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Abstract 42 

The Particle filter (PF) is a powerful data assimilation method that does not assume the 43 

linearity in the time evolution of errors or Gaussian error distributions. However, the number 44 

of particles required increases exponentially with the dimensions of the dynamical system, 45 

which is a bottleneck when applying the PF to numerical weather prediction. Local particle 46 

filter (LPF) realizes the PF in high-dimensional systems by the localization, but it has high 47 

parameter sensitivity and is challenging to operate stably. On the other hand, when using a 48 

strong nonlinear observation operator, it is possible to estimate the analysis with higher 49 

accuracy than the local ensemble transform Kalman filter by setting the inflation factor 𝜏𝜏 and 50 

the localization scale 𝑟𝑟 to the optima. Therefore, an efficient parameter estimation method 51 

is required. 52 

Bayesian optimization (BO) is a method for efficiently solving optimization problems of 53 

black box functions with high computational costs, and is used for parameter optimization of 54 

neural networks. Therefore, we estimated 𝜏𝜏 and 𝑟𝑟 that minimize the root mean square error 55 

between the observations and the forecasts (RMSE(o vs. f)) in the LPF using the BO in the 56 

Lorenz-96 40-variable model. As a result, the BO estimated 𝜏𝜏 and 𝑟𝑟 with higher accuracy 57 

than random sampling and was robust to changes in the observations to a certain extent. In 58 

addition, it was important to adopt the kernel functions and the acquisition functions tailored 59 

to the characteristics of the problem to improve the estimation accuracy of the BO. 60 

This study clarified that the BO contributes to improving the practicality of the LPF and 61 
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suggested what approach should be adopted when the number of estimated parameters 62 

increases. By developing this technology, the prediction accuracy of heavy rainfall is 63 

expected to improve in the future. The usefulness of the BO will eventually be proven in 64 

atmospheric model experiments aimed at the practical application of the LPF. 65 

Keywords: Local particle filter; Parameter estimation; Bayesian optimization; Gaussian 66 

process regression 67 

 68 

  69 
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1. Introduction 70 

In chaotic dynamical systems such as numerical weather prediction (NWP) models, even 71 

small errors in the initial conditions can develop over time and become large errors. Data 72 

assimilation is a technique for estimating the analysis closer to the truth from the forecasts 73 

and the observations, and by using the high-precision analyses as the initial conditions, 74 

forecast errors can be improved. The ensemble Kalman filter (EnKF; Evensen, 1994) and 75 

4D-Var (Dimet and Talagrand, 1986), which are currently the mainstream data assimilation 76 

methods, can estimate the optimum analysis when the errors develop linearly over time and 77 

the error distribution follows a Gaussian distribution. However, when these assumptions are 78 

not satisfied—around cumulus convection and storm tracks—it cannot estimate the optimum 79 

analyses (Kondo and Miyoshi, 2019). 80 

On the other hand, the particle filter (PF; Gordon et al., 1993) does not assume linearity 81 

or Gaussianity, and therefore, it can be an appropriate data assimilation method for 82 

dynamical systems with strong nonlinearity. However, the PF estimates the analyses by 83 

resampling ensemble members (particles) based on weights obtained from the likelihood of 84 

observations, and therefore, “weight collapse” may occur in high-dimensional systems. The 85 

PF requires an exponential increase in the number of particles necessary for the dimensions 86 

of the dynamical system (Snyder et al., 2008), and this problem is a bottleneck when 87 

applying the PF to the NWP. 88 

Local particle filter (LPF; Penny and Miyoshi, 2016) achieves the PF in high-dimensional 89 
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systems by reducing the dimensions of observations through localization. Spatial 90 

localization is justified because distant correlations are spurious or weak compared to 91 

nearby correlations. If well applied, the LPF can estimate a more accurate analysis than the 92 

EnKF with non-Gaussian observation errors, nonlinear observation operators, and sparse 93 

observation networks (Poterjoy and Anderson, 2016; Poterjoy, 2016; Penny and Miyoshi, 94 

2016). 95 

However, the localization scale and inflation factor—smoothing weights among particles—96 

are the parameters should be optimized in the LPF. In addition, because excessive 97 

resampling causes “weight collapse,” adjusting the resampling frequency based on an 98 

effective sample size is critical. Furthermore, a method for implementing the PF, which 99 

approximates the prior distribution using a combination of Gaussian kernels centered at the 100 

value of each particle, has been suggested. In this approach, the amplitude of the Gaussian 101 

kernel is a parameter that should be optimized (Stordal et al., 2011). If the LPF does not 102 

optimize these parameters, it will diverge (Kotsuki et al., 2022).  103 

The parameters to be optimized and the computational cost of data assimilation 104 

experiments are expected to increase with the improvement of LPF methods and the 105 

advancement of systems for applying the LPF to the operational NWP. The simplest way to 106 

optimize the parameters is using the grid search (also known as manual tuning or brute-107 

force). However, this method requires data assimilation experiments that increase 108 

exponentially with the number of parameters. In addition, random sampling (RS) is a method 109 
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that works more efficiently than grid search in high-dimensional spaces. Still, this method 110 

may be unable to explore the optimum if the number of samples is insufficient. Therefore, 111 

an efficient optimization method is needed. 112 

One way to reduce computational cost is to replace the system response to the 113 

parameters with a surrogate model (e.g., Sawada, 2020). Bayesian optimization (BO; 114 

Mockus, 1989) is a method for estimating the parameters that minimize (or maximize) an 115 

objective function and is used for the parameter optimization of neural networks (Snoek et 116 

al., 2012). As the BO uses Gaussian process regression (GPR) to emulate the objective 117 

function, it can efficiently explore a globally optimal parameter even when the shape of the 118 

response surface for the input and output data is unknown or when the function is a multi-119 

peaked function that cannot be differentiated. In addition, it is easy to implement because 120 

the BO works independently of other systems. 121 

The effectiveness of using the BO within the EnKF framework has already been 122 

demonstrated (Lunderman et al., 2021), so we continued this line of study to investigate 123 

whether the BO can improve the practicality of LPF. In addition, since the BO has been used 124 

as a tool in previous studies, we verified how the estimation accuracy of the BO changes 125 

with the increase in the dimension of response surfaces and changes in settings of the BO, 126 

with a view to future technological developments. This study was conducted using a data 127 

assimilation experiment with the Lorenz-96 40-variable model (L96: Lorenz and Emanuel, 128 

1998). 129 
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This paper is organized as follows: Section 2 introduces the methodology, while Section 130 

3 describes the experimental setup. In Section 4, we compared the estimation accuracy of 131 

the RS and the BO. In addition, we investigated the estimation results of the BO in detail 132 

from the perspective of the GPR prediction distribution. Section 5 presents future prospect 133 

and conclusion. 134 

 135 

  136 
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2. Method 137 

a. Local particle filter 138 

The PF estimates the posterior distribution using the Monte Carlo method and Bayes’ 139 

theorem:  140 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) =
𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1)

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) , (1) 141 

where 𝑝𝑝 represents the probability distribution; 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) denotes the posterior distribution 142 

of state variable 𝒙𝒙 at time step 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) given all observations 𝒚𝒚 up to time 𝑡𝑡; 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) 143 

is the likelihood of 𝒙𝒙 given 𝒚𝒚; 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) is the prior distribution given all 𝒚𝒚 up to one time 144 

step before analysis time step; and 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒚𝒚1:𝑦𝑦−1) denotes the marginal likelihood of 𝒚𝒚, which 145 

can be expressed as a constant computed by climate data in the NWP. The prior distribution 146 

can be approximated using particles (or ensemble members) of the numerical forecast:  147 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) ≈
1
𝑀𝑀
� 𝛿𝛿�𝑥𝑥𝑡𝑡 − ℱ(𝑥𝑥𝑡𝑡−1𝑚𝑚 )�
𝑀𝑀

𝑚𝑚=1

, (2) 148 

where the subscripts 𝑚𝑚 (𝑚𝑚 = 1, … ,𝑀𝑀) denote the indices of the particle, 𝛿𝛿 is the Dirac delta 149 

function, and ℱ is the numerical model.  In this study assumes a Gaussian likelihood function, 150 

given by 151 

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) =
1

�(2𝜋𝜋)𝑜𝑜|𝑹𝑹|
exp �−

1
2
�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�

⊤
𝑹𝑹−1�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�� . (3) 152 

where 𝑜𝑜  represents the dimension of 𝒚𝒚 . In addition, 𝑹𝑹  denotes the observation error 153 

covariance matrix, and |𝑹𝑹|  is its determinant. ℎ  denotes the observation operator. The 154 

weight of each particle is the normalized likelihood, computed for all particles as follows:  155 
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𝑤𝑤𝑡𝑡𝑚𝑚 =
𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡𝑚𝑚)

∑ 𝑝𝑝�𝒚𝒚𝑡𝑡�𝒙𝒙𝑡𝑡𝑚𝑚
′�𝑀𝑀

𝑚𝑚′=1
, (4) 156 

where the subscripts 𝑚𝑚′ denote the indices of the particles for summation. The posterior 157 

distribution is obtained by resampling each particle of the prior distribution in proportion to 158 

its weight:  159 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) ≈ � 𝑤𝑤𝑡𝑡𝑚𝑚𝛿𝛿�𝑥𝑥𝑡𝑡 − ℱ(𝑥𝑥𝑡𝑡−1𝑚𝑚 )�
𝑀𝑀

𝑚𝑚=1

.  (5) 160 

The resampling method is also arbitrary. This study defined the analysis particles as the 161 

sum of the transformation for perturbations of forecast particles and the mean of the forecast 162 

particles:  163 

𝑿𝑿𝑎𝑎 = 𝑿𝑿�𝑓𝑓 + 𝛿𝛿𝑿𝑿𝑓𝑓 𝑻𝑻 , (6) 164 

where 𝑿𝑿𝑎𝑎 denotes the analysis particles; 𝑿𝑿�𝑓𝑓 represent the mean of forecast particles; and 165 

𝛿𝛿𝑿𝑿𝑓𝑓 denotes the perturbation of forecast particles, where the row and column of 𝑿𝑿𝑎𝑎, 𝑿𝑿�𝑓𝑓, and 166 

𝛿𝛿𝑿𝑿𝑓𝑓 indicate the particle size and dimension of the numerical model, respectively. 𝑻𝑻 denotes 167 

the ensemble transform matrix, defined as a square matrix of order 𝑀𝑀. As resampling is 168 

performed using the ensemble transform matrix in the LPF, the matrix markedly affects filter 169 

performance (Farchi and Bocquet, 2018; Kotsuki et al., 2022). When the particle size is 170 

sufficiently large, the ratio of resampled particle sizes will closely match the ratio of weights; 171 

otherwise, the sampling error may become substantial. 172 

In addition, the weights among grid points differ because varying observations are 173 

assimilated at each grid point through localization. As the pronounced weight difference 174 
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causes spatial discontinuity, the ensemble transform matrix should satisfy a spatially smooth 175 

transition. Addressing the smoothing issue presents an interesting challenge. For example, 176 

