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Abstract. We report here a computational study of a recently proposed simple dynamical
map. Despite its simplicity, it offers a wide variety of dynamical paths depending on the initial
value. Some analytical properties and future directions are also discussed.
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1. Introduction
Investigations of dynamical maps have gained much attention in mathematical sciences. A
representative example is a logistic map[1, 2] that has been investigated extensively. Many
researchers are intrigued by the chaotic dynamics produced by this very simple map.

Against this background, we numerically study here a recently proposed dynamical map,
which we call the “N-map”. Despite its simplicity, this map gives rise to a variety of dynamical
patterns; monotonic approach to a single fixed point, divergence, and oscillations. Interestingly,
the map does not contain any tuning (bifurcation) parameter and all of these can be achieved
solely by the change of the initial value. Some analytical properties are also discussed as well as
a future extension of the study of the N-map.

2. N-map
The N-map is given by the following first-order recursion relation.

Xn+1 = 3F [Xn +
1
2
] − 2Xn, X0 = a, (0 < a < 1, n = 0, 1, 2, . . . ). (1)

where F [x] is a flooring function which returns largest integer N with N ≤ x.

2.1. Analysis
We can analytically prove some properties of this map, particularly concerting oscillatory
behaviors.

2.2. Condition for periodic dynamics
Lemma 2.1 If Xn+k = Xn for some n, k ∈ N≥1, a is a rational number.



Proof
For any m, we have Xm+1 + 2Xm ∈ Z. Thus, for any n, k ∈ N≥1, Xn+k − (−2)kXn ∈ Z.

Therefore, if Xn+k = Xn = c, c ∈ 1
1−(−2)k Z ⊆ Q. As a = s+(−1)n−1c

2n−1 with some integer s, it
follows that a ∈ Q. ¤
This lemma tells us the following:

(i) If the dynamical path is periodic, a must be a rational number. So, when the initial value
a is an irrational number, then the path cannot be periodic.

(ii) On the other hand, we note that we can have a non-periodic path for a certain rational
number. It can be easily shown that

• If a = 1
3 , then X∞ → −∞,

• If a = 2
3 , then X∞ → ∞.

2.3. Period of periodic dynamics
Let us further analytically investigate the period when a periodic solution arises. In the following,
we assume a (0 ≤ a < 1) is a rational number up to m decimal points, i.e.,

{m ∈ N≥0 | 10ma ∈ Z} ̸= ∅

Definition 2.2 For such a, we define the followings.

(i) m(a) = min{m ∈ N≥0 | 10ma ∈ Z}.
(ii) ℓ(a) = max{ℓ ∈ N≥0 | 10m(a)a

5ℓ ∈ Z}.
(iii) q(a) = min{m(2na) | n ∈ N≥0}.

These definitions mean respectively:
(i) a is a rational number with m(a) decimal points.
(ii) The integer, 10m(a), (that is the decimal part of a) can be divisible by 5 for ℓ(a) times.
(iii) When n is large enough, Xnhas q(a) decimal points.

Remark 2.3 The relation q(a) = m(a) − ℓ(a) holds.

Example 2.4

(A) m(0.04) = 2, ℓ(0.04) = 0, q(0.04) = 2.
(B) m(0.05) = 2, ℓ(0.05) = 1, q(0.05) = 1.
(F) m(0.5) = 1, ℓ(0.5) = 1, q(0.5) = 0.

When q(a) = 0, we have an ∈ Z for somen ∈ N and it stays as constant. Thus, we consider
the case of q(a) > 0 in the following.

Lemma 2.5 Consider the case q(a) > 0. If a + b = r for some r ∈ Z, then f(a) + f(b) = r.

Proof
It follows from the definition of f . ¤
We now prepare the following two general lemmas.

Lemma 2.6 When the remainder of dividing c ∈ Z by 5 is 4, the followings hold

(i) 1 + c3 + c4 is a multiple of 5. Also, the remainder of c5 divided by 5 is 4
(ii) If 1 + c is a multiple of 5k for k ∈ N>0, then 1 + c5 is a multiple of 5k+1.



Proof
(i) In Z/5Z, c = −1. Hence, 1 − c + c2 − c3 + c4 = 5 = 0 and c5 = −1.
(ii) As (1 + c5) = (1 + c)(1 − c + c2 − c3 + c4), the result follows immediately from (i). ¤

Proposition 2.7 For any q ∈ N>0, (1 + 22·5q−1
) = (1 + 45q−1

) is divisible by 5q.

