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In optical visualization experiments using flakey particles, the relationship between the re-

sulting brightness patterns and the flow field is complex, and numerous studies have been

conducted to explore this connection, for example G. Gauthier, P. Gondret, and M. Rabaud,

Physics of Fluids, vol.10, no.9, pp.2147-2154, 1998. We present a dynamical system model

for the orientation distribution of flakey particles floating in an incompressible Newtonian

fluid. Optical flow visualization using flakey particles is closely related to the orientation

dyanmics described by multiple points moving on a unit sphere, which is goverened under

the shear history experienced by an infinitesimal flakey particle drifting in the flow. Although

these points move individually on the unit sphere according to the flow field, quantitatively

evaluating the time-dependent flow information obtained via visualization is generally chal-

lenging. To address this difficulty, we project the set of points on the unit sphere into a three-

dimensional space determined by the particle trajectories so that we can gain insight into

flow-visualization experiments. Additionally, we employ a simple neural network model to

characterize the dynamics, which are not necessarily closed, in this three-dimensional space.

Our approach provides a new perspective for understanding the relationship between distri-

bution states and their governing principles, offering potential applications not only in fluid

dynamics but also in visualization techniques and data-driven modeling in related fields.

1. Introduction

Optical visualization using flakey particles and coated mica particles has been established

as an effective technique for the experimental characterization of incompressible Newtonian
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fluids.1, 2) Gauthier et al.3) investigated the orientation trajectories of elliptical particles in a

three-dimensional flow and demonstrated the consistency between experimental observations

and numerical predictions based on Jeffery’s solution4) within a Taylor—Couette flow. It is

well-established that particles with a sufficiently small Stokes number follow fluid motion

and maintain a uniform spatial distribution. These particles undergo orientation changes in

response to an imposed shear field, and their rotational motion is described by Jeffery’s solu-

tion.4) Specifically, ellipsoidal particles of finite thickness exhibit continuous rotational mo-

tion with a finite period, whereas idealized particles of negligible thickness tend to align pref-

erentially in the principal shear direction. Notably, flakey particles such as aluminum flakes,

which are commonly employed in flow visualization experiments, may be approximated as

zero-thickness particles. Flow visualization experiments are representative cases in which

this alignment phenomenon manifests. Based on Jeffery’s solution, Savas5) analyzed the ori-

ented probability density distribution on parallel flows, the flow over a rotating disk, and the

spinup from rest in a cylindrical cavity by considering a local flow. Predictions were made for

parallel flow, flow on a rotating disk, flow in a cylindrical cavity, so that the predicted bright-

ness pattern was experimentally confirmed. Flakey particles may serve as effective probes

for extracting structural information from the flow field through a shear-induced orientation

alignment. However, in practical experimental systems, these particles possess finite thick-

nesses and are influenced by thermal disturbances such as Brownian motion. The particle

orientation distribution (POD) refers to the orientation distribution of a flakey fluid element

drifting in the flow. Even under idealized conditions, wherein POD gradually converges to-

ward the principal shear direction, this convergence may be disrupted by shape anisotropy

or thermal fluctuations. Kida6) formulated an orientation equation for flakey particles that

explicitly accounts for Brownian motion, thereby quantifying the extent to which thermal

factors contribute to the POD isotropy.

In visualization experiments, light from the illumination source is reflected by the flakey

particles and captured by a camera, with the resulting orientation bias manifesting as an

optical signal. Goto et al.7) successfully visualized eddy structures in turbulence using flakey

particles, as this results is attributed to the convergence of the POD over time. Specifically,

even if the initial particle orientations are isotropically distributed within an infinitesimally

small region, the drift leads to the emergence of anisotropy, ultimately resulting in alignment.

The aligned particles reflect the incident light in a specific direction, rendering the structural

features of the flow field discernible. The convergence of the POD serves as a fundamental

mechanism for interpreting flow structures.
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However, the convergence of the POD is not necessarily guaranteed across all flow fields.

The history of the shear experienced by a particle plays a crucial role in determining its

orientation dynamics, reflecting the residual effects of past flow conditions on its current state.

Any arbitrary flow field can be locally approximated as a sum of strain and rotation, such that

the cumulative history of shear experienced by the particles is not represented only by a

simple addition of parallel shears. Under conditions that cannot be approximated by parallel

shears, the interpretation of brightness patterns, not only in time-dependent flow visualization

but also in steady flow visualization, becomes significantly complex, posing challenges in

extracting detailed flow structures.

Egbers et al.8) used aluminum flakes as tracer particles to visualize flow in the early stages

of transition in a spherical Couette flow (SCF). Yoshikawa et al.9) and Arai et al.10) investi-

gated the visualization of flow by suspending aluminum flakes in the m-fold spiral state of an

SCF. Numerical simulations successfully reproduced the experimental visualization results,

revealing that the POD does not converge in the spiral state, even under idealized conditions

where the effects of particle shape and Brownian motion are neglected. However, the spiral

state and wavenumber can be successfully identified by leveraging the periodicity of the lu-

minance pattern. Furthermore, numerical simulations using a two-dimensional model have

demonstrated that the periodicity and wavenumber of the flow can be extracted from the col-

lective orientation behavior of suspended flakey particles.11) Thus, the visualization of flakey

particles has been widely applied in various contexts. However, the correlation between the

POD and the flow field has been quantitatively evaluated only for a few limited cases of flow

fields. Moreover, determining the flow information represented by the brightness patterns

obtained through visualization, which is closely related to the POD, remains a significant

challenge.

Here, we propose a novel index for quantifying the collective or stochastic nature of the

POD and its correlation with the underlying flow field in a time-dependent two-dimensional

flow. In this study, the orientation changes of flakey particles suspended in an incompressible

Newtonian fluid are considered from a set-theoretical perspective, thereby formulating the

dynamics of the three indicators I,O, P in the shear history space. Here, the first indicator, I,

represents the anisotropy of POD, while the second and third indicator, O and P, quantify the

relationship between the POD and the flow field. This approach offers a new framework for

understanding the relationship among the flow field, POD, and observed patterns. Further-

more, we elucidate the existence of attractors, limit cycles, periodic orbits, and turbulent-like

behavior within the shear history space. However, we also show it is impossible to extract
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the flow-shear information through visualization in general flow fields, even if eliminating

isotropic mechanisms such as particle shape effects and thermal fluctuations.

First, a set-theoretic description is provided in Section 2 to quantitatively evaluate the

relationship between the POD and flow. We then apply the introduced concept to a model

presented in Section 3. Based on the results, we analyze the shear history space from the per-

spective of the visualization experimenter in Section 4-1. Finally, In Section 4-2, we employ

weak modeling using neural network to analyze the dynamics that are not necessarily closed

within the shear history space. Finally, In Section 5, This approach enables us to capture the

intricate relationship between the POD and shear flow, which conventional analytical meth-

ods fail to describe fully. Ultimately, our study offers a new perspective for quantifying the

information retrievable from flow visualization.

