
Title

Author(s)

Citation

Journal title (Repository name etc.), Volume, Issue, Pages(Article number) etc.
・ジャーナル名（刊行物・サイト名）・巻号・ページ（その他論文番号等）：

・DOI (URL）

Publication Date: yyyy/mm/dd

年 月 日 ・出版日：

Publisher

・出版者：

Declaration

This preprint is the of the above.

・本プレプリントは、上記論文の である。

All necessary permissions from the publisher have

・ジャーナル（出版者）から必要な許諾を

been obtained

 得ている

not been obtained
 得ていない

Notes

Proceedings of the 8th IIAE International Conference on Intelligent Systems and Image Processing 2021

© 2021 The Institute of Industrial Applications Engineers, Japan.

Power Saving Evaluation with Automatic Offloading

Yoji Yamatoa,*

aNetwork Service Systems Laboratories, NTT Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

*Corresponding Author: yoji.yamato.wa@hco.ntt.co.jp

Abstract

Heterogeneous hardware other than small-core CPU

such as GPU, FPGA, or many-core CPU is increasingly

being used. However, heterogeneous hardware usage

presents high technical skill barriers such as familiarity

with CUDA. To overcome this challenge, I previously

proposed environment-adaptive software that enables

automatic conversion, automatic configuration, and

high-performance and low-power operation of once-written

code, in accordance with the hardware to be placed. I also

previously verified performance improvement of automatic

GPU and FPGA offloading. In this paper, I verify

low-power operation with environment adaptation by

evaluating power utilization after automatic offloading. I

compare Watt*seconds of existing applications after

automatic offloading with the case of CPU-only processing.

Keywords: Environment-Adaptive Software, FPGA,

Automatic Offloading, Low Power, Evolutionary

Computation.

1. Introduction

As Moore's Law slows down, a central processing

unit's (CPU's) transistor density cannot be expected to

double every 1.5 years. To compensate for this, more

systems are using heterogeneous hardware, such as

graphics processing units (GPUs), field-programmable gate

arrays (FPGAs), and so on. For example, Microsoft's search

engine Bing uses FPGAs (1), and Amazon Web Services

(AWS) provides GPU and FPGA instances (2) using cloud

technologies (3)-(10). Systems with Internet of Things

(IoT) devices are also increasing (11)-(20).

However, to properly utilize devices other than

small-core CPUs in these systems, configurations and

programs must be made that consider device characteristics,

such as Open Multi-Processing (OpenMP) (21), Open

Computing Language (OpenCL) (22), and Compute

Unified Device Architecture (CUDA) (23). In addition,

programmers need to be sufficiently skilled at using

embedded software to precisely control IoT devices.

Therefore, for most programmers, the skill barriers are

high.

In short, the expectations for applications using

heterogeneous hardware are becoming higher, but the skill

hurdles for using them are currently high. To surmount

these hurdles, application programmers should only need to

write logics to be processed, and then software should adapt

to the environments with heterogeneous hardware to make

it easy to use such hardware.

Java (24), which appeared in 1995, caused a paradigm

shift in environment adaptation that enables software

written once to run on another CPU machine. However, no

consideration was given to the application performance and

power consumption at the porting destination. Therefore, I

previously proposed environment-adaptive software that

effectively runs once-written applications with high

performances and low power by automatically converting

and configuring code so that GPUs, FPGAs, many-core

CPUs, and so on can be appropriately used in deployment

environments. For an elemental technology for

environment-adaptive software, I also proposed a method

for automatically offloading loop statements and function

blocks of applications to GPUs or FPGAs and improved

performances (25)(26)(27). However, only processing time

after offloading has been evaluated, and power

consumption after offloading has not been evaluated so far.

This paper proposes a method that takes power

consumption into consideration when offloading a normal

CPU program to a device such as an FPGA to improve its

performance, and verifies the reduction of power

consumption after offloading of existing applications. I also

propose a method to automatically select an appropriate

offload destination in consideration of the power

Fig. 1. Processing flow of environment-adaptive software

consumption when offloading is tried in a mixed

environment such as a GPU and FPGA.

The rest of this paper is organized as follows. In

Section 2, I review technologies on the market and our

previous proposals. In Section 3, I propose an automatic

offloading method for GPUs and FPGAs that takes power

consumption into consideration. In Section 4, I evaluate the

power consumption during automatic FPGA offload with

the existing application. In Section 5, I conclude the paper.

2. Existing Technologies

2.1 Technologies on the market

Java is one example of environment-adaptive software.

In Java, by using a virtual execution environment called

Java Virtual Machine, written software can run even on

machines that use different operating systems (OSes)

without more compiling (Write Once, Run Anywhere).

However, whether the expected performance could be

attained at the porting destination was not considered, and

too much effort was involved in performance tuning and

debugging at the porting destination (Write Once, Debug

Everywhere).

CUDA is a major development environment for

general-purpose GPUs (GPGPUs (28) that use GPU

computational power for more than just graphics processing.

