
Title

Author(s)

Citation

Journal title (Repository name etc.), Volume, Issue, Pages(Article number) etc.
・ジャーナル名（刊行物・サイト名）・巻号・ページ（その他論文番号等）：

・DOI (URL）

Publication Date: yyyy/mm/dd

年 月 日 ・出版日：

Publisher

・出版者：

Declaration

This preprint is the of the above.

・本プレプリントは、上記論文の である。

All necessary permissions from the publisher have

・ジャーナル（出版者）から必要な許諾を

been obtained

 得ている

not been obtained
 得ていない

Notes

Proceedings of the 8th IIAE International Conference on Industrial Application Engineering 2020

Proposal of Automatic Offloading for Function Blocks of Applications

Yoji Yamatoa,*

aNetwork Service Systems Laboratories, NTT Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

*Corresponding Author: yoji.yamato.wa@hco.ntt.co.jp

Abstract

When using heterogeneous hardware other than CPUs,

barriers of technical skills such as OpenCL are high. Based

on that, I have proposed environment adaptive software that

enables automatic conversion, configuration, and

high-performance operation of once written code, according

to the hardware to be placed. Partly of the offloading to the

GPU was automated previously. In this paper, I propose and

evaluate an automatic extraction method of appropriate

offload target loop statements of source code as the first

step of offloading to FPGA. I evaluate the effectiveness of

the proposed method in multiple applications.

Keywords: Environment Adaptive Software, Automatic

Offloading, Performance, Evolutionary Computation,

Function Block.

1. Introduction

In recent years, it is said that Moore's Law will end

shortly and CPU's density cannot be expected to double in

1.5 years. Based on this situation, systems with

heterogeneous hardware such as GPU (Graphics Processing

Unit) and FPGA (Field Programmable Gate Array) are

increased. For example, Microsoft's search engine Bing

tries to use FPGA [1]. AWS (Amazon Web Services) [2]

provides GPU and FPGA using cloud technologies (e.g.,

[3]-[13]).

However, to achieve high performances using

heterogeneous hardware for various applications,

developers need to program and configure appropriately

considering hardware and need to use expert technologies

such as CUDA (Compute Unified Device Architecture) [14]

and OpenCL (Open Computing Language) [15]. This is a

high barrier to utilize GPU or FPGA.

Along with the progress of IoT (Internet of Things)

technology (e.g., Industrie 4.0 and so on [16]-[21]), IoT

devices are increasing rapidly, and many IoT applications

are developed using service coordination technologies such

as [22]-[30].

Expectation of applications utilizing heterogeneous

hardware such as GPU and FPGA and many IoT devices is

getting higher, however the hurdles are currently high for

utilizing them. In order to break down such a situation, we

think it is required in the future that application

programmers only need to write logics to be processed,

then software will adapt to the environments with

heterogeneous hardware, to make it easy to utilize

heterogeneous hardware and IoT devices.

Because Java [31] is insufficient for environment

adaptation with performances, I have proposed environment

adaptive software which run once written applications with

high performance by automatically performing code

conversion and configurations so that GPUs, FPGAs, IoT

devices or so on can be used on deployment environments

appropriately. As part of its technology, I have also realized

automatic GPU or FPGA offloading of applications loop

statements [32][33] partly. In this paper, I propose a method

for offloading function blocks that are larger units rather

than individual loop statement in applications to achieve

higher performances by automatic offloading to GPU or

FPGA. I implement the proposed method and evaluate the

effectiveness of function block offloading using plural

applications.

2. Existing Technologies

For GPGPU (General Purpose GPU) that uses GPU

computational power not only for graphics processing (e.g.,

[34]), CUDA is a major development environment. To

control heterogeneous hardware such as GPUs, FPGAs, and

many core CPUs uniformly, OpenCL specification and its

SDK (e.g., [35][36]) are widely used. CUDA and OpenCL

need not only C language extension but also additional

Fig. 1.

descriptions

devices and CPUs. Because of these programming

difficulties, there are f

programmers.

are technologies that specify parallel processing areas by

specified directives and compilers transform these

directives into device oriented codes on the basis of

specified directives. OpenACC

directive

one of the directive

specify OpenACC directives on C/C++ codes to process

them in parallel, and the PGI compiler checks the

possibility of parallel processing and outputs and deploys

execution binary files to run on GPUs and CPUs. IBM JDK

supports GPU

[39]

support GPU or FPGA offload processing. However,

although processing on a GPU or FPGA itself

performed, sufficient performance is hard to obtain. For

example, when users use an automatic parallelization

technology like the Intel compiler

possible areas of parallel processing such as "for" loop

statements are extract

performances with GPUs or FPGAs are not high because of

overheads of CPU and GPU/FPGA memory data transfer.

To achieve high performances with GPU/FPGA,

CUDA/OpenCL need to be tuned by highly skilled

programmers or appr

searched for by the PGI compiler or others.

3.1

Fig. 1. Processing flow of environment adaptive software

descriptions such as memory copy between GPU or FPGA

devices and CPUs. Because of these programming

difficulties, there are f

programmers.

For easy heterogeneous hardware programming, there

are technologies that specify parallel processing areas by

pecified directives and compilers transform these

directives into device oriented codes on the basis of

specified directives. OpenACC

directive-based specifications

one of the directive

specify OpenACC directives on C/C++ codes to process

them in parallel, and the PGI compiler checks the

possibility of parallel processing and outputs and deploys

execution binary files to run on GPUs and CPUs. IBM JDK

supports GPU offloading

[39].

In this way, CUDA, OpenCL, OpenACC, and others

support GPU or FPGA offload processing. However,

although processing on a GPU or FPGA itself

performed, sufficient performance is hard to obtain. For

example, when users use an automatic parallelization

technology like the Intel compiler

possible areas of parallel processing such as "for" loop

statements are extract

performances with GPUs or FPGAs are not high because of

overheads of CPU and GPU/FPGA memory data transfer.

To achieve high performances with GPU/FPGA,

CUDA/OpenCL need to be tuned by highly skilled

programmers or appr

searched for by the PGI compiler or others.

3. Proposal of Automatic Offloading for

3.1 Processing flow of environment adaptive software

Processing flow of environment adaptive software

such as memory copy between GPU or FPGA

devices and CPUs. Because of these programming

difficulties, there are f

For easy heterogeneous hardware programming, there

are technologies that specify parallel processing areas by

pecified directives and compilers transform these

directives into device oriented codes on the basis of

specified directives. OpenACC

based specifications

one of the directive-based compilers. For

specify OpenACC directives on C/C++ codes to process

them in parallel, and the PGI compiler checks the

possibility of parallel processing and outputs and deploys

execution binary files to run on GPUs and CPUs. IBM JDK

offloading based on Ja

In this way, CUDA, OpenCL, OpenACC, and others

support GPU or FPGA offload processing. However,

although processing on a GPU or FPGA itself

performed, sufficient performance is hard to obtain. For

example, when users use an automatic parallelization

technology like the Intel compiler

possible areas of parallel processing such as "for" loop

statements are extracted. However, naive parallel execution

performances with GPUs or FPGAs are not high because of

overheads of CPU and GPU/FPGA memory data transfer.

To achieve high performances with GPU/FPGA,

CUDA/OpenCL need to be tuned by highly skilled

programmers or appropriate offloading area need to be

searched for by the PGI compiler or others.