Kotsuki et al. (2022) addressed this problem by sorting the particles and creating an 177 

ensemble transform matrix close to an identity matrix (see also Potthast et al., 2019). Our 178 

resampling method is based on Algorithm 1 of Kotsuki et al. (2022) and uses stochastic 179 

universal resampling (SUR) instead of probabilistic resampling to reduce sampling error. 180 

The SUR is implemented as follows. Create a normalized cumulative probability distribution 181 

divided by the weight of each particle, and select a random starting point in the range 182 

[0, 1/𝑀𝑀]. Set M pointers at equal intervals between the starting point and 1/𝑀𝑀, and sample 183 

the particles corresponding to the cumulative probabilities pointed to by each pointer. 184 

Furthermore, we used localization to limit the impact of observations within the local 185 

domain to avoid “weight collapse” (Penny and Miyoshi, 2016; Kotsuki et al., 2022). This 186 

localization method is applied by independently computing the analysis at every grid point, 187 

similar to the local ensemble transform Kalman filter (LETKF; Hunt et al., 2007). Specifically, 188 

it is implemented by computing the product of the inverse of observation error covariance 189 

matrix 𝑹𝑹 in Eq. (3) and the inverse of localization function 𝑳𝑳(𝑟𝑟): 190 

exp �−
1
2
�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�

⊤
𝑹𝑹−1{𝑳𝑳(𝑟𝑟)}−1�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�� .  (7) 191 

Here, the localization function approximates a Gaussian function (Gaspari and Cohn, 1999): 192 

𝐿𝐿(𝑟𝑟) = �exp�−
𝑞𝑞2

2𝑟𝑟2�  if 𝑞𝑞 < 2�
10
3  𝑟𝑟

0 else

, (8) 193 
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where 𝑞𝑞 denotes the distance between the analysis grid point and the observation point and 194 

𝑟𝑟 represents the standard deviation of the Gaussian function, defining the localization scale. 195 

Observations beyond this scale, including its boundary, are not assimilated, while those 196 

within the localization scale are weighted based on the localization function. Therefore, 𝑟𝑟 is 197 

the parameter that determines the localization scale, and it is necessary to set the 198 

appropriate value. 199 

In addition, to avoid filter divergence, it is necessary to maintain particle diversity. 200 

Therefore, we smoothed the weights among particles to prevent a few particles from 201 

occupying most of the weights. We refer to this approach as inflation in this study: 202 

𝑤𝑤𝑡𝑡𝑚𝑚 ← 𝜏𝜏𝑤𝑤𝑡𝑡𝑚𝑚 +
1 − 𝜏𝜏
𝑀𝑀 , (0 ≤ 𝜏𝜏 ≤ 1), (9) 203 

where 𝜏𝜏 represents the inflation factor. If 𝜏𝜏 is not 1, the weights 𝑤𝑤𝑡𝑡𝑚𝑚 are smoothed, and all 204 

particles have equal weights when 𝜏𝜏 equals 0. On the other hand, if the original weights are 205 

used, the LPF tends to diverge due to “weight collapse.” As 𝜏𝜏 becomes smaller, the LPF 206 

deviates from the PF but becomes more stable. Thus, the relationship between 207 

mathematical rigor and stability is a trade-off on the inflation factor 𝜏𝜏. Note that this approach 208 

is mathematically equivalent to Eq. (23) in Kotsuki et al. (2022). However, while Kotsuki et 209 

al. (2022) smoothed the weights in the time direction, we smoothed the weights among 210 

particles. 211 

 212 

b. Bayesian optimization 213 
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The BO estimates input data that minimizes the objective function by modeling response 214 

surface using the GPR and evaluating using an acquisition function. The GPR assumes that 215 

a joint distribution 𝑝𝑝(𝒈𝒈) of input data 𝒛𝒛 = {𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑆𝑆} and corresponding output data 𝒈𝒈 =216 

{𝑔𝑔(𝑧𝑧1),𝑔𝑔(𝑧𝑧2), … ,𝑔𝑔(𝑧𝑧𝑆𝑆)}  follow the multivariate Gaussian distribution 𝒩𝒩(𝝁𝝁,𝑲𝑲) . This 217 

assumption is written as follows: 218 

𝒈𝒈~𝒢𝒢𝒢𝒢�𝝁𝝁(𝒛𝒛),𝑲𝑲(𝒛𝒛, 𝒛𝒛′)�, (10) 219 

where 𝒛𝒛 are input data that summarizes the inflation factor 𝜏𝜏 and the localization scale 𝑟𝑟 into 220 

a single vector. The subscripts 𝑠𝑠 (𝑠𝑠 = 1, … , 𝑆𝑆)  denote the indices of the data and the 221 

superscript ′  denotes the another data within the data set. In addition, 𝒢𝒢𝒢𝒢  denotes the 222 

Gaussian process with the mean 𝝁𝝁 and the covariance matrix 𝑲𝑲 defined as a square matrix 223 

of order 𝑆𝑆. The elements of covariance matrix 𝑲𝑲𝒊𝒊𝒊𝒊 is defined as 𝑘𝑘(𝑧𝑧, 𝑧𝑧′ | 𝜽𝜽).  In this study, we 224 

used the Gaussian kernel with added white noise as a general choice: 225 

𝑘𝑘(𝑧𝑧, 𝑧𝑧′ | 𝜽𝜽) = 𝜃𝜃1 exp�−
(𝜏𝜏 − 𝜏𝜏′)2

𝜃𝜃2
−

(𝑟𝑟 − 𝑟𝑟′)2

𝜃𝜃3
�+ 𝜃𝜃4𝛿𝛿(𝑧𝑧, 𝑧𝑧′).  (11) 226 

Here, the kernel function 𝑘𝑘(𝑧𝑧, 𝑧𝑧′) defines the correlation between any two data 𝑧𝑧 and 𝑧𝑧′ in 227 

the input data 𝒛𝒛. In addition, 𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) denotes the positive hyper-parameters that 228 

define the kernel function, while 𝛿𝛿 represents the Dirac delta function. 229 

When the amplitude parameter 𝜃𝜃1 is small, the variation in the GPR prediction distribution 230 

is slight. The GPR prediction distribution becomes smoother when the length scale 231 

parameters 𝜃𝜃2 and 𝜃𝜃3 are large. When the noise parameter 𝜃𝜃4 is small, the uncertainties in 232 

the GPR prediction distribution near the input data are reduced. Note that when there are 233 
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two types of input data, using two length scale parameters, 𝜃𝜃2  and 𝜃𝜃3 , allows for more 234 

flexible modeling tailored to the characteristics of each input data. 235 

In addition, since 𝜏𝜏 and 𝑟𝑟 have different scales by a factor of 10, we normalized them to 236 

the same scale. Since the Gaussian kernel performs distance-based calculations, the 237 

normalization prevents the influence of specific input data from becoming dominant. In our 238 

system, this approach markedly contributed to improving the performance of the BO. 239 

When new input data 𝒛𝒛∗ is given, the GPR is updated, and the new joint distribution of 240 

output data 𝒈𝒈∗ is expressed as: 241 

𝑝𝑝(𝒈𝒈∗|𝒛𝒛∗,𝒟𝒟) = 𝒩𝒩(𝒌𝒌∗⊤𝑲𝑲−1𝒈𝒈,𝑘𝑘∗∗ − 𝒌𝒌∗⊤𝑲𝑲−1𝒌𝒌∗) , (12) 242 

where 𝒟𝒟 = (𝒛𝒛,𝒈𝒈) denotes the accumulated input data, 𝒌𝒌∗ is the similarity between the new 243 

input data 𝒛𝒛∗ and the accumulated input data 𝒟𝒟. 𝑘𝑘∗∗ represents the similarity of the new input 244 

data 𝑧𝑧∗ to themselves. 245 

𝒌𝒌∗ = �𝑘𝑘(𝑧𝑧∗, 𝑧𝑧1),𝑘𝑘(𝑧𝑧∗, 𝑧𝑧2), … ,𝑘𝑘(𝑧𝑧∗, 𝑧𝑧𝑆𝑆)�⊤, (13) 246 

𝑘𝑘∗∗ = 𝑘𝑘(𝑧𝑧∗, 𝑧𝑧∗).  (14) 247 

Eq. (12), (15), and (16) are derived under the assumption that 𝝁𝝁(𝒛𝒛) in Eq. (10) is zero, but 248 

in practice, mathematical rigor can be achieved by subtracting the average from the input 249 

data. 250 

In addition, when the covariance matrix 𝑲𝑲  becomes close to a singular matrix due to 251 

redundant exploration of the same input data, it may become impossible to calculate the 252 

inverse matrix stably (Rasmussen and Nickisch, 2010). There are several techniques to 253 



 14 

improve numerical stability, but we followed Rasmussen and Williams (2006) and added 254 

jitter to the diagonal components of the covariance matrix. However, as far as we have 255 

experimented, this technique alone can prevent errors associated with singular matrices, 256 

but cannot prevent the redundant exploration. Therefore, we adopted the penalized 257 

expected improvement (EI) described below. 258 

The hyper-parameters 𝜽𝜽 are optimized by maximizing the negative log marginal likelihood, 259 

defined as following equation: 260 

log𝑝𝑝(𝒈𝒈 | 𝒛𝒛,𝜽𝜽) = −
𝑆𝑆
2 log(2𝜋𝜋) −

1
2 log|𝑲𝑲𝜽𝜽| −

1
2𝒈𝒈

⊤𝑲𝑲𝜽𝜽
−1𝒈𝒈, (15) 261 

where 𝑲𝑲𝜽𝜽 denotes the covariance matrix that depends on 𝜽𝜽, with elements determined by 262 

the kernel function 𝑘𝑘(𝑧𝑧, 𝑧𝑧′| 𝜽𝜽) , and |𝑲𝑲𝜽𝜽|  represents the determinant. The gradient of the 263 

negative log marginal likelihood [Eq. (15)] is expressed as follows: 264 

𝜕𝜕 log 𝑝𝑝(𝒈𝒈 | 𝒛𝒛,𝜽𝜽)
𝜕𝜕𝜃𝜃 = −

1
2 tr �𝑲𝑲𝜽𝜽

−𝟏𝟏 𝜕𝜕𝑲𝑲𝜽𝜽

𝜕𝜕𝜃𝜃
� + �𝑲𝑲𝜽𝜽

−𝟏𝟏𝒈𝒈�
⊤ 𝜕𝜕𝑲𝑲𝜽𝜽

𝜕𝜕𝜃𝜃
�𝑲𝑲𝜽𝜽

−𝟏𝟏𝒈𝒈�, (16) 265 

where 𝜕𝜕𝑲𝑲𝜽𝜽
𝜕𝜕𝜕𝜕

  denotes the matrix of the same shape as the covariance matrix 𝑲𝑲𝜽𝜽 , and the 266 

elements of the matrix are 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑘𝑘(𝑧𝑧, 𝑧𝑧′ | 𝜃𝜃), which is each element of the covariance matrix 𝑲𝑲𝜽𝜽 267 

differentiated by the hyper-parameter 𝜃𝜃 . More accurate modeling and evaluation can be 268 

expected by optimizing the hyper-parameters in each training cycle  where new input data 269 

