Jxi1v

[4 D47/ dzéikaiv]

Proposal of Automatic Offloading for Function Blocks of Applications

Title
Yoji Yamato
Author(s)
Journal title (Repository name etc.), Volume,lssue, Pages(Artlcle number) etc.
Jv—FILE FiTY - Y1) - &5 - R—Y (FOHRIESS) :
The 8th IIAE International Conference on Industrial Application Engineering 2020 (ICIAE 2020), pp.
4-11
Citation " DOI (URL)
https://doi.org/10.12792/iciae2020.004
Publication Date: yyyy/mm/dd
« HMRB 2020 3 R2»x H
Publisher
« Hi}R3& . The Institute of Industrial Applications Engineers, Japan
This preprintisthe Author Accepted Manuscript(AAM) of the above.
s RTLTY U ME, LRAXD () (AAM) THb.
All necessary permissions from the publisher have
Declaration U —FI)L (HIRE) DOMELHEE

been obtained not been obtained

(OF a3 O #cumy

Notes

Proceedings of the 8th IIAE International Conferena Industrial Application Engineering 2020

Proposal of Automatic Offloading for Function Blocks of Applications

Yoji Yamatd"”

*Network Service Systems Laboratories, NTT CorporatB-

9-11 Midori-cho, Musashino-shi, Tokyo 180-858apan

*Corresponding Author: yoji.yamato.wa@hco.ntt.co.jp

Abstract

devices are increasing rapidly, and many loT appbnos
are developed using service coordination technefgiich

When using heterogeneous hardware other than CPUsas [22]-[30].

barriers of technical skills such as OpenCL ardhigased
on that, | have proposed environment adaptive softthat
enables automatic conversion, configuration,
high-performance operation of once written codepeding
to the hardware to be placed. Partly of the offiogdo the
GPU was automated previously. In this paper, | psepand
evaluate an automatic extraction method of appatgri
offload target loop statements of source code asfitlt
step of offloading to FPGA. | evaluate the effeetiess of
the proposed method in multiple applications.

and

Keywords: Environment Adaptive Software, Automatic
Offloading, Performance, Evolutionary Computation,
Function Block.
1. Introduction

In recent years, it is said that Moore's Law wilden
shortly and CPU's density cannot be expected tbldan
1.5 years. Based on this situation, systems with
heterogeneous hardware such as GPU (Graphics Bimges
Unit) and FPGA (Field Programmable Gate Array) are
increased. For example, Microsoft's search engiimg B
tries to use FPGA [1]. AWS (Amazon Web Serviceg) [2
provides GPU and FPGA using cloud technologies.,(e.g

[3]-[13]).
However, to achieve high performances using
heterogeneous hardware for various applications,

developers need to program and configure appreyiat
considering hardware and need to use expert teoties|
such as CUDA (Compute Unified Device Architectyt)]
and OpenCL (Open Computing Language) [15]. This is a
high barrier to utilize GPU or FPGA.

Along with the progress of 10T (Internet of Things)
technology (e.g., Industrie 4.0 and so on [16]-]21$T

Expectation of applications utilizing heterogeneous
hardware such as GPU and FPGA and many loT deidces
getting higher, however the hurdles are currenityh Hor
utilizing them. In order to break down such a ditug we
think it is required in the future that application
programmers only need to write logics to be proegss
then software will adapt to the environments with
heterogeneous hardware, to make it easy to utilize
heterogeneous hardware and loT devices.

Because Java [31] is insufficient for environment
adaptation with performances, | have proposed enrient
adaptive software which run once written applicagiovith
high performance by automatically performing code
conversion and configurations so that GPUs, FPG®E,
devices or so on can be used on deployment enventsm
appropriately. As part of its technology, | havecatealized
automatic GPU or FPGA offloading of application®po
statements [32][33] partly. In this paper, | prop@smethod
for offloading function blocks that are larger snitather
than individual loop statement in applications thiave
higher performances by automatic offloading to G&U
FPGA. | implement the proposed method and evaltfete
effectiveness of function block offloading usingugall
applications.