Proposal of Automatic Offloading for
Function B

Processing flow of environment adaptive software

Processing flow of environment adaptive software

such as memory copy between GPU or FPGA

devices and CPUs. Because of these programming

difficulties, there are few CUDA and OpenCL

For easy heterogeneous hardware programming, there

are technologies that specify parallel processing areas by

pecified directives and compilers transform these

directives into device oriented codes on the basis of

specified directives. OpenACC [37]

based specifications, and the PGI compiler

based compilers. For

specify OpenACC directives on C/C++ codes to process

them in parallel, and the PGI compiler checks the

possibility of parallel processing and outputs and deploys

execution binary files to run on GPUs and CPUs. IBM JDK

based on Java lambda expression

In this way, CUDA, OpenCL, OpenACC, and others

support GPU or FPGA offload processing. However,

although processing on a GPU or FPGA itself

performed, sufficient performance is hard to obtain. For

example, when users use an automatic parallelization

technology like the Intel compiler [40] for multicore CPU,

possible areas of parallel processing such as "for" loop

ed. However, naive parallel execution

performances with GPUs or FPGAs are not high because of

overheads of CPU and GPU/FPGA memory data transfer.

To achieve high performances with GPU/FPGA,

CUDA/OpenCL need to be tuned by highly skilled

opriate offloading area need to be

searched for by the PGI compiler or others.

Proposal of Automatic Offloading for
Function Blocks

Processing flow of environment adaptive software

Processing flow of environment adaptive software

such as memory copy between GPU or FPGA

devices and CPUs. Because of these programming

ew CUDA and OpenCL

For easy heterogeneous hardware programming, there

are technologies that specify parallel processing areas by

pecified directives and compilers transform these

directives into device oriented codes on the basis of

 is one of the

, and the PGI compiler [38]

based compilers. For example, users

specify OpenACC directives on C/C++ codes to process

them in parallel, and the PGI compiler checks the

possibility of parallel processing and outputs and deploys

execution binary files to run on GPUs and CPUs. IBM JDK

va lambda expression

In this way, CUDA, OpenCL, OpenACC, and others

support GPU or FPGA offload processing. However,

although processing on a GPU or FPGA itself can be

performed, sufficient performance is hard to obtain. For

example, when users use an automatic parallelization

for multicore CPU,

possible areas of parallel processing such as "for" loop

ed. However, naive parallel execution

performances with GPUs or FPGAs are not high because of

overheads of CPU and GPU/FPGA memory data transfer.

To achieve high performances with GPU/FPGA,

CUDA/OpenCL need to be tuned by highly skilled

opriate offloading area need to be

searched for by the PGI compiler or others.

Proposal of Automatic Offloading for
locks

Processing flow of environment adaptive software

Processing flow of environment adaptive software

such as memory copy between GPU or FPGA

devices and CPUs. Because of these programming

ew CUDA and OpenCL

For easy heterogeneous hardware programming, there

are technologies that specify parallel processing areas by

pecified directives and compilers transform these

directives into device oriented codes on the basis of

is one of the

[38] is

example, users

specify OpenACC directives on C/C++ codes to process

them in parallel, and the PGI compiler checks the

possibility of parallel processing and outputs and deploys

execution binary files to run on GPUs and CPUs. IBM JDK

va lambda expression

In this way, CUDA, OpenCL, OpenACC, and others

support GPU or FPGA offload processing. However,

can be

performed, sufficient performance is hard to obtain. For

example, when users use an automatic parallelization

for multicore CPU,

possible areas of parallel processing such as "for" loop

ed. However, naive parallel execution

performances with GPUs or FPGAs are not high because of

overheads of CPU and GPU/FPGA memory data transfer.

To achieve high performances with GPU/FPGA,

CUDA/OpenCL need to be tuned by highly skilled

opriate offloading area need to be

Proposal of Automatic Offloading for

Processing flow of environment adaptive software

In order to realize software adaptation to environment, I

have proposed th

environment adaptive software with reference to Figure 1.

The environment adaptive software is realized in

cooperation with functions including an environment

adaptation function, a test case DB

on)

verification environment and a

3.2

offloading method for loop statements.

the restriction that this loop statement cannot be processed

in parallel with GPU, but it is difficult to find the suitability

that this loop statement is suitable for GPU parallel

processing. Therefore, an instruction to offload th

GPU is given manually, and performance measurements are

repeated by trial and error.

GA

to be offloaded to GPU. First, a parallel loop statement is

checked from a general purpose program that is not

supposed to be parallelized, and loop statements offload

patterns are mapped to genes with a v

GPU execution and 0 for CPU execution. Then, the

performance verification trials are repeated in the

verification environment to search for an appropriate

offloading area.

offloading meth

be faster when specific loop statements that take a long

time to process are offloaded to FPGA. Therefore, we also

propose to perform trial and error automatically in a

veri

GPU, since FPGA takes more than several hours to compile,

we try actual FPGA measurements after narrowing down

the offload candidate loop statements. For narrowed

loop statements, our method generat

offload

statements, compiles them to FPGA, measures

performances and selects the highest performance OpenCL

code as the solution.

it is often the case that an algorithm for CPU is changed to

an algorithm suitable for hardware processing. For this

reason, simple offloading of loop statements were often

In order to realize software adaptation to environment, I

have proposed th

environment adaptive software with reference to Figure 1.

The environment adaptive software is realized in

cooperation with functions including an environment

adaptation function, a test case DB

, a code pattern DB, a facility resource DB, a

verification environment and a

 Necessity of function blocks offloading

Firstly, I explain my previous automatic GPU

offloading method for loop statements.

As a basic problem, it is possibl

the restriction that this loop statement cannot be processed

in parallel with GPU, but it is difficult to find the suitability

that this loop statement is suitable for GPU parallel

processing. Therefore, an instruction to offload th

GPU is given manually, and performance measurements are

repeated by trial and error.

Based on this situation, the paper of

GA [43] automatically finds an appropriate loop statement

to be offloaded to GPU. First, a parallel loop statement is

checked from a general purpose program that is not

supposed to be parallelized, and loop statements offload

patterns are mapped to genes with a v

GPU execution and 0 for CPU execution. Then, the

performance verification trials are repeated in the

verification environment to search for an appropriate

offloading area.

Secondly, I explain my previous automatic FPGA

offloading method for loop statements.

Even in FPGA, it is difficult to predict which loops will

be faster when specific loop statements that take a long

time to process are offloaded to FPGA. Therefore, we also

propose to perform trial and error automatically in a

verification environment like GPU cases. However, unlike

GPU, since FPGA takes more than several hours to compile,

we try actual FPGA measurements after narrowing down

the offload candidate loop statements. For narrowed

loop statements, our method generat

offload each loop statement or combination of those loop

statements, compiles them to FPGA, measures

performances and selects the highest performance OpenCL

code as the solution.

However, especially in the case of FPGA's acceleration,

it is often the case that an algorithm for CPU is changed to

an algorithm suitable for hardware processing. For this

reason, simple offloading of loop statements were often

In order to realize software adaptation to environment, I

have proposed the following processing flow of

environment adaptive software with reference to Figure 1.

The environment adaptive software is realized in

cooperation with functions including an environment

adaptation function, a test case DB

code pattern DB, a facility resource DB, a

verification environment and a

Necessity of function blocks offloading

Firstly, I explain my previous automatic GPU

offloading method for loop statements.