𝑧𝑧∗ is given. 270 

To improve the numerical stability of optimization calculations, our system employs multi-271 

start optimization, which starts optimization calculations from multiple initial values by adding 272 

values generated by Latin hyper-cube sampling (LHS; McKay et al., 2000) to the hyper-273 
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parameters from the previous training cycle. In addition, we adopted the L-BFGS-B 274 

algorithm (Byrd et al., 1995) as the optimization method. 275 

The modeling of response surfaces using the GPR has been described above. Next, we 276 

discuss evaluation using an acquisition function. The acquisition function is a combination 277 

of the mean 𝝁𝝁 and covariance matrix 𝑲𝑲 obtained by the GPR. First, following Lunderman et 278 

al. (2021), we adopted the EI, defined by the following equation, as the acquisition function: 279 

𝐸𝐸𝐸𝐸(𝜇𝜇, 𝜎𝜎) = (𝑔𝑔� − 𝜇𝜇)Φ(𝑑𝑑) + 𝜎𝜎𝜎𝜎(𝑑𝑑). (17) 280 

Here, 𝑔𝑔� denotes the provisional optimum solution, i.e., the minimum value of the objective 281 

function in the previous training cycle. In addition, 𝜎𝜎  represents the standard deviation, 282 

which is the square root of 𝐾𝐾. Furthermore, 𝑑𝑑 denotes the difference between the mean and 283 

tentative optimal value normalized by the standard deviation and can be written as 𝑑𝑑 = (𝑔𝑔� −284 

𝜇𝜇)/𝜎𝜎 . Here, Φ  and 𝜎𝜎  are the normal cumulative distribution function and the normal 285 

probability density function, respectively. 286 

However, using the EI, the inverse matrix in Eq. (12), (15), and (16) could not be calculated 287 

stably due to the redundant exploration of the same input data. Therefore, we then adopted 288 

penalized EI. The local penalization method proposed by González et al. (2015) is an 289 

approach that smoothly decreases the acquisition function value near the input data. This 290 

approach assumes that the objective function is a Lipschitz continuous function and 291 

prevents the redundant exploration by setting a spherical region centered on the input data 292 

and adding a penalty to the acquisition function within that region. 293 
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In addition, since the algorithm falls into a local solution of the acquisition function, the 294 

next input data cannot be obtained appropriately, so we optimized the acquisition function 295 

(see also Shahriari et al., 2016). The use of multi-start optimization and the L-BFGS-B 296 

algorithm are the same as for the hyper-parameter optimization. To optimize the penalized 297 

EI, it is necessary to calculate the penalized EI and its derivative at the input data. The 298 

derivative of penalized EI can be described as follows: 299 

∇ ln𝐸𝐸𝐸𝐸� =  𝐸𝐸𝐸𝐸−1∇𝐸𝐸𝐸𝐸 + �𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠)−1∇𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠)
𝑆𝑆

𝑠𝑠=1

. (18) 300 

Here, 𝐸𝐸𝐸𝐸� indicates the penalized EI. The next input data is explored after calculating the 301 

total penalty at all input data. The penalty function takes the following form:  302 

𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠) =
1
2

erfc(−𝑢𝑢), (19) 303 

with 304 

𝑢𝑢 =
1

√2𝜎𝜎2
(𝐿𝐿‖𝑧𝑧∗ − 𝑧𝑧𝑠𝑠‖ − 𝑔𝑔� + 𝜇𝜇). 305 

Here, erfc is the complementary error function, and 𝐿𝐿 is the Lipschitz constant. In the BO 306 

using the penalized EI, changing the ratio of "exploration and exploitation" is possible by 307 

adjusting the Lipschitz constant. As a rule of thumb, if 𝐿𝐿 is 0.1 or more and less than 0.5, the 308 

setting is exploitation-oriented; if 𝐿𝐿 is 0.5 or more and less than 2.0, the setting is general; 309 

and if 𝐿𝐿 is 2.0 or more and less than 10.0, the setting is exploration-oriented. The derivative 310 

of the penalty function takes the following form: 311 

∇𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠) =
𝑒𝑒−𝑢𝑢2

√2𝜋𝜋𝜎𝜎2
2𝐿𝐿

‖𝑧𝑧∗ − 𝑧𝑧𝑠𝑠‖
(𝑧𝑧∗ − 𝑧𝑧𝑠𝑠). (20) 312 
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The derivative of the EI can be described as follows: 313 

∇𝐸𝐸𝐸𝐸 =
𝑑𝑑𝜎𝜎
𝑑𝑑𝑧𝑧

𝜎𝜎(𝑑𝑑) −Φ(𝑑𝑑)
𝑑𝑑𝜇𝜇
𝑑𝑑𝑧𝑧

. (21) 314 

The derivative of the penalized EI is described above. The penalized EI at an input data 315 

is  written as follows: 316 

ln𝐸𝐸𝐸𝐸� = ln𝐸𝐸𝐸𝐸 + � ln𝜑𝜑(𝑧𝑧∗, 𝑧𝑧𝑠𝑠)
𝑆𝑆

𝑠𝑠=1

. (22) 317 

The local penalization method calculates the total product of the acquisition function and the 318 

penalty at each input data and maximizes it. In Eq. (22), the total sum is calculated by 319 

applying a logarithmic characteristic. 320 

 321 

  322 
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3. Experimental Setup 323 

a. Lorenz-96 40-variable model 324 

We conducted an observational system simulation experiment (OSSE) using the L96 to 325 

investigate whether the BO improves the practicality of the LPF. The L96 is a toy model that 326 

simulates atmospheric variables along certain latitudes. The time evolution of the 327 

atmospheric variable is expressed as follows: 328 

𝑑𝑑𝑥𝑥𝑛𝑛
𝑑𝑑𝑡𝑡 = (𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛−2)𝑥𝑥𝑛𝑛−1 − 𝑥𝑥𝑛𝑛 + 𝐹𝐹, (23) 329 

where 𝑥𝑥 and 𝑡𝑡 denote the state variables and time step, respectively, as described in Section 330 

2a. The subscripts 𝑛𝑛 (𝑛𝑛 = 1, … ,𝑁𝑁) represent the indices of the grid point. Since the L96 has 331 

periodic boundary conditions, the following relationship with respect to state variable at each 332 

grid point: 𝑥𝑥−1 = 𝑥𝑥39, 𝑥𝑥0 = 𝑥𝑥40 and 𝑥𝑥41 = 𝑥𝑥1  are satisfied. Each term on the right side 333 

represents the following: the first is advection, the second is diffusion, and the third is forcing 334 

𝐹𝐹 . The shift of the grid point in the advection term expresses the nonlinearity of the 335 

atmosphere. Here, one variable is simulated at each grid point in 40 grid points. The fourth-336 

order Runge–Kutta scheme is used for time integration, where forecast time step Δ𝑡𝑡 = 0.01. 337 

Observations are generated by adding Gaussian random noise 𝒩𝒩(0, 1) to truth, which is 338 

a long-term integration of the L96. The observations are collected at all grid points and every 339 

0.05 time units. We assume that the observed variables match the simulated variables and 340 

that the observation errors are uncorrelated. In addition, as a gross error check, 341 

observations are rejected if the difference between forecasts and observations exceeds 10 342 
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times the observation error. 343 

All observations are assimilated using the LPF with 64 particles over 2 years, where 0.2 344 

time units correspond to one Earth day, which is the error-doubling time for synoptic weather. 345 

The initial particles are generated by the long-time integration of the L96 initialized with 346 

random states. 347 

 348 

b. Data assimilation method 349 

First, we investigated under what conditions the LPF can estimate the more accurate 350 

analyses than the LETKF. Following Poterjoy (2016), we changed the observation operator: 351 

the linear observation operator [Eq. (24.1)] that returns the state variables as the observation 352 

variables, the weak nonlinear observation operator [Eq. (24.2)] that returns the absolute 353 

value, the strong nonlinear observation operator [Eq. (24.3)] that returns the logarithm of 354 

absolute value. 355 

ℎ(𝒙𝒙) = 𝒙𝒙 (24.1) 356 

ℎ(𝒙𝒙) = |𝒙𝒙| (24.2) 357 

ℎ(𝒙𝒙) = ln(|𝒙𝒙|) (24.3) 358 

Next, we investigated the effects of changes in the inflation factors 𝛼𝛼 , 𝜏𝜏 , and the 359 

localization scale 𝑟𝑟  on the root mean square error between the truth and the analysis 360 

(RMSE(t vs. a)). In the LETKF, 𝛼𝛼 was varied in increments of 0.001 in the range of 1.01-361 

1.10; In the LPF, 𝜏𝜏 was varied in increments of 0.01 in the range of 0.1-1.0. In addition, 𝑟𝑟 362 
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was varied in increments of 0.1 in the range of 1-10 in both the LETKF and the LPF. 363 

 364 

c. Parameter estimation 365 

Furthermore, To efficiently estimate the optimum of the inflation factor 𝜏𝜏  and the 366 

localization scale 𝑟𝑟, we defined the root mean square error between the observations and 367 

the forecasts (RMSE(o vs. f)) in the LPF as the objective function, and estimated 𝜏𝜏 and 𝑟𝑟 368 

that minimize this function using the BO. 369 

𝑔𝑔(𝑧𝑧) = −
1
𝑇𝑇
��

1
𝑁𝑁
��𝑦𝑦𝑛𝑛,𝑡𝑡 − ℎ ��̅�𝑥𝑛𝑛,𝑡𝑡

𝑓𝑓 (𝑧𝑧)��
2𝑁𝑁

𝑛𝑛=1

𝑇𝑇

𝑡𝑡=1

 (25) 370 

where 𝑔𝑔 and 𝑧𝑧 denote the RMSE(o vs. f) and the input data, respectively, as described in 371 

Section 2b; 𝑦𝑦  and ℎ  represent the observation and observation operator, respectively, as 372 

outlined in Section 2a; �̅�𝑥𝑛𝑛,𝑡𝑡
𝑓𝑓  is the mean of the forecast particle at 𝑛𝑛th grid point and 𝑡𝑡th time 373 

step. 374 

As the truth cannot be obtained in a real atmosphere, we used the RMSE(o vs. f). In 375 

addition, depending on the weights of observations and forecasts, the analysis may not 376 

necessarily be close to the truth. On the other hand, the observations are perturbed around 377 

the truth, and the forecast error is expected to be smaller than the observation error in the 378 

first guess but to grow larger than the observation error over time (Otsuka and Miyoshi, 379 