2. Set-theoretic description of POD

Let the translational motion of flakey particles suspended in an incompressible Newtonian

fluid be governed by the following equation:
dr
dt
= u(r). (1)

where r is the position of the particle and u(r) is the velocity at position r. According to

Ref.13), the time evolution of the unit normal vector s of the flakey particles is assumed to be

described by the following equation:
ds
dt
= s × s × (∇u(r) · s). (2)

The solution to this equation is equivalent to that derived by neglecting thickness in Jeffery’s

solution under the assumption of infinitesimally small particles. The equation for the micro-

facial element of a fluid as described by Batchelor12) indicates that flakey particles stick to

the fluid elements and are in rotational motion. Thermal effects are disregarded in relation to

both the translational and rotational motions of the particles.

The change in orientation s can be conceptualized as the motion of a point on a unit

sphere. Thus, s is redefined as a unit vector representing a point on the unit sphere. Let S

be a set consisting of all points on a sphere. Eq. (2) shows that the velocity gradient tensor

uniquely determines the motion of point s. For any s, we define the mapping f from the set

D consisting of all velocity gradient tensors to the tangent vector space F on the unit sphere

as follows:

f : s × s × (∇u · s) for ∇u ∈ D. (3)
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This mapping is injective but not surjective, and the inverse mapping is not well-defined

in general. However, provided that a given tangent vector field ṡ(s) on the unit sphere is

guaranteed to be obtained based on the aforementioned equation from some velocity gradient

tensor, then a unique ∇u should be determined from the tangent vector field. This can be

proven using the method of contradiction. Suppose that the tangent vector field calculated

from two different velocity gradient tensors [∇u]1 and [∇u]2 is identical. Then s× s×([∇u]2−
[∇u]1

) · s = 0 holds for any s. Therefore, s × ([∇u]2 − [∇u]1
) · s//s holds only if

(
[∇u]2 −

[∇u]1
) · s = 0 is the case. Thus,

(
[∇u]2− [∇u]1

)
must be a constant multiple of the unit tensor.

From the incompressibility condition, the constant must be 0, leading to the conclusion that

[∇u]2 = [∇u]1, which contradicts our initial assumption.

When an arbitrary POD is considered, we define the state space J (FIG.1) as a subset

of S, consisting of a finite number of points on the unit spheres (J ⊂ S and J ∈ J). To

describe how the state space evolves over time with the flow field, we let the state space J

move (float) in a flow U ∈ U, where U may be time-varying. Let the path of motion of J

start from r0 = r(t0), i.e., the trajectory of a particle be defined as TU,r0 = {r(t) | t ∈ [t0,∞)},
and let T be the set from which all trajectories originate. The subset t = {r(t) | t ∈ [t0, tT ]},
obtained by segmenting the trajectory TU,r0 over a given time interval, is projected onto D =

{∇u(t) | t ∈ [t0, tT ]} via the mapping dU, which is determined by U. This mapping is not solely

determined by the trajectory t but also depends on U itself. Here, D belongs to the collection

DU, where DU consists of all elements D.

We also denote the shear history in which the state space undergoes drift as SH = { f (t) |
t ∈ [t0, tT ]}. Here, f (t) ∈ F , and f (t) can also be thought of as a map g ∈ G projecting

one state space J1 onto another state space J2, where G represents the set of all maps g :

J1 7→ J2 for J1, J2 ∈ J. Let SHU be the set of elements of SH in U. From the relationship

between F andD, there exists a mapping fromDU toSHU. Then, we define a map h such that

h : SH 7→ g for SH ∈ SHU, g ∈ G. In this case, map g functions as g : Jt0 7→ JtT for Jt0 , JtT ∈ J.

1 For a given flow U, define the initial position r0 = r(t0).

2 The shear history SH is extracted from the path t ⊂ TU,r0 up to time tT .

3 The extracted shear history is transformed into g via the map h.

4 The state space Jt0 at time t0 is projected onto the state space JtT = JSH at time tT through

the map g.

We consider the orientation of flakey particles suspended in a plane Couette flow. It is
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Fig. 1. Examples of the state space J, which is formed by N = 100 points distributed on a unit sphere,

illustrating their spatial configuration.

possible that the normal vector of the flakey particles converges to a state perpendicular to the

streamline. When the thickness of the particles is non-zero, a periodic rotational behavior is

observed; however, in the case of zero thickness, no rotational behavior occurs. This behavior

is also evident from Eq.2. In a plane Couette flow, any state space J ∈ J is mapped to the set

representing the unidirectional J ∈ Junidirection by a mapping g derived from the shear history

setSHcouette. The state space J ∈ J is a state space in which a finite number of points on a unit

sphere are gathered at a certain point. Here, SHcouette represents the shear history in a plane

Couette flow and is a subset of SH. Additionally, Junidirection is a subset of J. In other words,

a sufficiently long path t ⊂ Tcouette,r0 ∈ Tcouette provides SH ∈ SHcouette, and as a result, J ∈ J
converges to JSH ∈ Junidirection.

To quantitatively evaluate a state space J, we introduce a surjective map i : J 7→ I (J ∈
J, I ∈ I). Here, I is defined as the real interval [0, 1] and the map is defined such that for the

attractor state space, i(J) = 1. The map i projects the set of state spaces J onto the real set

I ⊂ [0, 1], thereby quantifying the POD state.

Let us consider a visualization experiment in a plane Couette flow. It is expected that sus-

pending flakey particles and placing light sources in two orthogonal directions will provide

a good understanding of the flow field. This is because the light from the direction perpen-

dicular to the plates is reflected at an angle of 0, whereas the light from the direction parallel

to the plates passes through the fluid and is not reflected (here, the effect of light refraction

is neglected). The POD, i.e., the state space J, converges when i(J) = 1, where the normal

vectors of the flakey particles are perpendicular to the streamline. Consequently, visualization
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can be used to provide an overview of the flow field. Thus, to obtain an outline of the flow,

such as the shear direction, it is desirable that J ∈ Junidirection, indicating i(J) = 1. However,

even if J ∈ Junidirection, we cannnot expect direct access to flow information. This is because

I ∈ I does not contain information regarding the normal vectors of particles perpendicular to

the streamline. This implies that even if all flakey particles are oriented in the same direction,

the process of acquiring flow information or its methods is not simplified.

Let i be a mapping that allows us to project the state space J onto a real number I. How-

ever, I does not retain complete information regarding the flow field and history, such as SH.

Therefore, even if J ∈ Junidirection (i.e., i(J) = 1), reconstructing the details of the flow field

may be difficult. To address this issue, we introduce two new sets: O and P.

First, we consider the surjection o : J 7→ O for J ∈ J and O ∈ O. Here, O denotes the real

interval [0, 1]. For example, if the main shear direction of the flow field is used, we obtain

O by analyzing the relationship between the finite points in J and a reference point on the

unit sphere. This mapping allows us to obtain information regarding the characteristics of the

state space J relative to the flow field. However, because mapping o is not bijective, some

information about the state space J is lost.

