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Abstract 42 

The particle filter (PF) is a powerful data assimilation method that does not assume 43 

linearity or Gaussianity. However, its application to numerical weather prediction is limited 44 

by the exponentially increasing number of particles required as the dimensionality of the 45 

dynamical system rises. Although a local particle filter (LPF) achieves the PF in high-46 

dimensional systems through localization, the LPF remains unstable owing to its high 47 

parameter sensitivity. In the PF, maintaining particle diversity is essential to prevent “weight 48 

collapse,” and an inflation factor that smooths weights among particles is a crucial parameter 49 

that should be optimized in the LPF. 50 

Bayesian optimization (BO) is a method for parameter estimation that minimizes (or 51 

maximizes) an objective function and is used for parameter optimization of neural networks. 52 

This study discussed the benefits of using BO within the LPF framework. As a proof of 53 

concept, we used BO to estimate the inflation factor that minimizes the root mean square 54 

error between observations and forecasts in the Lorenz-96 40-variable model. The BO 55 

quickly estimated the optimal inflation factor equivalent to the brute-force method, allowing 56 

the LPF to work stably for a decade scale. Furthermore, our method demonstrated 57 

robustness to changes in initial conditions and observations. In conclusion, using BO could 58 

greatly reduce the burden and computational cost associated with parameter optimization. 59 

The development of BO is expected to lead to further practical application of the LPF and 60 

ultimately improve the accuracy of forecasts for torrential rainfall. The benefits of BO will 61 
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eventually be demonstrated in experiments with atmospheric models aimed at the practical 62 

application of the LPF. 63 

Keywords: Local particle filter; Parameter estimation; Bayesian optimization; Gaussian 64 

process regression 65 

 66 

  67 



 4 

1. Introduction 68 

In chaotic dynamical systems, such as numerical weather prediction (NWP), a slight error 69 

in the initial state can evolve into a major error. Data assimilation is a technique for estimating 70 

analysis that is closer to the truth from forecast and observation and can improve forecast 71 

accuracy using highly accurate analysis as the initial state. The ensemble Kalman filter 72 

(EnKF; Evensen, 1994) and 4-dimensional variational method (e.g., Liu and Zou, 2001) are 73 

currently the mainstream data assimilation methods, but they assume linearity of the 74 

dynamical system and Gaussianity of the probability distribution. Therefore, when these 75 

assumptions are unsatisfied—around cumulus convection and storm tracks—the optimal 76 

analysis cannot be estimated (Kondo and Miyoshi, 2019). 77 

Conversely, the particle filter (PF; Gordon et al., 1993) is an appropriate data assimilation 78 

method for dynamical systems with strong nonlinearity because it does not assume linearity 79 

and Gaussianity. However, as the PF estimates the analysis by resampling particles 80 

(ensemble members) based on weights obtained from the likelihood of the observations, 81 

“weight collapse” occurs in high-dimensional dynamical systems. Hence, PF requires a large 82 

particle size that exponentially increases with the dynamical system dimensions (Snyder et 83 

al., 2008). This requirement has been a bottleneck for its application to NWP. 84 

Local particle filter (LPF; Penny and Miyoshi, 2016) achieves PF in high-dimensional 85 

systems by reducing the dimensions of observations through localization. Spatial 86 

localization is justified because distant correlations are spurious or weak compared to 87 
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nearby correlations. If well applied, the LPF can estimate a more accurate analysis than the 88 

EnKF with non-Gaussian observation errors, nonlinear observation operators, and sparse 89 

observation networks (Poterjoy and Anderson, 2016; Poterjoy, 2016; Penny and Miyoshi, 90 

2016). 91 

However, the localization scale and inflation factor—smoothing weights among particles—92 

should be optimized in the LPF. In addition, because excessive resampling causes “weight 93 

collapse,” adjusting the resampling frequency based on an effective sample size is critical. 94 

Furthermore, a method for implementing the PF, which approximates the prior distribution 95 

using a combination of Gaussian kernels centered at the value of each particle, has been 96 

suggested. In this approach, the amplitude of the Gaussian kernel is a parameter that should 97 

be optimized (Stordal et al., 2011). If the LPF does not optimize these parameters, it will 98 

diverge (Kotsuki et al., 2022).  99 

The parameters to be optimized and the computational cost of data assimilation 100 

experiments are expected to increase with the improvement of LPF methods and the 101 

advancement of systems for applying the LPF to operational NWP. The simplest way to 102 

optimize the parameters is using the brute-force method (also known as manual tuning or 103 

grid search). However, this method requires data assimilation experiments that increase 104 

exponentially with the number of parameters. Therefore, an efficient optimization method is 105 

needed. 106 

One way to reduce computational cost is to replace the system response to the 107 
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parameters with a surrogate model (e.g., Sawada, 2020). Bayesian optimization (BO; 108 

Mockus, 1989) is a method for estimating the parameters that minimize (or maximize) an 109 

objective function and is used for the parameter optimization of neural networks (Snoek et 110 

al., 2012). As BO uses Gaussian process regression (GPR) to emulate the objective function, 111 

it can efficiently explore a globally optimal parameter even when the relationship between 112 

input (parameter) and output data (system response) is a black box or a nondifferentiable 113 

multimodal function. In addition, it is easy to implement because BO works independently of 114 

other systems. 115 

The effectiveness of BO in the EnKF framework has already been demonstrated 116 

(Lunderman et al., 2021). Therefore, this study aims to continue this line of work and 117 

contribute to the practical application of LPF by solving the parameter optimization problem. 118 

We validated the effectiveness with numerical experiments using the Lorenz-96 40-variable 119 

model (L96: Lorenz and Emanuel, 1998). 120 

This paper is organized as follows: Section 2 introduces the methodology, while Section 121 

3 describes the experimental setup. Section 4 compares the estimation results using the 122 

brute-force method and BO. Furthermore, the robustness of BO is investigated. Section 5 123 

discusses the results and provides the prospects of BO, and Section 6 presents the 124 

conclusion. 125 

 126 

  127 
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2. Methods 128 

a. Local particle filter (LPF) 129 

The PF estimates the posterior distribution using the Monte Carlo method and Bayes’ 130 

theorem:  131 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) =
𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1)

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) , (1) 132 

where 𝑝𝑝 represents the probability distribution; 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) denotes the posterior distribution 133 

of state variable 𝒙𝒙 at time 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) given all observations 𝒚𝒚 up to time 𝑡𝑡; 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) is the 134 

likelihood of 𝒚𝒚 given 𝒙𝒙; 𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) is the prior distribution given all 𝒚𝒚 up to one time step 135 

before analysis time; and 𝑝𝑝(𝒚𝒚𝑡𝑡|𝒚𝒚1:𝑦𝑦−1) denotes the marginal likelihood of 𝒚𝒚, which can be 136 

expressed as a constant computed by climate data in the NWP. The prior distribution can 137 

be approximated using particles (or ensemble members) of the numerical forecast:  138 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡−1) ≈
1
𝑚𝑚
� 𝛿𝛿�𝑥𝑥𝑡𝑡 − ℱ(𝑥𝑥𝑡𝑡−1𝑚𝑚 )�
𝑀𝑀

