of heavy 66 

rainfall prediction in the future. The BO will be helpful in atmospheric model experiments for 67 

the practical application of the LPF. 68 

Keywords: Local particle filter; Parameter estimation; Bayesian optimization; Gaussian 69 

process regression 70 

  71 
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1. Introduction 72 

In high-dimensional chaotic dynamical systems, such as numerical weather prediction 73 

(NWP) models, even small errors in the initial conditions can develop over time and become 74 

large errors. Data assimilation is a technique for estimating the analysis closer to the truth 75 

from forecasts and observations, and forecast errors can be improved by using the high-76 

precision analyses as the initial conditions. The ensemble Kalman filter (EnKF; Evensen, 77 

1994) and 4D-Var (Dimet and Talagrand, 1986), which are currently the mainstream data 78 

assimilation methods, can estimate the optimum analysis when the errors develop linearly 79 

over time and the error distribution follows a Gaussian distribution. On the other hand, when 80 

these conditions are not satisfied—around cumulus convection and storm tracks—it may not 81 

be possible to estimate the optimum analyses (Kondo and Miyoshi, 2019). 82 

Particle filter (PF; Gordon et al., 1993) does not assume linearity or Gaussianity, and 83 

therefore can be an appropriate data assimilation method for dynamical systems with strong 84 

nonlinearity. However, the PF obtains the analyses by resampling ensembles (particles) 85 

based on weights obtained from the likelihood of observations; therefore, "weight collapse" 86 

may occur in high-dimensional systems. The PF requires an exponential increase in the 87 

number of particles necessary for the dimensions of the dynamical system (Snyder et al., 88 

2008), and this problem is a bottleneck when applying the PF to the NWP systems. 89 

Local particle filter (LPF; Penny and Miyoshi, 2016; Potthast et al., 2019; Kotsuki et al., 90 

2022) is a method for realizing the PF in high-dimensional systems by reducing the 91 
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dimensions of the dynamical system through localization. Spatial localization is justified by 92 

the fact that long-range correlations are weaker than spurious or nearby correlations (Hamill 93 

et al., 2001). In fact, the LPF can estimate the more accurate analyses than the EnKF in 94 

cases of non-Gaussian observation errors, nonlinear observation operators, and sparse 95 

observation networks (Poterjoy and Anderson, 2016; Poterjoy, 2016; Penny and Miyoshi, 96 

2016). This advantage of the LPF is extremely important for improving the prediction 97 

accuracy of heavy rainfall. This is because, for example, radar reflectivity and precipitation 98 

intensity have a nonlinear relationship, and when assimilating radar reflectivity, it is 99 

necessary to introduce a nonlinear observation operator. 100 

However, in the LPF, it is necessary to set the localization scale and the inflation factor 101 

that smooths the weights among particles to the optima. In addition, excessive resampling 102 

causes "weight collapse," so adjusting the resampling frequency based on the number of 103 

effective particles is also an effective approach. Another method for implementing the PF is 104 

to approximate the prior distribution by a combination of Gaussian kernels centered on the 105 

values of each particle. In this method, the amplitude of the Gaussian kernel is an important 106 

parameter (Stordal et al., 2011). In the LPF, the filter diverges unless these various 107 

parameters are optimized (Kotsuki et al., 2022). 108 

With the improvement of methods and the advancement of models applied to the practical 109 

implementation of the LPF, the number of parameters to be optimized is expected to 110 

increase, and the computational cost of numerical experiments is anticipated to become 111 
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substantial. The simplest method for searching for the optima of these parameters is grid 112 

search (GS), which divides the parameter space into equal parts and comprehensively 113 

searches all combinations. The GS always obtains the optima within the set range, but it 114 

requires experiments that increase exponentially with the number of parameters. Random 115 

sampling (RS) is a method that randomly selects combinations from the parameter space. 116 

It works more efficiently than the GS in high-dimensional spaces, but if the number of 117 

samples is insufficient, it may not obtain the optima. Therefore, a more efficient optimization 118 

method is required. 119 

One method for reducing computational costs is to replace the system response to 120 

parameters with a surrogate model (e.g., Sawada, 2020). Bayesian optimization (BO; 121 

Mockus, 1989) is a method for estimating parameters that minimize an objective function 122 

and is used for parameter optimization of neural networks (Snoek et al., 2012). In this 123 

method, Gaussian process regression (GPR) is employed to emulate the objective function. 124 

Consequently, even if the shape of the response surface of the input-output data is unknown 125 

or the function is a multi-peaked function that cannot be differentiated, it is still possible to 126 

efficiently search for a global optimal solution. In addition, the BO and other systems are 127 

independent and easy to implement. 128 

The effectiveness of using the BO for parameter estimation within the EnKF framework 129 

has already been demonstrated (Lunderman et al., 2021). Therefore, this study builds on 130 

this research line to investigate whether parameter estimation using the BO can improve the 131 



 7 

practicality of the LPF. In addition, since the BO has been used as a tool in previous studies 132 

and there is a lack of knowledge that contributes to an essential understanding, we 133 

conducted a survey focusing on the GPR prediction distributions and Lipschitz constants to 134 

inform future technological developments. This survey was conducted using a data 135 

assimilation experiment using the Lorenz-96 40-variable model (L96: Lorenz and Emanuel, 136 

1998). 137 

This paper is organized as follows. Section 2 introduces the methodology, Section 3 138 

describes the experimental setup, Section 4 compares the estimation accuracy of the RS 139 

and the BO, and investigates the estimation results of the BO in detail from the perspectives 140 

of the GPR prediction distribution and Lipschitz constant. Section 5 presents prospects and 141 

conclusions. 142 

  143 
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2. Method 144 

a. Local particle filter 145 

The PF estimates the posterior distribution using the Monte Carlo method and Bayes’ 146 

theorem:  147 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) =
𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1)

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) , (1) 148 

where 𝑝𝑝 represents the probability distribution; 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) denotes the posterior distribution 149 

of state variable 𝒙𝒙 at time 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) given all observations 𝒚𝒚 up to time 𝑡𝑡; 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) is the 150 

likelihood of 𝒙𝒙 given 𝒚𝒚; 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) is the prior distribution given all 𝒚𝒚 up to one time before 151 

analysis time; and 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒚𝒚1:𝑦𝑦−1)  denotes the marginal likelihood of 𝒚𝒚 , which can be 152 

expressed as a constant computed by climate data in the NWP. The prior distribution can 153 

be approximated using particles (or ensemble members) of the numerical forecast:  154 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) ≈
1
𝑀𝑀
� 𝛿𝛿�𝑥𝑥𝑡𝑡 − ℱ(𝑥𝑥𝑡𝑡−1𝑚𝑚 )�
𝑀𝑀

𝑚𝑚=1

, (2) 155 

where the subscripts 𝑚𝑚 (𝑚𝑚 = 1, … ,𝑀𝑀) denote the indices of the particle, 𝛿𝛿 is the Dirac delta 156 

function, and ℱ is the numerical model.  In this study assumes a Gaussian likelihood function, 157 

given by 158 

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) =
1

�(2𝜋𝜋)𝑜𝑜|𝑹𝑹|
exp �−

1
2
�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�

⊤
𝑹𝑹−1�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�� . (3) 159 

where 𝑜𝑜  represents the dimension of 𝒚𝒚 . In addition, 𝑹𝑹  denotes the observation error 160 

covariance matrix, and |𝑹𝑹|  is its determinant. ℎ  denotes the observation operator. The 161 

weight of each particle is the normalized likelihood, computed for all particles as follows:  162 
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𝑤𝑤𝑡𝑡𝑚𝑚 =
𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡𝑚𝑚)

∑ 𝑝𝑝�𝒚𝒚𝑡𝑡�𝒙𝒙𝑡𝑡𝑚𝑚
′�𝑀𝑀

𝑚𝑚′=1
, (4) 163 

where the subscripts 𝑚𝑚′ denote the indices of the particles for summation. The posterior 164 

distribution is obtained by resampling each particle of the prior distribution in proportion to 165 

its weight:  166 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) ≈ � 𝑤𝑤𝑡𝑡𝑚𝑚𝛿𝛿�𝑥𝑥𝑡𝑡 − ℱ(𝑥𝑥𝑡𝑡−1𝑚𝑚 )�
𝑀𝑀

𝑚𝑚=1

. (5) 167 

The resampling method is also arbitrary. This study defined the analysis particles as the 168 

sum of the transformation for perturbations of forecast particles and the mean of the forecast 169 

particles: 170 

𝑿𝑿𝑎𝑎 = 𝑿𝑿�𝑓𝑓 + 𝛿𝛿𝑿𝑿𝑓𝑓 𝑻𝑻 , (6) 171 

where 𝑿𝑿𝑎𝑎 denotes the analysis particles; 𝑿𝑿�𝑓𝑓 represent the mean of forecast particles; and 172 

𝛿𝛿𝑿𝑿𝑓𝑓 denotes the perturbation of forecast particles, where the row and column of 𝑿𝑿𝑎𝑎, 𝑿𝑿�𝑓𝑓, and 173 

𝛿𝛿𝑿𝑿𝑓𝑓 indicate the particle size and dimension of the NWP model, respectively. 𝑻𝑻 denotes the 174 

ensemble transform matrix, defined as a square matrix of order 𝑀𝑀 . As resampling is 175 

performed using the ensemble transform matrix in the LPF, the matrix markedly affects filter 176 

performance (Farchi and Bocquet, 2018; Kotsuki et al., 2022). When the particle size is 177 

sufficiently large, the ratio of resampled particle sizes will closely match the ratio of weights; 178 

otherwise, the sampling error may become substantial. 179 

In addition, the weights among grid points differ because varying observations are 180 

assimilated at each grid point through localization. As the pronounced weight difference may 181 
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cause spatial discontinuity, the ensemble transform matrix should satisfy a spatially smooth 182 

transition. Addressing the smoothing issue presents an interesting challenge. For example, 183 

Kotsuki et al. (2022) addressed this problem by sorting the particles and creating an 184 

ensemble transform matrix close to an identity matrix (see also Potthast et al., 2019). Our 185 

resampling method is based on Algorithm 1 of Kotsuki et al. (2022) and additionally uses 186 

stochastic universal resampling (SUR) instead of probabilistic resampling to reduce 187 

sampling error. The SUR is implemented as follows. Create a normalized cumulative 188 

probability distribution divided by the weight of each particle, and select a random starting 189 

point in the range [0, 1/𝑀𝑀]. Set 𝑀𝑀 pointers at equal intervals between the starting point and 190 

1/𝑀𝑀, and sample the particles corresponding to the cumulative probabilities pointed to by 191 

each pointer. 192 

Furthermore, we used localization to limit the impact of observations within the local 193 

domain to avoid "weight collapse" (Penny and Miyoshi, 2016; Kotsuki et al., 2022). This 194 

localization method is applied by independently computing the analysis at every grid point, 195 

similar to the local ensemble transform Kalman filter (LETKF; Hunt et al., 2007). Specifically, 196 

it is implemented by computing the product of the inverse of observation error covariance 197 

matrix 𝑹𝑹 in Eq. (3) and the inverse of localization function 𝑳𝑳(𝑟𝑟): 198 

exp �−
1
2
�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�

⊤
𝑹𝑹−1{𝑳𝑳(𝑟𝑟)}−1�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�� . (7) 199 

Here, a Gaussian function with compact support was used as the localization function 200 

(Gaspari and Cohn, 1999): 201 
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𝐿𝐿(𝑟𝑟) = �exp�−
𝑞𝑞2

2𝑟𝑟2�  if 𝑞𝑞 < 2�
10
3

 𝑟𝑟

0 else

, (8) 202 

where 𝑞𝑞 denotes the distance between the analysis grid point and the observation point and 203 