2. Existing Technologies

For GPGPU (General Purpose GPU) that uses GPU
computational power not only for graphics proceggg.,
[34]), CUDA is a major development environment. To
control heterogeneous hardware such as GPUs, FR®As,
many core CPUs uniformly, OpenCL specification désd
SDK (e.g., [35][36]) are widely used. CUDA and O@#&n
need not only C language extension but also additio

1-2. Analyze application code 1-1. Specify application code]
2. Extract offloadable areaand __
output intermediate file Application

°°de‘ elect appropriate location)

Environment Gode Pattern DB
Adaptation function J¢* Facility resource DB

3. Deploy execution files and
Measure performance to
search appropriate patterns

Verification ervironment 4. Determine resource sizes|

CPU | GPU | FPGA [loT GW

fex. CUDA, OpeneCL)
6-1. Deploy final files to

3
production environment
L loT GW cpu | Gy CPU | FPGA cpu
T

T T T

6-2. Extract test cases and

6-3. Provide price and

Production environment @ user to jud

user

Fig. 1. Processing flow of environment adaptive softv

description such as memory copy between GPU or FF
devices and CPUs. Because of these program
difficulties, there are ew CUDA and OpenC
programmer:

For easy heterogeneous hardware programming,
are technologies that specify parallel processireas by
specified directives and compilers transform th
directives into device oriented codes on the bafi
specified directives. OpenAC([37] is one of the
directive-based specificatio, and the PGI compile[38] is
one of the directiv-based compilers. Fcexample, user
specify OpenACC directives on C/C++ codes to pre
them in parallel, and the PGI compiler checks
possibility of parallel processing and outputs aleghloys
execution binary files to run on GPUs and CPUs. DK
supports GPloffloadin¢ based on .va lambda expressic
[39].

In this way, CUDA, OpenCL, OpenACC, and oth
support GPU or FPGA offload processing. Howe
although processing on a GPU or FPGA it can be
performed, sufficient performance is hard to obtdior
example, when users use an automatic paralleliz
technology like the Intel compilg40] for multicore CPU
possible areas of parallel processing such as 'ffmop
statements are extred. However, naive parallel executi
performances with GPUs or FPGAs are not high becat
overheads of CPU and GPU/FPGA memory data trai
To achieve high performances with GPU/FP(
CUDA/OpenCL need to be tuned by highly skil
programmers or apopriate offloading area need to
searched for by the PGI compiler or othe

3. Proposal of Automatic Offloading for
Function Blocks

3.1 Processing flow of environment adaptive software

In order to realize software adaptation to envirentn |
have proposed e following processing flow ¢
environment adaptive software with reference taufégl.
The environment adaptive software is realized
cooperation with functions including an environm
adaptation function, a test case (using [41][42] and s
on), a code pattern DB, a facility resource DB,
verification environment andproduction environmer

3.2 Necessity of function blocks offloading

Firstly, | explain my previous automatic G}
offloading method for loop statement

As a basic problem, it is posse for compilers to fin
the restriction that this loop statement cannoptzeesse:
in parallel with GPU, but it is difficult to finche suitability
that this loop statement is suitable for GPU pat
processing. Therefore, an instruction to offloais loop to
GPU is given manually, and performance measurenaza
repeated by trial and err

Based on this situation, the papel[32] proposes the
GA [43] automatically finds an appropriate loop staten
to be offloaded to GPU. First, a parallel loop estagnt i<
checked from a general purpose program that is
supposed to be parallelized, and loop statemerfksad
patterns are mapped to genes withalue of 1 is set fc
GPU execution and 0 for CPU execution. Then,
performance verification trials are repeated in
verification environment to search for an apprder
offloading area.