𝑚𝑚=1

, (2) 139 

where 𝑚𝑚 (𝑚𝑚 = 1, … ,𝑀𝑀) denotes the indices of the particle, 𝛿𝛿 is the Dirac delta function, and 140 

ℱ is the numerical model. The likelihood function is arbitrary; for example, if a Gaussian 141 

distribution we used, it can be written as: 142 

𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡) =
1

�(2𝜋𝜋)𝑜𝑜|𝑹𝑹|
exp �−

1
2
�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�

⊤
𝑹𝑹−1�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�� , (3) 143 

where 𝑜𝑜  represents the dimension of 𝒚𝒚 . In addition, 𝑹𝑹  denotes the observation error 144 

covariance matrix, and |𝑹𝑹|  is its determinant. ℎ  denotes the observation operator. The 145 

weight of each particle is the normalized likelihood, computed for all particles as follows:  146 
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𝑤𝑤𝑡𝑡𝑚𝑚 =
𝑝𝑝(𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡𝑚𝑚)

∑ 𝑝𝑝�𝒚𝒚𝑡𝑡�𝒙𝒙𝑡𝑡𝑚𝑚
′�𝑀𝑀

𝑚𝑚′=1
, (4) 147 

where 𝑚𝑚′  denotes the indices of particles for summation. The posterior distribution is 148 

obtained by resampling each particle of the prior distribution in proportion to its weight:  149 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝒚𝒚1:𝑡𝑡) ≈ � 𝑤𝑤𝑡𝑡𝑚𝑚𝛿𝛿�𝑥𝑥𝑡𝑡 − ℱ(𝑥𝑥𝑡𝑡−1𝑚𝑚 )�
𝑀𝑀

𝑚𝑚=1

. (5) 150 

The resampling method is also arbitrary. This study defined the analysis particles as the 151 

sum of the transformation for perturbations of forecast particles and the mean of the forecast 152 

particles:  153 

𝑿𝑿𝑎𝑎 = 𝑿𝑿�𝑓𝑓 + 𝛿𝛿𝑿𝑿𝑓𝑓 𝑻𝑻 , (6) 154 

where 𝑿𝑿𝑎𝑎 denotes the analysis particles; 𝑿𝑿�𝑓𝑓 represent the mean of forecast particles; and 155 

𝛿𝛿𝑿𝑿𝑓𝑓 denotes the perturbation of forecast particles, where the column and row of 𝑿𝑿𝑎𝑎, 𝑿𝑿�𝑓𝑓, and 156 

𝛿𝛿𝑿𝑿𝑓𝑓 indicate the particle size and dimension of the numerical model, respectively. 𝑻𝑻 denotes 157 

the ensemble transform matrix, defined as a square matrix of order 𝑀𝑀. As resampling is 158 

performed using the ensemble transform matrix in the LPF, the matrix markedly affects filter 159 

performance (Farchi and Bocquet, 2018; Kotsuki et al., 2022). When the particle size is 160 

sufficiently large, the ratio of resampled particle sizes will closely match the ratio of weights; 161 

otherwise, the sampling error may become substantial. 162 

In addition, the weights among grid points differ because varying observations are 163 

assimilated at each grid point through localization. As the pronounced weight difference 164 

causes spatial discontinuity, the ensemble transform matrix should satisfy a spatially smooth 165 
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transition. Addressing the smoothing issue presents an interesting challenge. For example, 166 

Kotsuki et al. (2022) addressed this problem by sorting the particles and creating an 167 

ensemble transform matrix close to an identity matrix (see also Potthast et al., 2019). Our 168 

resampling method is based on Algorithm 1 of Kotsuki et al. (2022) and uses stochastic 169 

universal resampling instead of probabilistic resampling to reduce sampling error. 170 

Furthermore, we used localization to limit the impact of observations within the local 171 

domain to avoid “weight collapse” (Penny and Miyoshi, 2016; Kotsuki et al., 2022). This 172 

localization method is applied by independently computing the analysis at every grid point, 173 

similar to the local ensemble transform Kalman filter (Hunt et al., 2007). Specifically, it is 174 

implemented by computing the Schur product of the observation error covariance matrix 𝑹𝑹 175 

in Eq. (3) and the localization function 𝑳𝑳(𝑟𝑟): 176 

exp �−
1
2
�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�

⊤
𝑹𝑹−1{𝑳𝑳(𝑟𝑟)}−1�𝒚𝒚𝑡𝑡 − ℎ(𝒙𝒙𝑡𝑡)�� . (7) 177 

Here, the localization function approximates a Gaussian function (Gaspari and Cohn, 1999): 178 

𝐿𝐿(𝑟𝑟) = �exp�−
𝑞𝑞2

2𝑟𝑟2�  if 𝑞𝑞 ≤ 2�
10
3  𝑟𝑟

0 else

, (8) 179 

where 𝑞𝑞 denotes the distance between the analysis grid point and the observation point and 180 

𝑟𝑟 represents the standard deviation of the Gaussian function, defining the localization scale. 181 

Observations beyond this scale, including its boundary, are not assimilated, while those 182 

within the localization scale are weighted based on the localization function. Therefore, 𝑟𝑟 is 183 

the parameter that determines the localization scale and should be optimized. 184 
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In addition, maintaining particle diversity is crucial to avoid filter divergence. Therefore, 185 

we smoothed the weights among particles to prevent a few particles from occupying most 186 

of the weights. We refer to this approach as inflation in this study: 187 

𝑤𝑤𝑡𝑡𝑚𝑚 ← 𝜏𝜏𝑤𝑤𝑡𝑡𝑚𝑚 +
1 − 𝜏𝜏
𝑀𝑀

, (0 ≤ 𝜏𝜏 ≤ 1), (9) 188 

where 𝜏𝜏 represents the inflation factor. If 𝜏𝜏 is not 1, the weights 𝑤𝑤𝑡𝑡𝑚𝑚 are smoothed, and all 189 

particles have equal weights as 𝜏𝜏 close to 0. However, if the original weights are used, the 190 

LPF tends to diverge due to “weight collapse.” As 𝜏𝜏 becomes smaller, the LPF deviates from 191 

the PF but becomes more stable. Thus, the relationship between theoretical accuracy and 192 

stability is a trade-off on the inflation factor 𝜏𝜏. The LPF is markedly sensitive to this parameter, 193 

as will be described in Section 4a. 194 

 195 

b. Bayesian optimization (BO) 196 

The BO estimates a parameter that minimizes an objective function through regression 197 

with the GPR and evaluation using the acquisition function. The GPR assumes that a joint 198 

distribution 𝑝𝑝(𝒈𝒈)  of 𝑆𝑆  input data 𝝉𝝉 = {𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑆𝑆}  and corresponding output data 𝒈𝒈 =199 