As a basic problem, it is possibl

the restriction that this loop statement cannot be processed

in parallel with GPU, but it is difficult to find the suitability

that this loop statement is suitable for GPU parallel

processing. Therefore, an instruction to offload th

GPU is given manually, and performance measurements are

repeated by trial and error.

Based on this situation, the paper of

automatically finds an appropriate loop statement

to be offloaded to GPU. First, a parallel loop statement is

checked from a general purpose program that is not

supposed to be parallelized, and loop statements offload

patterns are mapped to genes with a v

GPU execution and 0 for CPU execution. Then, the

performance verification trials are repeated in the

verification environment to search for an appropriate

offloading area.

Secondly, I explain my previous automatic FPGA

od for loop statements.

Even in FPGA, it is difficult to predict which loops will

be faster when specific loop statements that take a long

time to process are offloaded to FPGA. Therefore, we also

propose to perform trial and error automatically in a

fication environment like GPU cases. However, unlike

GPU, since FPGA takes more than several hours to compile,

we try actual FPGA measurements after narrowing down

the offload candidate loop statements. For narrowed

loop statements, our method generat

each loop statement or combination of those loop

statements, compiles them to FPGA, measures

performances and selects the highest performance OpenCL

code as the solution.

However, especially in the case of FPGA's acceleration,

it is often the case that an algorithm for CPU is changed to

an algorithm suitable for hardware processing. For this

reason, simple offloading of loop statements were often

In order to realize software adaptation to environment, I

e following processing flow of

environment adaptive software with reference to Figure 1.

The environment adaptive software is realized in

cooperation with functions including an environment

adaptation function, a test case DB (using [41][42] and so

code pattern DB, a facility resource DB, a

verification environment and a production environment.

Necessity of function blocks offloading

Firstly, I explain my previous automatic GPU

offloading method for loop statements.

As a basic problem, it is possible for compilers to find

the restriction that this loop statement cannot be processed

in parallel with GPU, but it is difficult to find the suitability

that this loop statement is suitable for GPU parallel

processing. Therefore, an instruction to offload th

GPU is given manually, and performance measurements are

Based on this situation, the paper of [32]

automatically finds an appropriate loop statement

to be offloaded to GPU. First, a parallel loop statement is

checked from a general purpose program that is not

supposed to be parallelized, and loop statements offload

patterns are mapped to genes with a value of 1 is set for

GPU execution and 0 for CPU execution. Then, the

performance verification trials are repeated in the

verification environment to search for an appropriate

Secondly, I explain my previous automatic FPGA

od for loop statements.

Even in FPGA, it is difficult to predict which loops will

be faster when specific loop statements that take a long

time to process are offloaded to FPGA. Therefore, we also

propose to perform trial and error automatically in a

fication environment like GPU cases. However, unlike

GPU, since FPGA takes more than several hours to compile,

we try actual FPGA measurements after narrowing down

the offload candidate loop statements. For narrowed

loop statements, our method generates OpenCL codes that

each loop statement or combination of those loop

statements, compiles them to FPGA, measures

performances and selects the highest performance OpenCL

However, especially in the case of FPGA's acceleration,

it is often the case that an algorithm for CPU is changed to

an algorithm suitable for hardware processing. For this

reason, simple offloading of loop statements were often

In order to realize software adaptation to environment, I

e following processing flow of

environment adaptive software with reference to Figure 1.

The environment adaptive software is realized in

cooperation with functions including an environment

(using [41][42] and so

code pattern DB, a facility resource DB, a

production environment.

Necessity of function blocks offloading

Firstly, I explain my previous automatic GPU

e for compilers to find

the restriction that this loop statement cannot be processed

in parallel with GPU, but it is difficult to find the suitability

that this loop statement is suitable for GPU parallel

processing. Therefore, an instruction to offload this loop to

GPU is given manually, and performance measurements are

[32] proposes that

automatically finds an appropriate loop statement

to be offloaded to GPU. First, a parallel loop statement is

checked from a general purpose program that is not

supposed to be parallelized, and loop statements offload

alue of 1 is set for

GPU execution and 0 for CPU execution. Then, the

performance verification trials are repeated in the

verification environment to search for an appropriate

Secondly, I explain my previous automatic FPGA

Even in FPGA, it is difficult to predict which loops will

be faster when specific loop statements that take a long

time to process are offloaded to FPGA. Therefore, we also

propose to perform trial and error automatically in a

fication environment like GPU cases. However, unlike

GPU, since FPGA takes more than several hours to compile,

we try actual FPGA measurements after narrowing down

the offload candidate loop statements. For narrowed-down

OpenCL codes that

each loop statement or combination of those loop

statements, compiles them to FPGA, measures

performances and selects the highest performance OpenCL

However, especially in the case of FPGA's acceleration,

it is often the case that an algorithm for CPU is changed to

an algorithm suitable for hardware processing. For this

reason, simple offloading of loop statements were often

In order to realize software adaptation to environment, I

e following processing flow of

environment adaptive software with reference to Figure 1.

The environment adaptive software is realized in

cooperation with functions including an environment

(using [41][42] and so

code pattern DB, a facility resource DB, a

Firstly, I explain my previous automatic GPU

e for compilers to find

the restriction that this loop statement cannot be processed

in parallel with GPU, but it is difficult to find the suitability

that this loop statement is suitable for GPU parallel

is loop to

GPU is given manually, and performance measurements are

proposes that

automatically finds an appropriate loop statement

to be offloaded to GPU. First, a parallel loop statement is

checked from a general purpose program that is not

supposed to be parallelized, and loop statements offload

alue of 1 is set for

GPU execution and 0 for CPU execution. Then, the

performance verification trials are repeated in the

verification environment to search for an appropriate

Secondly, I explain my previous automatic FPGA

Even in FPGA, it is difficult to predict which loops will

be faster when specific loop statements that take a long

time to process are offloaded to FPGA. Therefore, we also

propose to perform trial and error automatically in a

fication environment like GPU cases. However, unlike

GPU, since FPGA takes more than several hours to compile,

we try actual FPGA measurements after narrowing down

down

OpenCL codes that

each loop statement or combination of those loop

statements, compiles them to FPGA, measures

performances and selects the highest performance OpenCL

However, especially in the case of FPGA's acceleration,

it is often the case that an algorithm for CPU is changed to

an algorithm suitable for hardware processing. For this

Fig. 2.

insufficient in performance compa

manually changing algorithms.

extract hardware oriented algorithms for each application.

Therefore, we aim to improve performance by replacing

function blocks implemented wit

algorithms such as FPGA and GPU for large units such as

matrix manipulation and Fourier transform in CPU codes.

In other words, we use existing know

3.3

take a lot of time, it is often possible to use circuit design in

the form of "IP core" for functions once designed.

(e.g., [44])

implemented by CUDA and are provided free as GPU

libraries. We consider using these libraries (not IP core) for

GPU.

includes function blocks that can be accelerated by

offloading t

libraries or FPGA IP cores are replaced to the function

blocks to speed up.

in Figure 2. In Step 1, source codes are analyzed using a

parse tool such as Clang, outer library calls and function

processing are analyzed with loop statement structure. For

library calls and functio

Step 2, function blocks that can be offloaded to GPU or

FPGA are found by checking with the code pattern DB. In

Step 3, offloadable function blocks are replaced with

libraries for GPU or IP cores for FPGA with creating

interfaces with CPU programs. At this time, since it is not

known whether function blocks offloading to GPU or

FPGA will lead to immediate speedup, performance

Fig. 2. Image of function blocks offloading

insufficient in performance compa

manually changing algorithms.