Secondly, | explain my previous automatic FP
offloading metlod for loop statements

Even in FPGA, it is difficult to predict which loopsill
be faster when specific loop statements that takeng
time to process are offloaded to FPGA. Thereforealse
propose to perform trial and error automatically a
verification environment like GPU cases. However, un
GPU, since FPGA takes more than several hoursrnpite,
we try actual FPGA measurements after narrowingn
the offload candidate loop statements. For narr-down
loop statements, our method genes OpenCL codes thi
offload each loop statement or combination of those
statements, compiles them to FPGA, meas
performances and selects the highest performaneay
code as the solutic

However, especially in the case of FPGA's accetar:
it is often the case that an algorithm for CPUharmed tc
an algorithm suitable for hardware processing. Hos
reason, simple offloading of loop statements wéieno

Source code
(11. Code analysis

Function block offload
function

e.g., OpenCL t)

3. Generate
intermediate files
to offload

———
4. Performance
measurement with
deployed files

2. Offloadable area
extraction

DB

Fig. 2. Image of function blocks offloadil.

Verification
environment

insufficient in performance comred to improvements k
manually changing algorithm:

It is currently very difficult for machines autoncally
extract hardware oriented algorithms for each appbn.
Therefore, we aim to improve performance by reptp
function blocks implemented wh hardware oriente
algorithms such as FPGA and GPU for large unit$h s
matrix manipulation and Fourier transform in CPUWes.
In other words, we use existing kn-how of developer.

3.3 Outline of function blocks offloading and
consider ation points

Regading to FPGA, because hardware circuit des
take a lot of time, it is often possible to useuwit design ir
the form of "IP core" for functions once desigr

As for GPU, FFT, linear alget and image processit
(e.g., [44] are typical examples, d cuFFT, cuBLAS ar
implemented by CUDA and are provided free as (
libraries. We consider using these libraries (fotore) for
GPU

In this paper, if existing source code createdG&J
includes function blocks that can be accelerated
offloading 0 GPU or FPGA such as FFT processing, (
libraries or FPGA IP cores are replaced to the tianc
blocks to speed u

An overview of function blocks offloading is dedmed
in Figure 2. In Step 1, source codes are analyzatyla
parse tool such as Clang, outer library calls amtttion
processing are analyzed with loop statement streicteor
library calls and functin processing analyzed in Step 1
Step 2, function blocks that can be offloaded tdJG#
FPGA are found by checking with the code pattern DE
Step 3, offloadable function blocks are replacedh
libraries for GPU or IP cores for FPGA with creat
interfaces with CPU programs. At this time, sinces ihot
known whether function blocks offloading to GPU
FPGA will lead to immediate speedup, performa

measurements are repeated in a verification envieon to
extract faster offloading patterns h or without certait
function blocks offloading

With regard to function block offloading, we need
consider following three points. Discovering fuoct
blocks in source codes, Checking whether the fan
blocks have offloadable GPU libraries or FPUP cores
Matching interfaces between replaced librariesPocdres
and host CPU progra

3.4 Function blocks offloading method

Based on three consideration points in the prev
subsection, | study a function blocks offloadingtinoel in
detall
A. Discoverng function blocks in source cot

A-1: In parsing, our method detects that exte
libraries are called from source codes. It is assurhal
library calls such as FFT are detected. To detesint the
code pattern DB holds external libraries list anr method
checks with the DE

A-2 : In order to detect function processing other t
registered library calls, classes, structures ateatied fron
source code definition description by parse ti
B. Checking whether the function blocks have offlaale
GPU libraries or FPGA IP cor

B-1 : The code pattern DB holds GPU libraries, FF
IP cores and related information which improve #je
libraries or function block processing. For replaeat
source libraries and function blocks, codes and@able
files with function names are retered. For library call
detected in ~1, our method searches for GPU librariet
FPGA IP cores that can be accelerated using libmarge
as a ke

B-2 : The information registered in the code pattern
in B-1 is used. Theimilarity detection tool detects whett
there are libraries or IP cores that can be actelgrfor the
function processing of classes, structures deteictek-2.
The similarity etection tool is a tool such Deckardthat
detects a copy code or a ched code after copying. Ti
similarity detection tool can detect some codes tra
similar descriptions when calculated by CPU suchasix
manipulation, and changed descriptions after capftiom
other codes. The similarity detection tool cannotect
newly created classes, thus those are out of sdeqe
functions with libraries or IP cores registeredtlie code
pattern DB that accelerate specific function blockse
similarity detection tool judges the similarity hggh or not
based on the tothreshold.