2015). Therefore, we evaluated forecast accuracy by comparing future observations and 380 

extended forecasts. This approach is equivalent to indirectly evaluating the analysis 381 
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accuracy. Extended forecasts are conducted for all particles. This assumption holds if the 382 

optimum analyses are estimated and outliers in the observations are rejected. Although this 383 

assumption is valid in the experimental settings of this study, it may not always hold in 384 

general. 385 

In addition, since the BO in this study uses the extended forecasts as arguments for the 386 

objective function, parameter estimation that takes into account model errors that develop 387 

over time is expected to also be possible. When the RMSE(o vs. f) is used as the objective 388 

function, the BO estimates the most fitting parameter for all observations within the 389 

experimental period. In this study, we estimated parameters that minimize the period 390 

average RMSE(o vs. f) by executing the OSSE multiple times during the same period. 391 

Therefore, extending the experiment period will enable us to estimate parameters that lead 392 

to long-term stable operation of the LPF. 393 

Unlike an online system, an offline system performs analysis-forecast cycles and training 394 

cycles separately. Therefore, we could use the future observations. Our system is 395 

reasonable, considering that the NWP is performed using the optimum parameters for the 396 

past period. In addition, the length of the extended forecast was set to 0.4 time units based 397 

on the error-doubling time. 398 

The offline system was executed according to the following procedure: 399 

1) Execute the OSSE using 𝜏𝜏 and 𝑟𝑟 generated by the LHS. 400 

2) Calculate the RMSE(o vs. f)s and provide them as the initial input data to the BO. 401 
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3) Estimate 𝜏𝜏 and 𝑟𝑟 that minimize the RMSE(o vs. f) using the BO. 402 

Here, we show the flowchart of the offline system in Fig. 1. The numbers of each process 403 

correspond to the numbers in Fig. 1. 404 

We provided the initial input data generated by the LHS to the BO, performed the OSSE 405 

with the estimated 𝜏𝜏 and 𝑟𝑟, and repeated the training cycle that estimates 𝜏𝜏 and 𝑟𝑟, which 406 

minimize the RMSE(o vs. f) using the BO. In this experiment, we stopped the system after 407 

20 training cycles and considered 𝜏𝜏  and 𝑟𝑟 , which minimized the RMSE(o vs. f) as the 408 

estimations by the BO. In our system, we set the number of training cycles to 20 because 409 

the GPR prediction distribution hardly changed even when more input data was added. In 410 

general, the stopping criterion of the BO is often set based on the amount of computational 411 

resources to be invested in advance and the variation of the estimation. 412 

To evaluate the estimation accuracy and convergence rate of the BO, we compared the 413 

estimation by the BO with the estimation by the RS, following Snoek et al. (2012).In addition, 414 

as the RMSE(o vs. f) is defined as the objective function, the estimation by the BO is 415 

influenced by the Gaussian noise used to generate the observations. Therefore, we 416 

conducted 35 numerical experiments with different Gaussian noises to investigate the 417 

robustness of the BO to observations. Some numerical experiments satisfy a statistically 418 

significant number of samples with a 95% confidence coefficient. 419 

In addition, we investigated how the estimation accuracy changes when the dimension of 420 

the parameters estimated by the BO is increased from one dimension (𝜏𝜏) to two dimensions 421 

Fig. 1 
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(𝜏𝜏, 𝑟𝑟). In particular, since the Lipschitz constant [Eq. (19)], which determines the ratio of 422 

"exploration and exploitation", and the number of initial input data are expected to have a 423 

marked influence on the estimation accuracy of the BO. Therefore, we also conducted 424 

sensitivity experiments for these parameters. 425 

 426 

  427 
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4. Result and Discussion 428 

a. Data assimilation method 429 

First, we investigated under what conditions the LPF can estimate the more accurate 430 

analysis than the LETKF. Figure. 2 shows the time series of the RMSE(t vs. a) and ensemble 431 

spread for LETKF and LPF. The RMSE(t vs. a) of the LETKF fluctuated in the range of 0.5-432 

5.0, showing large fluctuations, especially in the first half of the experiment period, which 433 

corresponds to the spin-up period. On the other hand, the RMSE(t vs. a) of the LPF 434 

fluctuated in the range of 0.5-2.5. In addition, the ensemble spread of the LETKF fluctuated 435 

in the range of 0.5-1.0, while that of the LPF fluctuated in the range of 0.75-1.5. 436 

These results indicate that under condition where the nonlinearity of the observation 437 

operator is strongest [Eq.(24.3)], the RMSE(t vs. a) of the LPF is smaller than that of the 438 

LETKF (the results of Eq.(24.1) and Eq.(24.2) are omitted). In addition, the experiments 439 

were conducted with different observation densities, but the RMSE(t vs. a) of the LPF was 440 

not smaller than that of the LETKF (not shown). These results are because the LETKF 441 

assumes a linear observation operator, while the LPF does not require such an assumption. 442 

Next, we investigated how the RMSE(t vs. a) changes when the inflation factor 𝛼𝛼, 𝜏𝜏, and 443 

localization scale 𝑟𝑟 are varied. Figure. 3a shows the response surface of the RMSE(t vs. a) 444 

in the LETKF. In the LETKF, the minimum error of 1.024 was obtained when 𝑟𝑟 = 6.5 and 𝛼𝛼 445 

= 1.100. The overall trend of the response surface shows that 𝑟𝑟 = 2 and 𝛼𝛼 = 1.05-1.10 were 446 

the appropriate localization scale and inflation factors. In addition, the RMSE(t vs. a) tends 447 

Fig. 2 

Fig. 3 
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to increase as alpha decreases. This result is because the inflation cannot easily 448 

compensate for the uncertainty caused by insufficient ensemble size and the assumption of 449 

linearity. On the other hand, the RMSE(t vs. a) tends to increase as 𝑟𝑟 increases. This result 450 

is because the sampling error of ensembles increases when remote observations are 451 

assimilated. The minimum error was not included in the region of the response surface 452 

mentioned above, and the boundaries of the contours were unclear. This feature was not 453 

seen in the response surface when 𝛼𝛼 was varied in increments of 0.01 and 𝑟𝑟 in increments 454 

of 1 (not shown). The OSSE has uncertainty due to sampling error, and this feature was 455 

thought to appear because the local optimum can be found by reducing the parameter 456 

increment size. 457 

Figure. 3b shows the response surface of the RMSE(t vs. a) in the LPF. In the LPF, the 458 

minimum error of 0.586 was obtained when 𝑟𝑟 = 1.9 and 𝜏𝜏 = 0.53. The overall trend of the 459 

response surface shows that 𝑟𝑟 = 1-3 and 𝜏𝜏 = 0.4-0.6 are the appropriate localization scales 460 

inflation factors. Since 𝑟𝑟 was similar in the LETKF, setting this value in the L96 is considered 461 

appropriate. In addition, the RMSE(t vs. a) increased when 𝜏𝜏 was too large or too small. This 462 

feature is because when tau is too large, the observations are not assimilated, and when 𝜏𝜏 463 

is too small, the filter becomes unstable. 𝑟𝑟  suggested the simple response in which the 464 

RMSE(t vs. a) decreases as 𝑟𝑟 decreases. On the other hand, when 𝜏𝜏 = 0.5 and 𝑟𝑟 = 4-10, 465 

there was a region where the RMSE(t vs. a) remained constant regardless of changes in 𝑟𝑟, 466 

showing the complex response. This result suggests that 𝜏𝜏 is a more important parameter 467 
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for stabilizing the LPF. 468 

Combining these results with the result in Fig. 2, it can be seen that when using the strong 469 

nonlinear observation operator, the LPF can estimate the more accurate analysis than the 470 

LETKF; however, in doing so, 𝜏𝜏 and 𝑟𝑟 must be set to the optimum. 471 

 472 

b. Parameter estimation 473 

We optimized only 𝜏𝜏 using the BO. Figure. 4 shows the time series for the estimation of 𝜏𝜏, 474 

the minimum RMSE(o vs. f) by the BO, and the minimum RMSE(o vs. f) by the RS. Since 475 

the minimum RMSE (o vs. f) was lower than that by the RS, it can be seen that the BO can 476 

estimate the more accurate 𝜏𝜏 . In addition, the training cycle in which the RMSE(o vs. f) 477 

converged was the 2nd cycle in both methods. 478 

In Fig. 4, the parameter that minimizes the RMSE(o vs. f) was 𝜏𝜏 = 0.17 at the 2nd training 479 

cycle, but in Fig. 6, the parameter that minimizes the RMSE(t vs. a) was 𝜏𝜏 = 0.46. Although 480 

the estimation by the BO has not converged to the optimum, this result was because there 481 

was marked noise due to the extended forecast; the response surfaces of the RMSE(o vs. 482 

f) and the RMSE(t vs. a) were markedly different (not shown). The BO is a method for 483 

efficiently exploring the optimum parameter. Therefore, the input data that minimizes the 484 

RMSE(t vs. a) among the explored input data was adopted in practice. In this case, 𝜏𝜏 = 0.47 485 

was adopted. At this point, the RMSE(t vs. a) = 0.777, indicating that using the BO enables 486 

the LPF to operate stably. 487 

Fig. 4 
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To investigate the estimation results of the 1-dimensional BO in detail, the prediction 488 

distributions of the GPR were plotted. Figure. 5 (a)-(d) show the variation of mean, standard 489 

deviation (95% confidence interval), EI, penalty, penalized EI, and input data in the GPR 490 

corresponding to Fig. 4. 491 

In the 0th training cycle (Fig. 5a), only the RMSE(o vs. f) when 𝜏𝜏 = 0.65 and 0.47 were 492 

given as the initial input data. The GPR standard deviation around the input data was small 493 

and showed a narrow distribution around 𝜏𝜏 = 0.4-0.7. In addition, the GPR mean was the 494 

convex function with the maximum around 𝜏𝜏 = 0.5-0.6, and at this point, the GPR could not 495 

predict whether the RMSE(o vs. f) would be smaller when 𝜏𝜏 was closer to 0.1 or 1.0. Since 496 

the EI is large when the GPR mean is small and the GPR standard deviation is large, the EI 497 

was the concave function, and the EI at 𝜏𝜏 = 0.1 is slightly larger than at 𝜏𝜏 = 1.0, reaching the 498 

maximum of the EI at this point. The penalty showed the distribution with three peaks 499 

connected in a row, with values decreasing around the input data. Since the penalized EI is 500 

calculated as the product of the EI and the penalty, the penalized EI became the concave 501 

function with sharp corners around the input data, unlike the EI. 502 

In the 1st training cycle (Fig. 5b), the GPR standard deviation decreased around where 𝜏𝜏 503 