It is currently very difficult for machines automatically

extract hardware oriented algorithms for each application.

Therefore, we aim to improve performance by replacing

function blocks implemented wit

algorithms such as FPGA and GPU for large units such as

matrix manipulation and Fourier transform in CPU codes.

In other words, we use existing know

3.3 Outline of function blocks offloading and

consideration points

Regarding to FPGA, because hardware circuit designs

take a lot of time, it is often possible to use circuit design in

the form of "IP core" for functions once designed.

As for GPU, FFT, linear algebra

(e.g., [44]) are typical examples, an

implemented by CUDA and are provided free as GPU

libraries. We consider using these libraries (not IP core) for

GPU.

In this paper, if existing source code created for CPU

includes function blocks that can be accelerated by

offloading to GPU or FPGA such as FFT processing, GPU

libraries or FPGA IP cores are replaced to the function

blocks to speed up.

An overview of function blocks offloading is described

in Figure 2. In Step 1, source codes are analyzed using a

parse tool such as Clang, outer library calls and function

processing are analyzed with loop statement structure. For

library calls and functio

Step 2, function blocks that can be offloaded to GPU or

FPGA are found by checking with the code pattern DB. In

Step 3, offloadable function blocks are replaced with

libraries for GPU or IP cores for FPGA with creating

nterfaces with CPU programs. At this time, since it is not

known whether function blocks offloading to GPU or

FPGA will lead to immediate speedup, performance

Image of function blocks offloading

insufficient in performance compa

manually changing algorithms.

It is currently very difficult for machines automatically

extract hardware oriented algorithms for each application.

Therefore, we aim to improve performance by replacing

function blocks implemented wit

algorithms such as FPGA and GPU for large units such as

matrix manipulation and Fourier transform in CPU codes.

In other words, we use existing know

Outline of function blocks offloading and

consideration points

rding to FPGA, because hardware circuit designs

take a lot of time, it is often possible to use circuit design in

the form of "IP core" for functions once designed.

As for GPU, FFT, linear algebra

are typical examples, an

implemented by CUDA and are provided free as GPU

libraries. We consider using these libraries (not IP core) for

In this paper, if existing source code created for CPU

includes function blocks that can be accelerated by

o GPU or FPGA such as FFT processing, GPU

libraries or FPGA IP cores are replaced to the function

blocks to speed up.

An overview of function blocks offloading is described

in Figure 2. In Step 1, source codes are analyzed using a

parse tool such as Clang, outer library calls and function

processing are analyzed with loop statement structure. For

library calls and function processing analyzed in Step 1, in

Step 2, function blocks that can be offloaded to GPU or

FPGA are found by checking with the code pattern DB. In

Step 3, offloadable function blocks are replaced with

libraries for GPU or IP cores for FPGA with creating

nterfaces with CPU programs. At this time, since it is not

known whether function blocks offloading to GPU or

FPGA will lead to immediate speedup, performance

Image of function blocks offloading

insufficient in performance compared to improvements by

manually changing algorithms.

It is currently very difficult for machines automatically

extract hardware oriented algorithms for each application.

Therefore, we aim to improve performance by replacing

function blocks implemented with hardware oriented

algorithms such as FPGA and GPU for large units such as

matrix manipulation and Fourier transform in CPU codes.

In other words, we use existing know-how of developers.

Outline of function blocks offloading and

rding to FPGA, because hardware circuit designs

take a lot of time, it is often possible to use circuit design in

the form of "IP core" for functions once designed.

As for GPU, FFT, linear algebra and image processing

are typical examples, and cuFFT, cuBLAS are

implemented by CUDA and are provided free as GPU

libraries. We consider using these libraries (not IP core) for

In this paper, if existing source code created for CPU

includes function blocks that can be accelerated by

o GPU or FPGA such as FFT processing, GPU

libraries or FPGA IP cores are replaced to the function

An overview of function blocks offloading is described

in Figure 2. In Step 1, source codes are analyzed using a

parse tool such as Clang, outer library calls and function

processing are analyzed with loop statement structure. For

n processing analyzed in Step 1, in

Step 2, function blocks that can be offloaded to GPU or

FPGA are found by checking with the code pattern DB. In

Step 3, offloadable function blocks are replaced with

libraries for GPU or IP cores for FPGA with creating

nterfaces with CPU programs. At this time, since it is not

known whether function blocks offloading to GPU or

FPGA will lead to immediate speedup, performance

Image of function blocks offloading.

red to improvements by

It is currently very difficult for machines automatically

extract hardware oriented algorithms for each application.

Therefore, we aim to improve performance by replacing

h hardware oriented

algorithms such as FPGA and GPU for large units such as

matrix manipulation and Fourier transform in CPU codes.

how of developers.

Outline of function blocks offloading and

rding to FPGA, because hardware circuit designs

take a lot of time, it is often possible to use circuit design in

the form of "IP core" for functions once designed.

and image processing

d cuFFT, cuBLAS are

implemented by CUDA and are provided free as GPU

libraries. We consider using these libraries (not IP core) for

In this paper, if existing source code created for CPU

includes function blocks that can be accelerated by

o GPU or FPGA such as FFT processing, GPU

libraries or FPGA IP cores are replaced to the function

An overview of function blocks offloading is described

in Figure 2. In Step 1, source codes are analyzed using a

parse tool such as Clang, outer library calls and function

processing are analyzed with loop statement structure. For

n processing analyzed in Step 1, in

Step 2, function blocks that can be offloaded to GPU or

FPGA are found by checking with the code pattern DB. In

Step 3, offloadable function blocks are replaced with

libraries for GPU or IP cores for FPGA with creating

nterfaces with CPU programs. At this time, since it is not

known whether function blocks offloading to GPU or

FPGA will lead to immediate speedup, performance

red to improvements by

It is currently very difficult for machines automatically

extract hardware oriented algorithms for each application.

Therefore, we aim to improve performance by replacing

h hardware oriented

algorithms such as FPGA and GPU for large units such as

matrix manipulation and Fourier transform in CPU codes.

how of developers..

Outline of function blocks offloading and

rding to FPGA, because hardware circuit designs

take a lot of time, it is often possible to use circuit design in

and image processing

d cuFFT, cuBLAS are

implemented by CUDA and are provided free as GPU

libraries. We consider using these libraries (not IP core) for

In this paper, if existing source code created for CPU

includes function blocks that can be accelerated by

o GPU or FPGA such as FFT processing, GPU

libraries or FPGA IP cores are replaced to the function

An overview of function blocks offloading is described

in Figure 2. In Step 1, source codes are analyzed using a

parse tool such as Clang, outer library calls and function

processing are analyzed with loop statement structure. For

n processing analyzed in Step 1, in

Step 2, function blocks that can be offloaded to GPU or

FPGA are found by checking with the code pattern DB. In

Step 3, offloadable function blocks are replaced with

libraries for GPU or IP cores for FPGA with creating

nterfaces with CPU programs. At this time, since it is not

known whether function blocks offloading to GPU or

FPGA will lead to immediate speedup, performance

measurements are repeated in a verification environment to

extract faster offloading patterns wit

function blocks offloading.

consider following three points. Discovering function

blocks in source codes, Checking whether the function

blocks have offloadable GPU libraries or FPGA

Matching interfaces between replaced libraries or IP cores

and host CPU program.