C. Matching interfaces between replaced librarieslPo of FPGA into kernel codes, those can be offloadeeRGA
cores and host CPU program during OpenCL program processing.

C-1: Since the corresponding library or IP core is MySQL8.0 is used for the code pattern DB. It holds
searched in B-1 for the library call detected inlAthe records for searching GPU libraries and FPGA IRsthat
replacement library or IP core is installed in GRMUFPGA, can be accelerated using the name of the libraiggbe
and a host (CPU) program is connected. In the ohse called as a key. Libraries and IP cores have naouekgs,
library for GPU, a library such as CUDA is assun®ihce and executable files associated with them. The usage
methods of using CUDA libraries from C languageed method of the executable file is also registereith& same
are open together with libraries, the code patiBnholds time, code for comparison to detect the librariesl &P
library usage methods as well. When GPU librariesuged, cores with the similarity detection tool is alsolchéo
GPU libraries and host program are connected iefgto associate with libraries and IP cores.
usage methods. In the case of an FPGA IP core, DL Deckard v2.0 [45] is used as the similarity detecti
assumed. The code pattern DB also holds OpenCL a®de tool. Deckard is used to expand function blocks for
IP core related information. From OpenCL code, the offloading. It judges the similarity between thet@d code
connection between CPU and FPGA using OpenCLto be verified and the code for comparison regestén the
interface and implementation of IP core on FPGA ban code pattern DB to detect functions which are abfiem
done via high-level synthesis tools of FPGA vendarsh outer files and changed. .

as Xilinx and Intel (Xilinx Vivado, Intel HLS Compat, We implement the implementation by C language.
etc.).
) . 4.2 Implementation behavior
C-2: For classes and structures detected in A-2, we
search for libraries and IP cores that can be acaeld in When a C/C++ application is specified, this
B-2, and we implement the corresponding libraried & implementation parses C/C++ code and detects loop

cores on GPU and FPGA. Since B-2 is judged based orstatements and loop number for loop offloading refvipus
similarity, there is no guarantee that the basitspsuch as researches using gcov or gprof, called librariesl]Aand
the number and type of arguments and return match. defined classes and structures (A-2). For parsthg,

If they do not match, because libraries and IPsare Python program uses parsing libraries of LLVM/Cl446]
existing know-how and cannot be changed frequemtyy, (libClang Python binding). When the implementation
will confirm a user whether to change accordingthe searches if there is an external library call, Heaks the

libraries or IP cores, and after receiving the tamdtion, external library list in the code pattern DB.
we will proceed performance tests. Next, the implementation detects GPU libraries and
FPGA IP cores that can speed up the library cgBed).
4. Implementation Using the called library name as a key, it obtaars
executable file or OpenCL code that can be acdeldgra
41 Toolstouse from the registered record in the code pattern [Ba

replacement function that can be accelerated iadpthe
implementation then generates an executable filethé
case of a GPU library, the implementation deletes t
source part and replaces found GPU library caltha
C/C++ code so that the replaced CUDA library idezhlin
the case of an IP core of FPGA, the implementafigietes
the source part and replaces acquired OpenCL antiget
kernel code. After completing the replacementspinpile
with the PGI compiler for GPU and Intel Acceleratio

In this section, | explain the implementation ot th
proposed method. To confirm the method effectiverafs
function blocks offloading, we use C/C++ language
applications and NVIDIA Quadro P4000 (CUDA core:
1792, Memory: GDDR5 8GB) for GPU, Intel PAC with
Intel Arrial0 GX FPGA for FPGA.