= 1.0 was explored. In addition, the GPR mean predicted that the RMSE(o vs. f) would be 504 

smaller when 𝜏𝜏 was closer to 0.1 than in the 0th training cycle. The addition of input data 505 

markedly changed the distribution of the EI, which became the function that increased 506 

almost monotonically as 𝜏𝜏  decreased. In the penalty, the rightmost of the three peaks 507 

Fig. 5 



 28 

became larger, resulting in the distribution with a downward slope on the left side. This result 508 

is because the smaller the GPR mean, the smaller the penalty (see [Eq. (19)]). As a result, 509 

the penalized EI showed the maximum at 𝜏𝜏 = 0.1. Still, the distribution was considerably 510 

flatter than that of the EI. 511 

In the 2nd training cycle (Fig. 5c), the GPR standard deviation decreased around 𝜏𝜏 = 0.1 512 

because that point was explored. There was almost no change in the distribution of the GPR 513 

mean. Although the gradient decreased, the EI continued to show the maximum at 𝜏𝜏 = 0.1. 514 

If the penalty had not been implemented, it is expected that it would be impossible to 515 

calculate the inverse matrix stably due to the redundant exploration. In the penalty, the 516 

downward trend on the left shoulder was maintained, but the overall value increased. This 517 

result is because the smaller GPR standard deviation, the larger penalty (see [Eq. (19)]). As 518 

a result, the penalized EI showed the maximum at 𝜏𝜏 = 0.17, and the redundant exploration 519 

was avoided. 520 

In the 3rd-19th training cycles, the penalty decreased as input data were added, but the 521 

GPR standard deviation, GPR mean, EI, and penalized EI did not change markedly (not 522 

shown). In the 20th training cycle (Fig. 5d), the GPR standard deviation and GPR mean 523 

remained almost unchanged compared to the 2nd training cycle, indicating that the GPR 524 

had converged. Therefore, the EI also remained virtually unchanged. Since the input data 525 

were explored relatively evenly, the penalty decreased overall, and the only feature of 526 

distribution was a tendency for the penalty to increase as the GPR mean increased. 527 
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Ultimately, the penalized EI showed fairly small values overall, indicating that the input data 528 

were sufficiently explored. 529 

Next, we verified whether the GPR prediction of the 1-dimensional BO was reasonable by 530 

comparing it with the response surface of the RMSE(t vs. a). Comparing Fig. 5d and Fig. 6, 531 

the sigmoid curve-like distribution in the GPR mean and GPR standard deviation was 532 

consistent. In addition, the input data were slightly dense around 𝜏𝜏 = 0.4 and 0.7, which 533 

match the regions with large curvatures in the true response surface (Fig. 6). This result is 534 

because these regions were explored intensively to capture the complex changes in the 535 

response surface. The range of optimum tau were explored intensively, and there were 536 

relatively large amount of the input data in this range; 𝜏𝜏 = 0.47 (at this time, the RMSE(t vs. 537 

a) = 0.777) was explored, indicating that the 1-dimensional BO can estimate 𝜏𝜏 close to the 538 

true optimum while modeling the true response surface with high accuracy. 539 

To confirm the practicality of the BO, we investigated the robustness of the BO to changes 540 

in the observations. Figure 7a shows the box-and-whisker of 𝜏𝜏. In all of the 5th, 10th, 15th, 541 

and 20th training cycles, even when the observations were changed, the upper and lower 542 

limits of the box for 𝜏𝜏 fluctuated by only about 0.2 at most. This variation corresponds to 20% 543 

of the parameter exploration range, indicating that the estimation by the BO was reasonably 544 

robust against changes in the observations. In the 5th training cycle, the length of the 545 

whisker was about 0.3, but in the subsequent training cycles, the length of the whisker 546 

increased to about 0.4. This change means that the BO was shifting from "exploitation" to 547 

Fig. 6 

Fig. 7 
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"exploration", and it is thought that the length of the boxes and whiskers was increasing 548 

because the input data were being explored evenly. In addition, the absence of outliers 549 

indicates that the BO was not exploring the extreme input data. When the response surface 550 

is simple (see Fig. 5), the box-and-whisker has few outliers because the estimation by the 551 

BO is unlikely to fall into a local solution. 552 

Figure 7b shows the box-and-whisker of the RMSE(o vs. f). The upper and lower limits of 553 

the boxes and whiskers were within the range of the RMSE(o vs. f) = 3.0-4.0 in all training 554 

cycles, and the variation was smaller than that of 𝜏𝜏. This result is because there is the certain 555 

range of optimum 𝜏𝜏, as shown by the light blue shade. The estimation of 𝜏𝜏 may appear to 556 

scatter as the training cycle progresses. Still, this is not a problem in practice because the 557 

input data that minimizes the RMSE(t vs. a) among the explored input data is adopted. 558 

We optimized 𝜏𝜏 and 𝑟𝑟 using the BO. Figure 8 shows the time series of the estimation for 559 

𝜏𝜏 and 𝑟𝑟, the minimum RMSE(o vs. f) by the BO, and the minimum RMSE(o vs. f) by the RS. 560 

Since the minimum RMSE(o vs. f) was lower than the minimum RMSE(o vs. f) by the RS, 561 

the BO can estimate 𝜏𝜏 and 𝑟𝑟 with higher accuracy than the RS. In the RS, the estimation 562 

converged at the 12th training cycle; while in the BO, the estimation converged at the 3rd 563 

training cycle, indicating that the BO can optimize 𝜏𝜏  and 𝑟𝑟  with fewer computational 564 

resources than the RS. 565 

In Fig. 8, the parameters that minimize the RMSE(o vs. f) were 𝜏𝜏 = 0.28 and 𝑟𝑟 = 1.0 in the 566 

3rd training cycle; however, the parameters that minimize the RMSE(t vs. a) in Fig. 2 were 567 

Fig. 8 
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𝜏𝜏 = 0.53 and 𝑟𝑟 = 1.9. Although the estimation by the BO has not converged to the optimum, 568 

as in Fig. 4, this result is because the noise from the extended forecast was large and the 569 

response surfaces of the RMSE(o vs. f) and the RMSE(t vs. a) were markedly different (not 570 

shown). The BO is a method for efficiently exploring the optimum parameters. The input data 571 

that minimizes the RMSE(t vs. a) among the explored input data is adopted in practical 572 

applications. In this case, 𝜏𝜏 = 0.41 and 𝑟𝑟 = 1.0 were adopted. At this point, the RMSE(t vs. 573 

a) = 0.969, demonstrating that the BO can stabilize the LPF. 574 

In addition, focusing on the fluctuations in the estimation of 𝜏𝜏  and 𝑟𝑟 , the two showed 575 

inverse correlation. This result can be explained as follows: When 𝑟𝑟  is large, more 576 

observations are assimilated, reducing the differences among particle weights in the LPF. 577 

This mechanism has a similar effect to lowering tau in Eq. (9), causing the BO to explore the 578 

input data while balancing 𝜏𝜏 and 𝑟𝑟. Therefore, it is considered that the fluctuations exhibit an 579 

inverse correlation. 580 

To investigate the estimation results of the 2-dimensional BO in detail, the prediction 581 

distribution of the GPR were plotted. Fig. 9a-e show the GPR mean, GPR standard deviation 582 

(95% confidence interval), EI, penalty, penalized EI, and input data variation corresponding 583 

to Fig. 8. 584 

In the 0th training cycle, only the RMSE(o vs. f) with 𝜏𝜏 = 0.12, 0.43, 0.5, 0.67, and 0.86, 585 

and 𝑟𝑟 = 7.0, 4.3, 5.6, 2.7, and 9.0 were given as the initial input data. The GPR mean (Fig. 586 

9a) had the maximum at 𝜏𝜏 = 0.9 and 𝑟𝑟 = 6, showing the prediction distribution similar to the 587 

Fig. 9 
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contour lines of a 2-dimensional normal distribution. In addition, the GPR standard deviation 588 

(Fig. 9b) had the minimum at 𝜏𝜏  = 0.5 and 𝑟𝑟  = 6, showing the contour lines along the 589 

distribution of input data. 590 

At this time, the amplitude parameter 𝜃𝜃1  in Eq.(11) was 1.884 (the minimum: 0.1, the 591 

maximum: 10.0), the length scale parameter 𝜃𝜃2 of 𝜏𝜏 was 0.1 (the maximum), the length scale 592 

parameter 𝜃𝜃3 of 𝑟𝑟 was 1.0 (the maximum), and the noise parameter 𝜃𝜃4 was 1.0^(-10) (the 593 

minimum). In this case, the variability of the GPR mean is small, there is a strong correlation 594 

over a wide range of the GPR mean, and the GPR standard deviation decreases near the 595 

input data. 596 

The EI increases when the GPR mean is small and the GPR standard deviation is large. 597 

Therefore, the EI (Fig. 9c) showed the maximum around 𝜏𝜏 = 0.1, 𝑟𝑟 = 10 and 𝜏𝜏 = 0.1, 𝑟𝑟 = 1. 598 

The penalty (Fig. 9d) decreased around the input data, and the penalty was small in regions 599 

where 𝜏𝜏 was small. This result is because the smaller GPR mean, the smaller penalty (see 600 

Eq. (19)). Since the penalized EI (Fig. 9e) is calculated as the product of the EI and the 601 

penalty, the two cancel each other out, resulting in the prediction distribution similar to the 602 

GPR standard deviation (Fig. 9b). However, since the penalized EI reaches the maximum 603 

at 𝜏𝜏 = 0.1 and 𝑟𝑟 = 10, the input data explored in the 0th training cycle was located at this 604 

point. 605 

Following Fig. 9, we investigated how the GPR prediction distribution in the 2-dimensional 606 

BO changes as the input data increases. Fig. 10a-e shows the GPR mean, GPR standard 607 



 33 

deviation (95% confidence interval), EI, penalty, penalized EI, and input data variation 608 

corresponding to Fig. 8. 609 

The GPR mean (Fig. 10a) had the maximum around 𝜏𝜏 = 0.5 and 𝑟𝑟 = 8. In addition, as the 610 

input data increased sufficiently, the GPR standard deviation (Fig. 10b) showed the almost 611 

uniform prediction distribution. 612 

At this point, the hyper-parameters of the Gaussian kernel were all the same as those in 613 

the 0th training cycle, except that the amplitude parameter 𝜃𝜃1 in Eq.(11) decreased to 1.304. 614 