3.4

subsection, I study a function blocks offloading method in

detail.

A. Discoveri

libraries are called from source codes. It is assumed that

library calls such as FFT are detected. To detect them, the

code pattern DB holds external libraries list and ou

checks with the DB.

registered library calls, classes, structures are detected from

source code definition description by parse tools.

B. Checking whether the function blocks have offloadable

GPU libraries or FPGA IP cores

IP cores and related information which improve specific

libraries or function block processing. For replacement

source libraries and function blocks, codes and executable

file

detected in A

FPGA IP cores that can be accelerated using library name

as a key.

in B

there are libraries or IP cores that can be accelerated for the

function processing of classes, structures detected in A

The similarity d

detects a copy code or a chang

similarity detection tool can detect some codes that are

similar descriptions when calculated by CPU such as matrix

manipulation, and changed descriptions after copying from

other codes. The similarity detection tool cannot detec

newly created classes, thus those are out of scope. For

functions with libraries or IP cores registered in the code

pattern DB that accelerate specific function blocks, the

similarity detection tool judges the similarity is high or not

based on the tool

measurements are repeated in a verification environment to

extract faster offloading patterns wit

function blocks offloading.

With regard to function block offloading, we need to

consider following three points. Discovering function

blocks in source codes, Checking whether the function

blocks have offloadable GPU libraries or FPGA

Matching interfaces between replaced libraries or IP cores

and host CPU program.

 Function blocks offloading method

Based on three consideration points in the previous

subsection, I study a function blocks offloading method in

detail.

A. Discovering function blocks in source codes

A-1: In parsing, our method detects that external

libraries are called from source codes. It is assumed that

library calls such as FFT are detected. To detect them, the

code pattern DB holds external libraries list and ou

checks with the DB.

A-2： In order to detect function processing other than

registered library calls, classes, structures are detected from

source code definition description by parse tools.

B. Checking whether the function blocks have offloadable

GPU libraries or FPGA IP cores

B-1：The code pattern DB holds GPU libraries, FPGA

IP cores and related information which improve specific

libraries or function block processing. For replacement

source libraries and function blocks, codes and executable

s with function names are regis

detected in A-1, our method searches for GPU libraries or

FPGA IP cores that can be accelerated using library name

as a key.

B-2：The information registered in the code pattern DB

in B-1 is used. The s

there are libraries or IP cores that can be accelerated for the

function processing of classes, structures detected in A

The similarity detection tool is a tool such as

detects a copy code or a chang

similarity detection tool can detect some codes that are

similar descriptions when calculated by CPU such as matrix

manipulation, and changed descriptions after copying from

other codes. The similarity detection tool cannot detec

newly created classes, thus those are out of scope. For

functions with libraries or IP cores registered in the code

pattern DB that accelerate specific function blocks, the

similarity detection tool judges the similarity is high or not

based on the tool

measurements are repeated in a verification environment to

extract faster offloading patterns wit

function blocks offloading.

ith regard to function block offloading, we need to

consider following three points. Discovering function

blocks in source codes, Checking whether the function

blocks have offloadable GPU libraries or FPGA

Matching interfaces between replaced libraries or IP cores

and host CPU program.

Function blocks offloading method

Based on three consideration points in the previous

subsection, I study a function blocks offloading method in

ng function blocks in source codes

1: In parsing, our method detects that external

libraries are called from source codes. It is assumed that

library calls such as FFT are detected. To detect them, the

code pattern DB holds external libraries list and ou

checks with the DB.

In order to detect function processing other than

registered library calls, classes, structures are detected from

source code definition description by parse tools.

B. Checking whether the function blocks have offloadable

GPU libraries or FPGA IP cores

The code pattern DB holds GPU libraries, FPGA

IP cores and related information which improve specific

libraries or function block processing. For replacement

source libraries and function blocks, codes and executable

s with function names are regis

1, our method searches for GPU libraries or

FPGA IP cores that can be accelerated using library name

The information registered in the code pattern DB

1 is used. The similarity detection tool detects whether

there are libraries or IP cores that can be accelerated for the

function processing of classes, structures detected in A

etection tool is a tool such as

detects a copy code or a chang

similarity detection tool can detect some codes that are

similar descriptions when calculated by CPU such as matrix

manipulation, and changed descriptions after copying from

other codes. The similarity detection tool cannot detec

newly created classes, thus those are out of scope. For

functions with libraries or IP cores registered in the code

pattern DB that accelerate specific function blocks, the

similarity detection tool judges the similarity is high or not

based on the tool threshold.

measurements are repeated in a verification environment to

extract faster offloading patterns with or without certain

ith regard to function block offloading, we need to

consider following three points. Discovering function

blocks in source codes, Checking whether the function

blocks have offloadable GPU libraries or FPGA

Matching interfaces between replaced libraries or IP cores

Function blocks offloading method

Based on three consideration points in the previous

subsection, I study a function blocks offloading method in

ng function blocks in source codes

1: In parsing, our method detects that external

libraries are called from source codes. It is assumed that

library calls such as FFT are detected. To detect them, the

code pattern DB holds external libraries list and ou

In order to detect function processing other than

registered library calls, classes, structures are detected from

source code definition description by parse tools.

B. Checking whether the function blocks have offloadable

GPU libraries or FPGA IP cores

The code pattern DB holds GPU libraries, FPGA

IP cores and related information which improve specific

libraries or function block processing. For replacement

source libraries and function blocks, codes and executable

s with function names are registered. For library calls

1, our method searches for GPU libraries or

FPGA IP cores that can be accelerated using library name

The information registered in the code pattern DB

imilarity detection tool detects whether

there are libraries or IP cores that can be accelerated for the

function processing of classes, structures detected in A

etection tool is a tool such as

detects a copy code or a changed code after copying. The

similarity detection tool can detect some codes that are

similar descriptions when calculated by CPU such as matrix

manipulation, and changed descriptions after copying from

other codes. The similarity detection tool cannot detec

newly created classes, thus those are out of scope. For

functions with libraries or IP cores registered in the code

pattern DB that accelerate specific function blocks, the

similarity detection tool judges the similarity is high or not

measurements are repeated in a verification environment to

h or without certain

ith regard to function block offloading, we need to

consider following three points. Discovering function

blocks in source codes, Checking whether the function

blocks have offloadable GPU libraries or FPGA IP cores,

Matching interfaces between replaced libraries or IP cores

Function blocks offloading method

Based on three consideration points in the previous

subsection, I study a function blocks offloading method in

ng function blocks in source codes

1: In parsing, our method detects that external

libraries are called from source codes. It is assumed that

library calls such as FFT are detected. To detect them, the

code pattern DB holds external libraries list and our method

In order to detect function processing other than

registered library calls, classes, structures are detected from

source code definition description by parse tools.