To control heterogeneous hardware such as FPGA and GPU

uniformly, the OpenCL specification and its software

development kit (SDK) are widely used (29). CUDA and

OpenCL require not only C language extension but also

additional descriptions such as memory copy between

devices and CPUs. Because of these programming

difficulties, there are few CUDA and OpenCL

programmers.

For easy heterogeneous hardware programming, there

are technologies that specify parallel processing areas by

specified directives, and compilers transform these

specified parts into device-oriented codes on the basis of

the specified directives. Open accelerators (OpenACC) (30)

and OpenMP are examples of directive-based specifications,

and the Portland Group Inc. (PGI) compiler (31) and gcc

are examples of compilers that support these directives.

In this way, CUDA, OpenCL, OpenACC, OpenMP,

and others support GPU, FPGA, or many-core CPU offload

processing. Although processing on devices can be done,

sufficient application performance and power reduction are

difficult to attain. For example, when users use an

automatic parallelization technology, such as the Intel

compiler (32) for multi-core CPUs, possible areas of

parallel processing such as "for" loop statements are

extracted. However, naive parallel execution performances

with devices are not high because of overheads of CPU and

device memory data transfer. To achieve high application

performance with devices, CUDA, OpenCL, or so on need

to be tuned by highly skilled programmers, or an

appropriate offloading area needs to be searched for by

using the OpenACC compiler or other technologies.

Therefore, users without skills in using GPU, FPGA, or

many-core CPU will have difficulty attaining high

application performance and power reduction. Moreover, if

users use automatic parallelization technologies to obtain

high performance, much effort is needed to determine

whether each loop statement is parallelized.

2.2 Previous proposals

On the basis of the above background, to adapt

software to an environment, I previously proposed

environment-adaptive software (26), the processing flow of

which is shown in Figure 1. The environment-adaptive

software is achieved with an environment-adaptation

function, test-case database (DB), code-pattern DB,

facility-resource DB, verification environment, and

production environment.

Step 1: Code analysis

Step 2: Offloadable-part extraction

Step 3: Search for suitable offload parts

Step 4: Resource-amount adjustment

Step 5: Placement-location adjustment

Step 6: Execution-file placement and operation

verification

Step 7: In-operation reconfiguration

Because most offloading to heterogeneous devices is

currently done manually, I proposed the concept of

environment-adaptive software and automatic offloading to

Fig. 2. Automatic GPU offload method considering power

consumption

heterogeneous devices. For automation, I also have

proposed a method using evolutionary computation to

search for appropriate parallel processing parts when

offloading to a GPU. However, the previous paper only

evaluated the shortening of the processing time and not the

reduction of power consumption. Therefore, in this paper, I

evaluate the reduction of power consumption when

automatically offloading to an offload device such as

FPGA.

3. Automatic GPU and FPGA Offload
Considering Power Consumption

To embody the concept of environment-adaptive

software, I have so far proposed automatic GPU and FPGA

offload of program loop statements, automatic offload of

program functional blocks, and multilingual and mixed

environments offload. Based on these elemental

technologies, in subsections 3.1 and 3.2, I propose

automatic GPU and FPGA offload technology for loop

statements that take power consumption into consideration.

In 3.3, I propose an appropriate offload destination

selection technology in a mixed environment of migration

destinations.

3.1 Automatic GPU offload of loop statements

For automatic GPU offloading of loop statements, I

proposed a method and evaluated processing time

improvement (33).

First, as a basic problem, the compiler can find the

limitation that this loop statement cannot be processed in

parallel on the GPU, but it is difficult to find out whether

this loop statement is suitable for parallel processing on the

GPU. Loop statements with a large number of loops are

generally said to be more suitable, but it is difficult to

predict the performance and power consumption by

offloading to the GPU without actually measuring them.

Therefore, it is often the case that the instruction to offload

this loop to the GPU is manually given and the performance

measurement is tried. On the basis of that, (33) proposed

automatically finding an appropriate loop statement that is

offloaded to the GPU with a genetic algorithm (GA) (34),

which is an evolutionary computation method. From a

general-purpose program for normal CPUs, the proposed

method first checks the parallelizable loop statements. Then

for the parallelizable loop statements, it sets 1 for GPU

execution and 0 for CPU execution. The value is set and

geneticized, and the performance verification trial is

repeated in the verification environment to search for an

appropriate area. Here, the pattern that can be processed in

a short time in the verification environment measurement is

regarded as a gene with high goodness of fit. In this paper,

the power consumption is also measured in the verification

environment measurement, and a new process is added to

make the high goodness of fit for the low power

consumption pattern. For example, (Processing

time)$^{-1/2}$*(Power consumption)$^{-1/2}$ is set to

increase goodness of fit value for short processing time and

low power consumption (Figure 2).