Proof
When q = 1, it is obvious as 1 + 22·50

= 5. The rest follows from lemma 2.6 by induction on
q. ¤

With these preparations, we are now in the position of providing half period p(a) of periodic
dynamics of {Xn}.
Definition 2.8 For q(a) > 0, we set

p(a) = min{p ∈ N≥0 | 5q(a)divides(1 + (−2)p)}

.

We note that this set on the righthand side is not empty, as it has 2 · 5q(a)−1 as an element by
Proposition 2.7.

Remark 2.9 As (1 + (−2)p(a)) is divisible by 5q(a), p(a) ≡ 2 mod 4. In particular p(a) is an
even number.

For example, we have p(a) = 2 for q(a) = 1, and p(a) = 10 for q(a) = 2. Even though the
details needs to be verified, we expect in general, p(a) = 2 · 5q(a)−1, so that for q(a) = 3, 4, 5, . . .,
p(a) = 50, 250, 1250, . . ..

We show in the following that p(a) is the half period when the dynamical paths Xn is periodic.
For that purpose, we focus on the periodicity of the decimal part. We define 〈r〉 = r− [r] as the
decimal part of r ∈ R.

Proposition 2.10 Let q(a) > 0, then for some N ∈ N≥0, 〈XN+p(a)〉 + 〈XN 〉 = 1 holds. Also
for this N , the followings are ture.

(i) If we define u(a) ≡ XN+p(a) + XN , then u(a) ∈ Z.
(ii) For any n ≥ N , Xn+p(a) + Xn = u(a).
(iii) For any n ≥ N , Xn+2p(a) = Xn.

Proof
For n ∈ N≥1, 〈Xn〉 − (−2)n−1〈a〉 ∈ Z. This leads to (〈Xn+p(a)〉 + 〈Xn〉) − (−2)n−1(1 +

(−2)p(a))〈a〉 ∈ Z. Therefore, if we take N large enough, we obtain 〈XN+p(a)〉 + 〈XN 〉 ∈ Z from
the way we defined p(a). As 0 < 〈XN+p(a)〉, 〈XN 〉 < 1, 〈XN+p(a)〉 + 〈XN 〉 = 1.

(i) XN+p(a) + XN = [XN+p(a)] + [XN ] + 〈XN+p(a)〉 + 〈XN 〉 ∈ Z.
(ii) It follows from Lemma 2.5.
(iii) From (3), Xn+2p(a) = u(a) − Xn+p(a) = u(a) − (u(a) − Xn) = Xn. ¤

Corollary 2.11 Let q(a) > 0. For b = 1 − a, we define Yn = f(n−1)(b) (n ∈ N≥1), i.e., {Yn} is
the dynamical path with the initial value b. Then, the following holds.

(i) For any n ∈ N≥1, Xn + Yn = 1.
(ii) For any n ≥ N , Yn = (1 − u(a)) + Xn+p(a). Here, N is set as large enough given a.

Proof
(i) It follows from Lemma 2.5.
(ii) As Xn+p(a) = u(a) −Xn, Yn = 1 −Xn = 1− (u(a)− Xn+p(a)) = (1 − u(a)) + Xn+p(a). ¤



2.4. Numerical Simulations
In order to verify and gain further insight, we performed numerical simulation for this map with
varying the initial value a. In Fig.1, we have shown samples of periodic dynamics with periods
4 (A,C) and 20 (B, D) verifying Proposition 2.10. Also, in Fig.2, we give examples of the case
described in Corollary 2.11. The representative results of non-periodic cases are shown in Fig.
3, confirming such properties as the divergences for a = 1/3 and a = 1/3. Together, these
representative paths show a variety of dynamical patterns out of this simple map just by the
change of initial value a: monotonic convergence and divergence, non-monotonic convergence
and divergence, oscillations, and complex oscillatory path, complex non-periodic path.
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Figure 1. Samples of periodic dynamical paths from the N-map. The values of a are (A) 0.4,
(B) 0.04, (C) 0.7, (D) 0.07.
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Figure 2. Samples of dynamical paths from the N-map for a and 1 − a. The values of a are
(A) 0.05, (B) 0.95, (C) 0.06, (D) 0.94
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Figure 3. Samples of non-periodic dynamical paths from the N-map. The values of a are (A)
1/6, (B) 5/6, (C) 1/4, (D) 3/4, (E) 1/3, (F) 2/3, (G) 1/2, (H) 1/

√
2.

3. Discussion
We have presented a rather preliminary numerical study of a simple map with a flooring function.
More thorough investigations are needed to reveal the nature of this N-map. The natural
extension of the N-map is given as

Xn+1 = αF [Xn +
1
2
] − βXn, X0 = a, (0 < a < 1, n = 0, 1, 2, . . . ), (2)

With the real parameters α and β. We expect to see more intricate dynamics for some ranges
of these parameters.
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