GPU processing uses PGI compiler 19.4 in the market
PGI compiler is OpenACC compiler for C/C++/Fortran

languages. PGI compiler also can use CUDA libragigsh
Stack for FPGA (C-1). For FPGA, based on OpenClecod

as cuFFT or cuBLAS. . .
, CPU and FPGA are connected via Intel's high-level
To control FPGA, we use Intel Acceleration Stack

i synthesis tool.
Version 1.2 (Intel FPGA SDK for OpenCL 17.1.Quartus

: : . . - Above description is the case of library call, d&t:
Prime Version 17.1.1By including existing OpenCL codes
processing is also performed in parallel when using

similarity detection tool. The implementation uxsckard
to detect the similarity between the detected gladbdes
such as classes and the comparison code registetbd
code pattern DB, and the comparison codes exceddag
threshold are detected (B-2). Detected codes aaxiated
with corresponding GPU library or FPGA IP coreseith
the implementation acquires executable files aneénQh
codes as same as B-1. Next, it generates execlifeslas
same as C-1. However, if the interface of the smwade

processing, the performance is improved by autaalhfi
replacing CUDA's existing library cuFFT [47].

Matrix calculation is used in many types of anaysi
such as machine learning analysis. Because matrix
manipulation is used not only in cloud sides babalevice
sides along with spreading of 1oT and Al, thererageds of
automatic performance improvements for various
applications including existing ones. In matrixatdation,

LU decomposition processing of 2048 * 2048 orthodona

and the replacement library or IP core arguments ismatrix data is performed. In order to speed up, the

different, the interface that matches the replacerilerary
or IP core is notified to the user who requesteddafiload.
The user can confirm whether it can be changed torAma
if the user accepts, the implementation generatesueable
files.

At this point, execution files are created that ¢en

performance is improved by automatically
CUDA's existing library cuSOLVER [48].
For the Fourier transform and matrix calculatidme t
original codes are from Numerical Recipes in C [49]
(b) Experiment conditions
For function block offloading to GPU and FPGA, st i

replacing

used to measure performances on GPU or FPGA in aombined with loop statement offloading for actuske.

verification environment. For function block offidiag, if
there is only one functional block to be replaced, only
consider whether the one is offloaded or not. Haweif
there are plural function blocks, the implementatio
generates a verification pattern that offloads atage
function block one by one to find a fast solutidris is
because even if it is possible to increase the dspee
existing know-how, it will not be clear whether tepeed
will be increased under the deployed environmentitmn
until performance is actually measured. For examile
there are five function blocks that can be offlahded the
measurement
offoading of #2 and #4 can be improved,
implementation measures again with the pattern
offloading both #2 and #4. If it is faster thanlo#ding
with #2 and #4 alone, it selects both offloading ths
solution.

the

5. Evaluation

5.1 Evaluation method

(a) Evaluated applications
| evaluate two applications, Fourier Transform and
matrix calculation which are used many areas sadb®

The Fourier transform processing is used in various

scenes of monitoring, such as vibration frequen@lyeis.
When considering an loT application that transfeesa
from a device to the network, it is assumed thatdhvice
side performs primary analysis such as FFT proogssi

reduce the network cost. In order to speed up FFT

results show that the performances of

However, since loop statement offloading has been
evaluated previously in research [33] and so ofy GPU
offload of function blocks is evaluated in this see. For

the target applications, | prepare function blaitiet can be
offloaded in the code pattern DB beforehand andsonea
the performance when it is automatically replaced.

Conditions of experiments are as follows.

Offload source: Fourier transform application, Nbatr
calculation application
Offload target: cuFFT, cuSOLVER
Offload source discovery method: The code of the
offload source application calls the external ligran the

ofcode side and it is discovered by DB name matchiing.

application copies the library codes and puts conisnand
it is discovered by a similarity detection tooprepare both
two patterns for verifications.

Methods to be compared: All CPU processing method,
Proposed function block offloading method, Loop
statement offloading method.

The loop statement offloading method is a work &f[3
to search appropriate loop offloading patterns lBn&ic
Algorithm (GA) in a verification environment.

Performance measurement: In the Fourier transform,
sample test processing is performed with the gidé &
2048 * 2048 and processing time is measured. Imiggix
calculation, the processing time of LU decomposition
2048 * 2048 orthogonal matrix is measured.