Next, we define P ∈ P as an index for evaluating the time evolution of a flow field relative

to that of the state space J. The magnitude of the change in O is used to evaluate this and

is determined by changes in both J within the set J and the velocity field. In particular,

we define P = p(O1,O2), where O1 = o(J1), O2 = o(J2) for J1, J2 ∈ J. Here, p(O1,O2)

is a function defined on O. Given this definition, P serves as a measure of the relationship

between the state apace and flow field, and by determining O1 and O2 through the paths, it

can be considered as a measure of time variation. Note, even if the time variation defined in

this manner results in P = p(o(J1), o(J2)) = 0, it does not necessarily imply that J1 = J2.

From the perspective of dynamical systems, we consider the following. When the initial

state space Jt0 evolves along the trajectory t ⊂ TU,r0 ∈ T until time tT , the resulting state

space JSH ∈ J is given by gSH(Jt0). The state space JSH can be obtained from Jt0 using U, r0, tT ,

but as we have discussed so far, from the viewpoint of limiting the analysis to infinitesimal

regions, the quantities that correspond well to the time evolution of the state space are SH

and D. Therefore, the discussion proceeds primarily in SH and D, especially in D. However,

t, which contains position information, is crucial and indispensable when considering spatial

variations in the brightness of the visualization. Next, the quantities I,O, P projected from

JSH are uniquely determined along D. In particular, O,P are the projections mapped along D,

which is different for each trajectory. There is no bijective mapping between SHU and DU.
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Therefore, we define ID,OD,PD (ID ⊂ I,OD ⊂ O,PD ⊂ P) corresponding to the velocity gra-

dient trajectory D ∈ DU. Then, the dynamics within the velocity gradient history space(shear

history space) AD = ID × OD × PD are constructed as follows:
dI
dt
= AI(I,O, P),

dO
dt
= AO(I,O, P),

dP
dt
= AP(I,O, P).

where AI , AO, AP are the appropriate mappings defined on AD. The defined space AD may

contain attractors, periodic orbits, or a limit cycle. By observing the time evolution withinAD,

it is evident that the flow’s structure can be captured along a particular trajectory. The POD

on the real-space trajectory, relationship between the POD and flow, and their time evolutions

are represented. Furthermore, such dynamics are autonomous (not necessarily closed). As

mentioned earlier, the space AD corresponds to the finite trajectory, and even if attractors or

a limit cycle exist within AD, it should be noted that a comprehensive understanding of the

entire flow field is not possible.

In this study, we investigated the dynamics within AD for particles suspended in a time-

dependent two-dimensional flow. According to Eq.(2), the orientation of the flaky particles

suspended in a two-dimensional flow converges onto the flow plane. Therefore, J is defined

as the set of all state spaces J consisting of N points on the unit circumference. Moreover, we

define the mapping i from J to ID using each element sn = (sn,x, sn,y) of J ∈ J as follows:

i : tr(
←→
T )2 − 4det(

←→
T ), (4)

where the directional tensor,
←→
T , introduced in Ref.13) is

←→
T =

1
|J|
∑
sn∈J

←→
T n,

←→
T n =

 s2
n,x sn,xsn,y

sn,ysn,x s2
n,y

 .
When the distribution within the angle of inclination, ϕ ∼ ϕ + ∆ϕ, is represented as P(ϕ)dϕ

in N → ∞, the value of i in Eq.(4) equals to
(∫ 2π

0
cos 2ϕP(ϕ)dϕ

)2
+
(∫ 2π

0
sin 2ϕP(ϕ)dϕ

)2.

Taking into account that the expression of i is the coefficient of Fourier expansion, note that

the minimum value of i is zero not only for the uniform distribution but also for any P(ϕ) =
1

2π +
∑∞

n=2 an cos (2nϕ) + bn sin (2nϕ). In addition, under
∫ 2π

0
P(ϕ)dϕ = 1 and P(ϕ) > 0, the

maximum value of i is 1 for P(ϕ) = δ(ϕ − ϕ0) Thus, the degree of i describes anisotropy.

8/34



According to this definition, the state space J ∈ Junidirection projected by i is mapped to 1,

representing the POD anisotropy.

Moreover, we define the map oD from J to OD is defined as follows:

oD :
1
|J|
∑
sn∈J
|sn · e|, (5)

in ∇u ∈ D, where

(∇u − λ←→I )e = 0, λ ∈ σ(∇u).

The set σ(∇u(t)) represents the set of all eigenvalues of ∇u(t), and e is the eigenvector cor-

responding to the eigenvalue λ. By selecting a single e at the initial position r0 and ensuring

that e varies smoothly along the trajectory, we obtain OD, which has a time-smooth O. In a

situation where the POD is isotropically distributed in N → ∞, that is, when i(J) = 0, we have

oD(J) = 2/π. The value of e, which is required to calculate oD, contains the flow information

which is principally unkown in visualization experiments, so that the value of oD may be a

clue for an experimenter to know the flow information.

Finally, we define the map pD on OD as follows:

pD :
o(gSH1(Jt0)) − o(gSH2(Jt0))

dt
, (6)

t1 = {r(t)| t ∈ [t0, tT ]}, t2 = {r(t)| t ∈ [t0, tT − dt]}.

where t1 and t2 provide SH1 and SH2, respectively. Jt0 is the state space at r0 = r(t0) at time

t0, and pD gives PtT ∈ PD and P at time tT .

3. Results

In this study, we analyzed the shear history spaceAD for several examples of time-varying

two-dimensional flows, where D ∈ DU.

Let α be the inclination angle of s to x-axis, and let eα be defined as eα B − sinαex +

cosαey. Additionally, let λ(t) be one of the two eigenvalues of the time-dependent sym-

metric velocity gradient tensor, and let the corresponding eigenvector be expressed as e B

cos ϕ(t)ex + sin ϕ(t)ey. Then,

∇u =

cos ϕ(t) − sin ϕ(t)

sin ϕ(t) cos ϕ(t)


λ(t) 0

0 −λ(t)


 cos ϕ(t) sin ϕ(t)

− sin ϕ(t) cos ϕ(t)

 ,
determine the time evolution of s, based on ds

dt =
dα
dt eα and s × s × (∇u · s) = −eα(eα · ∇u · s).
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From these and Eq.(2), we obtain
dα
dt
= λ(t) sin (2(α − ϕ(t))). (7)

This leads to the conclusion that, corresponding to the negative eigenvalue, the POD will

converge along the direction of the eigenvector at a time scale determined by the eigenvalue,

as derived from Eq.(2).

We studied three functional forms with respect to λ(t) and ϕ(t). Specifically, N = 50, 000

orientations were initialized at time t0 = 0 such that i(J0) = 0 by dividing the circumference

into N equivalents, and numerical simulations were performed using the fourth order Runge–

Kutta method (with a time step of ∆t = 10−4) in the absence of an analytical solution. The

time series of I, O, and P differ depending on the initial state J0. However, this study mostly

focuses on the case in which the initial distribution of orientations is isotropic.