B. Checking whether the function blocks have offloadable

The code pattern DB holds GPU libraries, FPGA

IP cores and related information which improve specific

libraries or function block processing. For replacement

source libraries and function blocks, codes and executable

tered. For library calls

1, our method searches for GPU libraries or

FPGA IP cores that can be accelerated using library name

The information registered in the code pattern DB

imilarity detection tool detects whether

there are libraries or IP cores that can be accelerated for the

function processing of classes, structures detected in A

etection tool is a tool such as Deckard that

ed code after copying. The

similarity detection tool can detect some codes that are

similar descriptions when calculated by CPU such as matrix

manipulation, and changed descriptions after copying from

other codes. The similarity detection tool cannot detec

newly created classes, thus those are out of scope. For

functions with libraries or IP cores registered in the code

pattern DB that accelerate specific function blocks, the

similarity detection tool judges the similarity is high or not

measurements are repeated in a verification environment to

h or without certain

ith regard to function block offloading, we need to

consider following three points. Discovering function

blocks in source codes, Checking whether the function

IP cores,

Matching interfaces between replaced libraries or IP cores

Based on three consideration points in the previous

subsection, I study a function blocks offloading method in

1: In parsing, our method detects that external

libraries are called from source codes. It is assumed that

library calls such as FFT are detected. To detect them, the

r method

In order to detect function processing other than

registered library calls, classes, structures are detected from

B. Checking whether the function blocks have offloadable

The code pattern DB holds GPU libraries, FPGA

IP cores and related information which improve specific

libraries or function block processing. For replacement

source libraries and function blocks, codes and executable

tered. For library calls

1, our method searches for GPU libraries or

FPGA IP cores that can be accelerated using library name

The information registered in the code pattern DB

imilarity detection tool detects whether

there are libraries or IP cores that can be accelerated for the

function processing of classes, structures detected in A-2.

that

ed code after copying. The

similarity detection tool can detect some codes that are

similar descriptions when calculated by CPU such as matrix

manipulation, and changed descriptions after copying from

other codes. The similarity detection tool cannot detect

newly created classes, thus those are out of scope. For

functions with libraries or IP cores registered in the code

pattern DB that accelerate specific function blocks, the

similarity detection tool judges the similarity is high or not

C. Matching interfaces between replaced libraries or IP

cores and host CPU program

C-1：Since the corresponding library or IP core is

searched in B-1 for the library call detected in A-1, the

replacement library or IP core is installed in GPU or FPGA,

and a host (CPU) program is connected. In the case of a

library for GPU, a library such as CUDA is assumed. Since

methods of using CUDA libraries from C language codes

are open together with libraries, the code pattern DB holds

library usage methods as well. When GPU libraries are used,

GPU libraries and host program are connected referring to

usage methods. In the case of an FPGA IP core, HDL is

assumed. The code pattern DB also holds OpenCL code as

IP core related information. From OpenCL code, the

connection between CPU and FPGA using OpenCL

interface and implementation of IP core on FPGA can be

done via high-level synthesis tools of FPGA vendors such

as Xilinx and Intel (Xilinx Vivado, Intel HLS Compiler,

etc.).

C-2：For classes and structures detected in A-2, we

search for libraries and IP cores that can be accelerated in

B-2, and we implement the corresponding libraries and IP

cores on GPU and FPGA. Since B-2 is judged based on

similarity, there is no guarantee that the basic parts such as

the number and type of arguments and return match.

If they do not match, because libraries and IP cores are

existing know-how and cannot be changed frequently, we

will confirm a user whether to change according to the

libraries or IP cores, and after receiving the confirmation,

we will proceed performance tests.

4. Implementation

4.1 Tools to use

In this section, I explain the implementation of the

proposed method. To confirm the method effectiveness of

function blocks offloading, we use C/C++ language

applications and NVIDIA Quadro P4000 (CUDA core:

1792, Memory: GDDR5 8GB) for GPU, Intel PAC with

Intel Arria10 GX FPGA for FPGA.

GPU processing uses PGI compiler 19.4 in the market.

PGI compiler is OpenACC compiler for C/C++/Fortran

languages. PGI compiler also can use CUDA libraries such

as cuFFT or cuBLAS.

To control FPGA, we use Intel Acceleration Stack

Version 1.2 (Intel FPGA SDK for OpenCL 17.1.1，Quartus

Prime Version 17.1.1). By including existing OpenCL codes

of FPGA into kernel codes, those can be offloaded to FPGA

during OpenCL program processing.

MySQL8.0 is used for the code pattern DB. It holds

records for searching GPU libraries and FPGA IP cores that

can be accelerated using the name of the library being

called as a key. Libraries and IP cores have names, codes,

and executable files associated with them. The usage

method of the executable file is also registered. At the same

time, code for comparison to detect the libraries and IP

cores with the similarity detection tool is also held to

associate with libraries and IP cores.

Deckard v2.0 [45] is used as the similarity detection

tool. Deckard is used to expand function blocks for

offloading. It judges the similarity between the partial code

to be verified and the code for comparison registered in the

code pattern DB to detect functions which are copied from

outer files and changed. .

We implement the implementation by C language.

4.2 Implementation behavior

When a C/C++ application is specified, this

implementation parses C/C++ code and detects loop

statements and loop number for loop offloading of previous

researches using gcov or gprof, called libraries (A-1) and

defined classes and structures (A-2). For parsing, the

Python program uses parsing libraries of LLVM/Clang [46]

(libClang Python binding). When the implementation

searches if there is an external library call, it checks the

external library list in the code pattern DB.

Next, the implementation detects GPU libraries and

FPGA IP cores that can speed up the library called (B-1).

Using the called library name as a key, it obtains an

executable file or OpenCL code that can be accelerated

from the registered record in the code pattern DB. If a

replacement function that can be accelerated is found, the

implementation then generates an executable file. In the

case of a GPU library, the implementation deletes the

source part and replaces found GPU library call in the

C/C++ code so that the replaced CUDA library is called. In

the case of an IP core of FPGA, the implementation deletes

the source part and replaces acquired OpenCL code to the

kernel code. After completing the replacements, it compile

with the PGI compiler for GPU and Intel Acceleration

Stack for FPGA (C-1). For FPGA, based on OpenCL code,

CPU and FPGA are connected via Intel's high-level

synthesis tool.

Above description is the case of library call, detection

processing is also performed in parallel when using

similarity detection tool. The implementation uses Deckard

to detect the similarity between the detected partial codes

such as classes and the comparison code registered in the

code pattern DB, and the comparison codes exceeding the

threshold are detected (B-2). Detected codes are associated

with corresponding GPU library or FPGA IP cores. Then,

the implementation acquires executable files and OpenCL

codes as same as B-1. Next, it generates executable files as

same as C-1. However, if the interface of the source code

and the replacement library or IP core arguments is

different, the interface that matches the replacement library

or IP core is notified to the user who requested the offload.

The user can confirm whether it can be changed or not. And

if the user accepts, the implementation generates executable

files.

At this point, execution files are created that can be

used to measure performances on GPU or FPGA in a

verification environment. For function block offloading, if

there is only one functional block to be replaced, we only

consider whether the one is offloaded or not. However, if

there are plural function blocks, the implementation

generates a verification pattern that offloads a certain

function block one by one to find a fast solution. This is

because even if it is possible to increase the speed as

existing know-how, it will not be clear whether the speed

will be increased under the deployed environment condition

until performance is actually measured. For example, if

there are five function blocks that can be offloaded and the

measurement results show that the performances of

offloading of #2 and #4 can be improved, the

implementation measures again with the pattern of

offloading both #2 and #4. If it is faster than offloading

with #2 and #4 alone, it selects both offloading as the

solution.