𝑟𝑟 represents the standard deviation of the Gaussian function, defining the localization scale. 204 

Observations beyond the radius of influence where the localization function is zero are not 205 

assimilated, while those within the localization scale are weighted based on the localization 206 

function. Therefore, 𝑟𝑟  is the parameter that determines the localization scale, and It is 207 

necessary to set the appropriate value. 208 

In addition, to avoid filter divergence, it is necessary to maintain particle diversity. 209 

Therefore, we smoothed the weights among particles to prevent a few particles from 210 

occupying most of the weights. We refer to this approach as weight inflation in this study: 211 

𝑤𝑤𝑡𝑡𝑚𝑚 ← 𝜏𝜏𝑤𝑤𝑡𝑡𝑚𝑚 +
1 − 𝜏𝜏
𝑀𝑀 , (0 ≤ 𝜏𝜏 ≤ 1), (9) 212 

where 𝜏𝜏 represents the inflation factor in the LPF. If 𝜏𝜏 is not 1, the weights 𝑤𝑤𝑡𝑡𝑚𝑚 are smoothed, 213 

and all particles have equal weights when 𝜏𝜏  equals 0. On the other hand, if the original 214 

weights are used, the LPF tends to diverge due to "weight collapse." As 𝜏𝜏 becomes smaller, 215 

the LPF deviates from the theoretical PF but works stably. Thus, the relationship between 216 

mathematical rigor and stability is a trade-off on the inflation factor 𝜏𝜏. Note that this approach 217 

is mathematically equivalent to Eq. (23) in Kotsuki et al. (2022). However, while Kotsuki et 218 

al. (2022) smoothed the weights in the time direction, we smoothed the weights among 219 

particles. 220 
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 221 

b. Local ensemble transform Kalman filter 222 

The LETKF is a computationally efficient data assimilation method that combines the local 223 

ensemble Kalman filter (LEKF; Ott et al., 2004) and the ensemble transform Kalman filter 224 

(ETKF, Bishop et al., 2001). The analysis ensemble is obtained by the following equation: 225 

𝑿𝑿𝑎𝑎 = 𝑿𝑿�𝑓𝑓 + 𝛿𝛿𝑿𝑿𝑓𝑓 �𝑷𝑷�𝑎𝑎 �ℎ(𝛿𝛿𝑿𝑿𝑓𝑓)�
𝑇𝑇
𝑹𝑹−1 �𝒚𝒚 − ℎ(𝑿𝑿�𝑓𝑓)�+ √𝑀𝑀 − 1�𝑷𝑷�𝑎𝑎�

1
2� . (10) 226 

Here, 𝑷𝑷�𝑎𝑎 is the analysis error covariance matrix in the ensemble space. It is given by the 227 

following equation: 228 

𝑷𝑷�𝑎𝑎 = �
(𝑀𝑀 − 1)

𝛼𝛼 𝑰𝑰 + �ℎ(𝛿𝛿𝑿𝑿𝑓𝑓)�
𝑇𝑇
𝑹𝑹−1 �ℎ(𝛿𝛿𝑿𝑿𝑓𝑓)��

−1

. (11) 229 

Here, 𝛼𝛼 represents the covariance inflation factor in the LETKF, 𝑰𝑰 is the identity matrix. With 230 

a finite ensemble size, the forecast error covariance matrix is generally underestimated, 231 

which leads to filter divergence due to a decrease in ensemble spread. In multiplicative 232 

inflation, the underestimation is prevented by inflating the forecast error covariance matrix 233 

by a constant 𝛼𝛼. 234 

 235 

c. Bayesian optimization 236 

The BO estimates input data that minimizes the objective function by modeling response 237 

surface using the GPR and evaluating using an acquisition function. The GPR assumes that 238 

a joint distribution 𝑝𝑝(𝒈𝒈) of input data 𝒛𝒛 = {𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑆𝑆} and corresponding output data 𝒈𝒈 =239 

{𝑔𝑔(𝑧𝑧1),𝑔𝑔(𝑧𝑧2), … ,𝑔𝑔(𝑧𝑧𝑆𝑆)}  follow the multivariate Gaussian distribution 𝒩𝒩(𝝁𝝁,𝑲𝑲) . Here, The 240 



 13 

input data and output data subscripts  𝑠𝑠 (𝑠𝑠 = 1, … , 𝑆𝑆) denote the indices of the data. This 241 

assumption is written as follows: 242 

𝒈𝒈~𝒢𝒢𝒢𝒢�𝝁𝝁(𝒛𝒛),𝑲𝑲(𝒛𝒛, 𝒛𝒛′)�, (12) 243 

where 𝒛𝒛 are input data that summarizes the inflation factor 𝜏𝜏 and the localization scale 𝑟𝑟 into 244 

a single vector. The superscript ′ denotes the another data within the data set. In addition, 245 

𝒢𝒢𝒢𝒢 denotes the Gaussian process with the mean 𝝁𝝁 and the covariance matrix 𝑲𝑲 defined as 246 

a square matrix of order 𝑆𝑆. The elements of covariance matrix 𝑲𝑲𝒊𝒊𝒊𝒊 is defined as 𝑘𝑘(𝑧𝑧, 𝑧𝑧′ | 𝜽𝜽).  247 

In this study, we used the Gaussian kernel with added white noise as a general choice. Note 248 

that the following equation is for the 2-dimensional BO: 249 

𝑘𝑘(𝑧𝑧, 𝑧𝑧′ | 𝜽𝜽) = 𝜃𝜃1 exp�−
(𝜏𝜏 − 𝜏𝜏′)2

𝜃𝜃2
−

(𝑟𝑟 − 𝑟𝑟′)2

𝜃𝜃3
� + 𝜃𝜃4𝛿𝛿(𝑧𝑧, 𝑧𝑧′). (13) 250 

Here, the kernel function 𝑘𝑘(𝑧𝑧, 𝑧𝑧′) defines the correlation between any two data 𝑧𝑧 and 𝑧𝑧′ in 251 

the input data 𝒛𝒛. In addition, 𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) denotes the positive hyper-parameters that 252 

define the kernel function, while 𝛿𝛿 represents the Dirac delta function. 253 

When the amplitude parameter 𝜃𝜃1 is small, the variation in the GPR prediction distribution 254 

is slight. The GPR prediction distribution becomes smoother when the length scale 255 

parameters 𝜃𝜃2 and 𝜃𝜃3 are large. When the noise parameter 𝜃𝜃4 is small, the uncertainties in 256 

the GPR prediction distribution near the input data are reduced. Note that when there are 257 

two types of input data, using two length scale parameters, 𝜃𝜃2  and 𝜃𝜃3 , allows for more 258 

flexible modeling tailored to the characteristics of each input data. 259 

In addition, since 𝜏𝜏 and 𝑟𝑟 have different scales by a factor of 10, we normalized them to 260 
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the same scale. Since the Gaussian kernel performs distance-based calculations, the 261 

normalization prevents the influence of specific input data from becoming dominant. In our 262 

system, this approach markedly contributed to improving the performance of the BO. 263 

When new input data 𝒛𝒛∗ is given, the GPR is updated, and the new joint distribution of 264 

output data 𝒈𝒈∗ is expressed as: 265 

𝑝𝑝(𝒈𝒈∗|𝒛𝒛∗,𝒟𝒟) = 𝒩𝒩(𝒌𝒌∗⊤𝑲𝑲−1𝒈𝒈,𝑘𝑘∗∗ − 𝒌𝒌∗⊤𝑲𝑲−1𝒌𝒌∗), (14) 266 

where 𝒟𝒟 = (𝒛𝒛,𝒈𝒈) denotes the accumulated input data, 𝒌𝒌∗ is the similarity between the new 267 

input data 𝒛𝒛∗ and the accumulated input data 𝒟𝒟. 𝑘𝑘∗∗ represents the similarity of the new input 268 

data 𝑧𝑧∗ to themselves. 269 

𝒌𝒌∗ = �𝑘𝑘(𝑧𝑧∗, 𝑧𝑧1),𝑘𝑘(𝑧𝑧∗, 𝑧𝑧2), … ,𝑘𝑘(𝑧𝑧∗, 𝑧𝑧𝑆𝑆)�⊤, (15) 270 

𝑘𝑘∗∗ = 𝑘𝑘(𝑧𝑧∗, 𝑧𝑧∗). (16) 271 

Eq. (14), (17), and (18) are derived under the assumption that 𝝁𝝁(𝒛𝒛) in Eq. (12) is zero, but 272 

in practice, mathematical rigor can be satisfied by subtracting the average from the input 273 

data. 274 

In addition, when the covariance matrix 𝑲𝑲  becomes close to a singular matrix due to 275 

redundant exploration of the same input data, it may become impossible to calculate the 276 

inverse matrix stably (Rasmussen and Nickisch, 2010). There are several techniques to 277 

improve numerical stability, but we followed Rasmussen and Williams (2006) and added 278 

jitter to the diagonal components of the covariance matrix. However, as far as we have 279 

experimented, this technique alone can prevent errors associated with singular matrices, 280 
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but cannot prevent the redundant exploration. 281 

The hyper-parameters 𝜽𝜽 are optimized by maximizing the negative log marginal likelihood, 282 

defined as following equation: 283 

log𝑝𝑝(𝒈𝒈 | 𝒛𝒛,𝜽𝜽) = −
𝑆𝑆
2

log(2𝜋𝜋) −
1
2

log|𝑲𝑲𝜽𝜽| −
1
2𝒈𝒈

⊤𝑲𝑲𝜽𝜽
−1𝒈𝒈, (17) 284 

where 𝑲𝑲𝜽𝜽 denotes the covariance matrix that depends on 𝜽𝜽, with elements determined by 285 

the kernel function 𝑘𝑘(𝑧𝑧, 𝑧𝑧′| 𝜽𝜽) , and |𝑲𝑲𝜽𝜽|  represents the determinant. The gradient of the 286 

negative log marginal likelihood [Eq. (17)] is expressed as follows: 287 

𝜕𝜕 log 𝑝𝑝(𝒈𝒈 | 𝒛𝒛,𝜽𝜽)
𝜕𝜕𝜕𝜕 = −

1
2

tr �𝑲𝑲𝜽𝜽
−𝟏𝟏 𝜕𝜕𝑲𝑲𝜽𝜽

𝜕𝜕𝜕𝜕
� + �𝑲𝑲𝜽𝜽

−𝟏𝟏𝒈𝒈�
⊤ 𝜕𝜕𝑲𝑲𝜽𝜽

𝜕𝜕𝜕𝜕
�𝑲𝑲𝜽𝜽

−𝟏𝟏𝒈𝒈�, (18) 288 

where 𝜕𝜕𝑲𝑲𝜽𝜽
𝜕𝜕𝜕𝜕

  denotes the matrix of the same shape as the covariance matrix 𝑲𝑲𝜽𝜽 , and the 289 

elements of the matrix are 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑘𝑘(𝑧𝑧, 𝑧𝑧′ | 𝜃𝜃), which is each element of the covariance matrix 𝑲𝑲𝜽𝜽 290 

differentiated by the hyper-parameter 𝜃𝜃 . More accurate modeling and evaluation can be 291 

expected by optimizing the hyper-parameters in each training cycle where new input data 292 

𝑧𝑧∗ is given. 293 

To improve the numerical stability of optimization calculations, our system employs multi-294 

start optimization, which starts optimization calculations from multiple initial values by adding 295 

values generated by Latin hyper-cube sampling (LHS; McKay et al., 2000) to the hyper-296 

parameters from the one training cycle ago. In addition, we adopted the L-BFGS-B algorithm 297 

(Byrd et al., 1995) as the optimization method. 298 

The modeling of response surfaces using the GPR has been described above. Next, we 299 

explain evaluation using an acquisition function. The acquisition function is a combination of 300 
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the mean 𝝁𝝁 and covariance matrix 𝑲𝑲 obtained by the GPR. First, following Lunderman et al. 301 