As the flakey particles drift within the flow, the attracting eigenvector between the two

orthogonal eigenvectors may switch. For example, consider the case where the direction of

the eigenvectors of ∇u ∈ D remains constant, whereas the sign of λ(t) alternates periodically.

(i) λ(t) = cos (ωt), ϕ(t) = 0

dα
dt
= cos (ωt) sin (2α). (8)

where the analytical solution for α is α = tan−1 (e
2
ω sinωt tanα(0)).

Let the shear history space obtained in (i) be denoted as ADω . FIG.2 illustrates the trajec-

tories of I,O, P within ADω . The figure shows the trajectories for ω = π/10, 3π/10, 6π/10, π,

indicating that isotropization and anisotropization occur periodically. If the periods of I,O, P

are denoted as TI ,TO,TP, respectively, they satisfy 2TI = TO = TP = 2π/ω. Furthermore, the

values of P are symmetric with respect to the I–O plane at P = 0. As ω increases, the degree

of anisotropization weakens, indicating that the attracting eigenvector switches rapidly. For

ω = 0, irrespective of its initial value, α converges to α = π/2, which leads to I = 1. In the

limit ω → ∞, I = 0, O = 2/π, and P = 0 remain unchanged from their initial values. Thus

far, this discussion has been based on the initial condition I = 0, whereas FIG.3 presents

trajectories for different initial conditions within AD3π/10 (i.e., for ω = 3π/10). The proper-

ties described above hold regardless of the initial conditions, suggesting the existence of an

infinite number of periodic orbits. From the trajectories in ADω , it follows that if the shear

history obtained in (i) is applied to the particles, the periodicity in the flow can be inferred

from the experimental visualization. Moreover, it is expected that the periodicity of misalign-

ment between the direction of the eigenvector and the particle orientation can be measured
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Fig. 2. Time evolution of I, O, and P in ADω . For ω = π/10, 3π/10, 6π/10, π, the periods satisfy TO = TP =

2TI . I and O reach their maximum values simultaneously.

experimentally, which will be discussed in detail in the next section.

Let us incorporate the effects of the two orthogonal eigenvectors of the velocity gradient

tensor rotating at a constant angular velocity over time into the previously discussed model.

The direction of the eigenvector, denoted by ϕ(t), is time-evolved linearly as follows:

(ii) λ(t) = cos (ω1t), ϕ(t) = ω2t

dα
dt
= cos (ω1t) sin (2(α − ω2t)). (9)

The time evolutions within the shear history space ADω1 ,ω2
were investigated at the lattice

points on nπ (n = 0, 1, . . . , 10) for ω1, ω2. Several characteristic orbits were observed in the

phase-space diagram for ω1, ω2 (FIG.4). Whether the POD aligns with the direction of the

flow ’s eigenvectors depends on the values of ω1 and ω2.

First, when ω1 = ω2 = 0, that is, α = tan−1(e2t tanα(0)), the system converges to the
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Fig. 3. Time evolution of I, O, and P in the AD3π/10 . The plots are shown for (I(0),O(0)) =

(0.701, 0.957), (0.241, 0.840), (0.000, 0.638). I and O reach their maximum values simultaneously.

attractor (I,O, P) = (1, 1, 0). This corresponds to a flow in which the velocity field to which

the particles are exposed does not change, and the shear of the flow can be obtained through

visualization. The plane Couette flow differs from that in Eq.(9) because it possesses vorticity;

however, it is equivalent in the sense that the attracting eigenvector does not change over time.

A plane Couette flow contains an attractor within AD for D ∈ Dcouette. Next, for ω1 = 0 and

ω2 , 0, an elliptical periodic orbit is formed, as shown in FIG.4B. Here, TI = TO = TP, and

the phase shift can be confirmed between each of these systems. The periodicity of the flow

can be inferred from the changes in brightness obtained through visualization. Furthermore,

it can be observed from Eq.(9) that a bifurcation occurs at ω2 = 1. As shown in FIG.5, an

attractor is formed for ω2 ≤ 1. However, when ω1 , 0 and ω2 = 0, the time evolutions

can be described by Eq.(2) and are shown in FIG.4C. When ω2/ω1 = 1/2, a limit cycle is

formed in the O − P plane for sufficiently long paths t, where I = 1 (FIG. 4D). Finally,
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Fig. 4. Phase space diagram of ω1, ω2 in the dynamical system within ADω1 ,ω2
. For ω1 = ω2 = 0, an attractor

is formed. For ω1 = 0, ω2 , 0, elliptical orbits appear, and bifurcations occur at ω2 = 1 and behave similar to

those shown in FIG.5. For ω1 , 0, ω2 = 0, orbits identical to those in Eq.(8) are observed. Additionally, a limit

cycle exists when ω2/ω1 = 1, and characteristic orbits are formed when ω2/ω1 = 1/2.

for ω2/ω1 = 1, the orbits shown in FIG.4E (FIG.6) are observed. As ω1 is increased while

maintaining ω1 = ω2, The narrowing of the width of the alternating periodic orbits that make

up a single orbit suggests that the orbit is approaching a perfect periodic orbit with ω1 and ω2

at infinity.

Finally, we oscillate ϕ(t).

(iii) λ(t) = cos (ω1t), ϕ(t) = A cos (ω2t)

dα
dt
= cos (ω1t) sin (2(α − A cos (ω2t))). (10)

Three nondimensional parameters, ω1, ω2, and A, exist, and, as in Eq.(8) and Eq.(9),

attractors and periodic orbits are observed. Additionally, more diverse complex trajectories,

which did not occur as a result of the previous two equations, are confirmed (FIG.7). A

variety of trajectories can be seen in ADω1 ,ω2 ,A
, which is obtained in (iii). Some examples of

these trajectories are provided and their characteristics are listed. FIGS.7A and C illustrate

the trajectories that are expected to converge to I = 1. FIG.7B shows a trajectory resembling

a superposition of those in ADω(FIG.2). FIG.7D presents a distinctive trajectory in which

an additional tubular structure exists within a larger tubular orbit. In FIG.7E, the trajectory

converges within the I = 1 plane, where a smaller circular orbit is embedded within a larger
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Fig. 5. Time evolutions of I, O, and P in AD0,ω2
for ω2 = 1.1, 1, 0.9.

one. Finally, FIG.7F shows a complex trajectory with no apparent regularity.

The information obtained from the flow-visualization experiments based on the trajec-

tories within AD for (i), (ii), and (iii), as described previously, is discussed in the following

section.

4. Discussion

4.1 Limitation of interpretation from visualization

In Section 3, the relationship between flow and state space J was mapped onto the shear

history space A, and the time evolution of I,O, P within A were observed. In this section, we

focus on I and O, which constitute A, and conduct an analysis from an optical perspective.