(c) Experiment environment

| use physical machines with NVIDIA Quadro P4000

for verifications. The CUDA core number of NVIDIA

Verification Running

machine environment
[cupa || | [cupa |
‘cpu ‘GPU ‘ ‘CPU W‘

Client

C/C++ I
c

ode 7

Name

Hardware

CPU

RAM

GPU

0s

Cuda

PGI
ICompiler|

MySql

Verification
machine

Dell
Precision
Tower 3620

Intel(R) Core(TM)

i5-7500
CPU@3.40GHz

NVIDIA Quadro P4000
(CUDA core: 1792,
Memory: GDDR5 8GB)

32GB

Ubuntu
16.04.6
LTS

194

8.0

Running
lenvironment]

Dell
Precision
Tower 3620

Intel(R) Core(TM)

i5-7500
CPU@3.40GHz

NVIDIA Quadro P4000
(CUDA core: 1792,
Memory: GDDR5 8GB)

32GB

Ubuntu
16.04.6
LTS

Client

HP ProBook
470 G3

Intel Core i5-

6200U @2.3GHz

©

GB

Windows 7

Pro

Fig. 3. Experiment environment

Performance change of Fourier Transform
with GA generation transitions

./
/

12345678 91011121314151617181920
Generation number

Offloading performance/CPU performance

Quadro P4000 is 1792. | use PGI compiler community Fig. 4. Reference graph: performance change ofiéou
edition v19.4 and CUDA toolkit v10.1. Figure 3 steoan
experiment environment and environment specificatio

Transform with GA generation transitions [33]

Here, a client note PC specifies C/C++ applicatiodes,
codes are tuned with try and error on a verificatitachine,
and final codes are deployed in a running envirartnfier

users after verifications.

Performance
improvement of loop
offloading [33]

Performance
improvement of function
blocks offloading

Fourier transform

54

730

Matrix calculation

38

130000

Fig. 5. Comparison of performance improvement betw

5.2
loop offloading and proposed function block offloagl

Performanceresults

As applications that are expected to be used byyman
users in loT and other areas, | confirmed perfogean compared to 38 times in previous research. In previ
improvements of Fourier transform and matrix catioh. research, it took more than a few hours to seamh f
Figure 4 shows an example of Fourier transform appropriate offloading loop statements using GAwkeer,
performance improvement of previous research [38]. the offloading of this function block has been céetgd in

shows maximum performance change of Fourier Tramsfo a few minutes.
in each generation with GA generation transitiof&ie(
vertical axis shows how many times faster GPU affing
was than using only CPU). Performances can be o

and GPU offloading is about 5.4 times faster.

6. Conclusions

In this paper, | proposed an automatic offloading

Based on the previous results, | show the measumteme method for function blocks of applications as a new
results of how much performances have been imprbyed elemental technology of environment adaptive sakwa
the proposed method implementation. First, theoaffl
source discovery method can be replaced by theopeap
DB name matching and similarity detection tool both detects offloadable library calls with DB check, dan
whether the library is called or the code is copleidure 5
shows how many times the performances when functionFPGA IP cores registered in the DB. The performasce
blocks offloading are performed compared to all CPU measured in the verification environment, includitige
processing. 1 means the same performance of all CPUunctions of the replaced GPU and FPGA, and th&epat
processing. The performance improvements of previou with the highest performance is taken as the swiutin
loop statement offloading [33] are also shown.

From Figure 5, it can be seen that the Fouriesttam

achieved 730 times performance by the proposedadgeth

which was only 5.4 times in the previous loop stast
offloading. As for matrix calculation, it was fourtbat the
proposed method has realized 130,000 times perfarena

The proposed function block offloading method starts
with source code analysis. It analyzes the souame,c

replaces them with the use of replaceable GPUrlésaor

source code analysis, to search for more replageabl
function blocks, offloadable function blocks arescl
searched using similarity detection technology.
Replacement and performance measurement are pedorm
as the same method. However, even if it is detexchihat
the function block can be replaced, if the integfas

different, the user is asked whether it can be gbdrwith Communication Express, Vol.4, pp.228-232, July 2015

the interface of the replaceable function. (14)J. Sanders and E. Kandrot, "CUDA by example : an
introduction to general-purpose GPU programming,”
References Addison-Wesley, 2011

(15)J. E. Stone, et al., "OpenCL: A parallel programming
standard for heterogeneous computing systems,
Computing in science & engineering, Vol.12, 2010.