{𝑔𝑔(𝜏𝜏1),𝑔𝑔(𝜏𝜏2), … ,𝑔𝑔(𝜏𝜏𝑆𝑆)}  follow the multivariate Gaussian distribution 𝒩𝒩(𝝁𝝁,𝑲𝑲) . This 200 

assumption is written as follows: 201 

𝒈𝒈~𝒢𝒢𝒢𝒢�𝝁𝝁(𝝉𝝉),𝑲𝑲(𝝉𝝉, 𝝉𝝉′)�, (10) 202 

where 𝒢𝒢𝒢𝒢  denotes the Gaussian process with the mean 𝝁𝝁  and the covariance matrix 𝑲𝑲 203 

defined as a square matrix of order 𝑆𝑆. The elements of covariance matrix 𝑲𝑲 are the kernel 204 
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function 𝑘𝑘(𝜏𝜏, 𝜏𝜏′) . As the kernel function was arbitrary, we used the Gaussian kernel with 205 

added white noise as a general choice: 206 

𝑘𝑘(𝜏𝜏, 𝜏𝜏′|𝜽𝜽) = 𝜃𝜃1 exp�−
|𝜏𝜏 − 𝜏𝜏′|2

𝜃𝜃2
�+ 𝜃𝜃3𝛿𝛿(𝜏𝜏, 𝜏𝜏′). (11) 207 

Here, the kernel function 𝑘𝑘(𝜏𝜏, 𝜏𝜏′) defines the correlation between any two data 𝜏𝜏 and 𝜏𝜏′ in 208 

the input data 𝝉𝝉 . In addition, 𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3)  denotes the positive hyper-parameters that 209 

define the kernel function, while 𝛿𝛿 represents the Dirac delta function. The GPR is updated 210 

through regression and evaluation of the objective function. The new joint distribution of 211 

output data 𝒈𝒈∗ given new input data 𝝉𝝉∗ is expressed as: 212 

𝑝𝑝(𝒈𝒈∗|𝝉𝝉∗,𝒟𝒟) = 𝒩𝒩(𝒌𝒌∗⊤𝑲𝑲−1𝒈𝒈,𝑘𝑘∗∗ − 𝒌𝒌∗⊤𝑲𝑲−1𝒌𝒌∗) , (12) 213 

where 𝒟𝒟 = (𝝉𝝉,𝒈𝒈)  denotes the accumulated training data, 𝒌𝒌∗  is the similarity between the 214 

new input data 𝝉𝝉∗ and the accumulated training data 𝒟𝒟. 𝑘𝑘∗∗ represents the similarity of the 215 

new input data 𝜏𝜏∗ to themselves. 216 

𝒌𝒌∗ = �𝑘𝑘(𝜏𝜏∗, 𝜏𝜏1),𝑘𝑘(𝜏𝜏∗, 𝜏𝜏2), … ,𝑘𝑘(𝜏𝜏∗, 𝜏𝜏𝑆𝑆)�⊤, (13) 217 

𝑘𝑘∗∗ = 𝑘𝑘(𝜏𝜏∗, 𝜏𝜏∗). (14) 218 

The hyper-parameters 𝜽𝜽 are optimized by maximizing the negative log marginal likelihood, 219 

defined as follows: 220 

log 𝑝𝑝(𝒈𝒈|𝝉𝝉,𝜽𝜽) = −
𝑆𝑆
2 log(2𝜋𝜋) −

1
2 log|𝑲𝑲𝜽𝜽| −

1
2𝒈𝒈

⊤𝑲𝑲𝜽𝜽
−1𝒈𝒈, (15) 221 

where 𝑲𝑲𝜽𝜽 denotes the covariance matrix that depends on 𝜽𝜽, with elements determined by 222 

the kernel function 𝑘𝑘(𝜏𝜏, 𝜏𝜏′|𝜃𝜃), and |𝑲𝑲𝜽𝜽| represents the determinant. The optimization method 223 

can be either a numerical or gradient method. We used the Broyden–Fletcher–Goldfarb–224 
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Shanno algorithm (BFGS; Fletcher, 2000), following Mochihashi and Oba (2019). The 225 

gradient of the negative log marginal likelihood defined by Eq. (15) is expressed as follows: 226 

𝜕𝜕 log 𝑝𝑝(𝒈𝒈|𝝉𝝉,𝜽𝜽)
𝜕𝜕𝜃𝜃 = −tr �𝑲𝑲𝜽𝜽

−𝟏𝟏 𝜕𝜕𝑲𝑲𝜽𝜽

𝜕𝜕𝜃𝜃
� + �𝑲𝑲𝜽𝜽

−𝟏𝟏𝒈𝒈�
⊤ 𝜕𝜕𝑲𝑲𝜽𝜽

𝜕𝜕𝜃𝜃
�𝑲𝑲𝜽𝜽

−𝟏𝟏𝒈𝒈�, (16) 227 

where 𝜕𝜕𝑲𝑲𝜽𝜽
𝜕𝜕𝜕𝜕

  denotes the matrix of the same shape as the covariance matrix 𝑲𝑲𝜽𝜽 , and the 228 

elements of the matrix are 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑘𝑘(𝜏𝜏, 𝜏𝜏′|𝜃𝜃), which is each element of the covariance matrix 𝑲𝑲𝜽𝜽 229 

differentiated by the hyper-parameter 𝜃𝜃 . Accurate regression and evaluation can be 230 

expected by optimizing the hyper-parameters in each training cycle that new input data 𝜏𝜏∗ 231 

is given. 232 

The regression with GPR is described above. The evaluation of the objective function 233 

using the acquisition function is then described. The acquisition function is a combination of 234 

mean 𝝁𝝁 and covariance 𝑲𝑲 obtained through the GPR. Expected improvement (EI) was used 235 

as a general choice:  236 

𝐸𝐸𝐸𝐸(𝛕𝛕) = (𝑔𝑔� − 𝝁𝝁)Φ(𝒅𝒅) + 𝝈𝝈𝜙𝜙(𝒅𝒅), (17) 237 

where 𝑔𝑔� denotes the tentative optimal parameter that minimizes the objective function and 238 

𝝈𝝈 represents the standard deviation, which is the square root of 𝑲𝑲. In addition, 𝒅𝒅 denotes 239 

the difference between the mean and tentative optimal parameter normalized by the 240 

standard deviation (𝒅𝒅 = (𝑔𝑔� − 𝝁𝝁)/𝝈𝝈). Here, Φ and 𝜙𝜙 are the normal cumulative distribution 241 

function and the probability density function, respectively. The acquisition function is also 242 

arbitrary. This study selected the Gaussian kernel defined by Eq. (11) and EI defined by Eq. 243 