In optical visualization using flaky particles, we assume that the only information obtain-

able by the experimenter is the brightness reflected by the particles. The relationship between

brightness and J can be considered as follows.
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Fig. 6. Time evolutions of I,O, P for ω1 = ω2. From left to right, (ω1, ω2) = (2π, 2π), (5π, 5π), (8π, 8π).

(5π, 5π) corresponds to Fig. 4 E. As ω1 = ω2 increases, the width of the repeated trajectory narrows.

From the perspective of visualization experiments, let the optical axis vector of the camera

be denoted as C and the incident light vector from the light source as I. Furthermore, let β be

the angle between the bisector of these two vectors and I, and let the corresponding vector be

denoted as R. Based on these, the intensity of the reflected light captured by the camera, B,

is expressed by the following equation.

B =
1
|J|
∑
sn∈J
|sn · R|.

In visualization experiments, the only directly measurable quantity for the experimenter

is the brightness B. Therefore, this study examines whether information about the flow field

can be extracted from variations in B. In particular, we investigate whether the periodicity

and direction of shear―specifically, the eigenvector e of the velocity gradient tensor―can

be estimated. If the brightness exhibits periodic variations, it can be inferred that the shear

periodicity is identifiable; however, this does not necessarily imply that the shear direction

can be determined.

The following section describes the conjecture an experimenter would likely make to ob-

tain e from visualization. Subsequently, the estimation results of e based on these conjectures

are presented, followed by a discussion of their validity.

4.1.1 Conjecture and Estimation from the Experimenter’s Perspective

In this section, we consider the Conjectures an experimenter might make when relying

solely on brightness information in visualization experiments. Under such conditions, the

only viable analytical approach for the experimenter is to connect brightness and flow field
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Fig. 7. Time evolution of various trajectories for I,O, P at ω2 = 2π. Top row, from left: (ω1, A) =

(2π, 0.067), (7π, 0.465), (4π, 0.258). Bottom row, from left: (ω1, A) = (8π, 0.465), (6π, 0.892), (π, 0.661).
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information. Since brightness depends on the state space J and POD, and J is generated by D,

the following conjecture can be drawn:

”Predict POD from brightness B and estimate the eigenvector e of the velocity gradient

tensor.”

To assess whether this approach can serve as a valid method for the experimenter, we

offer a more constrained perspective and develop reasoning based on specific assumptions.

∗1 Experimenter’s Conjecture

”POD converges in the direction of the eigenvector e”⇔ O = 1, I = 1

Based on this assumption, the experimenter interprets the temporal variations in bright-

ness as corresponding to the temporal variations in the converged orientations. Further-

more, given that the POD is converging in the direction of e, the following logical step

emerges:

”The temporal variation of brightness B corresponds to the rotation of e.”

∗2 Experimenter’s Estimation

”For a time-varying B , when B is maximized, e is parallel to R, and when B is minimized,

e is perpendicular to R.”

Based on the assumptions ∗1 and ∗2, the experimenter estimates e. In this study, we analyze

three different brightness variation situations, as shown in FIG. 8, and discuss the accuracy of

eigenvector estimation in each case.

4.1.2 Estimation from the Experimenter’s Perspective

In the following, we present estimation based on assumptions ∗1 and ∗2 for three situ-

ations of temporal brightness variation (FIG. 9). Let e∗ denote the eigenvector estimated by

the experimenter, and ϕ∗ the angle between e∗ and R.

Situation 1: No Change in Brightness (FIG. 8, Left) The brightness measured by the ex-

perimenter remains constant Bconst. In this case, the maximum and minimum observed bright-

ness is Bmax = Bmin = Bconst, and according to assumption ∗2, the eigenvector is always

estimated to be parallel to R, yielding ϕ∗ = 0. Consequently, the experimenter ’s estimation

is illustrated in FIG. 9 (Left, Situation 1).

Situation 2: Brightness Varies Without Reaching Zero (FIG. 8, Center) The estimated

eigenvector direction does not pass through the direction perpendicular to R (denoted as

R⊥), as illustrated in FIG. 9 (Center, Situation 2). According to assumption ∗1, as brightness
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Fig. 8. Situations of time variation in the brightness B measured by the experimenter. The left shows a case

where the brightness remains unchanged. The center and right show cases where the brightness varies over time.

In particular, in the right case, there are moments when the brightness becomes zero during the time variation.

decreases, e∗ monotonically leaves from R. Assumption ∗2 dictates that when brightness is

maximized, ϕ∗ = 0, and when brightness is minimized, ϕ∗ = π/2.

Situation 3: Brightness Varies and Reaches Zero (FIG. 8, Right) The eigenvector is

estimated to pass through R⊥, as depicted in FIG. 9 (Right, Situation 3). Similar to Situation

2, e∗ monotonically leaves from R as brightness decreases. Assumption ∗2 ensures that when

brightness is maximized, ϕ∗ = 0, and when brightness is minimized, ϕ∗ = π/2.

4.1.3 Validity of Estimation

In the following, we verify the validity of the estimation (FIG. 9) under assumptions ∗1
and ∗2 for three situations of brightness variation. We first consider cases where assumption

∗1 holds, followed by an analysis of several trajectories within the shear history space A

presented in Section 3 of this paper.

First, we examine the three scenarios where assumption ∗1 holds, meaning that I = O = 1.

Since O = 1, the all normal vectors in POD are aligned with e. Let ϕ denote the angle between

e and R.

(1) Case where the eigenvector e does not change direction (FIG. 10, Left)

In this scenario, the brightness remains constant. Consequently, the experimenter esti-

mates e∗ as shown in FIG. 9 (Situation 1), leading to ϕ∗ = 0 and an estimation error of
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Fig. 9. Situations of time variation in the brightness B measured by the experimenter and the estimation

of the eigenvector e∗. The left case represents a scenario where the brightness remains unchanged, leading the

experimenter to estimate that the eigenvector e does not change over time. The center and right cases correspond

to scenarios where the brightness varies. In the center case, the estimated eigenvector does not pass through R⊥,

whereas in the right case, it does.

|ϕ − ϕ∗|, which does not change over time (FIG. 11A). FIG. 11 illustrates the relation-

ship between brightness B and the eigenvector (both actual e and estimated e∗). The solid

black line f represents the actual relationship between e and B, and is a monotonic func-

tion defined for 0 < ϕ < π/2. (For π/2 < ϕ̃ < π, a symmetric function f̃ exists such that

f (ϕ) = f̃ (π−ϕ), making it impossible to distinguish ϕ from ϕ̃ based on brightness alone.)

Such a case corresponds to parallel shear flows like a plane Couette flow. Furthermore,

by adjusting the camera position to capture maximum brightness, it may be possible to

achieve |ϕ − ϕ∗| = 0.

(2) Case where the eigenvector e varies between R and R⊥ (FIG. 10, Center)

19/34



Fig. 10. Relationship between the actual eigenvector e and brightness B when I = O = 1. On the left, e does

not change, and the brightness remains constant (the brightness varitation corresponds to Situation 1 in FIG.8).