(2021), we adopted the EI, defined by the following equation, as the acquisition function: 302 

𝐸𝐸𝐸𝐸(𝜇𝜇, 𝜎𝜎) = (𝑔𝑔� − 𝜇𝜇)Φ(𝑑𝑑) + 𝜎𝜎𝜎𝜎(𝑑𝑑). (19) 303 

Here, 𝑔𝑔� denotes the provisional optimum solution, i.e., the minimum value of the objective 304 

function in the previous training cycle. In addition, 𝜎𝜎  represents the standard deviation, 305 

which is the square root of 𝐾𝐾. Furthermore, 𝑑𝑑 denotes the difference between the mean and 306 

tentative optimal value normalized by the standard deviation and can be written as 𝑑𝑑 = (𝑔𝑔� −307 

𝜇𝜇)/𝜎𝜎 . Here, Φ  and 𝜙𝜙  are the normal cumulative distribution function and the normal 308 

probability density function, respectively. The EI increases when the GPR mean is small or 309 

the GPR standard deviation is large. 310 

However, using the EI, the inverse matrix in Eq. (14), (17), and (18) could not be calculated 311 

stably due to the redundant exploration of the same input data. Therefore, we then adopted 312 

penalized EI. The local penalization method proposed by Gonzalez et al. (2016) is an 313 

approach that smoothly decreases the acquisition function value near the input data. This 314 

approach assumes that the objective function is a Lipschitz continuous function and 315 

prevents the redundant exploration by setting a spherical region centered on the input data 316 

and adding a penalty to the acquisition function within that region. 317 

In addition, since the algorithm falls into a local solution of the acquisition function, the 318 

next input data cannot be obtained appropriately, so we optimized the acquisition function 319 

(see also Shahriari et al., 2016). Additionally, multi-start optimization and the L-BFGS-B 320 
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algorithm were employed for optimization. To optimize the penalized EI, it is necessary to 321 

calculate the penalized EI and its derivative at the input data. The derivative of penalized EI 322 

can be described as follows: 323 

∇ ln𝐸𝐸𝐸𝐸� =  𝐸𝐸𝐼𝐼−1∇𝐸𝐸𝐸𝐸 + �𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠)−1∇𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠).
𝑆𝑆

𝑠𝑠=1

 (20) 324 

Here, 𝐸𝐸𝐸𝐸� indicates the penalized EI. The next input data is explored after calculating the total 325 

penalty at all input data. The penalty function takes the following form:  326 

𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠) =
1
2

erfc(−𝑢𝑢), (21) 327 

with 328 

𝑢𝑢 =
1

√2𝜎𝜎2
(𝐿𝐿‖𝑧𝑧∗ − 𝑧𝑧𝑠𝑠‖ − 𝑔𝑔� + 𝜇𝜇).  329 

Here, erfc is the complementary error function, and 𝐿𝐿 is the Lipschitz constant. In the BO 330 

using the penalized EI, changing the ratio of "exploration and exploitation" is possible by 331 

adjusting the Lipschitz constant. As a rule of thumb, if 𝐿𝐿 is 0.1 or more and less than 0.5, the 332 

setting is exploration-oriented; if 𝐿𝐿 is 0.5 or more and less than 2.0, the setting is general; 333 

and if 𝐿𝐿 is 2.0 or more and less than 10.0, the setting is exploitation-oriented. The derivative 334 

of the penalty function takes the following form: 335 

∇𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠) =
𝑒𝑒−𝑢𝑢2

√2𝜋𝜋𝜎𝜎2
2𝐿𝐿

‖𝑧𝑧∗ − 𝑧𝑧𝑠𝑠‖
(𝑧𝑧∗ − 𝑧𝑧𝑠𝑠). (22) 336 

The derivative of the EI can be described as follows: 337 

∇𝐸𝐸𝐸𝐸 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝜙𝜙

(𝑑𝑑) −Φ(𝑑𝑑)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 . (23) 338 

The derivative of the penalized EI is described above. The penalized EI at an input data 339 
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is  written as follows: 340 

ln𝐸𝐸𝐸𝐸� = ln𝐸𝐸𝐸𝐸 + � ln𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠)
𝑆𝑆

𝑠𝑠=1

. (24) 341 

The local penalization method calculates the total product of the acquisition function and the 342 

penalty at each input data and maximizes it. In Eq. (24), the total sum is calculated by 343 

applying a logarithmic characteristic. 344 

  345 
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3. Experimental Setup 346 

a. Lorenz-96 40-variable model 347 

We conducted an observing system simulation experiment (OSSE) using the L96 to 348 

investigate whether the BO improves the practicality of the LPF. The L96 is a toy model that 349 

simulates atmospheric variables along certain latitudes. The time evolution of the 350 

atmospheric variable is expressed as follows: 351 

𝑑𝑑𝑥𝑥𝑛𝑛
𝑑𝑑𝑑𝑑 = (𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛−2)𝑥𝑥𝑛𝑛−1 − 𝑥𝑥𝑛𝑛 + 𝐹𝐹, (25) 352 

where 𝑥𝑥 and 𝑡𝑡 denote the state variables and time, respectively, as described in Section 2a. 353 

The subscripts 𝑛𝑛 (𝑛𝑛 = 1, … ,𝑁𝑁)  represent the indices of the grid point. Since the L96 has 354 

periodic boundary conditions, the following relationship with respect to state variable at each 355 

grid point: 𝑥𝑥−1 = 𝑥𝑥39, 𝑥𝑥0 = 𝑥𝑥40 and 𝑥𝑥41 = 𝑥𝑥1  are satisfied. Each term on the right side 356 

represents the following: the first is advection, the second is diffusion, and the third is forcing 357 

𝐹𝐹. The shift of the grid point in the advection term causes the nonlinearity of the atmosphere. 358 

Here, one variable is simulated at each grid point in 40 grid points. The fourth-order Runge–359 

Kutta scheme is used for time integration, where forecast time step Δ𝑡𝑡 = 0.01. 360 

 361 

b. Data assimilation method 362 

The LETKF can estimate the optimum analysis when the error distribution of observations 363 

and forecasts follows a Gaussian distribution. On the other hand, LPF does not require 364 

forecast errors to follow a Gaussian distribution. Therefore, when using a nonlinear 365 



 20 

observation operator whose the background error distribution does not follow a Gaussian 366 

distribution, the LETKF cannot estimate the optimum analysis. In contrast, the LPF can 367 

estimate a more accurate analysis by handling observation information more appropriately. 368 

Therefore, following Poterjoy (2016), we adopted a nonlinear observation operator that takes 369 

the absolute value and logarithm of the state variables, 370 

ℎ(𝒙𝒙) = ln(|𝒙𝒙|). (26) 371 

The root mean square error between the truth and the analysis (RMSE(t vs. a)) and the 372 

ensemble spread in the LETKF and the LPF were compared. In addition, the difference of 373 

RMSE(t vs. a) was investigated when the inflation factors 𝛼𝛼, 𝜏𝜏, and the localization scale 𝑟𝑟 374 

were changed. In the LETKF, the covariance inflation factor 𝛼𝛼 was varied in increments of 375 

0.001 in the range of 1.01-1.10, and in the LPF, the weight inflation factor 𝜏𝜏 was varied in 376 

increments of 0.01 in the range of 0.1-1.0. In addition, the localization scale 𝑟𝑟 was varied in 377 

increments of 0.1 in the range of 1-10 for both the LETKF and the LPF (i.e., 91 * 91 378 

increments). The observations were generated by applying the nonlinear observation 379 

operator to the truth, which is a long-term integration of the L96, and adding Gaussian noise 380 

𝒩𝒩(0, 1) as observation errors. The observations were collected at all grid points at 0.05 time 381 

units. Here, 0.05 time units correspond to 6 Earth hours ,  which is the error-doubling time 382 

for synoptic weather. The observation variables are the same as the model variables, and 383 

the observation errors are assumed to be uncorrelated. Furthermore, as a gross error check, 384 

if the difference between the forecast and the observation exceeds 10 times the observation 385 
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error, the observation is rejected. 386 

All observations are assimilated using the LETKF and the LPF for 64 particles over two 387 

years. Initial particles are randomly selected from long-term integration using the L96 388 

initialized in a random state. 389 

 390 

c. Parameter estimation 391 

To confirm the basic behavior of the BO, we estimate one parameter (weight inflation 392 

factor 𝜏𝜏) using the 1-dimensional BO, and then perform the 2-dimensional BO experiment 393 

to estimate the optimum values of two parameters (𝜏𝜏 and localization scale 𝑟𝑟). In this study, 394 

we defined the root mean square error (RMSE(o vs. f)) between the observations and 395 

forecasts in the LPF as the objective function, and estimated 𝜏𝜏  and 𝑟𝑟  that minimize this 396 

function using the BO. 397 

𝑔𝑔(𝑧𝑧) = −
1
𝑇𝑇
��

1
𝑁𝑁
��𝑦𝑦𝑛𝑛,𝑡𝑡 − ℎ �𝑥̅𝑥𝑛𝑛,𝑡𝑡

𝑓𝑓 (𝑧𝑧)��
2𝑁𝑁

𝑛𝑛=1

.
𝑇𝑇

𝑡𝑡=1

(27) 398 

where 𝑔𝑔 and 𝑧𝑧 denote the RMSE(o vs. f) and the input data, respectively, as described in 399 

Section 2b; 𝑦𝑦  and ℎ  represent the observation and observation operator, respectively, as 400 

outlined in Section 2a; 𝑥̅𝑥𝑛𝑛,𝑡𝑡
𝑓𝑓  is the mean of the forecast particle at the 𝑛𝑛th grid point and at 401 

the 𝑡𝑡th time. 402 

The RMSE (o vs. f) was used because the truth cannot be obtained in the real atmosphere. 403 

In addition, the analysis may be too close to the observations and is not always appropriate 404 
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for error estimation. On the other hand, the observations are perturbed around the truth, and 405 

the forecast error is expected to be smaller than the observation error in the first guess and 406 

larger than the observation error over time (Otsuka and Miyoshi, 2015). Therefore, we 407 

evaluated the forecast accuracy by comparing future observations with extended forecasts. 408 

This method is equivalent to indirectly assessing the analysis accuracy. Extended forecasts 409 

are conducted for all particles. This assumption holds if the optimal analyses are estimated 410 

and outliers of observations are rejected. Although this assumption is valid in the 411 

experimental settings of this study, it may not always hold in general. 412 

Unlike an online system, an offline system executes assimilation cycles and training 413 

cycles separately, allowing the use of future observations. In addition, considering that the 414 

NWP is executed using the optimum of past parameters, our system is reasonable. The 415 

length of the extended forecast was set to 2 Earth days, based on the error doubling time. 416 

The offline system of 2-dimensional BO experiment was executed according to the 417 

following procedure: 418 

1) Execute the OSSE using the weight inflation factor 𝜏𝜏 and localization scale 𝑟𝑟 generated 419 

by the LHS. 420 

2) Calculate the RMSE(o vs. f)s and provide them as the initial input data to the BO. 421 

3) Estimate the weight inflation factor 𝜏𝜏 and localization scale 𝑟𝑟 that minimize the RMSE(o 422 

vs. f) using the BO. 423 

Here, we show the flowchart of the offline system in Fig. 1. The numbers of each process 424 Fig. 1 
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correspond to the numbers in Fig. 1. 425 

We provided the initial input data generated by the LHS to the BO, performed the OSSE 426 

with the estimated the weight inflation factor 𝜏𝜏 and localization scale 𝑟𝑟, and repeated the 427 

training cycle that estimates 𝜏𝜏 and 𝑟𝑟, which minimize the RMSE(o vs. f) using the BO. In this 428 

experiment, the system was stopped after 20 training cycles, and the weight inflation factor 429 