(16)M. Hermann, et al., "Design Principles for Indusii.0
Scenarios," Rechnische Universitat Dortmund. 2015.

(17)Y. Yamato, Y. Fukumoto and H. Kumazaki, "Proposal
of Real Time Predictive Maintenance Platform with 3
Printer for Business Vehicles," 5th International
Conference on Software and Information Engineering
(ICSIE 2016), May 2016.

(18)Y. Yamato, et al., "Security Camera Movie and ERP
Data Matching System to Prevent Theft,” IEEE CCNC
2017, pp.1021-1022, Jan. 2017.

(19)Y. Yamato, et al., "Predictive Maintenance Platform
with Sound Stream Analysis in Edges," Journal of
Information Processing, Vol.25, pp.317-320, Aprl20

(20)Tron project web site, http://www.tron.org/

(21)P. C. Evans and M. Annunziata, "Industrial Internet:
Pushing the Boundaries of Minds and Machines,"
Technical report of General Electric (GE), Nov. 201

(22)Y. Yamato, "Ubiquitous Service Composition
Technology for Ubiquitous Network Environments,"
IPSJ Journal, Vol.48, No.2, pp.562-577, Feb. 2007.

(23)H. Sunaga, et al., "Service Delivery Platform
Architecture for the Next-Generation Network,"
ICIN2008, 2008.

(24)H. Sunaga, et al., "Ubiquitous Life Creation through

(1) A. Putnam, et al.,, "A reconfigurable fabric for
accelerating large-scale datacenter services," ISCA
pp.13-24, 2014.

(2) AWS EC2 web site,
https://aws.amazon.com/ec2/instance-types/

(3) Y. Yamato, et al.,, "Fast and Reliable Restoration
Method of Virtual Resources on OpenStack," IEEE
Transactions on Cloud Computing, Sep. 2015.

(4) O. Sefraoui, et al., "OpenStack: toward an opemesou
solution for cloud computing," International Jouro&
Computer Applications, Vol.55, 2012.

(5) Y. Yamato, "Cloud Storage Application Area of
HDD-SSD Hybrid Storage, Distributed Storage and
HDD Storage," IEEJ Transactions on Electrical and
Electronic Engineering, Vol.11, pp.674-675, Sep. 2016

(6) Y. Yamato, et al, "Development of Resource
Management Server for Production laaS Services
Based on OpenStack,” Journal of Information
Processing, Vol.23, No.1, pp.58-66, Jan. 2015.

(7) Y. Yamato, "Use case study of HDD-SSD hybrid
storage, distributed storage and HDD storage on
OpenStack," 19th International Database Engineering
& Applications Symposium (IDEAS15), July 2015.

(8) Y. Yamato, "Automatic verification technology of
software patches for user virtual environmentsaasl
cloud," Journal of Cloud Computing, Springer, 2015.

(9) Y. Yamato, "Optimum Application Deployment

hnology f S Cloud." fal Service ~ Composition Technologies,” World
Techno ggy of Hete.rogeneous laasS Cloud,” Jourhal o Telecommunications Congress 2006 (WTC 2006), May
Information Processing, Vol.25, No.1, pp.56-58, 201 2006

(10)Y. Yamato, "Performance-Aware Server Architecture
Recommendation and Automatic Performance
Verification Technology on laaS Cloud," Service
Oriented Computing and Applications, Springer, 2016

(11)Y. Yamato, "Server Selection, Configuration and
Reconfiguration Technology for laaS Cloud with
Multiple Server Types," Journal of Network and
Systems Management, Springer, Aug. 2017.

(12)Y. Yamato, et al., "Software Maintenance Evaluatbn
Agile Software Development Method Based on
OpenStack," IEICE Transactions on Information &
Systems, Vol.E98-D, No.7, pp.1377-1380, July 2015.