(17) for simplification. However, BO can be effective when appropriate functions are chosen 244 
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or designed for specific problems. For example, when hyper-parameters have high 245 

dimensionality, the Markov chain Monte Carlo method (Metropolis et al., 1953) rather than 246 

the BFGS can obtain globally optimal parameters. 247 

 248 

  249 
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3. Experimental Setup 250 

a. Lorenz-96 40-variable model 251 

We conducted an observing system simulation experiment (OSSE) using the L96 to 252 

validate the effectiveness of BO in the LPF framework. The L96 is a toy model that simulates 253 

atmospheric variables along certain latitudes. The time evolution of the atmospheric variable 254 

is expressed as follows: 255 

𝑑𝑑𝑥𝑥𝑛𝑛
𝑑𝑑𝑡𝑡 = (𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛−2)𝑥𝑥𝑛𝑛−1 − 𝑥𝑥𝑛𝑛 + 𝐹𝐹, (18) 256 

where 𝑥𝑥 and 𝑡𝑡 denote the state variables and time, respectively, as described in Section 2a. 257 

The subscript 𝑛𝑛 (𝑛𝑛 = 1, … ,𝑁𝑁)  represents the grid point. Each term on the right side 258 

represents the following: the first is advection, the second is diffusion, and the third is forcing 259 

𝐹𝐹 . The shift of the grid point in the advection term expresses the nonlinearity of the 260 

atmosphere. In the L96, a steady solution can be obtained, where 40 variables and the 261 

forcing term 𝐹𝐹 = 8 (Lorenz and Emanuel, 1998). Here, one variable is simulated at each grid 262 

point in 40 grid points. The fourth-order Runge–Kutta scheme is used for time integration, 263 

where forecast time step Δ𝑡𝑡 = 0.01. 264 

Observations are generated by adding Gaussian random noise 𝒩𝒩(0, 1) to truth, which is 265 

a long-term integration of the L96. The observations are collected at all grid points and every 266 

0.05 time units. We assume that the observed variables match the simulated variables and 267 

that the observation errors are uncorrelated. In addition, as a gross error check, 268 

observations are rejected if the difference between forecasts and observations exceeds 10 269 
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times the observation error. 270 

All observations are assimilated using the LPF with 256 particles over 11 years, where 0.2 271 

time units correspond to one Earth day in terms of the error-doubling time for synoptic 272 

weather. The initial particles are generated by the long-time integration of the L96 initialized 273 

with random states. 274 

 275 

b. Parameter optimization 276 

We explored an optimal combination of the localization scale 𝑟𝑟 and the inflation factor 𝜏𝜏 277 

that yields the highest analysis accuracy in the LPF using the brute-force method. The 278 

optimal combination was explored by computing the root mean square error (RMSE) 279 

between the truth and analysis for varying 𝑟𝑟 (1 ≤ 𝑟𝑟 ≤ 10) in increments of 1 and 𝜏𝜏 (0.1 ≤280 

𝜏𝜏 ≤ 1.0)  in increments of 0.1. This study evaluated the benefit of BO by comparing the 281 

parameters obtained through the brute-force method with those obtained using BO. 282 

As BO estimates the parameter that minimizes the objective function, designing the 283 

objective function appropriately is crucial. This study defined the objective function as the 284 

forecast error of the LPF. 285 

𝑔𝑔(𝜏𝜏) = −
1
𝑇𝑇
��

1
𝑁𝑁
��𝑦𝑦𝑡𝑡 − ℎ ��̅�𝑥𝑛𝑛,𝑡𝑡

𝑓𝑓 (𝜏𝜏)��
2𝑁𝑁

𝑛𝑛=1

𝑇𝑇

𝑡𝑡=1

(19) 286 

where 𝑔𝑔 and 𝜏𝜏 denote the RMSE and inflation factor, respectively, as described in Section 287 

2b; 𝑦𝑦 and ℎ represent the observation and observation operator, respectively, as outlined in 288 
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Section 2a; �̅�𝑥𝑛𝑛,𝑡𝑡
𝑓𝑓  is the mean of the forecast particle at 𝑛𝑛th grid point and 𝑡𝑡th time step.  289 

As the truth cannot be obtained in a real atmosphere, we used the RMSE between 290 

observations and forecasts. Furthermore, the observations are perturbed around the truth, 291 

and the forecast error is expected to be smaller than the observation error in the first guess 292 

but to grow larger than the observation error over time (Otsuka and Miyoshi, 2015). 293 

Therefore, we evaluated forecast accuracy by comparing future observations and extended 294 

forecasts. Extended forecasts are conducted for all particles. 295 

In addition, although this study employed a perfect model, BO can estimate the parameter 296 

considering model errors using the objective function, including the extended forecasts. 297 

When the RMSE between observations and forecasts is used as the objective function, the 298 

BO estimates the most fitting parameter for all observations within the experimental period. 299 

Therefore, by extending the experimental period, the parameter for the long-term stable 300 

work of the LPF can be estimated. 301 

As future observations are not obtained in an online system because the analysis-forecast 302 

cycle and training cycle are performed concurrently, we employed an offline system. Our 303 

method is reasonable considering that the optimal parameters in the past are used for future 304 

NWP. In addition, the length of the extended forecast was set to 0.4 time units based on the 305 

error-doubling time. 306 

As will be described in Section 4, we estimated only the inflation factor 𝜏𝜏 with the fixed 307 

localization scale 𝑟𝑟 in BO. The offline system was implemented as follows:  308 
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1) The OSSE was performed with the upper and lower limits of 𝜏𝜏 to obtain initial training data. 309 

2) The RMSE between observations and forecasts was computed. 310 

3) The 𝜏𝜏 that minimizes the RMSE was estimated using BO. 311 

The overall flowchart of the offline system is shown in Fig. 1. The numbers associated with 312 

each process correspond to those in Fig. 1. 313 

We provided BO with RMSE for 𝜏𝜏 = 0.1 and 1.0 as the initial training data and repeated 314 

the training cycle, which involved performing the OSSE with the estimated 𝜏𝜏 and finding the 315 

𝜏𝜏 that minimizes the RMSE using BO. In this experiment, we stopped the training cycle after 316 

20 iterations were completed, and the 𝜏𝜏  that minimized the RMSE within these training 317 

cycles was employed as the optimal inflation factor 𝜏𝜏 by BO. The number of iterations is 318 

determined based on the computational budget or fluctuation of the estimation. In the brute-319 

force method, 𝑟𝑟  and 𝜏𝜏  were individually divided into 10 parts. However, in the BO, 𝑟𝑟  was 320 

fixed, while 𝜏𝜏 was divided into 100 parts to equalize the computational budget for parameter 321 

optimization. 322 

In the training cycle, the training data (inflation factor 𝜏𝜏) with the highest EI was explored 323 

preferentially. We set the standard deviation of the GPR to zero for the training data that had 324 

already been explored to prevent revisiting the same data. If the standard deviation of the 325 

GPR at the explored training data was not artificially set to zero, the same training data was 326 

explored again, leading to BO stopping owing to rank deficiency in the inverse matrix 327 

computation of the mean and covariance in Eq. (12). 328 

Fig. 1 
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In this study, as the RMSE between observations and forecasts is defined as the objective 329 

function, the BO estimation is influenced by the Gaussian noise used to generate the 330 

observations. Therefore, we conducted 35 numerical experiments with different Gaussian 331 

noises to investigate the robustness of the BO to observations. Some numerical experiments 332 

satisfy a statistically significant number of samples with a 95% confidence coefficient. We 333 

also investigated the training cycles of the BO required to estimate the optimal 𝜏𝜏. 334 