In the center, e varies between R and R⊥ over time, causing the brightness to vary (the brightness varitation

corresponds to Situation 2 in FIG.8). On the right, e completes a full rotation, with the brightness taking a value

of 0 while varing over time (the brightness varitation corresponds to Situation 3 in FIG.8).

In this scenario, the experimenter always measures positive brightness values and esti-

mates ϕ∗ as shown in FIG. 9 (Situation 2). As a result, there exists one brightness value

B̂ at which the estimated and actual values coincide, as shown in FIG. 11B. The dashed

black line g(B) represents the estimated ϕ∗ obtained under assumptions ∗1 and ∗2, and

is a monotonic function similar to f , defined for 0 < ϕ∗ < π/2. (For π/2 < ϕ̃∗ < π,

a symmetric function g̃ exists such that g(ϕ∗) = g̃(π − ϕ∗), meaning the experimenter

must consider both g and g̃.) Consequently, at the brightness B̂ (blue point in FIG. 11B),

the estimation is accurate ( f (B̂) = g(B̂)), while the estimation error |ϕ − ϕ∗| increases as
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Fig. 11. The relationship between the estimated eigenvector e∗ obtained from the brightness B measured by

the experimenter and the actual eigenvector e. When hypothesis ∗1 holds, the relationship between brightness

and ϕ is given by a monotonic function f , defined in the range 0 < ϕ < π/2 (solid black line). Since the

experimenter assumes hypothesis ∗1, they also estimate e∗ using another monotonic function, expressed as

ϕ∗ = g(B) (dashed black line). For π/2 < ϕ̃, ϕ̃∗ < π, symmetric functions f̃ and g̃ exist, satisfying f (ϕ) =

f̃ (π−ϕ) and g(ϕ∗) = g̃(π−ϕ∗), meaning that the experimenter considers both g and g̃. Additionally, the function

satisfies g(Bmax) = 0 and g(Bmin) = π/2, where Bmax and Bmin are the maximum and minimum brightness values

measured by the experimenter.

Case A represents the estimation error when the brightness remains unchanged, where |ϕ − ϕ∗| does not vary

over time. Case B corresponds to a scenario where the actual eigenvector moves between R and R⊥, resulting

in a single brightness value B̂ where the estimated and actual values coincide. As the brightness changes from

B̂, |ϕ − ϕ∗| increases.

brightness leaves from B̂.

(3) Case where the eigenvector e completes a full rotation (FIG. 10, Right)

Here, there exist moments when the measured brightness is B = 0. The experimenter

estimates ϕ∗ as shown in FIG. 9 (Situation 3), leading to agreement between the estimated

and actual values at maximum and minimum brightness points (where Bmax = 1 and

Bmin = 0). This scenario represents a case where brightness reaches B = 0, confirming

that ϕ = ϕ∗ = π/2 at minimum brightness from the experimenter’s perspective. However,

if e does not pass through R, then at maximum brightness, |ϕ − ϕ∗| , 0, resembling the

location relationship illustrated in FIG. 11B. It is important to note that the experimenter

cannot find whether e has passed through R.

Even when the relationship between the flow and the state space J converges to I = O = 1

within A (i.e., hypothesis ∗1 holds), the shear direction (i.e., the eigenvector e of the velocity

gradient tensor) cannot be fully determined through optical visualization.
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The following discussion examines A cases introduced in Section 3:

• FIG.4A represents a case where hypothesis ∗1 holds, and I = O = 1 converges. In this

scenario, the eigenvector remains unchanged, corresponding to the left side of FIG.10.

• The green dashed line in FIG.5 represents a case where I = 1,O = Ô < 1 converge. Here,

the eigenvector e and the orientation ŝ obtained via convergence of POD. In Eq.(9), this

case corresponds to a situation where ω2 , 0, indicating that the eigenvector undergoes

full rotation. Consequently, an experimenter assuming hypotheses ∗1 and ∗2 would make

an estimation corresponding to Situation 3. The brightness B is determined by ŝ, resem-

bling the situation depicted on the right side of FIG.10. This suggests that an additional

error, which is approximately negatively correlated with Ô, contributes to the error |ϕ−ϕ∗|
in case (3) of the previous section.

• In FIG.4D, I = 1 while O does not converge. In this case, the additional error associated

with |ϕ − ϕ∗| in case (3) of the previous section fluctuates with the temporal variation of

O.

• In FIG.4C, neither I nor O converges, the experimenter’s assumption ∗1 entirely mis-

directed. In this scenario, the measured brightness B exhibits periodic variation without

approaching zero, leading the observer to estimate e∗ as depicted in the central panel of

FIG.9 (Situation 2). Although this assumption is incorrect, since the eigenvector remains

unchanged such as ω2 = 0 in Eq.(9), the resulting error |ϕ−ϕ∗| increases as the estimated

value leaves from the actual value, as illustrated in FIG.11B (where ϕ = f (B) = const).

• In FIG.4B, estimation corresponds to Situation 2 in FIG.9, but only periodic variations in

brightness are observed, providing no meaningful information regarding the eigenvector

direction.

In summary, when an experimenter attempts to infer the eigenvector e based on hypothe-

ses ∗1 and ∗2, the shear direction can only be fully determined if hypothesis ∗1 holds rigor-

ously and e remains unchanged, as seen in FIG.11A. When e varies over time, a monotonic

relationship is obtained between |ϕ − ϕ∗| and B, with errors reducing to zero when e passes

through specific points (e.g., R and R⊥). If I = 1 converges but O does not, additional errors

correlated negatively with O contribute to |ϕ − ϕ∗| in case (3) of the previous section.

The shear history space A also serves as a framework for clarifying the conditions under

which optical visualization provides meaningful information. According to this framework,

optical visualization would be applicable only to FIG.7A in the flows considered in this study,

excluding the cases discussed in Section 4-1.
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In general, even if the flow field is periodic, the patterns obtained through visualization

using flakey particles are not necessarily periodic. In such cases, the available flow informa-

tion cannot be extracted. This is also true for steady flows, where the shear (velocity gradient

tensor) to which the particles are exposed changes over time. Thus, the flow fields for which

visualizations using POD characteristics are effective to extract ∇u are limited. Furthermore,

in actual visualization experiments, the time evolution within AD, which we have analyzed

thus far, is combined in a three-dimensional real space, resulting in light and dark patterns.

4.2 Neural Network Modeling

In the Section 4-2, the statistical properties of the orientation of flakey particles, denoted

by I, O, and P, and their relationships with the flow field were observed. The relationship be-

tween the orientation and flow is closely related to the information obtained from experimen-

tal fluid visualization. Specifically, the dynamics of I, O, and P within AD were considered.

In recent years, machine-learning methods have been extensively studied and investigated

for application in dynamical systems. In particular, chaotic behavior,14) which is a character-

istic of the dynamics and is also related to the dynamics within the shear history space AD,

appears in various fields such as geophysics,15) robotics,16) the power industry, and energy-

related problems, and fluid dynamics17, 18) is no exception.