For this reason, the variation of the GPR mean became smaller, and it is considered that 615 

the prediction distribution similar to the contour lines of a 2-dimensional normal distribution 616 

was obtained. 617 

In addition, in the 20th training cycle, the position of the minimum in the GPR mean 618 

changed from the region with small 𝜏𝜏 to the region with small 𝑟𝑟, which was consistent with 619 

the trend in response surface of the RMSE(t vs. a) (Fig. 2). This is because the increase in 620 

input data enabled the overall trend of response surface to be captured, allowing the position 621 

of the true minimum to be estimated more accurately. 622 

When comparing the 2-dimensional response surface (Fig. 2) and the 1-dimensional 623 

response surface (Fig. 6), the former exhibited the more complex distribution. Furthermore, 624 

when comparing the GPR prediction distribution in the 2-dimensional BO (Fig. 10) with the 625 

GPR prediction distribution in the 1-dimensional BO (Fig. 5), the former shows less 626 

agreement with the true response surface. This result suggests that as the dimension of 627 

Fig. 10 
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estimated parameters increases, the estimation using the BO becomes more difficult. To 628 

model complex response surfaces, it is important to adopt the kernel functions and the 629 

acquisition functions tailored to the characteristics of problems. While libraries such as 630 

GPyOpt are robust systems that combine numerous functions. However, our system is 631 

simpler, which may explain why we obtained these results. 632 

Since the GPR standard deviation was the almost uniform prediction distribution, the EI 633 

(Fig. 10c) showed large values in regions where the GPR mean was small (regions where 634 

𝜏𝜏 was small). Excluding the initial input data, the input data was biased toward regions where 635 

𝜏𝜏 was small and 𝑟𝑟 was small. Therefore, the penalty (Fig. 10d) also showed small values in 636 

regions where 𝑟𝑟 was small. Despite the dense input data in regions where 𝜏𝜏 was small, the 637 

penalty was large because the GPR mean was large. As a result of the EI and the penalty 638 

canceling each other out, the penalized EI (Fig. 10e) gradually increased as 𝑟𝑟 increased. 639 

The input data explored in the 20th training cycle was 𝜏𝜏 = 0.1 and 𝑟𝑟 = 5.8. In addition, the 640 

exploration was conducted in regions where 𝜏𝜏 was small, rather than in regions where 𝑟𝑟 was 641 

large. If the emphasis is on finding values close to the true minimum, the regions where the 642 

EI is large (where 𝑟𝑟 is small) should be explored. However, it was not explored because the 643 

penalty had a marked impact. The penalty is determined by the balance among the Lipschitz 644 

constant 𝐿𝐿 , the provisional optimum solution 𝑔𝑔� , and the mean 𝜇𝜇  in Eq. (19). Therefore, 645 

adjusting the Lipschitz constant is likely to bring about marked changes in the behavior of 646 

exploration. 647 
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Furthermore, we investigated the effects of changes in the dimension of response surface, 648 

Lipschitz constant, and number of initial input data on the estimation by the BO. Table. 1 649 

summarizes the results of sensitivity experiment. In both 2-dimensional BO and 1-650 

dimensional BO, as the Lipschitz constant increased, the minimum RMSE(o vs. f) decreased, 651 

and the estimation tended to be the same regardless of changes in the number of initial 652 

input data. In addition, focusing on cases with each Lipschitz constant, an increase in the 653 

number of initial input data did not necessarily improve the estimation accuracy of the BO. 654 

The system stopped in the case of 1-dimensional BO with 𝐿𝐿 = 0.1 and 2 initial input data 655 

because the same input data was redundantly explored due to excessive emphasis on 656 

exploitation, and the inverse matrix of Eq. (12), (15), and (16) could not be calculated stably. 657 

Next, focusing on the best cases for each dimension of response surface, the difference 658 

in the minimum RMSE(o vs. f) is less than 0.1, and it appears that the estimation accuracy 659 

of the BO did not decrease even if the number of estimated parameters increased. However, 660 

since the GPR did not model the true response surface very well (Fig. 2, 10) and the 661 

minimum RMSE(o vs. f) decreased as the Lipschitz constant increased (Table 1), the 662 

following conclusion can be drawn. That is, simple GPR prediction distribution is the limit for 663 

the kernel functions and the acquisition functions in our system, and the Lipschitz constant 664 

compensates for this shortcoming. 665 

In other words, as the dimension of response surfaces increases, modeling using the GPR 666 

becomes more difficult. On the other hand, increasing the Lipschitz constant increases the 667 
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amount of input data to be explored. Therefore, even if the modeling using the GPR is 668 

inaccurate, the BO can obtain a reasonable estimation. 669 

On the other hand, when the Lipschitz constant is large, the influence of GPR mean in the 670 

penalty [Eq. (19)] became relatively small, and the penalty became small only around the 671 

input data (not shown). In this case, since the exploration did not consider the GPR mean, 672 

it became difficult to capture sudden changes in the GPR prediction distribution. In the case 673 

of simple GPR prediction distributions such as those obtained in this study, this problem can 674 

be ignored. However, it is desirable to use the GPR prediction distributions that model 675 

complex response surfaces and to adopt an appropriate Lipschitz constant. 676 

  677 
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5. Conclusion 678 

The PF is a powerful data assimilation method that does not assume the linearity in the 679 

time evolution of errors or the Gaussian error distributions. However, the number of particles 680 

required increases exponentially with the dimensions of the dynamical system, which is a 681 

bottleneck when applying the PF to the NWP. The LPF is a method that realizes the PF in 682 

high-dimensional systems by the localization. In addition, when using the strong nonlinear 683 

observation operator, the LPF can provide a more accurate analysis than the LETKF. 684 

However, this accuracy is limited to cases where the inflation factor 𝜏𝜏 and localization scale 685 

𝑟𝑟 are set to the optima. Furthermore, as the resolution of the response surface increases 686 

and the number of estimated parameters increases (e.g., the resampling frequency and the 687 

amplitude of the Gaussian kernel), the effort and computational resources required for 688 

optimization calculations increase, and efficient parameter estimation methods are needed. 689 

Therefore, we developed a system that uses the BO to estimate 𝜏𝜏 and 𝑟𝑟, minimizing the 690 

RMSE(o vs. f). As a result, in the case of a one-dimensional problem, the BO could model 691 

the true response surface with high accuracy and estimate 𝜏𝜏 with higher accuracy than the 692 

RS. In addition, this result was robust to changes in the observations to a certain extent. 693 

Furthermore, we found that it is important to avoid the redundant exploration using the local 694 

penalization method to stabilize the BO. 695 

In the case of a two-dimensional problem, the BO could estimate 𝜏𝜏  and 𝑟𝑟  with higher 696 

accuracy than the RS. In addition, this result was robust to changes in the observations to 697 
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a certain extent. However, the BO could not model the true response surface very well, 698 

suggesting that it is important to adopt the kernel functions (e.g., a combination of Gaussian 699 

kernel and linear kernel) and acquisition functions (e.g., using upper confidence bound and 700 

improvement probability in the early training cycle and the EI in the latter training cycle) 701 

tailored to the characteristics of the problem to model complex response surfaces. In 702 

addition, it was found that when a simple kernel function is used, setting the Lipschitz 703 

constant to a large value allows the system to operate stably. 704 

Furthermore, we would like to discuss considerations for the practical application of the 705 

LPF. First, as the number of particles decreases, the response surface that stabilizes the 706 

LPF operation becomes narrower, so estimation by the BO is expected to become difficult. 707 

In addition, although the L96 was used in this study as a proof of concept, when using more 708 

advanced models, it is considered appropriate to divide the region and perform estimation 709 

by the BO because the optima of 𝜏𝜏 and 𝑟𝑟 are not uniform across the globe. 710 

Unlike gradient methods, the BO is superior in that it can efficiently explore for globally 711 

optimal parameter even when the shape of the response surface for the input and output 712 

data is unknown or when the function is a multi-peaked function that cannot be differentiated. 713 

This method is a vital technology for enhancing the practicality of the LPF. On the other hand, 714 

to promote the use of the BO in the data assimilation framework, it is important to accumulate 715 

knowledge that contributes to the fundamental understanding of the BO, as described in 716 

Section 4, rather than simply using the BO as a tool. We hope that this study will contribute 717 
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to the promotion of the BO. In addition, further development of this technology (e.g., enabling 718 

online optimization) will enhance the practicality of the LPF and ultimately improve the 719 

accuracy of heavy rainfall prediction. The usefulness of the BO will eventually be 720 

demonstrated in atmospheric model experiments aimed at the practical application of the 721 

LPF. 722 

 723 

  724 
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List of Figures 821 

Fig. 1. Flowchart of Bayesian optimization (BO) within the local particle filter (LPF) 822 

framework. Since the data assimilation system and the BO are implemented 823 

independently, the LPF can also be replaced with a local ensemble transform Kalman 824 

filter. Here, 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) represents the time step, 𝑔𝑔 denotes the objective function, and 825 

the subscripts 𝑠𝑠 (𝑠𝑠 = 1, … , 𝑆𝑆) denotes the indices of the input data (inflation factors 𝛼𝛼, 𝜏𝜏, 826 

and localization scale 𝑟𝑟) and the corresponding output data (root mean square error 827 

between the observations and the forecasts; RMSE(o vs. f)). In the observing system 828 

simulation experiment (OSSE), the observations are assimilated every 6 Earth hours 829 

(0.05 time units) using the LPF, and the RMSE(o vs. f)s through the two Earth days (0.4 830 

time units) extended ensemble forecasts at the same time step are calculated. This 831 

process in the objective function converts the input data to the output data. In the BO, 832 

input data that minimizes the objective function is estimated by modeling response 833 

surface using Gaussian process regression and evaluating using an acquisition function 834 

(penalized expected improvement). Then, the training cycles, which involved performing 835 

the OSSE with the estimated input data, are repeated. Note that the BO offline optimizes 836 

𝜏𝜏 and 𝑟𝑟. 837 

 838 

Fig. 2. Time series of root mean square error between the truth and the analysis (RMSE(t 839 

vs. a)) and ensemble spread for local ensemble transform Kalman filtering (LETKF) and 840 
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local particle filter (LPF) using 64 ensemble members (particles) and a strong nonlinear 841 

observation operator. The vertical axis shows the RMSE(t vs. a) and the ensemble 842 

spread, and the horizontal axis shows the assimilation cycle. The localization scale of 843 

the LETKF was set to 𝑟𝑟 = 6.5 and the inflation factor was set to 𝛼𝛼 = 1.100 (the optimum 844 

in Fig. 3a). In addition, the localization scale of the LPF was set to 𝑟𝑟 = 1.9 and the 845 

inflation factor was set to 𝜏𝜏 = 0.53 (the optimum in Fig. 3b). 846 

 847 

Fig. 3. Response surface of root mean square error between the truth and the analysis in 848 

local ensemble transform Kalman filter (LETKF) and local particle filter (LPF) using 64 849 

ensemble members (particles) and strong nonlinear observation operator. The vertical 850 

axis shows the localization scale 𝑟𝑟, and the horizontal axis shows the inflation factor 𝛼𝛼 851 

and 𝜏𝜏. The minimum error of 1.024 in the LETKF was obtained when 𝑟𝑟 = 6.5 and 𝛼𝛼 = 1.100 852 