𝜏𝜏 and localization scale 𝑟𝑟 with the smallest RMSE(o vs. f) were selected as the estimations 430 

by the BO. In our system, we set the number of training cycles to 20 because the GPR 431 

prediction distribution hardly changed even when more input data was added. In general, 432 

the stopping criterion of the BO is often set based on the amount of computational resources 433 

to be invested in advance and the variation of the estimation. 434 

To evaluate the estimation accuracy and convergence rate of the BO, this study compared 435 

the estimations of the BO and the RS, following Snoek et al. (2012). In addition, when the 436 

RMSE(o vs. f) is defined as the objective function, estimation results of the BO depend on 437 

the seed of Gaussian noise used to generate the observation errors. Therefore, we 438 

conducted 35 experiments using the Gaussian noise with different seeds to investigate the 439 

robustness of the BO to changes in the observation set. 440 

In addition, we investigated how the estimation accuracy changes when the parameters 441 

estimated by the BO are increased from 1 dimension (𝜏𝜏  only) to 2 dimensions (𝜏𝜏 , 𝑟𝑟 ). 442 

Moreover, the Lipschitz constant was set to 𝐿𝐿 = 0.5, and the number of initial input data was 443 

set to 5 in the 1-dimensional BO. Additionally, in the 2-dimensional BO, the Lipschitz 444 
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constant was set to 𝐿𝐿 = 2.0, and the number of initial input data was set to 20. We also 445 

conducted sensitivity experiments with respect to the Lipschitz constant [Eq. (21)], which 446 

determines the ratio of "exploration and exploitation", and the number of initial input data. 447 

  448 
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4. Result and Discussion 449 

a. Comparison of the LETKF and the LPF 450 

First, we investigated the conditions under which the LPF can estimate more accurate 451 

analyses than the LETKF. The GS obtained the following localization scale and inflation 452 

factor values. Fig. 2a shows the time series of the RMSE(t vs. a) and the ensemble spread 453 

in the LETKF. The localization scale 𝑟𝑟 is 6.5, and the covariance inflation factor 𝛼𝛼 is 1.100. 454 

The RMSE(t vs. a) fluctuates within the range of 0.5–5.0, showing significant fluctuations, 455 

especially during the first half of the experimental period corresponding to the spin-up period. 456 

Additionally, the ensemble spread fluctuated within the range of 0.5-1.0. Fig. 2b shows the 457 

time series of the RMSE(t vs. a) and the ensemble spread in the LPF. The localization scale 458 

𝑟𝑟 is 1.9, and the inflation factor 𝜏𝜏 is 0.53. The RMSE(t vs. a) fluctuated within the range of 459 

0.5-2.5. Additionally, the ensemble spread fluctuated within the range of 0.5-1.5. These 460 

results show that when the nonlinear observation operator is used, and the RMSE(t vs. a) 461 

of the LPF is smaller than that of the LETKF. The LETKF only handles up to the second 462 

moment (variance) in the analysis error covariance matrix and posterior distribution updates, 463 

so it cannot consider higher-order moments such as the third (skewness) and fourth 464 

(kurtosis) moments. On the other hand, the LPF does not have such restrictions, allowing 465 

the LPF to adequately assimilate observations using information from the higher-order 466 

moments. The nonlinear observation operator in this study produces observation 467 

distributions with large skewness, suggesting that the LPF is able to estimate more accurate 468 

Fig. 2 
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analyses than the LETKF. 469 

Next, we investigated how the RMSE(t vs. a) changes when the inflation factors 𝛼𝛼, 𝜏𝜏, and 470 

localization scale 𝑟𝑟 are varied. Figure 3a shows the response surface of the RMSE(t vs. a) 471 

in the LETKF. In the LETKF, the minimum error of 1.024 was obtained when 𝑟𝑟 = 6.5 and 𝛼𝛼 472 

= 1.100. The region of optimal parameters was distributed on the left shoulder in the range 473 

of localization scale 𝑟𝑟 = 2-4 and covariance inflation factor 𝛼𝛼 = 1.04-1.10. In addition, except 474 

for the region of 𝑟𝑟 = 1-2 and 𝛼𝛼 = 1.05-1.10, the RMSE(t vs. a) tends to increase as alpha 475 

decreases. 476 

 Using the nonlinear observation operator forces the forecast error distribution to become 477 

non-Gaussian. Using the multiplicative inflation increases the forecast error covariance, 478 

which mitigates this negative impact, and therefore, such a tendency is expected to appear. 479 

On the other hand, except for the region where 𝑟𝑟 = 1-2 and 𝛼𝛼 = 1.05-1.10, there was also a 480 

tendency for the RMSE(t vs. a) to increase as 𝑟𝑟 increases. This result is due to sampling 481 

errors being more pronounced in distant observations, where signals are small and cannot 482 

be assimilated effectively.  If the inflation factor is too large, the forecast error will be large, 483 

and the observation error will be relatively underestimated, causing the analysis to be overly 484 

contaminated by observation errors. Additionally, if the localization scale is too small, the 485 

observations are not sufficiently assimilated, and the correction to the analysis becomes 486 

insufficient. Therefore, the RMSE(t vs. a) becomes large in the region where 𝑟𝑟 = 1-2 and 𝛼𝛼 487 

= 1.05-1.10. The minimum error was not included in the region of optimal parameters, and 488 

Fig. 3 
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the boundary of the contour is unclear. This feature was not observed in the response 489 

surface when 𝛼𝛼 was changed in increments of 0.01 and 𝑟𝑟 was changed in increments of 1 490 

(not shown). In nonlinear dynamical systems, the RMSE(t vs. a) exhibits a nonlinear 491 

response to changes in the localization scale and the inflation factor. Therefore, increasing 492 

the resolution of the response surface may cause the local optima to appear outside the 493 

global optima. 494 

Figure 3b shows the response surface of the RMSE(t vs. a) in the LPF. In the LPF, a 495 

minimum error of 0.586 was obtained with the localization scale 𝑟𝑟  = 1.9 and the weight 496 

inflation factor 𝜏𝜏 = 0.53. The region of optimal parameters was elliptically distributed within 497 

the ranges of the localization scale 𝑟𝑟 = 1-3 and the weight inflation factor 𝜏𝜏 = 0.4-0.6. Both 498 

excessive and insufficient 𝜏𝜏  resulted in the large RMSE(t vs. a). This result is because 499 

excessive 𝜏𝜏 prevents assimilation of observations, while insufficient 𝜏𝜏 causes filter instability. 500 

Basically, the RMSE(t vs. a) decreases as 𝑟𝑟 decreases. However, in the region where 𝑟𝑟 = 1-501 

2 and 𝜏𝜏 = 0.1-0.4, the RMSE(t vs. a) increases as 𝑟𝑟 decreases. This result indicates that 502 

when the filter with small 𝜏𝜏  becomes unstable, the observations are not sufficiently 503 

assimilated, resulting in a decrease in the analysis accuracy. The fact that the response to 504 

changes in 𝜏𝜏 is more complex than that to changes in 𝑟𝑟 suggests that 𝜏𝜏 is a more important 505 

parameter for stabilizing the LPF. 506 

Figure 3c shows the response surface of the RMSE(o vs. f) in observation space in the 507 

LPF. The minimum error of 1.282 was obtained with the same 𝑟𝑟 = 1.9 and 𝜏𝜏 = 0.53 as in the 508 
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RMSE(t vs. a) for the RMSE(o vs. f). From this result, it can be seen that the optima of these 509 

parameters can be efficiently estimated by estimating 𝜏𝜏 and 𝑟𝑟 that minimize the RMSE(o vs. 510 

f) using the BO. Compared to the response surface of the RMSE(t vs. a), the overall 511 

distribution trend was consistent; however, the RMSE(o vs. f) exhibits a larger minimum 512 

value and a smaller maximum value. This result is because applying a nonlinear observation 513 

operator reduces the variance of the background error distribution in the observation space. 514 

In summary, when using the nonlinear observation operators, the LPF can estimate more 515 

accurate analyses than the LETKF, but 𝜏𝜏 and 𝑟𝑟 must be set to their optima. 516 

 517 

b. 1-dimensional BO 518 

Figure 4 is a cross-sectional view of the response surface (Fig. 3b) at the localization 519 

scale 𝑟𝑟  = 1.9. In addition, as will be described in detail later, Fig. 6d shows the GPR 520 

prediction distribution of the 1-dimensional BO at the 20th training cycle. We compared Fig. 521 

4 and Fig. 6d to verify whether the GPR prediction distribution of the 1-dimensional BO was 522 

appropriate. Focusing on the general shape of the GPR mean and GPR standard deviation, 523 

the U-shaped distribution was consistent. In addition, the input data were dense around 𝜏𝜏 = 524 

0.5, which corresponded to the region where the RMSE(t vs. a)s were small in the response 525 

surface (Fig. 4). These results show that the 1-dimensional BO can model the response 526 

surface with high accuracy. 527 

The localization scale was fixed at 𝑟𝑟 = 1.9, and only 𝜏𝜏 was estimated using the BO. The 5 528 

Fig. 4 

Fig. 5 
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points obtained by LHS are used as initial input data. Fig. 5 shows the time series of the 529 

minimum RMSE(o vs. f) from the previous training cycle, estimated by the BO and the RS. 530 

Note that for convenience in conducting the OSSE using the BO estimation, the training 531 

cycles of 𝜏𝜏 and the RMSE(o vs. f) are shifted by one cycle. The BO estimation converged at 532 

the 8th training cycle, while the RS estimation converged at the 5th training cycle. The 533 

estimation accuracy of both methods was equivalent. Although the RS estimation converged 534 

in fewer training cycles, the BO was able to estimate a high precision 𝜏𝜏 from the 1st training 535 

cycle. In addition, except for the 6th, 13th, and 19th training cycles, the BO estimation 536 

fluctuated within the optimal inflation factor range. In Fig. 5, the parameter with the smallest 537 

RMSE(o vs. f) was 𝜏𝜏 = 0.53 in the 8th training cycle, which was consistent with 𝜏𝜏 = 0.53, the 538 

parameter that minimizes the RMSE(t vs. a) in Fig. 4. This result shows that the 1-539 

dimensional BO can estimate the optima of 𝜏𝜏. 540 

The estimation results of the 1-dimensional BO were investigated from the viewpoint of 541 

the GPR prediction distribution. Fig. 6a-d show the GPR mean (expected value of the 542 

RMSE(o vs. f)), the GPR standard deviation (95% confidence interval) (uncertainty of the 543 

RMSE(o vs. f)), the EI, the penalty, the penalized EI, and input data variation corresponding 544 

to Fig. 5. 545 

At the 0th training cycle (Fig. 6a), the RMSE(o vs. f) at 𝜏𝜏 = 0.5, 0.79, 0.33, 0.14, and 0.97 546 

from the LHS were given as the initial input data. The GPR mean showed a U-shaped 547 

distribution with a minimum value around 𝜏𝜏 = 0.5, indicating that the response surface was 548 

Fig. 6 
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modeled with high accuracy at this point. The GPR standard deviation was almost constant 549 

regardless of 𝜏𝜏. Since the EI became large at points where the GPR mean was small, the 550 

EI showed a convex distribution with a maximum value around 𝜏𝜏 = 0.5. The penalty showed 551 

a V-shaped distribution with a minimum value around 𝜏𝜏  = 0.5. Since the penalized EI is 552 

calculated as the product of the EI and the penalty, the penalized EI showed a distribution 553 

with two connected peaks, with a small value at the point where the penalty was minimum. 554 