Regarding neural network models for dynamical systems, models such as long short-term

memory (LSTM), which are widely used for learning time-series data in fields such as nat-

ural language processing, are well known. In recent years, various approaches to time-series

data,19) including dynamical system deep learning (DSDL),20) have been developed and ac-

tively compared.21) Moreover, predictions of time evolution using these models have already

been applied in the aforementioned fields, where accurate and long-term predictions remain

challenging. As a result, since the 1990s, various machine-learning models for handling time-

series data have been proposed.22, 23)

This study does not aim to develop a long-term, highly accurate predictive model but

instead focuses on understanding the dynamics within AD using neural network. A notable

advantage of machine-learning models is their ability to weakly model dynamics that are not

necessarily closed. In this study, we attempt to apply these methods to map AI , AO, AP onto

AD. In addition, although the dynamics of a flow field and points in the state space J constitute

high-dimensional dynamics,24) they are reduced to three dimensions within AD. Each orienta-

tion governed by U evolves independently without interference, and the resulting distribution

of orientations and the flow field exhibit a certain type of high-dimensional dynamics. If this
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behavior can be effectively modeled in the three-dimensional space, it suggests that the essen-

tial information of the high-dimensional dynamics can be projected onto a lower-dimensional

representation for modeling or mathematical formulation.

When the dynamics are not closed, the maps AI , AO, and AP do not become injective. In

such cases, an examination of the model’s adaptability is performed. Specifically, the analysis

is performed regarding the shear history, as described by Eq.(9). The time evolution of I, O,

and P within the shear history space AD is expressed in terms of the features ω1 and ω2, and

the following map AI is introduced (similarly for AO and AP):

AI :



I(t)

O(t)

P(t)

ω1

ω2


7→ İ(t). (11)

We define ω1 and ω2 as path information representing the features of the flow field at time

t. These quantities are determined at each time step based on the path and do not describe

the dynamics. Additionally, the model constructed in this study does not strictly consider the

entire history and differs from learning models such as LSTM and DSDL20) for handling time-

series data. While approaches that consider history are well suited for time-series analysis,

this study focuses on the analysis of physical dynamics. Therefore, a method that uses only

the features at each time step was adopted, as shown in Eq.(11).

In this study, the shear history space AD was divided into training, validation, and test

datasets and an analysis was performed. The results revealed that the learning efficiency,

learning adaptability, and adaptability when using the test data vary significantly depending

on AD. This variation is thought to correspond to the complexity of the dynamics within the

flow field. In this section, we evaluate these effects quantitatively and discuss the applicability

of the learning model.

4.2.1 Model Design

A simple regression model consisting of linear layers with 125 units and tanh activation

functions was created for the mappings AI , AO, AP (FIG.12).25) The neural network consists

of two parallel linear layers, each processing one of the input feature datasets. The first layer,

which receives the (I,O, P) input, has 125 hidden units with tanh activation. The second

layer, which processes the shear parameters (ω1, ω2), also consists of 125 hidden units with

tanh activation. These outputs are combined and input directly into the final output layer (1
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Fig. 12. Neural network model featuring a linear layer followed by the tanh activation function.

unit). The reasons for selecting this model are as follows:

• The contribution of ω1 and ω2 to the temporal evolution of I(t),O(t), P(t) is expected to

be nonlinear. Therefore, tanh was introduced to appropriately capture this nonlinearity.

However, nonlinear effects between ω1, ω2 and I(t),O(t), P(t) were not included.

• The simplicity of the model structure improves computational efficiency.

Furthermore, the mean squared error (MSE) was employed as the loss function, and the model

was trained to optimize the prediction errors of İ(t), Ȯ(t), Ṗ(t).

4.2.2 Preprocessing of the Dataset

We investigated seven shear history spaces denoted as ADω1 ,ω2
. The quantities I,O, P were

computed with a time step of ∆t = 10−4 up to t = 10, and the data sampled at intervals of

10−3 were used for the analysis. For each shear history space, the datasets were partitioned

sequentially at a ratio of 80:10:10 into training, validation, and test sets.

Furthermore, the temporal evolution of I,O, P is expected to exhibit varying scales.

The application of preprocessing methods such as min–max normalization across the en-

tire dataset would introduce statistical information from the entire ADω1 ,ω2
, potentially incor-

porating future data. To prevent this, scaling was performed using only the minimum and

maximum values within the training dataset. This is the only preprocessing applied to the

datasets. Each dataset consists of two sets of input features: (i) the physical quantities I,O, P,

represented as a matrix of shape N × 3, where N is the batch size; and (ii) the shear param-
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eters (ω1, ω2), represented as N × 2. These inputs are fed into two separate linear layers for

processing.

4.2.3 Training and Validation

The Adam optimizer was used for training with a learning rate of 10−2 and batch size

of 32. Random batches were created from the training data every 100 epochs and training

was performed for a fixed maximum of 10, 000 epochs to compare the learning rates in each

space. In addition, validation was conducted every 20 epochs using the training data, and

early stopping was applied if the validation error did not improve for 10 consecutive epochs.

To examine the sensitivity of the model to hyperparameters, we conducted addi-

tional experiments by varying the number of hidden units (60, 125, 250), and batch sizes

(16, 32, 64, 128). As a result, increasing the number of hidden units beyond 125 did not lead

to significant improvements in accuracy, and similar trends were observed with larger batch

sizes. Furthermore, there was almost no variability in the results, indicating stable learning

outcomes with this setting. All of these results were validated using the validation dataset of

shear history space AD0,4π , suggesting that a hidden unit count of 125 and a batch size of 32

are effective in balancing accuracy, stability, and computational cost. (FIG. 13)

4.2.4 Testing and Performance Evaluation

The performance of the final model was evaluated using the test data. MSE was used as

the evaluation metric. The differences between the training and test errors and variations in

errors across different spaces were thoroughly examined, and their respective impacts were

analyzed.

4.2.5 Performance Analysis

In addition to the cases illustrated in FIG.4A–E, we extended our analysis to include

two additional shear history spaces, (ω1, ω2) = (8π, 2π) and (5π, 7π) (FIG.14), resulting in

a total of seven different shear history spaces ADω1 ,ω2
. We evaluated the mappings AI , AO, AP

in these spaces; the MSE for each test dataset is summarized in TABLE I and FIG.15. The

horizontal axis represents the three mappings AI , AO, AP, whereas the vertical axis represents

the common logarithm of the MSE.