(cross mark). In addition, the minimum error of 0.586 in the LPF was obtained when 𝑟𝑟 = 853 

1.9 and 𝜏𝜏 = 0.53 (cross mark). 854 

 855 

Fig. 4. Time series of estimation by 1-dimensional Bayesian optimization (BO). The blue 856 

line shows the inflation factor 𝜏𝜏, the green line shows the minimum root mean square 857 

error between the observations and the forecasts (RMSE(o vs. f)) in the previous 858 

training cycle estimated by the BO, and the purple line shows the minimum RMSE(o vs. 859 

f) in the previous training cycle estimated by random sampling. In addition, the light blue 860 
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shaded region indicates the range of optimum inflation factor (𝜏𝜏 = 0.33-0.49) for which 861 

the root mean square error between the truth and the analysis in local particle filter is 862 

less than 1.0 (the filter operates stably). The horizontal axis represents the training 863 

cycle, the first vertical axis represents 𝜏𝜏, and the second vertical axis represents the 864 

minimum RMSE(o vs. f). The Lipschitz constant was set to 𝐿𝐿 = 2.0, and the number of 865 

initial input data was set to 2 (optimum experimental settings in Table 1). 866 

 867 

Fig. 5. Prediction distribution of Gaussian process regression (GPR) using the inflation 868 

factor 𝜏𝜏 and the root mean square error between the observations and the forecasts 869 

(RMSE(o vs. f)) in local particle filter as input and output data. The training cycle in this 870 

figure corresponds to Fig. 4. The expected value and uncertainty of the RMSE(o vs. f) 871 

are obtained as the mean (blue line) and standard deviation (blue shade) of the GPR. 872 

The green line is the penalized expected improvement (EI), the purple line is the penalty, 873 

the yellow line is the EI. Red dots indicate input data already explored, and yellow dots 874 

indicate input data explored during that training cycle. The horizontal axis represents 𝜏𝜏, 875 

the first vertical axis represents the RMSE(o vs. f), the second vertical axis represents 876 

the penalized EI, the third vertical axis represents the penalty, and the fourth vertical 877 

axis represents the EI. (a)-(d) are the prediction distributions at the 0th (i.e., when only 878 

the initial input data were given), 1st, 2nd, and 20th training cycles, respectively. 879 

 880 
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Fig. 6. Response surface of root mean square error between the truth and the analysis 881 

(RMSE(t vs. a)) in local particle filter (LPF) using 64 ensemble members (particles) and 882 

the strong nonlinear observation operator. The vertical axis represents the RMSE(t vs. 883 

a), and the horizontal axis represents the inflation factor 𝜏𝜏. The localization scale was 884 

fixed at 𝑟𝑟 = 3, and the minimum error of 0.719 was obtained when 𝜏𝜏 = 0.46 (cross mark). 885 

In addition, the light blue shade indicates the range of optimum inflation factor (𝜏𝜏 = 0.33-886 

0.49) where the RMSE(t vs. a) of the LPF is 1.0 or less (the filter operates stably). 887 

 888 

Fig. 7. Variation of the estimation by 1-dimensional Bayesian optimization when using 889 

different observations. (a) Box-and-whisker of the inflation factor 𝜏𝜏. The blue line 890 

indicates the median, the lower limit of the box indicates the first quartile, the upper limit 891 

of the box indicates the third quartile, the lower limit of the whisker indicates the 892 

minimum, and the upper limit of the whisker indicates the maximum. In addition, the light 893 

blue shaded region indicates the optimum range of the inflation factors (𝜏𝜏 = 0.33-0.49) 894 

for which the root mean square error between the observations and the forecasts 895 

(RMSE(o vs. f)) in local particle filter is less than 1.0 (the filter operates stably). (b) Box-896 

and-whisker of the RMSE(o vs. f). The red line indicates the median, and the other plots 897 

are the same as in (a). The limits of the vertical axis in (a) and (b) are set to reflect the 898 

boundaries of 𝜏𝜏 and the RMSE(o vs. f), respectively. The horizontal axis represents the 899 

number of training cycles. 900 
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 901 

Fig. 8. Time series of estimation by 2-dimensional Bayesian optimization (BO). The blue line 902 

shows the inflation factor 𝜏𝜏, the orange line shows the localization scale 𝑟𝑟, the green line 903 

shows the minimum root mean square error between the observations and the forecasts 904 

(RMSE(o vs. f)) in the previous training cycle by the BO, and the purple line shows the 905 

minimum RMSE(o vs. f) in the previous training cycle by the random sampling. The light 906 

blue shade indicates the range of optimum inflation factor (𝜏𝜏 = 0.32-0.67) where the root 907 

mean square error between the truth and the analysis in local particle filter is less than or 908 

equal to 1.0 (the filter operates stably). In addition, the light orange shade indicates the 909 

range of optimum localization scale (𝑟𝑟  = 1.0-4.2). The horizontal axis represents the 910 

training cycle, the first vertical axis represents 𝜏𝜏, the second vertical axis represents 𝑟𝑟, 911 

and the third vertical axis represents the minimum RMSE(o vs. f). The Lipschitz constant 912 

was set to 𝐿𝐿 = 2.0, and the number of initial input data was set to 5 (optimum experimental 913 

settings in Table 1). 914 

 915 

Fig. 9. Prediction distribution of Gaussian process regression (GPR) using the inflation 916 

factor 𝜏𝜏 and the localization scale 𝑟𝑟 at the 0th training cycle (i.e., when only initial input 917 

data were given) and the root mean square error between the observations and the 918 

forecasts (RMSE(o vs. f)) in local particle filter as the input and output data. (a) is the 919 

GPR mean, (b) is the GPR standard deviation, (c) is the expected improvement (EI), (d) 920 
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is the penalty, and (e) is the penalized EI prediction distribution. The training cycle in this 921 

figure corresponds to Fig. 8. The expected value and uncertainty of the RMSE(o vs. f) 922 

are obtained as the mean and standard deviation of the GPR. The color bar is set so 923 

that the larger value of the GPR mean and standard deviation, the greener color, and 924 

the smaller value, the bluer color. In addition, the color bar is set so that the larger value 925 

of the EI, penalty, and penalized EI, the greener color, and the smaller value, the 926 

yellower color. The red dots indicate the input data that has been explored, and the 927 

yellow dots indicate the input data explored in that training cycle. The horizontal axis 928 

represents 𝜏𝜏, and the vertical axis represents 𝑟𝑟. 929 

 930 

Fig. 10. Prediction distribution of Gaussian process regression (GPR) using the inflation 931 

factor 𝜏𝜏 and the localization scale 𝑟𝑟 at the 20th training cycle and the root mean square 932 

error between the observations and the forecasts (RMSE(o vs. f)) in local particle filter 933 

as the input and output data. (a) is the GPR mean, (b) is the GPR standard deviation, (c) 934 

is the expected improvement (EI), (d) is the penalty, and (e) is the penalized EI 935 

prediction distribution. The training cycle in this figure corresponds to Fig. 8. The 936 

expected value and uncertainty of the RMSE(o vs. f) are obtained as the mean and 937 

standard deviation of the GPR. The color bar is set so that the larger value of the GPR 938 

mean and standard deviation, the greener color, and the smaller value, the bluer color. 939 

In addition, the color bar is set so that the larger value of the EI, penalty, and penalized 940 
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EI, the greener color, and the smaller value, the yellower color. The red dots indicate the 941 

input data that has been explored, and the yellow dots indicate the input data explored 942 

in that training cycle. The horizontal axis represents 𝜏𝜏, and the vertical axis represents 𝑟𝑟. 943 
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List of Tables 961 

 962 

Table 1 Variation of the estimation by Bayesian optimization (BO) with respect to changes 963 

in the dimension of response surface, Lipschitz constant, and initial input data. The 964 

rightmost column shows the minimum root mean square error between the observations 965 

and the forecasts (RMSE(o vs. f)) in 20 training cycles, with the best cases for each 966 

dimension of response surface highlighted in yellow. Although several cases have the 967 

same minimum RMSE(o vs. f), the Lipschitz constant is generally set to 𝐿𝐿 = 0.5-2.0. In 968 

addition, the smaller number of initial input data, the fewer computing resources are 969 

required. Therefore, the case with 𝐿𝐿 = 2.0 and 5 initial input data for 2-dimensional BO, 970 

and 𝐿𝐿 = 2.0 and 2 initial input data for 1-dimensional BO are highlighted. In addition, 971 

since the ideal number of initial input data is about 10 times the dimension of response 972 

surface, the number of initial input data was changed in increments of 5 for the 2-973 

dimensional BO and 2 for the 1-dimensional BO so that the number of cases would be 974 

the same. “(diverged)” indicates that the system stopped due to numerical instability in 975 

the middle of 20 training cycles. 976 

 977 

  978 
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 979 

Fig. 1. Flowchart of Bayesian optimization (BO) within the local particle filter (LPF) 980 

framework. Since the data assimilation system and the BO are implemented 981 

independently, the LPF can also be replaced with a local ensemble transform Kalman 982 

filter. Here, 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) represents the time step, 𝑔𝑔 denotes the objective function, and 983 

the subscripts 𝑠𝑠 (𝑠𝑠 = 1, … , 𝑆𝑆) denotes the indices of the input data (inflation factors 𝛼𝛼, 𝜏𝜏, 984 

and localization scale 𝑟𝑟) and the corresponding output data (root mean square error 985 

between the observations and the forecasts; RMSE(o vs. f)). In the observing system 986 

simulation experiment (OSSE), the observations are assimilated every 6 Earth hours 987 

(0.05 time units) using the LPF, and the RMSE(o vs. f)s through the two Earth days (0.4 988 

time units) extended ensemble forecasts at the same time step are calculated. This 989 

process in the objective function converts the input data to the output data. In the BO, 990 

input data that minimizes the objective function is estimated by modeling response 991 



 55 

surface using Gaussian process regression and evaluating using an acquisition function 992 

(penalized expected improvement). Then, the training cycles, which involved performing 993 

the OSSE with the estimated input data, are repeated. Note that the BO offline optimizes 994 

