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Abstract 

When using heterogeneous hardware other than CPUs, 

barriers of technical skills such as OpenCL are high. Based 

on that, I have proposed environment adaptive software that 

enables automatic conversion, configuration, and 

high-performance operation of once written code, according 

to the hardware to be placed. Partly of the offloading to the 

GPU was automated previously. In this paper, I propose and 

evaluate an automatic extraction method of appropriate 

offload target loop statements of source code as the first 

step of offloading to FPGA. I evaluate the effectiveness of 

the proposed method in multiple applications. 

Keywords: Environment Adaptive Software, Automatic 

Offloading, Performance, Evolutionary Computation, 

Function Block. 

1. Introduction 

In recent years, it is said that Moore's Law will end 

shortly and CPU's density cannot be expected to double in 

1.5 years. Based on this situation, systems with 

heterogeneous hardware such as GPU (Graphics Processing 

Unit) and FPGA (Field Programmable Gate Array) are 

increased. For example, Microsoft's search engine Bing 

tries to use FPGA [1]. AWS (Amazon Web Services) [2] 

provides GPU and FPGA using cloud technologies (e.g., 

[3]-[13]).  

However, to achieve high performances using 

heterogeneous hardware for various applications, 

developers need to program and configure appropriately 

considering hardware and need to use expert technologies 

such as CUDA (Compute Unified Device Architecture) [14] 

and OpenCL (Open Computing Language) [15]. This is a 

high barrier to utilize GPU or FPGA.  

Along with the progress of IoT (Internet of Things) 

technology (e.g., Industrie 4.0 and so on [16]-[21]), IoT 

devices are increasing rapidly, and many IoT applications 

are developed using service coordination technologies such 

as [22]-[30]. 

Expectation of applications utilizing heterogeneous 

hardware such as GPU and FPGA and many IoT devices is 

getting higher, however the hurdles are currently high for 

utilizing them. In order to break down such a situation, we 

think it is required in the future that application 

programmers only need to write logics to be processed, 

then software will adapt to the environments with 

heterogeneous hardware, to make it easy to utilize 

heterogeneous hardware and IoT devices.  

Because Java [31] is insufficient for environment 

adaptation with performances, I have proposed environment 

adaptive software which run once written applications with 

high performance by automatically performing code 

conversion and configurations so that GPUs, FPGAs, IoT 

devices or so on can be used on deployment environments 

appropriately. As part of its technology, I have also realized 

automatic GPU or FPGA offloading of applications loop 

statements [32][33] partly. In this paper, I propose a method 

for offloading function blocks that are larger units rather 

than individual loop statement in applications to achieve 

higher performances by automatic offloading to GPU or 

FPGA. I implement the proposed method and evaluate the 

effectiveness of function block offloading using plural 

applications. 

2. Existing Technologies 

For GPGPU (General Purpose GPU) that uses GPU 

computational power not only for graphics processing (e.g., 

[34]), CUDA is a major development environment. To 

control heterogeneous hardware such as GPUs, FPGAs, and 

many core CPUs uniformly, OpenCL specification and its 

SDK (e.g., [35][36]) are widely used. CUDA and OpenCL 

need not only C language extension but also additional  
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C. Matching interfaces between replaced libraries or IP 

cores and host CPU program 

C-1：Since the corresponding library or IP core is 

searched in B-1 for the library call detected in A-1, the 

replacement library or IP core is installed in GPU or FPGA, 

and a host (CPU) program is connected. In the case of a 

library for GPU, a library such as CUDA is assumed. Since 

methods of using CUDA libraries from C language codes 

are open together with libraries, the code pattern DB holds 

library usage methods as well. When GPU libraries are used, 

GPU libraries and host program are connected referring to 

usage methods. In the case of an FPGA IP core, HDL is 

assumed. The code pattern DB also holds OpenCL code as 

IP core related information. From OpenCL code, the 

connection between CPU and FPGA using OpenCL 

interface and implementation of IP core on FPGA can be 

done via high-level synthesis tools of FPGA vendors such 

as Xilinx and Intel (Xilinx Vivado, Intel HLS Compiler, 

etc.).  

C-2：For classes and structures detected in A-2, we 

search for libraries and IP cores that can be accelerated in 

B-2, and we implement the corresponding libraries and IP 

cores on GPU and FPGA. Since B-2 is judged based on 

similarity, there is no guarantee that the basic parts such as 

the number and type of arguments and return match. 

If they do not match, because libraries and IP cores are 

existing know-how and cannot be changed frequently, we 

will confirm a user whether to change according to the 

libraries or IP cores, and after receiving the confirmation, 

we will proceed performance tests.  