We set the initial values of the hyper-parameters in Eq. (11) to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 =335 

𝑒𝑒1.0,𝑒𝑒0.4, and 𝑒𝑒0.1, following Mochihashi and Oba (2019). However, changes in 𝜽𝜽 affect the 336 

mean and covariance in Eq. (12) and EI defined by Eq. (17) through the Gaussian kernel, 337 

thus changing the BO estimation. Therefore, to investigate the robustness of the BO to 𝜽𝜽, 338 

we experimented with the changed initial values of hyper-parameters 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 =339 

1.0, 1.0, and 1.0. 340 

Note the following difference. The BO estimates 𝜏𝜏  that minimizes the RMSE between 341 

observations and forecasts; however, we evaluated the estimation accuracy using the 342 

RMSE between the truth and analysis. Statistics are computed for 10 years after a one-year 343 

spin-up. 344 

 345 

  346 
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4. Results 347 

a. Optimization using the brute-force method 348 

Initially, we optimized the parameters using the brute-force method. Figure 2 shows the 349 

contours of analysis accuracy in the LPF with each localization scale 𝑟𝑟 and inflation factor 𝜏𝜏. 350 

The optimal combination was obtained when 𝑟𝑟 = 3  and 𝜏𝜏 = 0.4 ; the RMSE was 0.276. 351 

Furthermore, the combinations that yield equal analysis accuracy were obtained within 352 

𝑟𝑟 (2 ≤ 𝑟𝑟 ≤ 7) and 𝜏𝜏 (0.3 ≤ 𝜏𝜏 ≤ 0.5). Notably, if 𝜏𝜏 was smaller than 0.2, the RMSE was almost 353 

constant even when 𝑟𝑟 was varied. This result means that the LPF hardly assimilates the 354 

observations in cases where 𝜏𝜏 was smaller than 0.2. In addition, if 𝜏𝜏 was larger than 0.4, the 355 

LPF diverged rapidly, and the allowable range of 𝑟𝑟  became smaller as 𝜏𝜏  increased. This 356 

result suggests that “weight collapse” is likely to occur when 𝜏𝜏 is greater than 0.4, and it is 357 

necessary to reduce the dimensionality of the observation through localization. 358 

Overall, the LPF is markedly sensitive to 𝜏𝜏 but not so much to 𝑟𝑟, making it crucial to set 𝜏𝜏 359 

appropriately to improve analysis accuracy. Therefore, we estimated only 𝜏𝜏 and fixed 𝑟𝑟 in 360 

subsequent experiments. 361 

 362 

b. Optimization by BO 363 

Next, we optimized the parameters using BO. Figure 3 shows the variation of estimated 364 

𝜏𝜏, the RMSE between observations and forecasts, and the EI across each training cycle. 365 

This figure illustrates a case with the highest analysis accuracy among 35 numerical 366 

Fig. 2 

Fig. 3 
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experiments with different observations. In the 4th training cycle, the estimation matched the 367 

optimal inflation factor found using the brute-force method and fluctuated around this optimal 368 

value in the subsequent training cycles. In addition, the RMSE was almost constant, and the 369 

EI decreased in subsequent training cycles. Thus, BO can estimate the optimal inflation 370 

factor equivalent to the brute-force method in several training cycles. 371 

Among the 20 training cycles, the optimal inflation factor determined by BO was obtained 372 

in the 12th cycle, with 𝜏𝜏 = 0.44 and an RMSE of 0.274 between the truth and analysis (the 373 

RMSE between the truth and analysis is not shown in Fig. 4). The slight difference from the 374 

optimal inflation factor 𝜏𝜏 = 0.4  determined by the brute-force method is because 𝜏𝜏  was 375 

divided into 10 parts in the brute-force method but 100 parts in the BO. 376 

We further investigated the BO estimation results in terms of the GPR. Figures 4a–d show 377 

the mean and standard deviation (95% confidence interval) of the GPR and the EI in each 378 

training cycle corresponding to Fig. 3. In the 0th training cycle (Fig. 4a), only the RMSE 379 

between observations and forecasts with 𝜏𝜏 = 0.1 and 1.0 were given as the initial training 380 

data. At 𝜏𝜏 = 0.1  and 1.0, the standard deviation was zero, attributed to a treatment to 381 

activate BO. The standard deviation implies the uncertainty of the regression. However, the 382 

relationship between 𝜏𝜏 and RMSE is unique, and no uncertainty exists if the settings of the 383 

data assimilation experiment are identical. Therefore, this treatment is appropriate. In 384 

addition, the LPF diverged with both 𝜏𝜏 = 0.1 and 1.0. However, the RMSE with 𝜏𝜏 = 1.0 was 385 

larger, causing the GPR to become a rightward monotonically increasing function. In this 386 

Fig. 4 
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training cycle, the EI was the maximum at around 𝜏𝜏 = 0.1 , with the GPR mean being the 387 

minimum. 388 

In the 4th training cycle (Fig. 4b), the GPR became a downward convex function and the 389 

standard deviation in 𝜏𝜏 ≥ 0.5 was slightly larger than elsewhere. The major change in the 390 

GPR was caused by the training data at 𝜏𝜏 = 0.33, which was explored in the 3rd training 391 

cycle. As the entropy of the training data up to the 2nd training cycle was small, the 3rd 392 

training data was explored. The EI shape was similar to a Gaussian function, with a 393 

maximum around 𝜏𝜏 = 0.4. In addition, the EI peak moved from 0.11 to 0.12, 0.33, 0.41, and 394 

0.4 in the 0th–4th training cycle. This result reflects an intention to explore 𝜏𝜏 ≥ 0.5, which 395 

contains some unknown data, and to exploit around 𝜏𝜏 = 0.1, which had the minimum GPR 396 

in the previous training cycles. Furthermore, the standard deviation of the overall GPR and 397 

EI decreased as the training cycle progressed. This indicates that the regression accuracy 398 

of the GPR improved with the accumulation of training data, and the newly obtained entropy 399 

decreased. 400 

In the 12th training cycle (Fig. 4c), the overall shape of the GPR did not change noticeably, 401 

but the standard deviation was smaller than in the previous training cycles. Although the 402 

training data were intensively explored around 𝜏𝜏 = 0.4, the entropy from these training data 403 

in the 4–12th training cycles was small, and the BO estimation fluctuated around 𝜏𝜏 = 0.4. 404 

Exploitation was emphasized over exploration because the EI was further reduced, resulting 405 

in two comparable peaks around 𝜏𝜏 = 0.4. 406 
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The 20th training cycle (Fig. 4d) is also shown for reference, but no notable change 407 

occurred between the 12th and 20th training cycles. Although the two comparable peaks 408 

merged into one, this occurred because the focus gradually shifted to exploring 𝜏𝜏 ≥ 0.5. As 409 

we avoided reusing the same training data, an excessive number of training cycles could 410 

lead to exploring the training data far from the optimal inflation factor. Based on these results, 411 

the next experiment investigated the necessary and sufficient number of training cycles. 412 