For AI (black points in FIG.15), it was observed that the error increases as the trajectory

becomes more complex. While there was little variation in the error for the validation dataset

of AD0,4π , substantial variation was observed when evaluating with the test dataset. Next, for

AO(red squares in FIG.15), since the indicator P is provided as an input, no significant dif-
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Fig. 13. Sensitivity analysis of the model to hyperparameters. The mean squared error (MSE) of AI , AO, AP

was evaluated on the validation dataset of shear history space AD0,4π for each combination of hidden layer units

(60, 125, 250) and batch sizes (16, 32, 64, 128). Five trials were conducted for each setting, with the results

represented by black points. The mean values across the five trials are shown as red squares, with error bars

indicating the standard deviation.
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ω1=5π,ω2=7π

Fig. 14. Time evolution of I, O, and P in AD5π,7π .

ferences were observed across all ADω1 ,ω2
, confirming stable learning. In contrast, AI and AP

exhibited an increasing error correlated with the complexity of the trajectory. Particularly,

for (ω1, ω2) = (8π, 4π), where a limit cycle is formed in the O–P plane, the sharp variation

in P at O = 0 caused an outlier-like distribution of data, leading to an increased MSE for

both AO and AP. Finally, for AP(blue triangles in FIG.15), differences were observed between

(ω1, ω2) = (0, 0), (0, 4π), (2π, 0) and (ω1, ω2) = (8π, 4π), (5π, 5π), (8π, 2π), (5π, 7π). These

differences are also likely associated with the complexity of the trajectory.

In this study, hyperparameter selection was conducted using the validation data for

(ω1, ω2) = (0, 4π). However, to achieve a more general tuning process, data from multiple

spaces should be used. The effects of significantly increasing the number of hidden units and

expanding the batch size were examined to see if they would improve the latter results, but

no significant improvement was observed. This result highlights the limitations of a simple

neural network model. In particular, as shown in the FIG.16, AI failed to learn effectively
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Table I. MSE for the test dataset

(ω1, ω2) log10MSE(AI test) log10MSE(AO test) log10MSE(AP test)

(0, 0) (FIG.4A) −6.958 ± 0.347 −6.427 ± 0.336 −4.379 ± 1.120

(0, 4π) (FIG.4B) −4.791 ± 1.586 −5.798 ± 0.153 −4.278 ± 1.148

(2π, 0) (FIG.4C) −3.586 ± 0.114 −5.877 ± 0.072 −5.194 ± 0.096

(8π, 4π) (FIG.4D) −3.274 ± 0.552 −3.168 ± 0.041 −2.382 ± 0.023

(5π, 5π) (FIG.4E) −1.463 ± 0.232 −5.345 ± 0.076 −2.015 ± 0.282

(8π, 2π) −2.178 ± 0.081 −5.088 ± 0.076 −2.177 ± 0.214

(5π, 7π) (FIG.14) −1.172 ± 0.038 −4.998 ± 0.165 −1.973 ± 0.022
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Fig. 15. Mean squared error (MSE) of AI , AO, AP evaluated on the test dataset. Test results for various shear

history spaces ADω1 ,ω2
. Black points represent AI , red squares represent AO, and blue triangles represent AP.

Error bars indicate the standard deviation.

even for the both training and test datasets in the trajectory at (ω1, ω2) = (5π, 7π). The ab-

sence of nonlinear effects between (I,O, P) and (ω1, ω2) is likely a key factor underlying this

limitation.

These findings suggest that the learning difficulty varies depending on the trajectory struc-

ture within ADω1 ,ω2
. Specifically, the trajectory in the case of (ω1, ω2) = (5π, 7π) may exhibit

an irregular behavior. (FIG.14). In the model used in this study, certain trajectories could not
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Fig. 16. Prediction results for AI at (ω1, ω2) = (5π, 7π). The test dataset, normalized by Min-Max scaling, is

sorted in ascending order. The blue points represent the actual values, while the red points represent the predicted

values. A similar trend is observed in the training data, indicating that the model has not learned effectively.

be learned effectively from the training data. Although this may be attributed to factors such

as the simplicity of the model or the size of the datasets, it is also likely that the learning chal-

lenge arises from the strong sensitivity to the position within AD. This suggests that when

considering non-closed dynamics within AD, the system may exhibit chaotic-like behavior. It

also suggests that the entire system dynamics including these phenomena can be efficiently

categorized.

The model proposed here is relatively simple, and particularly, there is no nonlinear rela-

tionship between the features input into the separate parallel linear layers. However, certain

trajectories within specific shear history spaces can be predicted with high accuracy, which

suggests that a mathematical formulation may be possible within these spaces. Conversely, as

the complexity of the trajectories increases, the accuracy decreases, and in cases of more com-

plex trajectories, the model failed to learn effectively. Keeping this in mind, improvements to

the model and further evaluation will be necessary in future work.
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5. Summary

Optical visualization using flakey particles is a well-established technique for visualizing

flow. However, the specific flow information conveyed by the light and dark patterns pro-

duced through this method remains unclear. These patterns exhibit a strong correlation with

the orientation distribution of flakey particles in the local region (POD). Therefore, the ob-

jective of this study was to investigate the dynamics of POD within the flow field. First, this

study introduces a shear history space AD from a set-theoretic perspective to reduce the di-

mensionality of POD motion in a flow field and enhance its interpretability. Next, attractors,

periodic trajectories, and limit cycles were identified within the shear history space, suggest-

ing the potential to extract shear and periodicity from the flow. When attractors are present

or when limit cycles form in the O − P plane, the shear direction in the flow can be fully

determined. We also showed in Section 4-1 that if there is a specific situations in the shear

history space A, then by doing the two conjectures appropriate from the visualization exper-

imenter’s standpoint, that the shear direction can be determined. However, the applicability

of optical visualization techniques for measuring shear in fluid flows using flakey particles is

significantly constrained. Furthermore, experimenters face substantial challenges in correctly

identifying actual flow situations based on brightness. Additionally, the analysis conducted

in this study was based on specific trajectories, and in actual visualization experiments, com-

binations of diverse trajectories in 3D space affect the outcomes. Therefore, it is crucial not

only to focus on the analysis of infinitesimal regions but also to deepen our understanding

of local spatial regions, as this will be important for interpreting the flow field information

obtained from visualization experiments using flakey particles.

Furthermore, this study analyzed non-closed dynamics using a simple neural network

model, providing a new perspective on the relationship between POD and the flow field. Al-

though the model achieved a certain level of adaptability for attractors and periodic orbits,

the results revealed the influence of trajectory complexity on learning performance. This find-

ing suggests the potential for quantifying chaotic-like or irregular trajectories. The proposed

model is simple, with no nonlinear relationships between features in the parallel linear lay-

ers. It predicts certain trajectories accurately, suggesting a possible mathematical formulation

within these spaces. However, performance decreases with increasing trajectory complexity,

and the model fails to learn in more complex cases. Future work should focus on model

improvements, further evaluation and mathematical formulation.

These results of this study provide a new perspective on analyzing the relationship be-
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tween the distribution and statistical properties of particles and the governing law that dic-

tates their motion when all particles follow a common governing principle. The proposed

approach expands the interpretation of particle visualization in fluid dynamics and offers a

novel framework for achieving a deeper understanding of the dynamics, paving the way for

further applications in this field.

A future challenge is to develop a framework for understanding POD dynamics within

the entire physical space, which is formed by integrating and synthesizing all shear history

spaces generated by a given flow, in terms of actual optical visualization experiments using

flakey particles.
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