At the 13th training cycle (Fig. 6b), as the input data accumulated, the GPR mean 555 

increased to around 𝜏𝜏 = 0.8-0.9, and the shape of the GPR prediction distribution became 556 

closer to the response surface. The GPR standard deviation increased to around 𝜏𝜏 = 0.65 557 

and 0.85, and the GPR standard deviation became more volatile than in the 0th training 558 

cycle. From the 0th to the 13th training cycle, the length scale parameter 𝜃𝜃2 in [Eq. (13)] 559 

decreased significantly from 0.292 to 0.071, which is thought to have caused the distribution 560 

to become highly volatile. Since the EI became large at points where the GPR standard 561 

deviation was large, the EI tended to take the maximum around 𝜏𝜏 = 0.6. Since the penalty 562 

became small at points where the GPR standard deviation was large, the penalty showed a 563 

skewed distribution compared to the 0th training cycle. In addition, since the input data were 564 

concentrated around 𝜏𝜏 = 0.5, the minimum penalty decreased significantly from 0.6 to 0.3, 565 

and the valley of the V-shaped distribution became deeper. As a result, the penalized EI 566 

showed the maximum at 𝜏𝜏 = 0.61 and a distribution that avoided the dense input data around 567 

𝜏𝜏 = 0.5. 568 
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At the 19th training cycle (Fig. 6c), the GPR mean increased further around 𝜏𝜏 = 0.8-0.9. 569 

During the 13th to 19th training cycle, the length scale parameter 𝜃𝜃2 decreased further, from 570 

0.071 to 0.04. As a result, the GPR standard deviation became more volatile, and the value 571 

increased even around 𝜏𝜏 = 0.2. The EI showed large values around 𝜏𝜏 = 0.5 and 0.65, and 572 

showed a distribution with two connected peaks. The EI was small around 𝜏𝜏 = 0.2 and 0.85, 573 

where the GPR standard deviation was large, because the GPR mean was large at these 574 

points. The minimum penalty value increased again from 0.3 to 0.6, and the valley of the V-575 

shaped distribution became shallower. This change is likely because 𝜏𝜏 = 0.61 was explored 576 

at the 13th training cycle, and the GPR standard deviation around this point became small. 577 

The penalized EI showed the maximum around 𝜏𝜏 = 0.5, but 𝜏𝜏 = 0.67 was explored because 578 

the acquisition function was optimized. It should be noted that since the acquisition function 579 

is calculated using the GPR mean and the GPR standard deviation, it contains uncertainty; 580 

therefore, the point with the maximum acquisition function is not necessarily the optimal 581 

exploration point. 582 

At the 20th training cycle (Fig. 6d), the GPR mean decreased slightly around 𝜏𝜏 = 0.8-0.9. 583 

During the 19th to 20th training cycle, the length scale parameter 𝜃𝜃2 increased from 0.04 to 584 

0.071, and the GPR standard deviation showed a smooth distribution overall. Therefore, the 585 

EI showed a convex distribution with the maximum around 𝜏𝜏 = 0.5, where the GPR mean 586 

was small. The minimum penalty decreased significantly from 0.6 to 0.15, and the valley of 587 

the V-shaped distribution became the deepest in the training cycles so far. This change is 588 
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likely because a point with 𝜏𝜏 = 0.67 was explored in the 19th training cycle, the input data 589 

were explored evenly, and the GPR standard deviation decreased overall, making the 590 

influence of the GPR mean relatively large. As a result, the penalized EI showed a 591 

distribution with two peaks around 𝜏𝜏 = 0.5. 592 

To confirm the practicality of the BO, we investigated the robustness of the BO to changes 593 

in the observation set. Fig. 7a shows the box plot of 𝜏𝜏. In all 5th, 10th, 15th, and 20th training 594 

cycles, even when the observation set was changed, the upper and lower limits of the 𝜏𝜏 box 595 

fluctuated by less than 0.1 at most. This fluctuation corresponds to less than 10% of the 596 

parameter exploration range, indicating that the BO estimation is robust to changes in the 597 

observation set. In addition, the length of the whiskers varied from 0.4, 0.1, 0.5, to 0.9. The 598 

median was within the range of the optimal inflation factor in all 5th, 10th, 15th, and 20th 599 

training cycles, indicating that the estimation accuracy of the BO is high. 600 

Figure 7b shows the box plot of the RMSE(o vs. f). Until the 15th training cycle, the upper 601 

and lower limits of the RMSE(o vs. f) box fluctuated by less than 0.1; however, at the 20th 602 

training cycle, the RMSE(o vs. f) box fluctuated by approximately 0.3. This change is due to 603 

𝜏𝜏 becoming more exploration-oriented. The RMSE(o vs. f) whiskers tend to extend in the 604 

direction of larger values. On the other hand, the 𝜏𝜏 whiskers tend to extend in the direction 605 

of smaller values. These trends are due to the U-shaped distribution of the GPR mean and 606 

the relationship between 𝜏𝜏  and the RMSE(o vs. f), where smaller 𝜏𝜏  results in the larger 607 

RMSE(o vs. f) (see Fig. 6d). It should be noted that although the BO estimations appear to 608 

Fig. 7 
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scatter as the training cycle progresses, in practice, the input data with the smallest RMSE(o 609 

vs. f) among the explored input data is adopted (see Section 3c). Focusing on the whiskers 610 

of 𝜏𝜏 and RMSE(o vs. f), it can be inferred that 10 training cycles are sufficient for the 1-611 

dimensional BO, since they are shortest at the 10th training cycle. 612 

 613 

c. 2-dimensional BO 614 

The weight inflation factor 𝜏𝜏 and localization scale 𝑟𝑟 were estimated using the BO. The 20 615 

points obtained by LHS are used as initial input data. Figure 8 shows the time series of the 616 

minimum RMSE(o vs. f) in the previous training cycle estimated by the BO and the RS, the 617 

estimation of 𝜏𝜏, and the estimation of 𝑟𝑟. Note that, for the convenience of conducting the 618 

OSSE using the estimation by the BO, the training cycles of 𝜏𝜏, 𝑟𝑟, and the RMSE(o vs. f) are 619 

shifted by one cycle. Both the BO and the RS estimation converged at the 17th training cycle. 620 

Since the minimum RMSE(o vs. f) by the BO was lower than that by the RS, it can be seen 621 

that the BO can estimate 𝜏𝜏  and 𝑟𝑟  with higher accuracy than the RS. In addition, the 622 

estimation of 𝜏𝜏 fluctuated within the optimal inflation factor range except for the 14th and 623 

17th training cycles. The estimation of 𝑟𝑟 fluctuated within the optimal localization scale range 624 

except for the 14th training cycle. 625 

In Fig. 8, the smallest RMSE(o vs. f) was obtained at the 17th training cycle with𝜏𝜏 = 0.48 626 

and 𝑟𝑟 = 2.2, which are very close to the parameters that minimize the RMSE(t vs. a) in the 627 

response surface (Fig. 3b), 𝜏𝜏  = 0.53 and 𝑟𝑟  = 1.9. This result demonstrates that the 2-628 

Fig. 8 
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dimensional BO can accurately estimate the optima of 𝜏𝜏 and 𝑟𝑟. 629 

The estimation results of the 2-dimensional BO were investigated from the viewpoint of 630 

the GPR prediction distribution. Fig. 9a-e show the GPR mean (expected value of the 631 

RMSE(o vs. f)), the GPR standard deviation (95% confidence interval) (uncertainty of 632 

RMSE(o vs. f)), the EI, the penalty, the penalized EI, and input data variation corresponding 633 

to Fig. 8. 634 

At the 0th training cycle, the GPR prediction distribution was obtained from 20 initial input 635 

data. The GPR mean (Fig. 9a) showed the maximum at 𝜏𝜏 = 0.75 and 𝑟𝑟 = 9, and the minimum 636 

at 𝜏𝜏 = 0.1 and 𝑟𝑟 = 4.5, indicating a prediction distribution that was a combination of two 2-637 

dimensional normal distributions centered at these points. When compared to the response 638 

surface (Fig. 3b), the overall trend was similar, with the RMSE(o vs. f) increasing as 𝜏𝜏 and 𝑟𝑟 639 

increase and decreasing as 𝜏𝜏 and 𝑟𝑟 decrease. The GPR standard deviation (Fig. 9b) was 640 

large around 𝜏𝜏 = 0.1, 𝑟𝑟 = 10 and 𝜏𝜏 = 1.0, 𝑟𝑟 = 1, indicating that uncertainty was large in the 641 

regions where the input data were sparse. At this point, the length scale parameter 𝜃𝜃2 in [Eq. 642 

(13)] was 0.408 (the minimum: 0.003, the maximum: 2.483) and was small, while the length 643 

scale parameter 𝜃𝜃3 was 2.483 (the minimum: 0.003, the maximum: 2.483) and was very 644 

large. In this case, varying 𝜏𝜏 yields a more complex GPR prediction distribution compared 645 

to varying 𝑟𝑟. 646 

Since the GPR standard deviation showed a smooth distribution overall, the EI (Fig. 9c) 647 

showed the maximum around 𝜏𝜏  = 0.1 and 𝑟𝑟  = 4.5, where the GPR mean was small. In 648 

Fig. 9 
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addition, since the penalty decreases as the GPR mean decreases, the penalty (Fig. 9d) 649 

showed the minimum around 𝜏𝜏 = 0.1 and 𝑟𝑟 = 5.0. The distribution was slightly shifted toward 650 

𝑟𝑟 being larger than the EI because the GPR standard deviation was large at 𝜏𝜏 = 0.1 and 𝑟𝑟 = 651 

10. The penalized EI (Fig. 9e) is calculated as the product of the EI and the penalty, and 652 

therefore showed a slightly skewed distribution around 𝜏𝜏 = 0.1 and 𝑟𝑟 = 5.0. The penalized 653 

EI showed the maximum around 𝜏𝜏 = 0.1 and 𝑟𝑟 = 4.5; however, since the acquisition function 654 

is optimized, 𝜏𝜏 = 0.43 and 𝑟𝑟 = 1.0 were explored. 655 

Following Fig. 9, we investigated how the estimation results of the 2-dimensional BO 656 

change as the input data increases, from the perspective of the GPR prediction distribution. 657 

Fig. 10a-e shows the GPR mean (expected value of the RMSE(o vs. f)), the GPR standard 658 

deviation (95% confidence interval) (uncertainty of the RMSE(o vs. f)), the EI, the penalty, 659 

the penalized EI, and input data variation corresponding to Fig. 8. 660 

At the 20th training cycle, the GPR prediction distribution was obtained from a total of 40 661 

input data. The GPR mean (Fig. 10a) showed the maximum around 𝜏𝜏 = 0.85, 𝑟𝑟 = 6.5, and 𝜏𝜏 662 

= 0.2, 𝑟𝑟  = 9, and the minimum around 𝜏𝜏  = 0.2, 𝑟𝑟  = 5. In addition, the overall prediction 663 

distribution was similar to a combination of three 2-dimensional normal distributions 664 

centered on these points. Compared to the GPR mean at the 0th training cycle (Fig. 9a), the 665 

two-dimensional normal distribution centered on 𝜏𝜏 = 0.75 and 𝑟𝑟 = 9 was divided into two. 666 

Another characteristic is that the two-dimensional normal distribution centered on 𝜏𝜏 = 0.1 667 

and 𝑟𝑟 = 4.5 was shifted toward larger 𝜏𝜏. Compared to the response surface (Fig. 3b), the 668 

Fig. 10 
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GPR mean at the 20th training cycle achieved higher modeling accuracy than that at the 0th 669 

training cycle, as the minimum was closer, and the region with the large GPR mean showed 670 

an inverted L-shaped distribution. The GPR standard deviation (Fig. 10b) showed a smooth 671 

distribution overall due to the increase in input data. At this time, the length scale parameter 672 