𝜏𝜏 and 𝑟𝑟. 995 

  996 
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 997 

Fig. 2. Time series of root mean square error between the truth and the analysis (RMSE(t 998 

vs. a)) and ensemble spread for local ensemble transform Kalman filtering (LETKF) and 999 

local particle filter (LPF) using 64 ensemble members (particles) and a strong nonlinear 1000 

observation operator. The vertical axis shows the RMSE(t vs. a) and the ensemble 1001 

spread, and the horizontal axis shows the assimilation cycle. The localization scale of 1002 

the LETKF was set to 𝑟𝑟 = 6.5 and the inflation factor was set to 𝛼𝛼 = 1.100 (the optimum 1003 

in Fig. 3a). In addition, the localization scale of the LPF was set to 𝑟𝑟 = 1.9 and the 1004 

inflation factor was set to 𝜏𝜏 = 0.53 (the optimum in Fig. 3b). 1005 

  1006 
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 1007 

Fig. 3. Response surface of root mean square error between the truth and the analysis in 1008 

local ensemble transform Kalman filter (LETKF) and local particle filter (LPF) using 64 1009 

ensemble members (particles) and strong nonlinear observation operator. The vertical 1010 

axis shows the localization scale 𝑟𝑟, and the horizontal axis shows the inflation factor 𝛼𝛼 1011 
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and 𝜏𝜏. The minimum error of 1.024 in the LETKF was obtained when 𝑟𝑟 = 6.5 and 𝛼𝛼 = 1.100 1012 

(cross mark). In addition, the minimum error of 0.586 in the LPF was obtained when 𝑟𝑟 = 1013 

1.9 and 𝜏𝜏 = 0.53 (cross mark). 1014 

  1015 
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 1016 

Fig. 4. Time series of estimation by 1-dimensional Bayesian optimization (BO). The blue line 1017 

shows the inflation factor 𝜏𝜏, the green line shows the minimum root mean square error 1018 

between the observations and the forecasts (RMSE(o vs. f)) in the previous training cycle 1019 

estimated by the BO, and the purple line shows the minimum RMSE(o vs. f) in the previous 1020 

training cycle estimated by random sampling. In addition, the light blue shaded region 1021 

indicates the range of optimum inflation factor (𝜏𝜏 = 0.33-0.49) for which the root mean 1022 

square error between the truth and the analysis in local particle filter is less than 1.0 (the 1023 

filter operates stably). The horizontal axis represents the training cycle, the first vertical 1024 

axis represents 𝜏𝜏, and the second vertical axis represents the minimum RMSE(o vs. f). 1025 

The Lipschitz constant was set to 𝐿𝐿 = 2.0, and the number of initial input data was set to 1026 

2 (optimum experimental settings in Table 1). 1027 

  1028 
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Fig. 5. Prediction distribution of Gaussian process regression (GPR) using the inflation 1030 

factor 𝜏𝜏 and the root mean square error between the observations and the forecasts 1031 

(RMSE(o vs. f)) in local particle filter as input and output data. The training cycle in this 1032 

figure corresponds to Fig. 4. The expected value and uncertainty of the RMSE(o vs. f) 1033 

are obtained as the mean (blue line) and standard deviation (blue shade) of the GPR. 1034 

The green line is the penalized expected improvement (EI), the purple line is the penalty, 1035 

the yellow line is the EI. Red dots indicate input data already explored, and yellow dots 1036 

indicate input data explored during that training cycle. The horizontal axis represents 𝜏𝜏, 1037 

the first vertical axis represents the RMSE(o vs. f), the second vertical axis represents 1038 

the penalized EI, the third vertical axis represents the penalty, and the fourth vertical 1039 

axis represents the EI. (a)-(d) are the prediction distributions at the 0th (i.e., when only 1040 

the initial input data were given), 1st, 2nd, and 20th training cycles, respectively. 1041 

  1042 
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 1043 

Fig. 6. Response surface of root mean square error between the truth and the analysis 1044 

(RMSE(t vs. a)) in local particle filter (LPF) using 64 ensemble members (particles) and 1045 

the strong nonlinear observation operator. The vertical axis represents the RMSE(t vs. 1046 

a), and the horizontal axis represents the inflation factor 𝜏𝜏. The localization scale was 1047 

fixed at 𝑟𝑟 = 3, and the minimum error of 0.719 was obtained when 𝜏𝜏 = 0.46 (cross mark). 1048 

In addition, the light blue shade indicates the range of optimum inflation factor (𝜏𝜏 = 0.33-1049 

0.49) where the RMSE(t vs. a) of the LPF is 1.0 or less (the filter operates stably). 1050 

  1051 
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 1052 

Fig. 7. Variation of the estimation by 1-dimensional Bayesian optimization when using 1053 

different observations. (a) Box-and-whisker of the inflation factor 𝜏𝜏. The blue line 1054 

indicates the median, the lower limit of the box indicates the first quartile, the upper limit 1055 

of the box indicates the third quartile, the lower limit of the whisker indicates the 1056 

minimum, and the upper limit of the whisker indicates the maximum. In addition, the light 1057 

blue shaded region indicates the optimum range of the inflation factors (𝜏𝜏 = 0.33-0.49) 1058 
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for which the root mean square error between the observations and the forecasts 1059 

(RMSE(o vs. f)) in local particle filter is less than 1.0 (the filter operates stably). (b) Box-1060 

and-whisker of the RMSE(o vs. f). The red line indicates the median, and the other plots 1061 

are the same as in (a). The limits of the vertical axis in (a) and (b) are set to reflect the 1062 

boundaries of 𝜏𝜏 and the RMSE(o vs. f), respectively. The horizontal axis represents the 1063 

number of training cycles. 1064 

  1065 
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 1066 

Fig. 8. Time series of estimation by 2-dimensional Bayesian optimization (BO). The blue line 1067 

shows the inflation factor 𝜏𝜏, the orange line shows the localization scale 𝑟𝑟, the green line 1068 

shows the minimum root mean square error between the observations and the forecasts 1069 

(RMSE(o vs. f)) in the previous training cycle by the BO, and the purple line shows the 1070 

minimum RMSE(o vs. f) in the previous training cycle by the random sampling. The light 1071 

blue shade indicates the range of optimum inflation factor (𝜏𝜏 = 0.32-0.67) where the root 1072 

mean square error between the truth and the analysis in local particle filter is less than or 1073 

equal to 1.0 (the filter operates stably). In addition, the light orange shade indicates the 1074 

range of optimum localization scale (𝑟𝑟  = 1.0-4.2). The horizontal axis represents the 1075 

training cycle, the first vertical axis represents 𝜏𝜏, the second vertical axis represents 𝑟𝑟, 1076 

and the third vertical axis represents the minimum RMSE (o vs. f). The Lipschitz constant 1077 

was set to 𝐿𝐿 = 2.0, and the number of initial input data was set to 5 (optimum experimental 1078 
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settings in Table 1). 1079 
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 1081 

Fig. 9. Prediction distribution of Gaussian process regression (GPR) using the inflation 1082 

factor 𝜏𝜏 and the localization scale 𝑟𝑟 at the 0th training cycle (i.e., when only initial input 1083 

data were given) and the root mean square error between the observations and the 1084 

forecasts (RMSE(o vs. f)) in local particle filter as the input and output data. (a) is the 1085 

GPR mean, (b) is the GPR standard deviation, (c) is the expected improvement (EI), (d) 1086 

is the penalty, and (e) is the penalized EI prediction distribution. The training cycle in this 1087 

figure corresponds to Fig. 8. The expected value and uncertainty of the RMSE(o vs. f) 1088 
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are obtained as the mean and standard deviation of the GPR. The color bar is set so 1089 

that the larger value of the GPR mean and standard deviation, the greener color, and 1090 

the smaller value, the bluer color. In addition, the color bar is set so that the larger value 1091 

of the EI, penalty, and penalized EI, the greener color, and the smaller value, the 1092 

yellower color. The red dots indicate the input data that has been explored, and the 1093 

yellow dots indicate the input data explored in that training cycle. The horizontal axis 1094 

represents 𝜏𝜏, and the vertical axis represents 𝑟𝑟. 1095 

  1096 



 69 

 1097 

Fig. 10. Prediction distribution of Gaussian process regression (GPR) using the inflation 1098 

factor 𝜏𝜏 and the localization scale 𝑟𝑟 at the 20th training cycle and the root mean square 1099 

error between the observations and the forecasts (RMSE(o vs. f)) in local particle filter 1100 

as the input and output data. (a) is the GPR mean, (b) is the GPR standard deviation, (c) 1101 

is the expected improvement (EI), (d) is the penalty, and (e) is the penalized EI 1102 

prediction distribution. The training cycle in this figure corresponds to Fig. 8. The 1103 

expected value and uncertainty of the RMSE(o vs. f) are obtained as the mean and 1104 
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standard deviation of the GPR. The color bar is set so that the larger value of the GPR 1105 

mean and standard deviation, the greener color, and the smaller value, the bluer color. 1106 

In addition, the color bar is set so that the larger value of the EI, penalty, and penalized 1107 

EI, the greener color, and the smaller value, the yellower color. The red dots indicate the 1108 

input data that has been explored, and the yellow dots indicate the input data explored 1109 

in that training cycle. The horizontal axis represents 𝜏𝜏, and the vertical axis represents 𝑟𝑟. 1110 

  1111 
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Table 1 Variation of the estimation by Bayesian optimization (BO) with respect to changes 1112 

in the dimension of response surface, Lipschitz constant, and initial input data. The 1113 

rightmost column shows the minimum root mean square error between the observations 1114 

and the forecasts (RMSE(o vs. f)) in 20 training cycles, with the best cases for each 1115 

dimension of response surface highlighted in yellow. Although several cases have the 1116 

same minimum RMSE(o vs. f), the Lipschitz constant is generally set to 𝐿𝐿 = 0.5-2.0. In 1117 

addition, the smaller number of initial input data, the fewer computing resources are 1118 

required. Therefore, the case with 𝐿𝐿 = 2.0 and 5 initial input data for 2-dimensional BO, 1119 

and 𝐿𝐿 = 2.0 and 2 initial input data for 1-dimensional BO are highlighted. In addition, since 1120 

the ideal number of initial input data is about 10 times the dimension of response surface, 1121 

the number of initial input data was changed in increments of 5 for the 2-dimensional BO 1122 

and 2 for the 1-dimensional BO so that the number of cases would be the same. 1123 

“(diverged)” indicates that the system stopped due to numerical instability in the middle of 1124 

20 training cycles. 1125 

2-dimension   

Lipschitz constant Number of initial training data minimum RMSE 

0.1 

5 2.308  

10 2.515  

15 2.274  

20 2.352  

0.5 

5 2.453  

10 2.515  

15 2.274  

20 2.352  

2.0  5 2.247  
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10 2.333  

15 2.274  

20 2.308  

10.0  

5 2.247  

10 2.247  

15 2.247  

20 2.247  

1-dimension   

Lipschitz constant Number of initial training data minimum RMSE 

0.1 

2 2.280 (diverged) 

4 2.415  

6 2.315  

8 2.537  

0.5 

2 3.316  

4 2.415  

6 2.315  

8 2.537  

2.0  

2 2.280  

4 2.280  

6 2.315  

8 2.537  

10.0  

2 2.280  

4 2.280  

6 2.280  

8 2.280  

 1126 

 1127 
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