4. Implementation 

4.1 Tools to use  

In this section, I explain the implementation of the 

proposed method. To confirm the method effectiveness of 

function blocks offloading, we use C/C++ language 

applications and NVIDIA Quadro P4000 (CUDA core: 

1792, Memory: GDDR5 8GB) for GPU, Intel PAC with 

Intel Arria10 GX FPGA for FPGA. 

GPU processing uses PGI compiler 19.4 in the market. 

PGI compiler is OpenACC compiler for C/C++/Fortran 

languages. PGI compiler also can use CUDA libraries such 

as cuFFT or cuBLAS. 

To control FPGA, we use Intel Acceleration Stack 

Version 1.2 (Intel FPGA SDK for OpenCL 17.1.1，Quartus 

Prime Version 17.1.1). By including existing OpenCL codes 

of FPGA into kernel codes, those can be offloaded to FPGA 

during OpenCL program processing. 

MySQL8.0 is used for the code pattern DB. It holds 

records for searching GPU libraries and FPGA IP cores that 

can be accelerated using the name of the library being 

called as a key. Libraries and IP cores have names, codes, 

and executable files associated with them. The usage 

method of the executable file is also registered. At the same 

time, code for comparison to detect the libraries and IP 

cores with the similarity detection tool is also held to 

associate with libraries and IP cores. 

Deckard v2.0 [45] is used as the similarity detection 

tool. Deckard is used to expand function blocks for 

offloading. It judges the similarity between the partial code 

to be verified and the code for comparison registered in the 

code pattern DB to detect functions which are copied from 

outer files and changed. . 

We implement the implementation by C language.  

4.2 Implementation behavior  

When a C/C++ application is specified, this 

implementation parses C/C++ code and detects loop 

statements and loop number for loop offloading of previous 

researches using gcov or gprof, called libraries (A-1) and 

defined classes and structures (A-2). For parsing, the 

Python program uses parsing libraries of LLVM/Clang [46] 

(libClang Python binding). When the implementation 

searches if there is an external library call, it checks the 

external library list in the code pattern DB. 

Next, the implementation detects GPU libraries and 

FPGA IP cores that can speed up the library called (B-1). 

Using the called library name as a key, it obtains an 

executable file or OpenCL code that can be accelerated 

from the registered record in the code pattern DB. If a 

replacement function that can be accelerated is found, the 

implementation then generates an executable file. In the 

case of a GPU library, the implementation deletes the 

source part and replaces found GPU library call in the 

C/C++ code so that the replaced CUDA library is called. In 

the case of an IP core of FPGA, the implementation deletes 

the source part and replaces acquired OpenCL code to the 

kernel code. After completing the replacements, it compile 

with the PGI compiler for GPU and Intel Acceleration 

Stack for FPGA (C-1). For FPGA, based on OpenCL code, 

CPU and FPGA are connected via Intel's high-level 

synthesis tool. 

Above description is the case of library call, detection 

processing is also performed in parallel when using 



 

 

similarity detection tool. The implementation uses Deckard 

to detect the similarity between the detected partial codes 

such as classes and the comparison code registered in the 

code pattern DB, and the comparison codes exceeding the 

threshold are detected (B-2). Detected codes are associated 

with corresponding GPU library or FPGA IP cores. Then, 

the implementation acquires executable files and OpenCL 

codes as same as B-1. Next, it generates executable files as 

same as C-1. However, if the interface of the source code 

and the replacement library or IP core arguments is 

different, the interface that matches the replacement library 

or IP core is notified to the user who requested the offload. 

The user can confirm whether it can be changed or not. And 

if the user accepts, the implementation generates executable 

files.  

At this point, execution files are created that can be 

used to measure performances on GPU or FPGA in a 

verification environment. For function block offloading, if 

there is only one functional block to be replaced, we only 

consider whether the one is offloaded or not. However, if 

there are plural function blocks, the implementation 

generates a verification pattern that offloads a certain 

function block one by one to find a fast solution. This is 

because even if it is possible to increase the speed as 

existing know-how, it will not be clear whether the speed 

will be increased under the deployed environment condition 

until performance is actually measured. For example, if 

there are five function blocks that can be offloaded and the 

measurement results show that the performances of 

offloading of #2 and #4 can be improved, the 

implementation measures again with the pattern of 

offloading both #2 and #4. If it is faster than offloading 

with #2 and #4 alone, it selects both offloading as the 

solution. 

5. Evaluation 

5.1 Evaluation method  

(a) Evaluated applications 

I evaluate two applications, Fourier Transform and 

matrix calculation which are used many areas such as IoT. 

The Fourier transform processing is used in various 

scenes of monitoring, such as vibration frequency analysis. 

When considering an IoT application that transfers data 

from a device to the network, it is assumed that the device 

side performs primary analysis such as FFT processing to 

reduce the network cost. In order to speed up FFT 

processing, the performance is improved by automatically 

replacing CUDA's existing library cuFFT [47]. 