We investigated the robustness of the BO for the different observations. Figures 5a and b 413 

show the box-and-whiskers of inflation factor 𝜏𝜏 and the RMSE between truth and analysis 414 

for the various observations. The quantiles of 𝜏𝜏  fluctuated only about 0.1 with changing 415 

observations, indicating that BO is a robust method. As the training cycle progressed, the 𝜏𝜏 416 

estimation fluctuated around the optimal inflation factor determined by the brute-force 417 

method, while the RMSE remained nearly constant. This result reflects that some range in 418 

𝜏𝜏 yields optimal analysis accuracy (see Fig. 2). In addition, the median of 𝜏𝜏 tends to shift 419 

from the optimal inflation factor. This result reflects a feature of BO that involves “exploration 420 

and exploitation” (acquiring unknown data and estimating based on accumulated training 421 

data, unlike gradient methods such as Newton’s method) and thus explored distant 𝜏𝜏 as the 422 

training cycle increased (see Figs. 4a-d). However, this feature is not a disadvantage for 423 

practical use because operational NWP is conducted with the parameters that yield the 424 

highest analysis accuracy within the training cycles. The outliers of 𝜏𝜏  are training data 425 

obtained through exploration, and the result of having only one outlier in each training cycle 426 

Fig. 5 
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through 35 numerical experiments indicates BO stability. Furthermore, the large whiskers of 427 

𝜏𝜏 and RMSE in the 5th training cycle became smaller in the 10th and 15th training cycles 428 

but became larger again in the 20th training cycle, indicating that approximately 10 or 15 429 

training cycles are sufficient to estimate the optimal 𝜏𝜏. 430 

We also investigated the robustness of the BO for the initial value of hyper-parameter 𝜽𝜽. 431 

Figure 6 is similar to Fig. 3 but with different initial values. Notably, the same optimal inflation 432 

factor as in Fig. 3 was obtained in the 13th training cycle. As changes in the initial values of 433 

hyper-parameters and the optimization method affect “exploration and exploitation,” the path 434 

to the optimal inflation factor has changed. However, the final estimation result remains the 435 

same, indicating that BO is a robust method. 436 

Figures 7a-d is similar to Figs. 4a-d but with different initial values. In the 0th training cycle 437 

(Fig. 7a), no notable difference from Fig. 4a is observed. However, in the 4th training cycle 438 

(Fig. 7b), the mean and standard deviation of the GPR considerably differed from Fig. 4b 439 

and the training data around 𝜏𝜏 = 0.1 was still being explored. Conversely, in the 12th training 440 

cycle (Fig. 7c), the training data away from the optimal inflation factor were explored. Notably, 441 

the transition of the standard deviation between the training data with a standard deviation 442 

of zero and the unknown data was smooth, and this is noticeable around 𝜏𝜏 = 0.6 and 1.0 in 443 

Fig. 7(c). Although the training cycle is different, this difference in smoothness was clear 444 

when compared to around 𝜏𝜏 = 0.4  and 1.0 in Fig. 4(b). This difference suggests that 445 

changing the initial value of hyper-parameters influences GPR regression accuracy. 446 

Fig. 6 

Fig. 7 
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Although difficult to interpret, further investigation of the GPR changes caused by the hyper-447 

parameter changes could provide new insights. In addition, the smaller standard deviation 448 

and EI than in Fig. 4c indicate that entropy was efficiently obtained from the unknown data. 449 

In the 20th training cycle (Fig. 7d), the standard deviation and EI were further reduced 450 

because the training data at 𝜏𝜏 = 0.86 was explored. 451 

Finally, we evaluated BO estimation accuracy. Figure 8 shows the time series of the RMSE 452 

between the truth and analysis and the ensemble spread with the optimal inflation factor 𝜏𝜏 =453 

0.44 determined by the BO. With the RMSE around 0.3 and the ensemble spread around 454 

0.5, the BO contributed to stabilizing the LPF over a decade scale. However, when 𝜏𝜏 was 455 

not optimized, such as 𝜏𝜏 = 1.0, the RMSE was greater than 1.0, and the ensemble spread 456 

was around 0.1 (not shown), indicating that the LPF diverged owing to “weight collapse.” As 457 

the LPF did not work with 𝜏𝜏 = 1.0, even with 32768 particles, the ability of BO to optimize 𝜏𝜏 458 

is extremely important regarding the computational cost. 459 

 460 

  461 

Fig. 8 
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5. Discussion 462 

This study estimated only the inflation factor 𝜏𝜏  using the L96 as a proof of concept. 463 

However, it is possible to simultaneously estimate the optimal localization scale, resampling 464 

frequency, and amplitude of the Gaussian kernel. In addition, if online optimization can be 465 

realized, the practicality of the LPF will be dramatically improved. 466 

A simple kernel function is sufficient for single-parameter optimization. However, 467 

multiparameter optimization increases the dimension of input parameters in the objective 468 

function defined by Eq. (19), making regression using the GPR challenging. In this case, 469 

combining multiple kernel functions may be required to increase the expressiveness of the 470 

GPR. However, as the number of hyper-parameters increases, 𝜽𝜽 tends to fall into a local 471 

solution of the likelihood defined by Eq. (15). Therefore, the estimation accuracy of the BO 472 

is expected to decrease. Hence, choosing on the initial value of hyper-parameters and the 473 

optimization method would be important in multiparameter optimization. 474 

In addition, changing the initial value of hyper-parameters led to the exploration of training 475 

data away from the optimal inflation factor, and the entropy was efficiently obtained from the 476 

unknown data. Based on this result, employing approaches where initial training data are 477 

given at equal intervals—such as Latin hypergeometric sampling (McKay et al., 2000) and 478 

Sobol sequence (Sobol, 1967)—could efficiently estimate the optimal inflation factor. The 479 

importance of this approach increases as the number of parameters to be optimized 480 

increases. Furthermore, in this study, the BO could estimate the optimal inflation factor even 481 
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if 𝜏𝜏, which diverges the LPF as the initial training data, were given. This BO feature is useful 482 

in enhancing LPF utility. 483 

Furthermore, with a decreasing number of particles, the conditions under which the LPF 484 

works become increasingly severe, making estimation by BO challenging, similar to 485 

multiparameter optimization. Additionally, as the optimal parameters are not uniform for all 486 

domains in the advanced model, estimating the parameters by dividing the domains into 487 

patches is appropriate. 488 

The BO is effective because it efficiently explores a globally optimal parameter, even when 489 

the input and output data relationship is a black box function or a nondifferentiable 490 

multimodal function. However, as the relationship must be unique, the BO may only work 491 

well if the parameters to be optimized are sensitive to the objective function (well-posed 492 

problems). This feature, described in Section 3b, should be considered during BO 493 

implementation. 494 

In addition, when evaluating the BO estimation accuracy, the ensemble spread was 495 

excessive in the LPF. This result was in contrast to the fact that the RMSE and the ensemble 496 

spread almost match in the EnKF with a perfect model. The result indicates that the particles 497 

become a wide-hemmed probability distribution owing to inflation. A departure between the 498 

prior distribution and observations causes a “weight collapse” in the PF. Thus, the inflation 499 

maintains the particle diversity by smoothing the weights among particles—widening the 500 

hem of the original probability distribution. However, this treatment causes discrepancies 501 
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between the RMSE and ensemble spread. Covariance inflation in the EnKF is used to 502 

compensate for the underestimation of uncertainty due to the limitations of ensemble size 503 