5. Evaluation

5.1 Evaluation method

(a) Evaluated applications

I evaluate two applications, Fourier Transform and

matrix calculation which are used many areas such as IoT.

The Fourier transform processing is used in various

scenes of monitoring, such as vibration frequency analysis.

When considering an IoT application that transfers data

from a device to the network, it is assumed that the device

side performs primary analysis such as FFT processing to

reduce the network cost. In order to speed up FFT

processing, the performance is improved by automatically

replacing CUDA's existing library cuFFT [47].

Matrix calculation is used in many types of analysis

such as machine learning analysis. Because matrix

manipulation is used not only in cloud sides but also device

sides along with spreading of IoT and AI, there are needs of

automatic performance improvements for various

applications including existing ones. In matrix calculation,

LU decomposition processing of 2048 * 2048 orthogonal

matrix data is performed. In order to speed up, the

performance is improved by automatically replacing

CUDA's existing library cuSOLVER [48].

For the Fourier transform and matrix calculation, the

original codes are from Numerical Recipes in C [49].

(b) Experiment conditions

For function block offloading to GPU and FPGA, it is

combined with loop statement offloading for actual use.

However, since loop statement offloading has been

evaluated previously in research [33] and so on, only GPU

offload of function blocks is evaluated in this section. For

the target applications, I prepare function blocks that can be

offloaded in the code pattern DB beforehand and measure

the performance when it is automatically replaced.

Conditions of experiments are as follows.

Offload source: Fourier transform application, Matrix

calculation application

Offload target: cuFFT, cuSOLVER

Offload source discovery method: The code of the

offload source application calls the external library on the

code side and it is discovered by DB name matching. The

application copies the library codes and puts comments and

it is discovered by a similarity detection tool. I prepare both

two patterns for verifications.

Methods to be compared: All CPU processing method,

Proposed function block offloading method, Loop

statement offloading method.

The loop statement offloading method is a work of [33]

to search appropriate loop offloading patterns by Genetic

Algorithm (GA) in a verification environment.

Performance measurement: In the Fourier transform,

sample test processing is performed with the grid size is

2048 * 2048 and processing time is measured. In the matrix

calculation, the processing time of LU decomposition for

2048 * 2048 orthogonal matrix is measured.

(c) Experiment environment

I use physical machines with NVIDIA Quadro P4000

for verifications. The CUDA core number of NVIDIA

Fig. 3. Experiment environment

Quadro P4000 is 1792. I use PGI compiler community

edition v19.4 and CUDA toolkit v10.1. Figure 3 shows an

experiment environment and environment specifications.

Here, a client note PC specifies C/C++ application codes,

codes are tuned with try and error on a verification machine,

and final codes are deployed in a running environment for

users after verifications.

5.2 Performance results

As applications that are expected to be used by many

users in IoT and other areas, I confirmed performance

improvements of Fourier transform and matrix calculation.

Figure 4 shows an example of Fourier transform

performance improvement of previous research [33]. It

shows maximum performance change of Fourier Transform

in each generation with GA generation transitions (The

vertical axis shows how many times faster GPU offloading

was than using only CPU). Performances can be improved

and GPU offloading is about 5.4 times faster.

Based on the previous results, I show the measurement

results of how much performances have been improved by

the proposed method implementation. First, the offload

source discovery method can be replaced by the proposed

DB name matching and similarity detection tool both

whether the library is called or the code is copied. Figure 5

shows how many times the performances when function

blocks offloading are performed compared to all CPU

processing. 1 means the same performance of all CPU

processing. The performance improvements of previous

loop statement offloading [33] are also shown.

From Figure 5, it can be seen that the Fourier transform

achieved 730 times performance by the proposed method,

which was only 5.4 times in the previous loop statement

offloading. As for matrix calculation, it was found that the

proposed method has realized 130,000 times performance

Fig. 4. Reference graph: performance change of Fourier

Transform with GA generation transitions [33]

Fig. 5. Comparison of performance improvement between

loop offloading and proposed function block offloading

compared to 38 times in previous research. In previous

research, it took more than a few hours to search for

appropriate offloading loop statements using GA. However,

the offloading of this function block has been completed in

a few minutes.

6. Conclusions

In this paper, I proposed an automatic offloading

method for function blocks of applications as a new

elemental technology of environment adaptive software.

The proposed function block offloading method starts

with source code analysis. It analyzes the source code,

detects offloadable library calls with DB check, and

replaces them with the use of replaceable GPU libraries or

FPGA IP cores registered in the DB. The performance is

measured in the verification environment, including the

functions of the replaced GPU and FPGA, and the pattern

with the highest performance is taken as the solution. In

source code analysis, to search for more replaceable

function blocks, offloadable function blocks are also

searched using similarity detection technology.

Replacement and performance measurement are performed

as the same method. However, even if it is determined that

the function block can be replaced, if the interface is

Verification
machine

CPU GPU

CUDA

PGI compiler

Running
environment

CPU GPU

CUDA

Client

C/C+
+

C/C++
code

Name Hardware CPU RAM GPU OS Cuda
PGI

Compiler
MySql

Verification
machine

Dell
Precision

Tower 3620

Intel(R) Core(TM)
i5-7500

CPU@3.40GHz
32GB

NVIDIA Quadro P4000
(CUDA core: 1792,

Memory: GDDR5 8GB)

Ubuntu
16.04.6
LTS

10.1 19.4 8.0

Running
environment

Dell
Precision

Tower 3620

Intel(R) Core(TM)
i5-7500

CPU@3.40GHz
32GB

NVIDIA Quadro P4000
(CUDA core: 1792,

Memory: GDDR5 8GB)

Ubuntu
16.04.6
LTS

10.1

Client
HP ProBook

470 G3
Intel Core i5-

6200U @2.3GHz
8GB

Windows 7
Pro 0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Performance change of Fourier Transform
with GA generation transitions

Generation numberO
ff

lo
a
d

in
g

 p
e
rf

o
rm

a
n

ce
/C

P
U

 p
e
rf

o
rm

a
n

ce
Performance
improvement of loop
offloading [33]

Performance
improvement of function
blocks offloading

Fourier transform 5.4 730
Matrix calculation 38 130000

different, the user is asked whether it can be changed with

the interface of the replaceable function.

References

(1) A. Putnam, et al., "A reconfigurable fabric for

accelerating large-scale datacenter services," ISCA'14,

pp.13-24, 2014.

(2) AWS EC2 web site,

https://aws.amazon.com/ec2/instance-types/

(3) Y. Yamato, et al., "Fast and Reliable Restoration

Method of Virtual Resources on OpenStack," IEEE

Transactions on Cloud Computing, Sep. 2015.

(4) O. Sefraoui, et al., "OpenStack: toward an open-source

solution for cloud computing," International Journal of

Computer Applications, Vol.55, 2012.

(5) Y. Yamato, "Cloud Storage Application Area of

HDD-SSD Hybrid Storage, Distributed Storage and

HDD Storage," IEEJ Transactions on Electrical and

Electronic Engineering, Vol.11, pp.674-675, Sep. 2016.

(6) Y. Yamato, et al., "Development of Resource

Management Server for Production IaaS Services

Based on OpenStack," Journal of Information

Processing, Vol.23, No.1, pp.58-66, Jan. 2015.