Matrix calculation is used in many types of analysis 

such as machine learning analysis. Because matrix 

manipulation is used not only in cloud sides but also device 

sides along with spreading of IoT and AI, there are needs of 

automatic performance improvements for various 

applications including existing ones. In matrix calculation, 

LU decomposition processing of 2048 * 2048 orthogonal 

matrix data is performed. In order to speed up, the 

performance is improved by automatically replacing 

CUDA's existing library cuSOLVER [48]. 

For the Fourier transform and matrix calculation, the 

original codes are from Numerical Recipes in C [49]. 

(b) Experiment conditions 

For function block offloading to GPU and FPGA, it is 

combined with loop statement offloading for actual use. 

However, since loop statement offloading has been 

evaluated previously in research [33] and so on, only GPU 

offload of function blocks is evaluated in this section. For 

the target applications, I prepare function blocks that can be 

offloaded in the code pattern DB beforehand and measure 

the performance when it is automatically replaced. 

 

Conditions of experiments are as follows. 

Offload source: Fourier transform application, Matrix 

calculation application 

Offload target: cuFFT, cuSOLVER 

Offload source discovery method: The code of the 

offload source application calls the external library on the 

code side and it is discovered by DB name matching. The 

application copies the library codes and puts comments and 

it is discovered by a similarity detection tool. I prepare both 

two patterns for verifications. 

Methods to be compared: All CPU processing method, 

Proposed function block offloading method, Loop 

statement offloading method. 

The loop statement offloading method is a work of [33] 

to search appropriate loop offloading patterns by Genetic 

Algorithm (GA) in a verification environment. 

Performance measurement: In the Fourier transform, 

sample test processing is performed with the grid size is 

2048 * 2048 and processing time is measured. In the matrix 

calculation, the processing time of LU decomposition for 

2048 * 2048 orthogonal matrix is measured. 

(c) Experiment environment 

I use physical machines with NVIDIA Quadro P4000 

for verifications. The CUDA core number of NVIDIA  



 

 

 

Fig. 3.  Experiment environment 

 

Quadro P4000 is 1792. I use PGI compiler community 

edition v19.4 and CUDA toolkit v10.1. Figure 3 shows an 

experiment environment and environment specifications. 

Here, a client note PC specifies C/C++ application codes, 

codes are tuned with try and error on a verification machine, 

and final codes are deployed in a running environment for 

users after verifications.   

5.2 Performance results  

As applications that are expected to be used by many 

users in IoT and other areas, I confirmed performance 

improvements of Fourier transform and matrix calculation. 

Figure 4 shows an example of Fourier transform 

performance improvement of previous research [33]. It 

shows maximum performance change of Fourier Transform 

in each generation with GA generation transitions (The 

vertical axis shows how many times faster GPU offloading 

was than using only CPU). Performances can be improved 

and GPU offloading is about 5.4 times faster.  

Based on the previous results, I show the measurement 

results of how much performances have been improved by 

the proposed method implementation. First, the offload 

source discovery method can be replaced by the proposed 

DB name matching and similarity detection tool both 

whether the library is called or the code is copied. Figure 5 

shows how many times the performances when function 

blocks offloading are performed compared to all CPU 

processing. 1 means the same performance of all CPU 

processing. The performance improvements of previous 

loop statement offloading [33] are also shown. 

From Figure 5, it can be seen that the Fourier transform 

achieved 730 times performance by the proposed method, 

which was only 5.4 times in the previous loop statement 

offloading. As for matrix calculation, it was found that the 

proposed method has realized 130,000 times performance  

 

Fig. 4.  Reference graph: performance change of Fourier 

Transform with GA generation transitions [33] 

 

 

Fig. 5.  Comparison of performance improvement between 

loop offloading and proposed function block offloading 

 

compared to 38 times in previous research. In previous 

research, it took more than a few hours to search for 

appropriate offloading loop statements using GA. However, 

the offloading of this function block has been completed in 

a few minutes. 

6. Conclusions 

In this paper, I proposed an automatic offloading 

method for function blocks of applications as a new 

elemental technology of environment adaptive software.  

The proposed function block offloading method starts 

with source code analysis. It analyzes the source code, 

detects offloadable library calls with DB check, and 

replaces them with the use of replaceable GPU libraries or 

FPGA IP cores registered in the DB. The performance is 

measured in the verification environment, including the 

functions of the replaced GPU and FPGA, and the pattern 

with the highest performance is taken as the solution. In 

source code analysis, to search for more replaceable 

function blocks, offloadable function blocks are also 

searched using similarity detection technology. 

Replacement and performance measurement are performed 

as the same method. However, even if it is determined that 

the function block can be replaced, if the interface is 
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different, the user is asked whether it can be changed with 

the interface of the replaceable function. 
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