(Miyoshi, 2011). Similarly, inflation in the PF is equivalent and is considered a treatment for 504 

a limited particle size. 505 

 506 

  507 



 28 

6. Conclusions 508 

The PF is a powerful data assimilation method that does not assume linearity and 509 

Gaussianity. However, the exponentially increasing number of required particles as the 510 

dimensions of the dynamical system increase presents a bottleneck in its application to NWP. 511 

Although the LPF achieves PF in high-dimensional systems through localization, the brute-512 

force method in this study reveals that the inflation factor 𝜏𝜏  is more important than the 513 

localization scale 𝑟𝑟  for stabilizing the LPF. The high parameter sensitivity of LPF is not 514 

negligible for its application to the NWP, and exploring the optimal parameters becomes 515 

increasingly challenging as the number of parameters to be optimized rises. 516 

To address this challenge, we employed BO to estimate the optimal inflation factor 𝜏𝜏 that 517 

minimizes the RMSE between observations and forecasts. As a result, the BO rapidly 518 

estimated the optimal inflation factor equivalent to the brute-force method, allowing the LPF 519 

to work stably for a decade scale. Furthermore, BO was robust to changes in the initial 520 

values of the hyper-parameters and observations. Overall, using BO could greatly reduce 521 

the burden and computational cost of parameter optimization and is beneficial as it allows 522 

the LPF to work with a limited number of required particles using the optimal parameters. 523 

Investigating the benefit of BO in data assimilation is crucial, and we hope that this study 524 

will motivate the use of BO. The development of BO is expected to enhance the practical 525 

application of LPF and ultimately improve the accuracy of forecasts for torrential rainfall. The 526 

benefit of BO will eventually be demonstrated in experiments with atmospheric models, 527 
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which aim to advance the practical application of the LPF. 528 

 529 
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List of Figures 627 

Fig. 1. Flowchart of Bayesian optimization (BO) within the local particle filter (LPF) 628 

framework, where 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) represents the time, 𝑔𝑔 denotes the objective function, 629 

and 𝑆𝑆 is the number of input data (inflation factor) and corresponding output data (root 630 

mean square error; RMSE). In the observing system simulation experiment (OSSE), the 631 

observations are assimilated every 6 Earth hours (0.05 time units) using the LPF, and 632 

the RMSE between observations and two Earth day (0.4 time units) extended ensemble 633 

forecasts at the same time is calculated. This process in the objective function converts 634 

the input data to the output data. In the BO, the input and output data relationship is 635 

approximated using the Gaussian process regression, and the input data that minimizes 636 

the objective function is estimated using the expected improvement. Then, the training 637 

cycles, which involved performing the OSSE with the estimated input data, are repeated. 638 

Note that BO optimizes the inflation factor in the LPF offline. 639 

 640 

Fig. 2. Parameter dependence of root mean square error (RMSE) between the truth and 641 

analysis of the local particle filter (LPF) with 256 ensemble members. The horizontal and 642 

vertical axes show the localization scale 𝑟𝑟 and inflation factor 𝜏𝜏, respectively. The 643 

minimum error of 0.276 was obtained when 𝑟𝑟 = 3 and 𝜏𝜏 = 0.4 (the cross mark). “FILTER 644 

DIVERGENCE” denotes the region with an RMSE of more than 1.0. 645 

 646 
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Fig. 3. Summary of estimation results obtained using Bayesian optimization. The red line is 647 

the root mean square error (RMSE) between observations and forecasts, the blue line is 648 

the inflation factor 𝜏𝜏, and the green line is the expected improvement (EI). The dashed 649 

black line represents the optimal inflation factor using the brute-force method. The blue 650 

dot shows the optimal inflation factor among the 20 training cycles. 651 

 652 

Fig. 4. Estimation result of the relationship between the inflation factor 𝜏𝜏 and root mean 653 

square error (RMSE) (observations versus forecasts) using Gaussian process 654 

regression (GPR). This figure corresponds to Fig. 3. The regression and its uncertainty 655 

for the RMSE are obtained as the mean and standard deviation (95% confidence 656 

interval) of the GPR. The blue line is the mean, the blue shades are the standard 657 

deviations, the green line is the expected improvement (EI), and the red dots are the 658 

training data. (a)–(d) show the estimation results in the 0th (when only the initial training 659 

data are given), 4th, 12th, and 20th training cycles, respectively. 660 

 661 

Fig. 5. Summary of estimation results obtained by the Bayesian optimization (BO) for 662 

different observations. (a) Box-and-whisker plot of the inflation factor 𝜏𝜏. The blue line 663 

indicates the median, the box spans the first and third quartiles, the whiskers represent 664 

the minimum and maximum values, and the dots are outliers. The dashed black line 665 

shows the optimal inflation factor using the brute-force method. (b) Box-and-whisker plot 666 
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of the root mean square error (RMSE) between the truth and analysis. The red line is 667 

the median, although it is difficult to see owing to the slight statistical variation. The 668 

dashed black line indicates the RMSE using the optimal inflation factor determined by 669 

the brute-force method. Otherwise, it is as shown in (a). The outliers in (a) indicate 670 

inflation factors with an RMSE greater than 1.0. As the limits on the vertical axes in (a) 671 

and (b) are set to reflect each bound of the inflation factor and the RMSE, the outliers in 672 

(b) are out of sight. 673 

 674 

Fig. 6. Summary of estimation results obtained using Bayesian optimization. The red line is 675 

the root mean square error (RMSE) between observations and forecasts, the blue line is 676 

the inflation factor 𝜏𝜏, and the green line is the expected improvement (EI). The dashed 677 

black line represents the optimal inflation factor using the brute-force method. The blue 678 

dot shows the optimal inflation factor among the 20 training cycles. In Fig. 3, the initial 679 

values of the hyper-parameters in the Gaussian kernel were set to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 =680 