𝜃𝜃2 in [Eq. (13)] was 0.226 (the minimum: 0.002, the maximum: 2.198) and was small, and 673 

the length scale parameter 𝜃𝜃3 was 0.677 (the minimum: 0.002, the maximum: 2.198) and 674 

was also small. In this case, the GPR prediction distribution obtained was considered more 675 

volatile than that at the 0th training cycle, as the response became complex for both 𝑟𝑟 and 676 

𝜏𝜏. 677 

With sufficient input data, the difference between the provisional optimum solution and the 678 

GPR mean decreased, and the GPR standard deviation also decreased, resulting in the EI 679 

(Fig. 10c) close to 0 overall. This result indicates that the BO has converged. The GPR 680 

standard deviation was smooth overall, and since the GPR mean showed the minimum 681 

around 𝜏𝜏 = 0.2 and 𝑟𝑟 = 5, the penalty (Fig. 10d) also showed the minimum at the same point. 682 

Since the EI showed values close to 0 overall, the penalized EI (Fig. 10e) also showed a 683 

similar distribution. In the 1-dimensional BO, points with the small GPR means were 684 

explored intensively, but this is not the case in the 2-dimensional BO because points with 685 

the large GPR standard deviations were explored. The result showed that the input data 686 

were dense in the region of optimal parameters (localization scale 𝑟𝑟 = 1-3, inflation factor 𝜏𝜏 687 

= 0.4-0.6) in the response surface (Fig. 3b), indicating that the 2-dimensional BO can model 688 
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the response surface with relatively high accuracy. 689 

To confirm the practicality of the BO, we investigated the robustness of the BO to changes 690 

in the observation set. Fig. 11a shows the box plot of 𝜏𝜏. In all 5th, 10th, 15th, and 20th training 691 

cycles, even when the observation set was changed, the upper and lower limits of the 𝜏𝜏 box 692 

fluctuated by less than 0.1 at most. From this result, we can see that even when the 693 

observation set is changed, the BO estimation converges to 𝜏𝜏 = 0.1. The observation sets 694 

used in Figs. 8, 9, 10, and Table 1 yield estimation close to the optima of 𝜏𝜏 = 0.48 and 𝑟𝑟 = 695 

2.2; however, it can be seen that the estimation may deviate from the optima depending on 696 

the observation set. In this case, the estimation accuracy of the BO can be improved by 697 

reducing the Lipschitz constant (not shown). In addition, the length of the whiskers varied 698 

from 0.9, 0.4, less than 0.1 (including outliers), and 0.4. In all 5th, 10th, 15th, and 20th 699 

training cycles, the median was outside the optimal inflation factor range, and the BO 700 

estimation accuracy was low. 701 

Figure 11b shows the box plot of 𝑟𝑟. Until the 15th training cycle, the upper and lower limits 702 

of the 𝑟𝑟 box fluctuated by 9.0, but at the 20th training cycle, the fluctuation was less than 1.0. 703 

This result shows that even when the observation set is changed, the BO estimation tends 704 

to shift to the optimal localization scale range. In addition, the length of the whiskers was 9.0 705 

in all 5th, 10th, 15th, and 20th training cycles. The median was within the optimal localization 706 

scale range in all 5th, 10th, 15th, and 20th training cycles, and the estimation accuracy of 707 

the BO was high compared to 𝜏𝜏. This difference indicates that 𝑟𝑟 is easier to estimate than 𝜏𝜏 708 

Fig. 11 



 38 

because the response of the RMSE(o vs. f) when 𝑟𝑟 is changed is simpler than that of 𝜏𝜏. 709 

Figure 11c shows the box plot of the RMSE(o vs. f). In all 5th, 10th, 15th, and 20th training 710 

cycles, the upper and lower limits of the RMSE(o vs. f) box fluctuated by less than 0.1. The 711 

whiskers of RMSE(o vs. f) fluctuated by 0.5 at the 5th training cycle, but only by 0.3 at the 712 

subsequent training cycles. The estimation of 𝜏𝜏 converged to 0.1, and the estimation of 𝑟𝑟 713 

moved to the optimal range, so the whiskers tended to extend in the direction of the smaller 714 

RMSE(o vs. f). 715 

 716 

d. Sensitivity experiment for the BO setting changes 717 

Furthermore, we investigated the effects of changes in the response surface dimension, 718 

Lipschitz constant, and number of initial input data on the BO estimation. Table 1 719 

summarizes the results of the sensitivity experiment. Although there are multiple cases with 720 

the same minimum RMSE(o vs. f), the Lipschitz constant is generally set to 𝐿𝐿 = 0.5-2.0. In 721 

addition, the fewer the number of initial input data, the fewer computing resources are 722 

required. Therefore, cases with 𝐿𝐿 = 0.5 and 5 initial input data for the 1-dimensional BO and 723 

𝐿𝐿 = 2.0 and 20 initial input data for the 2-dimensional BO are highlighted in bold. In addition, 724 

since the ideal number of initial input data is about 10 times the dimension of the response 725 

surface (Loeppky et al., 2009), the maximum number of initial input data was 40, which is 726 

twice the ideal number. The number of initial input data was changed in increments of 10 for 727 

the 2-dimensional BO and 5 for the 1-dimensional BO, resulting in 16 cases for both. 728 

Table. 1 
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In both the 2-dimensional BO and 1-dimensional BO, the minimum RMSE(o vs. f) tended 729 

to increase as the Lipschitz constant increased. This result indicates that an excessive 730 

Lipschitz constant causes bias in the input data due to an undue emphasis on exploitation, 731 

which reduces the estimation accuracy of the BO. In addition, in the 1-dimensional BO, the 732 

estimation accuracy became the same regardless of changes in the number of initial input 733 

data. As the Lipschitz constant increases, the emphasis shifts to exploitation, and points 734 

close to each other continue to be explored regardless of changes in the number of initial 735 

input data (not shown). This result was obtained because this tendency was particularly 736 

pronounced in the 1-dimensional BO, where there are few exploration points. 737 

Furthermore, focusing on cases with each Lipschitz constant, an increase in the number 738 

of initial input data did not necessarily improve the estimation accuracy of the BO. When the 739 

number of initial input data is large, the GPR prediction distribution approaches the response 740 

surface, and the BO estimation does not fluctuate considerably. On the other hand, when 741 

the number of initial input data is small, the BO estimation fluctuates considerably, and the 742 

optima may be explored by chance (not shown). The "exploration and exploitation" dilemma 743 

is usually used in the context of adjusting parameters such as the Lipschitz constant. Still, 744 

this expression may also be used for the number of initial input data (for details on the 745 

"exploration and exploitation" dilemma, see Russo et al. (2020)). 746 

In addition, focusing on the best cases for each dimension of the response surface, the 747 

difference in the minimum RMSE(o vs. f) is less than 0.02, indicating that the estimation 748 
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accuracy of the BO does not decrease significantly even when the dimension of the 749 

response surface increases from 1 to 2. However, it should be noted that in the 2-750 

dimensional BO, the estimations close to the optima may not always be obtained depending 751 

on the observation set. 752 

  753 
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5. Conclusion 754 

The PF is a powerful data assimilation method that does not assume the linearity in the 755 

time evolution of errors and Gaussian error distributions. However, the number of required 756 

particles increases exponentially with the dimensions of the dynamical system, which is a 757 

bottleneck when applying the PF to the NWP systems. The LPF is a method that realizes 758 

the PF in high-dimensional systems by the localization. In addition, when using the nonlinear 759 

observation operator, the LPF can estimate a more accurate analysis than the LETKF. 760 

However, this is limited to cases where the weight inflation factor and the localization scale 761 

are set to their optima. In addition, as the resolution of the response surface increases and 762 

the number of parameters to be estimated increases (e.g., resampling frequency and 763 

Gaussian kernel amplitude), the effort and computational resources required for optimization 764 

calculations increase; therefore, efficient parameter estimation methods are needed. 765 

Therefore, we estimated the weight inflation factor and localization scale that minimize the 766 

RMSE(o vs. f) using the BO. As a result, in the 1-dimensional case, the BO was able to 767 

model the response surface with high accuracy and estimate the inflation factor equivalent 768 

to the RS. In addition, this result was robust to changes in the observation set. 769 

In addition, in the 2-dimensional case, the BO was able to model the response surface 770 

with relatively high accuracy and estimate the weight inflation factor and localization scale 771 

with higher accuracy than the RS. However, depending on the observation set, the BO did 772 

not always obtain the estimations close to the optima. 773 
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Next, we will discuss prospects for the practical application of the LPF. First, as the number 774 

of particles decreases, the response surface that enables stable operation of the LPF 775 

becomes narrower (not shown), making estimation using the BO difficult. In this case, it 776 

would be effective to introduce an approach similar to the annealing method into the BO, 777 

where a wide region is explored in the initial stage to identify a promising region, and then 778 

the exploration range is narrowed down to the surrounding region. 779 

In addition, in models more advanced than the L96, it is expected that the optima of the 780 

inflation factor and localization scale will not be uniform throughout the model. In fact, in the 781 

LETKF system using the SPEEDY (Simplified Parameterizations, Primitive Equation 782 

Dynamics; Molteni, 2003) model, the optimal localization scale is not uniform across the 783 

entire domain, and it is desirable to set the larger (smaller) localization scale in regions with 784 

the sparse (dense) observations (Kotsuki et al., 2020). Since the optima of covariance 785 

inflation factor in the LETKF also depend on the localization scale, it is unlikely to be uniform 786 

throughout the entire domain. In this case, it would be appropriate to divide the model 787 

domain based on the observation density and perform parameter estimation by the BO. 788 

We describe features of the offline optimization. Although not experimented with in this 789 

study, the BO uses the extended forecast as an argument for the objective function, enabling 790 

parameter estimation that takes into account the model error that develops over time. 791 

Additionally, the offline optimization conducts the OSSE multiple times during the same 792 

period to estimate parameters that minimize the period-average RMSE(o vs. f). Therefore, 793 
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extending the experiment period allows for the estimation of parameters that lead to long-794 

term stable operation of the LPF. On the other hand, the online optimization which executes 795 

the assimilation cycle and the training cycle in parallel, is also a promising system. Since the 796 

optima of parameters in the LPF change moment by moment, the development of this 797 

system would enable further stabilization of the LPF and higher accuracy of analysis. 798 

Unlike gradient methods, the BO is advantageous in that it can efficiently explore a global 799 

optimal solution even when the shape of the response surface of input and output data is 800 

unknown or when the response surface is a multi-peaked function that cannot be 801 

differentiated. In recent years, libraries such as GPyOpt have become widely available, 802 

enabling rapid adoption of such advanced systems. However, to promote the use of the BO 803 

within data assimilation frameworks, it is undesirable to treat the BO merely as a tool. 804 

Therefore, it is important to conduct analyses focused on the GPR prediction distribution or 805 

the Lipschitz constant, as in this study, and to systematically accumulate insights that 806 

contribute to a fundamental understanding of the BO. 807 

Finally, we summarize the usefulness of the BO in the NWP systems. For example, since 808 

there is a nonlinear relationship between radar reflectivity and precipitation intensity, it is 809 

necessary to use a nonlinear observation operator for assimilating radar reflectivity to 810 

improve the accuracy of heavy rainfall forecasts. In this case, the LPF can estimate the more 811 

accurate analyses than the LETKF. However, in order to work the LPF stably, parameters 812 

such as the weight inflation factor and the localization scale must be their optima. The BO 813 
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is a technology that can efficiently explore global optimal solutions for parameters, and its 814 

use can be expected to improve the practicality of the LPF. In other words, the BO is a 815 

technology that contributes to improving the accuracy of heavy rainfall prediction and will be 816 

helpful in atmospheric model experiments for the practical application of the LPF. 817 