(13)Y. Yamato, "OpenStack Hypervisor, Container and
Baremetal Servers Performance Comparison,” |IEICE

(25)M. Takemoto, et al., "Service Elements and Service
Templates for Adaptive Service Composition in a
Ubiquitous Computing Environment,” The 9th
Asia-Pacific Conference on Communications
(APCC2003), Vol.1, pp.335-338, Sep. 2003.

(26)Y. Nakano, et al., "Method of creating web services
from web applications," IEEE International Conferenc
on Service-Oriented Computing and Applications
(SOCA 2007), pp.65-71, June 2007.

(27)M. Takemoto, et al., "Service-composition Method an
Its Implementation in Service-provision Architecur
for Ubiquitous Computing Environments," IPSJ
Journal, Vol.46, No.2, pp.418-433, Feb. 2005.

(28)Y. Yamato, et al., "Development of Service Control

Server for Web-Telecom Coordination Service," IEEE https://docs.nvidia.com/cuda/cublas/index.html

ICWS 2008, pp.600-607, Sep. 2008. (49)Numerical Recipes in C,

(29)Y. Yokohata, et al., "Service Composition Architeet https://www.cec.uchile.cl/cinetica/pcordero/MC_tilsf
for Programmability and Flexibility in Ubiquitous NumericalRecipesinC.pdf
Communication Networks,” |IEEE International

Symposium on Applications and the Internet
Workshops (SAINTW'06), 2006.

(30)Y. Yokohata, et al., "Context-Aware Content-Promisi
Service for Shopping Malls Based on Ubiquitous
Service-Oriented Network Framework and
Authentication and Access Control Agent Framework,"
IEEE CCNC 2006, pp.1330-1331, 2006.

(31)J. Gosling, et al., "The Java language specification
third edition," Addison-Wesley, 2005.

(32)Y. Yamato, et al., "Automatic GPU Offloading
Technology for Open 10T Environment," IEEE Internet
of Things Journal, Sep. 2018.

(33)Y. Yamato, "Study of parallel processing area
extraction and data transfer number reduction for
automatic GPU offloading of 10T applications," Joalr
of Intelligent Information Systems, Springer, 2019.

(34)K. Shirahata, et al., "Hybrid Map Task Scheduling f
GPU-Based Heterogeneous Clusters," CloudCom2010.

(35)Altera SDK web site,
https://www.altera.com/products/design-software/emb
dded-software-developers/opencl/documentation.html

(36)Xilinx SDK web site, https://japan.xilinx.com/htndo
cs/xilinx2017_4/sdaccel_doc/lyx1504034296578.html

(37)S. Wienke, et al., "OpenACC-first experiences with
real-world applications," Euro-Par 2012, 2012.

(38)M. Wolfe, "Implementing the PGI accelerator model,"
ACM the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, Mar. 2010

(39)K. Ishizaki, "Transparent GPU exploitation for Java
CANDAR 2016, Nov. 2016.

(40)E. Su, et al., "Compiler support of the workqueuing
execution model for Intel SMP architectures," In
Fourth European Workshop on OpenMP, Sep. 2002.

(41)Jenkins web site, https://jenkins.io/

(42)Selenium web site, https://www.seleniumhg.org/

(43)J. H. Holland, "Genetic algorithms," Scientific
american, Vol.267, No.1, pp.66-73, 1992.

(44)OpenCV web site, http://opencv.org/

(45)Deckard web site, http://github.com/skyhover/Dedkar

(46)Clang website, http://llvm.org/

(47)cuFFT web site,
https://docs.nvidia.com/cuda/cufft/index.html

(48)cuSOLVER web site,

	名称未設定

	Title: Proposal of Automatic Offloading for Function Blocks of Applications
	Citation: The 8th IIAE International Conference on Industrial Application Engineering 2020 (ICIAE 2020), pp. 4-11
	Publisher: The Institute of Industrial Applications Engineers, Japan
	Note:
	yyyy: 2020
	mm: 3
	dd: 26
	version(English): [Author Accepted Manuscript(AAM)]
	version(Japanese): [(受理済)著者最終稿(AAM)]
	_: ‘I‘ð“à—e1
	__: Off
	Author(s): Yoji Yamato
	DOI: https://doi.org/10.12792/iciae2020.004