(7) Y. Yamato, "Use case study of HDD-SSD hybrid

storage, distributed storage and HDD storage on

OpenStack," 19th International Database Engineering

& Applications Symposium (IDEAS15), July 2015.

(8) Y. Yamato, "Automatic verification technology of

software patches for user virtual environments on IaaS

cloud," Journal of Cloud Computing, Springer, 2015.

(9) Y. Yamato, "Optimum Application Deployment

Technology for Heterogeneous IaaS Cloud," Journal of

Information Processing, Vol.25, No.1, pp.56-58, 2017.

(10) Y. Yamato, "Performance-Aware Server Architecture

Recommendation and Automatic Performance

Verification Technology on IaaS Cloud," Service

Oriented Computing and Applications, Springer, 2016.

(11) Y. Yamato, "Server Selection, Configuration and

Reconfiguration Technology for IaaS Cloud with

Multiple Server Types," Journal of Network and

Systems Management, Springer, Aug. 2017.

(12) Y. Yamato, et al., "Software Maintenance Evaluation of

Agile Software Development Method Based on

OpenStack," IEICE Transactions on Information &

Systems, Vol.E98-D, No.7, pp.1377-1380, July 2015.

(13) Y. Yamato, "OpenStack Hypervisor, Container and

Baremetal Servers Performance Comparison," IEICE

Communication Express, Vol.4, pp.228-232, July 2015.

(14) J. Sanders and E. Kandrot, "CUDA by example : an

introduction to general-purpose GPU programming,"

Addison-Wesley, 2011

(15) J. E. Stone, et al., "OpenCL: A parallel programming

standard for heterogeneous computing systems,"

Computing in science & engineering, Vol.12, 2010.

(16) M. Hermann, et al., "Design Principles for Industrie 4.0

Scenarios," Rechnische Universitat Dortmund. 2015.

(17) Y. Yamato, Y. Fukumoto and H. Kumazaki, "Proposal

of Real Time Predictive Maintenance Platform with 3D

Printer for Business Vehicles," 5th International

Conference on Software and Information Engineering

(ICSIE 2016), May 2016.

(18) Y. Yamato, et al., "Security Camera Movie and ERP

Data Matching System to Prevent Theft," IEEE CCNC

2017, pp.1021-1022, Jan. 2017.

(19) Y. Yamato, et al., "Predictive Maintenance Platform

with Sound Stream Analysis in Edges," Journal of

Information Processing, Vol.25, pp.317-320, Apr. 2017.

(20) Tron project web site, http://www.tron.org/

(21) P. C. Evans and M. Annunziata, "Industrial Internet:

Pushing the Boundaries of Minds and Machines,"

Technical report of General Electric (GE), Nov. 2012.

(22) Y. Yamato, "Ubiquitous Service Composition

Technology for Ubiquitous Network Environments,"

IPSJ Journal, Vol.48, No.2, pp.562-577, Feb. 2007.

(23) H. Sunaga, et al., "Service Delivery Platform

Architecture for the Next-Generation Network,"

ICIN2008, 2008.

(24) H. Sunaga, et al., "Ubiquitous Life Creation through

Service Composition Technologies," World

Telecommunications Congress 2006 (WTC 2006), May

2006.

(25) M. Takemoto, et al., "Service Elements and Service

Templates for Adaptive Service Composition in a

Ubiquitous Computing Environment," The 9th

Asia-Pacific Conference on Communications

(APCC2003), Vol.1, pp.335-338, Sep. 2003.

(26) Y. Nakano, et al., "Method of creating web services

from web applications," IEEE International Conference

on Service-Oriented Computing and Applications

(SOCA 2007), pp.65-71, June 2007.

(27) M. Takemoto, et al., "Service-composition Method and

Its Implementation in Service-provision Architecture

for Ubiquitous Computing Environments," IPSJ

Journal, Vol.46, No.2, pp.418-433, Feb. 2005.

(28) Y. Yamato, et al., "Development of Service Control

Server for Web-Telecom Coordination Service," IEEE

ICWS 2008, pp.600-607, Sep. 2008.

(29) Y. Yokohata, et al., "Service Composition Architecture

for Programmability and Flexibility in Ubiquitous

Communication Networks," IEEE International

Symposium on Applications and the Internet

Workshops (SAINTW'06), 2006.

(30) Y. Yokohata, et al., "Context-Aware Content-Provision

Service for Shopping Malls Based on Ubiquitous

Service-Oriented Network Framework and

Authentication and Access Control Agent Framework,"

IEEE CCNC 2006, pp.1330-1331, 2006.

(31) J. Gosling, et al., "The Java language specification,

third edition," Addison-Wesley, 2005.

(32) Y. Yamato, et al., "Automatic GPU Offloading

Technology for Open IoT Environment," IEEE Internet

of Things Journal, Sep. 2018.

(33) Y. Yamato, "Study of parallel processing area

extraction and data transfer number reduction for

automatic GPU offloading of IoT applications," Journal

of Intelligent Information Systems, Springer, 2019.

(34) K. Shirahata, et al., "Hybrid Map Task Scheduling for

GPU-Based Heterogeneous Clusters," CloudCom2010.

(35) Altera SDK web site,

https://www.altera.com/products/design-software/embe

dded-software-developers/opencl/documentation.html

(36) Xilinx SDK web site, https://japan.xilinx.com/html_do

cs/xilinx2017_4/sdaccel_doc/lyx1504034296578.html

(37) S. Wienke, et al., "OpenACC-first experiences with

real-world applications," Euro-Par 2012, 2012.

(38) M. Wolfe, "Implementing the PGI accelerator model,"

ACM the 3rd Workshop on General-Purpose

Computation on Graphics Processing Units, Mar. 2010.

(39) K. Ishizaki, "Transparent GPU exploitation for Java,"

CANDAR 2016, Nov. 2016.

(40) E. Su, et al., "Compiler support of the workqueuing

execution model for Intel SMP architectures," In

Fourth European Workshop on OpenMP, Sep. 2002.

(41) Jenkins web site, https://jenkins.io/

(42) Selenium web site, https://www.seleniumhq.org/

(43) J. H. Holland, "Genetic algorithms," Scientific

american, Vol.267, No.1, pp.66-73, 1992.

(44) OpenCV web site, http://opencv.org/

(45) Deckard web site, http://github.com/skyhover/Deckard

(46) Clang website, http://llvm.org/

(47) cuFFT web site,

https://docs.nvidia.com/cuda/cufft/index.html

(48) cuSOLVER web site,

https://docs.nvidia.com/cuda/cublas/index.html

(49) Numerical Recipes in C,

https://www.cec.uchile.cl/cinetica/pcordero/MC_libros/

NumericalRecipesinC.pdf

	名称未設定

	Title: Proposal of Automatic Offloading for Function Blocks of Applications
	Citation: The 8th IIAE International Conference on Industrial Application Engineering 2020 (ICIAE 2020), pp. 4-11
	Publisher: The Institute of Industrial Applications Engineers, Japan
	Note:
	yyyy: 2020
	mm: 3
	dd: 26
	version(English): [Author Accepted Manuscript(AAM)]
	version(Japanese): [(受理済)著者最終稿(AAM)]
	_: ‘I‘ð“à—e1
	__: Off
	Author(s): Yoji Yamato
	DOI: https://doi.org/10.12792/iciae2020.004