  818 
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List of Figures 925 

Fig. 1. Flowchart of the Bayesian optimization (BO) in the local particle filter (LPF) 926 

framework. Since the data assimilation system and the BO are implemented 927 

independently, it is possible to replace the LPF with the local ensemble transform 928 

Kalman filter. Here, 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) is time, 𝑔𝑔 is the objective function, 𝑠𝑠 (𝑠𝑠 = 1, … , 𝑆𝑆) is the 929 

input data (inflation factor 𝜏𝜏, 𝛼𝛼, and localization scale 𝑟𝑟), and the number of output data 930 

(root mean square error between the observations and the forecasts (RMSE(o vs. f)) ). 931 

In the observing system simulation experiment (OSSE), the observations are 932 

assimilated by the LPF every 6 Earth hours, and the RMSE(o vs. f) at the same time is 933 

calculated after the 2 Earth days extended forecast. Through this process in the 934 

objective function, the input data are converted to the output data. In the BO, the input 935 

data that minimizes the objective function is estimated through response surface 936 

modeling using Gaussian process regression and evaluation using an acquisition 937 

function (penalized expected improvement). The training cycle of conducting the OSSE 938 

using the estimated input data is repeated. Note that the BO optimizes 𝜏𝜏 and 𝑟𝑟 offline. 939 

 940 

Fig. 2. Time series of the root mean square error and ensemble spread between the truth 941 

and the analysis (RMSE(t vs. a)) in the local ensemble transform Kalman filter (LETKF) 942 

and the local particle filter (LPF) using 64 ensemble members (particles) and the 943 

nonlinear observation operators. The vertical axis shows the RMSE(t vs. a) (blue line) 944 
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and the ensemble spread (red line), while the horizontal axis indicates the assimilation 945 

cycle. The localization scale of the LETKF was set to 𝑟𝑟 = 6.5, and the inflation factor was 946 

set to 𝛼𝛼 = 1.100 (The optima in Fig. 3a). In addition, the localization scale of the LPF 947 

was set to 𝑟𝑟 = 1.9, and the inflation factor was set to 𝜏𝜏 = 0.53 (The optima in Fig. 3b). 948 

 949 

Fig. 3. Response surface of root mean square error between the truth and the analysis 950 

(RMSE(t vs. a)) in the local ensemble transform Kalman filter (LETKF) and the local 951 

particle filter (LPF) using 64 ensemble members (particles) and the nonlinear observation 952 

operator. The closer the color is to green, the larger the RMSE(t vs. a), and the closer the 953 

color is to blue, the smaller the RMSE(t vs. a). The vertical axis shows the localization 954 

scale 𝑟𝑟, and the horizontal axis shows the inflation factor 𝛼𝛼 and 𝜏𝜏. The minimum error of 955 

1.024 in the LETKF was obtained when 𝑟𝑟 = 6.5 and 𝛼𝛼 = 1.100 (cross mark). In addition, 956 

the minimum error of 0.586 in the LPF was obtained when 𝑟𝑟 = 1.9 and 𝜏𝜏 = 0.53 (cross 957 

mark). 958 

 959 

Fig. 4. Response surface of the root mean square error between the truth and the analysis 960 

(RMSE(t vs. a)) in the local particle filter using 64 ensemble members (particles) and the 961 

nonlinear observation operator. The vertical axis shows the RMSE(t vs. a), and the 962 

horizontal axis shows the inflation factor 𝜏𝜏. The localization scale was fixed at 𝑟𝑟 = 1.9, 963 

and the minimum error of 0.586 was obtained when 𝜏𝜏 = 0.53 (cross mark). In addition, 964 
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the light blue shaded area indicates the optimal inflation factor range (𝜏𝜏 = 0.34-0.58) 965 

where the RMSE(t vs. a) of the LPF is 1.0 or less (the filter operates stably). 966 

 967 

Fig. 5. Time series of the estimation by the 1-dimensional Bayesian optimization (BO). The 968 

blue line shows the inflation factor 𝜏𝜏, the green line shows the minimum root mean 969 

square error between the observations and the forecasts (RMSE(o vs. f)) in the previous 970 

training cycle estimated by the BO, and the purple line shows the minimum RMSE(o vs. 971 

f) in the previous training cycle estimated by the random sampling. In addition, the light 972 

blue shaded area indicates the optimal inflation factor range (𝜏𝜏 = 0.34-0.58) for which 973 

the root mean square error between the truth and the analysis in the local particle filter is 974 

1.0 or less (the filter operates stably). The horizontal axis shows the training cycle, the 975 

first vertical axis shows 𝜏𝜏, and the second vertical axis shows the minimum RMSE(o vs. 976 

f) in the previous training cycle. Note that, due to the convenience of conducting the 977 

OSSE using the BO estimation, the training cycles of 𝜏𝜏 and the RMSE(o vs. f) are 978 

shifted by one cycle. 979 

 980 

Fig. 6. Prediction distribution of Gaussian process regression (GPR) using the inflation 981 

factor 𝜏𝜏 and the root mean square error between the observations and the forecasts 982 

(RMSE(o vs. f)) in the local particle filter as input and output data. The green line 983 

indicates the penalized expected improvement (EI), the purple line indicates the penalty, 984 
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the yellow line indicates the EI, the red dots indicate the input data that has been 985 

explored, and the yellow dots indicate the input data explored in that training cycle. The 986 

horizontal axis is 𝜏𝜏, the first vertical axis is the RMSE(o vs. f), the second vertical axis is 987 

the penalized EI, the third vertical axis is the penalty, and the fourth vertical axis is the 988 

EI. (a)-(d) are the prediction distributions for the 0th (i.e., when only the initial input data 989 

were given), 13th, 19th, and 20th training cycles, respectively. 990 

 991 

Fig. 7. Variation in the estimation by 1-dimensional Bayesian optimization for different 992 

observations. (a) Box plot of inflation factor 𝜏𝜏. The blue line is the median, the lower 993 

edge of the box is the first quartile, the upper edge of the box is the third quartile, the 994 

lower edge of the whiskers is the minimum, and the upper edge of the whiskers is the 995 

maximum. In addition, the light blue shaded area indicates the optimum inflation factor 996 

range (𝜏𝜏 = 0.34-0.58) for which the root mean square error between the observations 997 

and forecasts (RMSE(o vs. f)) in the local particle filter is less than 1.0 (the filter 998 

operates stably). (b) Box plot of the RMSE(o vs. f). The red line is the median, and the 999 

other plots are the same as in (a). The vertical axes in (a) and (b) indicate 𝜏𝜏 and the 1000 

RMSE(o vs. f), respectively. The horizontal axes indicate the number of training cycles. 1001 

 1002 

Fig. 8. Time series plot of the estimations by the 2-dimensional Bayesian optimization 1003 

(BO). The blue line shows the inflation factor 𝜏𝜏, the orange line shows the localization 1004 
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scale 𝑟𝑟, the green line shows the minimum root mean square error between the 1005 

observations and the forecasts (RMSE(o vs. f)) in the previous training cycle estimated 1006 

by the BO, and the purple line shows the minimum RMSE(o vs. f) in the previous 1007 

training cycle estimated by the random sampling. The light blue shaded area indicates 1008 

the optimal inflation factor range (𝜏𝜏 = 0.32-0.67) for which the root mean square error 1009 

between the truth and the analysis in the local particle filter is less than 1.0 (the filter 1010 

operates stably). In addition, the light orange shaded area indicates the optimal 1011 

localization scale range (𝑟𝑟 = 1.0-4.2). The light beige shaded area indicates the range 1012 

that satisfies both the optimal inflation factor and localization scale. The horizontal axis 1013 

represents the training cycle, the first vertical axis represents 𝜏𝜏, the second vertical axis 1014 

represents 𝑟𝑟, and the third vertical axis represents the minimum RMSE(o vs. f). Note 1015 

that due to the convenience of conducting the OSSE using the BO estimations, the 1016 

training cycles of 𝜏𝜏, 𝑟𝑟, and the RMSE (o vs. f) are shifted by one cycle. 1017 

 1018 

Fig. 9. Prediction distribution of Gaussian process regression (GPR) using the inflation 1019 

factor 𝜏𝜏 and the localization scale 𝑟𝑟 in the 0th training cycle (i.e., when only initial input 1020 

data were given) and the root mean square error between observations and forecasts  1021 

(RMSE(o vs. f)) in the local particle filter as input and output data. (a) is the GPR mean, 1022 

(b) is the GPR standard deviation, (c) is the expected improvement (EI), (d) is the 1023 

penalty, and (e) is the penalized EI prediction distribution. The red dots indicate the input 1024 
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data that has been explored, and the yellow dots indicate the input data explored in that 1025 

training cycle. The horizontal axis indicates 𝜏𝜏, and the vertical axis indicates 𝑟𝑟. 1026 

 1027 

Fig. 10. Prediction distribution of Gaussian process regression (GPR) using the inflation 1028 

factor 𝜏𝜏 and the localization scale 𝑟𝑟 at the 20th training cycle, and the root mean square 1029 

error between the observations and the forecasts (RMSE(o vs. f)) in the local particle 1030 

filter as input and output data. (a) is the GPR mean, (b) is the GPR standard deviation, 1031 

(c) is the expected improvement (EI), (d) is the penalty, and (e) is the penalized EI 1032 

prediction distribution. The training cycle in this figure corresponds to that in Fig. 8. The 1033 

expected value and uncertainty of the RMSE(o vs. f) are obtained as the mean and 1034 

standard deviation of the GPR. Red dots indicate input data that has been explored, and 1035 

yellow dots indicate input data explored in that training cycle. The horizontal axis 1036 

indicates 𝜏𝜏, and the vertical axis indicates 𝑟𝑟. 1037 

 1038 

Fig. 11. Variation in the estimation by the 2-dimensional Bayesian optimization for the 1039 

different observation sets. (a) Box plot of inflation factor 𝜏𝜏. The blue line is the median, 1040 

the lower edge of the box is the first quartile, the upper edge of the box is the third 1041 

quartile, the lower edge of the whiskers is the minimum, the upper edge of the whiskers 1042 

is the maximum, and the dots indicate outliers. In addition, the light blue shade indicates 1043 

the optimal inflation factor range (𝜏𝜏 = 0.34-0.58) for which the root mean square error 1044 
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between the truth and the analysis (RMSE(t vs. a)) in the local particle filter is less than 1045 

1.0 (the filter operates stably). (b) Box plot of localization scale 𝑟𝑟. The orange line is the 1046 

median, and the other plots are the same as in (a). In addition, the light orange shade 1047 

indicates the optimal localization scale range (𝑟𝑟 = 1.0-4.2). (c) Box plot of the RMSE(o 1048 

vs. f). The red line is the median, and the other plots are the same as in (a). The vertical 1049 

axes in (a), (b), and (c) indicate 𝜏𝜏, 𝑟𝑟, and the RMSE(o vs. f), respectively. The horizontal 1050 

axes indicate the number of training cycles. 1051 

  1052 
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 1053 

Fig. 1. Flowchart of the Bayesian optimization (BO) in the local particle filter (LPF) 1054 

framework. Since the data assimilation system and the BO are implemented 1055 

independently, it is possible to replace the LPF with the local ensemble transform 1056 

Kalman filter. Here, 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) is time, 𝑔𝑔 is the objective function, 𝑠𝑠 (𝑠𝑠 = 1, … , 𝑆𝑆) is the 1057 

input data (inflation factor 𝜏𝜏, 𝛼𝛼, and localization scale 𝑟𝑟), and the number of output data 1058 

(root mean square error between the observations and the forecasts (RMSE(o vs. f)) ). 1059 