𝑒𝑒1.0,𝑒𝑒0.4, and 𝑒𝑒0.1, but in Fig. 6, they were set to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 = 1.0, 1.0, and 1.0. Notably, 681 

the vertical axis in the expected improvement (EI) has been changed. 682 

 683 

Fig. 7. Estimation result of the relationship between the inflation factor 𝜏𝜏 and root mean 684 

square error (RMSE) (observations versus forecasts) using Gaussian process 685 

regression (GPR). This figure corresponds to Fig. 6. The regression and its uncertainty 686 
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for the RMSE are obtained as the mean and standard deviation (95% confidence 687 

interval) of the GPR. The blue line is the mean, the blue shades are the standard 688 

deviations, the green line is the expected improvement (EI), and the red dots are the 689 

training data. (a)–(d) show the estimation results in the 0th (when only the initial training 690 

data are given), 4th, 12th, and 20th training cycles, respectively. In Fig. 4, the initial 691 

values of the hyper-parameters in the Gaussian kernel were set to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 =692 

𝑒𝑒1.0,𝑒𝑒0.4, and 𝑒𝑒0.1, but in Fig. 7, they were set to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 = 1.0, 1.0, and 1.0. 693 

 694 

Fig. 8. Time series of the root mean square error (RMSE) between the truth and analysis 695 

and the ensemble spread with the optimal inflation factor 𝜏𝜏 = 0.44 determined by the 696 

Bayesian optimization (BO). The red line is the RMSE and the blue line is the ensemble 697 

spread. Note that the horizontal axis is the assimilation cycle, not the training cycle. 698 

 699 

  700 
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Fig. 1. Flowchart of Bayesian optimization (BO) within the local particle filter (LPF) 701 

framework, where 𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇) represents the time, 𝑔𝑔 denotes the objective function, 702 

and 𝑆𝑆 is the number of input data (inflation factor) and corresponding output data (root 703 

mean square error; RMSE). In the observing system simulation experiment (OSSE), the 704 

observations are assimilated every 6 Earth hours (0.05 time units) using the LPF, and 705 

the RMSE between observations and two Earth day (0.4 time units) extended ensemble 706 

forecasts at the same time is calculated. This process in the objective function converts 707 

the input data to the output data. In the BO, the input and output data relationship is 708 

approximated using the Gaussian process regression, and the input data that minimizes 709 

the objective function is estimated using the expected improvement. Then, the training 710 

cycles, which involved performing the OSSE with the estimated input data, are repeated. 711 

Note that BO optimizes the inflation factor in the LPF offline. 712 
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 42 

Fig. 2. Parameter dependence of root mean square error (RMSE) between the truth and 715 

analysis of the local particle filter (LPF) with 256 ensemble members. The horizontal and 716 

vertical axes show the localization scale 𝑟𝑟 and inflation factor 𝜏𝜏, respectively. The 717 

minimum error of 0.276 was obtained when 𝑟𝑟 = 3 and 𝜏𝜏 = 0.4 (the cross mark). “FILTER 718 

DIVERGENCE” denotes the region with an RMSE of more than 1.0. 719 

 720 

  721 
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Fig. 3. Summary of estimation results obtained using Bayesian optimization. The red line is 722 

the root mean square error (RMSE) between observations and forecasts, the blue line is 723 

the inflation factor 𝜏𝜏, and the green line is the expected improvement (EI). The dashed 724 

black line represents the optimal inflation factor using the brute-force method. The blue 725 

dot shows the optimal inflation factor among the 20 training cycles. 726 

 727 

  728 
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Fig. 4. Estimation result of the relationship between the inflation factor 𝜏𝜏 and root mean 730 

square error (RMSE) (observations versus forecasts) using Gaussian process 731 

regression (GPR). This figure corresponds to Fig. 3. The regression and its uncertainty 732 

for the RMSE are obtained as the mean and standard deviation (95% confidence 733 

interval) of the GPR. The blue line is the mean, the blue shades are the standard 734 

deviations, the green line is the expected improvement (EI), and the red dots are the 735 

training data. (a)–(d) show the estimation results in the 0th (when only the initial training 736 

data are given), 4th, 12th, and 20th training cycles, respectively. 737 

 738 

  739 



 46 

 740 

 741 

 742 

 743 

 744 
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 752 

 753 

Fig. 5. Summary of estimation results obtained by the Bayesian optimization (BO) for 754 

different observations. (a) Box-and-whisker plot of the inflation factor 𝜏𝜏. The blue line 755 

indicates the median, the box spans the first and third quartiles, the whiskers represent 756 

the minimum and maximum values, and the dots are outliers. The dashed black line 757 

shows the optimal inflation factor using the brute-force method. (b) Box-and-whisker plot 758 

of the root mean square error (RMSE) between the truth and analysis. The red line is 759 
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the median, although it is difficult to see owing to the slight statistical variation. The 760 

dashed black line indicates the RMSE using the optimal inflation factor determined by 761 

the brute-force method. Otherwise, it is as shown in (a). The outliers in (a) indicate 762 

inflation factors with an RMSE greater than 1.0. As the limits on the vertical axes in (a) 763 

and (b) are set to reflect each bound of the inflation factor and the RMSE, the outliers in 764 

(b) are out of sight. 765 

 766 

  767 



 48 

Fig. 6. Summary of estimation results obtained using Bayesian optimization. The red line is 768 

the root mean square error (RMSE) between observations and forecasts, the blue line is 769 

the inflation factor 𝜏𝜏, and the green line is the expected improvement (EI). The dashed 770 

black line represents the optimal inflation factor using the brute-force method. The blue 771 

dot shows the optimal inflation factor among the 20 training cycles. In Fig. 3, the initial 772 

values of the hyper-parameters in the Gaussian kernel were set to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 =773 

𝑒𝑒1.0,𝑒𝑒0.4, and 𝑒𝑒0.1, but in Fig. 6, they were set to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 = 1.0, 1.0, and 1.0. Notably, 774 

the vertical axis in the expected improvement (EI) has been changed. 775 

 776 

  777 
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Fig. 7. Estimation result of the relationship between the inflation factor 𝜏𝜏 and root mean 779 

square error (RMSE) (observations versus forecasts) using Gaussian process 780 

regression (GPR). This figure corresponds to Fig. 6. The regression and its uncertainty 781 

for the RMSE are obtained as the mean and standard deviation (95% confidence 782 

interval) of the GPR. The blue line is the mean, the blue shades are the standard 783 

deviations, the green line is the expected improvement (EI), and the red dots are the 784 

training data. (a)–(d) show the estimation results in the 0th (when only the initial training 785 

data are given), 4th, 12th, and 20th training cycles, respectively. In Fig. 4, the initial 786 

values of the hyper-parameters in the Gaussian kernel were set to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 =787 

𝑒𝑒1.0,𝑒𝑒0.4, and 𝑒𝑒0.1, but in Fig. 7, they were set to 𝜃𝜃1,𝜃𝜃2, and 𝜃𝜃3 = 1.0, 1.0, and 1.0. 788 

  789 
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Fig. 8. Time series of the root mean square error (RMSE) between the truth and analysis 790 

and the ensemble spread with the optimal inflation factor 𝜏𝜏 = 0.44 determined by the 791 

Bayesian optimization (BO). The red line is the RMSE and the blue line is the ensemble 792 

spread. Note that the horizontal axis is the assimilation cycle, not the training cycle. 793 
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