In the observing system simulation experiment (OSSE), the observations are 1060 

assimilated by the LPF every 6 Earth hours, and the RMSE(o vs. f) at the same time is 1061 

calculated after the 2 Earth days extended forecast. Through this process in the 1062 

objective function, the input data are converted to the output data. In the BO, the input 1063 

data that minimizes the objective function is estimated through response surface 1064 

modeling using Gaussian process regression and evaluation using an acquisition 1065 
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function (penalized expected improvement). The training cycle of conducting the OSSE 1066 

using the estimated input data is repeated. Note that the BO optimizes 𝜏𝜏 and 𝑟𝑟 offline. 1067 

  1068 
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 1069 

Fig. 2. Time series of the root mean square error and ensemble spread between the truth 1070 

and the analysis (RMSE(t vs. a)) (a) for the local ensemble transform Kalman filter 1071 

(LETKF) and (b) for the local particle filter (LPF) using 64 ensemble members (particles) 1072 

and the nonlinear observation operators. The vertical axis shows the RMSE(t vs. a) 1073 
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(blue line) and the ensemble spread (red line), while the horizontal axis indicates the 1074 

assimilation cycle.  1075 

  1076 



 63  1077 



 64 

Fig. 3. Response surface of root mean square error between the truth and the analysis 1078 

(RMSE(t vs. a)) in the local ensemble transform Kalman filter (LETKF) and the local 1079 

particle filter (LPF) using 64 ensemble members (particles) and the nonlinear observation 1080 

operator. The closer the color is to green, the larger the RMSE(t vs. a), and the closer the 1081 

color is to blue, the smaller the RMSE(t vs. a). The vertical axis shows the localization 1082 

scale 𝑟𝑟, and the horizontal axis shows the inflation factor 𝛼𝛼 and 𝜏𝜏. The minimum error of 1083 

1.024 in the LETKF was obtained when 𝑟𝑟 = 6.5 and 𝛼𝛼 = 1.100 (cross mark). In addition, 1084 

the minimum error of 0.586 in the LPF was obtained when 𝑟𝑟 = 1.9 and 𝜏𝜏 = 0.53 (cross 1085 

mark). 1086 

  1087 
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 1088 

Fig. 4. Response surface of the root mean square error between the truth and the analysis 1089 

(RMSE(t vs. a)) in the local particle filter using 64 ensemble members (particles) and the 1090 

nonlinear observation operator. The vertical axis shows the RMSE(t vs. a), and the 1091 

horizontal axis shows the inflation factor 𝜏𝜏. The localization scale was fixed at 𝑟𝑟 = 1.9, and 1092 

the minimum error of 0.586 was obtained when 𝜏𝜏 = 0.53 (cross mark). In addition, the light 1093 

blue shaded area indicates the optimal inflation factor range (𝜏𝜏 = 0.34-0.58) where the 1094 

RMSE(t vs. a) of the LPF is 1.0 or less (the filter operates stably). 1095 

  1096 
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 1097 

Fig. 5. Time series of the estimation by the 1-dimensional Bayesian optimization (BO). The 1098 

blue line shows the inflation factor 𝜏𝜏, the green line shows the minimum root mean 1099 

square error between the observations and the forecasts (RMSE(o vs. f)) in the previous 1100 

training cycle estimated by the BO, and the purple line shows the minimum RMSE(o vs. 1101 

f) in the previous training cycle estimated by the random sampling. In addition, the light 1102 

blue shaded area indicates the optimal inflation factor range (𝜏𝜏 = 0.34-0.58) for which 1103 

the root mean square error between the truth and the analysis in the local particle filter is 1104 

1.0 or less (the filter operates stably). The horizontal axis shows the training cycle, the 1105 

first vertical axis shows 𝜏𝜏, and the second vertical axis shows the minimum RMSE(o vs. 1106 

f) in the previous training cycle. Note that, due to the convenience of conducting the 1107 

OSSE using the BO estimation, the training cycles of 𝜏𝜏 and the RMSE(o vs. f) are 1108 

shifted by one cycle. 1109 



 67 

  1110 



 68  1111 



 69 

Fig. 6. Prediction distribution of Gaussian process regression (GPR) using the inflation 1112 

factor 𝜏𝜏 and the root mean square error between the observations and the forecasts 1113 

(RMSE(o vs. f)) in the local particle filter as input and output data. The green line 1114 

indicates the penalized expected improvement (EI), the purple line indicates the penalty, 1115 

the yellow line indicates the EI, the red dots indicate the input data that has been 1116 

explored, and the yellow dots indicate the input data explored in that training cycle. The 1117 

horizontal axis is 𝜏𝜏, the first vertical axis is the RMSE(o vs. f), the second vertical axis is 1118 

the penalized EI, the third vertical axis is the penalty, and the fourth vertical axis is the 1119 

EI. (a)-(d) are the prediction distributions for the 0th (i.e., when only the initial input data 1120 

were given), 13th, 19th, and 20th training cycles, respectively. 1121 

  1122 
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 1123 

Fig. 7. Variation in the estimation by 1-dimensional Bayesian optimization for different 1124 

observations. (a) Box plot of inflation factor 𝜏𝜏. The blue line is the median, the lower 1125 

edge of the box is the first quartile, the upper edge of the box is the third quartile, the 1126 

lower edge of the whiskers is the minimum, and the upper edge of the whiskers is the 1127 

maximum. In addition, the light blue shaded area indicates the optimum inflation factor 1128 

range (𝜏𝜏 = 0.34-0.58) for which the root mean square error between the observations 1129 
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and forecasts (RMSE(o vs. f)) in the local particle filter is less than 1.0 (the filter 1130 

operates stably). (b) Box plot of the RMSE(o vs. f). The red line is the median, and the 1131 

other plots are the same as in (a). The vertical axes in (a) and (b) indicate 𝜏𝜏 and the 1132 

RMSE(o vs. f), respectively. The horizontal axes indicate the number of training cycles. 1133 

  1134 
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 1135 

Fig. 8. Time series plot of the estimations by the 2-dimensional Bayesian optimization (BO). 1136 

The blue line shows the inflation factor 𝜏𝜏, the orange line shows the localization scale 𝑟𝑟, 1137 

the green line shows the minimum root mean square error between the observations and 1138 

the forecasts (RMSE(o vs. f)) in the previous training cycle estimated by the BO, and the 1139 

purple line shows the minimum RMSE(o vs. f) in the previous training cycle estimated by 1140 

the random sampling. The light blue shaded area indicates the optimal inflation factor 1141 

range (𝜏𝜏 = 0.32-0.67) for which the root mean square error between the truth and the 1142 

analysis in the local particle filter is less than 1.0 (the filter operates stably). In addition, 1143 

the light orange shaded area indicates the optimal localization scale range (𝑟𝑟 = 1.0-4.2). 1144 

The light beige shaded area indicates the range that satisfies both the optimal inflation 1145 

factor and localization scale. The horizontal axis represents the training cycle, the first 1146 

vertical axis represents 𝜏𝜏, the second vertical axis represents 𝑟𝑟, and the third vertical axis 1147 
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represents the minimum RMSE(o vs. f). Note that due to the convenience of conducting 1148 

the OSSE using the BO estimations, the training cycles of 𝜏𝜏, 𝑟𝑟, and the RMSE (o vs. f) are 1149 

shifted by one cycle. 1150 

  1151 
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 1152 

Fig. 9. Prediction distribution of Gaussian process regression (GPR) using the inflation 1153 

factor 𝜏𝜏 and the localization scale 𝑟𝑟 in the 0th training cycle (i.e., when only initial input 1154 

data were given) and the root mean square error between observations and forecasts  1155 

(RMSE(o vs. f)) in the local particle filter as input and output data. (a) is the GPR mean, 1156 

(b) is the GPR standard deviation, (c) is the expected improvement (EI), (d) is the 1157 
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penalty, and (e) is the penalized EI prediction distribution.  The red dots are input data 1158 

obtained in advance using the LHS, and the yellow dots indicate the input data explored 1159 

in that training cycle. The horizontal axis indicates 𝜏𝜏, and the vertical axis indicates 𝑟𝑟. 1160 
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 1162 

Fig. 10. Prediction distribution of Gaussian process regression (GPR) using the inflation 1163 

factor 𝜏𝜏 and the localization scale 𝑟𝑟 at the 20th training cycle, and the root mean square 1164 

error between the observations and the forecasts (RMSE(o vs. f)) in the local particle 1165 

filter as input and output data. (a) is the GPR mean, (b) is the GPR standard deviation, 1166 

(c) is the expected improvement (EI), (d) is the penalty, and (e) is the penalized EI 1167 
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prediction distribution. The training cycle in this figure corresponds to that in Fig. 8. The 1168 

expected value and uncertainty of the RMSE(o vs. f) are obtained as the mean and 1169 

standard deviation of the GPR. Red dots indicate input data that has been explored, and 1170 

yellow dots indicate input data explored in that training cycle. The horizontal axis 1171 

indicates 𝜏𝜏, and the vertical axis indicates 𝑟𝑟. 1172 
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Fig. 11. Variation in the estimation by the 2-dimensional Bayesian optimization for the 1175 

different observation sets. (a) Box plot of inflation factor 𝜏𝜏. The blue line is the median, 1176 

the lower edge of the box is the first quartile, the upper edge of the box is the third 1177 

quartile, the lower edge of the whiskers is the minimum, the upper edge of the whiskers 1178 

is the maximum, and the dots indicate outliers. In addition, the light blue shade indicates 1179 

the optimal inflation factor range (𝜏𝜏 = 0.34-0.58) for which the root mean square error 1180 

between the truth and the analysis (RMSE(t vs. a)) in the local particle filter is less than 1181 

1.0 (the filter operates stably). (b) Box plot of localization scale 𝑟𝑟. The orange line is the 1182 

median, and the other plots are the same as in (a). In addition, the light orange shade 1183 

indicates the optimal localization scale range (𝑟𝑟 = 1.0-4.2). (c) Box plot of the RMSE(o 1184 

vs. f). The red line is the median, and the other plots are the same as in (a). The vertical 1185 

axes in (a), (b), and (c) indicate 𝜏𝜏, 𝑟𝑟, and the RMSE(o vs. f), respectively. The horizontal 1186 

axes indicate the number of training cycles. 1187 
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List of Tables 1189 

Table 1 Variation in the estimation by the Bayesian optimization with respect to the 1190 

dimension of the response surface, the Lipschitz constant, and the number of initial input 1191 

data. The rightmost column shows the minimum root mean square error between the 1192 

observations and the forecasts for 20 training cycles, with the best cases for each 1193 

dimension of the response surface highlighted in bold. 1194 

  1195 
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Table 1 Variation in the estimation by the Bayesian optimization with respect to the 1196 

dimension of the response surface, the Lipschitz constant, and the number of initial input 1197 

data. The rightmost column shows the minimum root mean square error between the 1198 

observations and the forecasts for 20 training cycles, with the best cases for each 1199 

dimension of the response surface highlighted in bold. 1200 

2-dimension (91 * 91)   

Lipschitz constant Number of initial input data minimum RMSE 

0.1 

10 1.319  

20 1.302  

30 1.312  

40 1.319  

0.5 

10 1.319  

20 1.304  

30 1.316  

40 1.315  

2.0  

10 1.319  

20 1.300  

30 1.323  

40 1.332  

10.0  

10 1.319  

20 1.329  

30 1.354  

40 1.352  

1-dimension (91)   

Lipschitz constant Number of initial input data minimum RMSE 

0.1 

5 1.282  

10 1.282  

15 1.304  

20 1.282  

0.5 

5 1.282  

10 1.301  

15 1.298  

20 1.282  
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2.0  

5 1.298  

10 1.301  

15 1.301  

20 1.282  

10.0  

5 1.301  

10 1.301  

15 1.301  

20 1.282  

 1201 
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