(33) also proposed a method for transferring variables

efficiently. Regarding the variables used in the nested loop

statement, when the loop statement is offloaded to the GPU,

the variables that have no problems even if CPU-GPU

transfer is performed at the upper level are summarized at

the upper level. In addition, for not only nesting but also

variables defined in multiple files, GPU processing and

CPU processing are not nested, and for variables where

CPU processing and GPU processing are separated, the

proposed method specifies to transfer them in a batch.

In summary, I propose an evolutionary computation

method that includes power consumption in the goodness of

fit and a reduction in CPU-GPU transfer. By using them,

the speed is increased and the power is reduced

automatically.

3.2 Automatic FPGA offload of loop statements

I have also proposed a method for offloading loop

statements to FPGA to improve performance (26).

When considering offloading a specific loop statement

that takes a long time to speed up to FPGA, it is difficult to

predict which loop should be offloaded to speed up.

Therefore, it is proposed that the performance measurement

be performed automatically in the verification environment

similar to GPU offload case. However, since it takes several

Fig. 3. Automatic FPGA offload method considering

power consumption

hours or more for an FPGA to compile OpenCL and operate

it on an actual machine, it takes a huge amount of

processing time to repeatedly measure the performance

using GA like automatic GPU offload.

Therefore, after narrowing down the candidate loop

statements to be offloaded to the FPGA, the performance

measurement trial is performed. Specifically, first, for the

found loop statement, a loop statement with high arithmetic

intensity is extracted using an arithmetic intensity analysis

tool such as the ROSE framework (35). Furthermore, loop

statements with a large number of loops are also extracted

using a profiling tool such as gcov or gprof. OpenCL codes

are created using candidate loop statements with a large

number of arithmetic intensity and loops. At the time of

OpenCL creation, the CPU processing program is divided

into the kernel (FPGA) and the host (CPU) in accordance

with the OpenCL syntax. For offload candidate loop

statements with a large number of arithmetic intensity and

loops, our method precompiles the created OpenCL to find

a loop statement with high resource efficiency. This is

because the resources such as Flip Flop and Lookup Table

to be created are known in the middle of compilation, so the

loop statements that use a sufficiently small amount of

resources are further narrowed down. Since some candidate

loop statements remain, our method measures the

performance and power consumption using them.

Our method compiles and measures the selected

single-loop statement so that it works on the actual FPGA.

For a single-loop statement that can be further speeded up,

a pattern of the combination is also created and the second

measurement is performed. Among the multiple patterns

measured in the verification environment, a short-time and

low-power pattern is selected as the final solution. For short

time and low power, our method uses the similar evaluation

value as for GPU (Figure 3).

In summary, after narrowing down the candidate loop

statements using the arithmetic intensity, the number of

loops, and the resource efficiency, the measurement is

performed in the verification environment to increase the

evaluation value of the low-power pattern. With them, the

speed is increased and the power is reduced automatically.

3.3 Automatic offload to mixed environments

I also studied a technology to select an appropriate

migration destination while GPU, FPGA, and many-core

CPU are mixed as migration destinations.

I propose the following order of verification with three

offloads: many-core CPU loop statement offload, GPU loop

statement offload, and FPGA loop statement offload. With

automatic offload, pattern search is expected to be as quick

as possible. Therefore, FPGA verification that takes a long

time is the last, and if a pattern that sufficiently satisfies the

user requirements is found in the previous stage, FPGA

verification will not be performed. There is no big

difference in price and verification time between GPU and

many-core CPU, but the difference between many-core

CPU and normal CPU is smaller than that of GPU with

different memory and different devices. Therefore, the

verification order is to start with the many-core CPU, and if

a pattern that sufficiently satisfies the user requirements is

found in the many-core CPU, GPU verification will not be

performed.

Here, the previous method is to verify the three

migration destinations and automatically select the

high-speed migration destination. However, in this paper,

not only the short processing time but also the low-power

migration destination is automatically selected through the

actual measurement in the verification environment. For

example, (Processing time)$^{-1/2}$*(Power

consumption)$^{-1/2}$ is set to increase evaluation value

for short processing time and low power consumption.

As a typical data center cost, the initial cost such as

hardware and development cost is 1/3 of the total cost, the

operation cost such as power and maintenance is 1/3, and

the other cost such as service order is 1/3. In this case, for

example, the processing time will be reduced to 1/5, and the

initial cost will be reduced if the number of hardware is

halved even if the CPU and GPU are combined. Half the

power consumption also leads to a reduction in operation

cost. However, operation costs have many factors other

than electric power, and halving the power consumption

Fig. 4. Experiment environment

Fig. 5. Power consumption with FPGA offloading

(MRI-Q)

does not halve the operation costs. In addition, the hardware

price also varies depending on the operator, such as volume

discount depending on the number of GPUs and FPGA

servers to be installed. Therefore, the evaluation formula

needs to be set differently for each business operator.

In this way, in this paper, the appropriate offload

destination is automatically selected in consideration of not

only the processing time but also the power consumption.

4. Evaluation

The automatic offloading to GPU and FPGA of the

loop statement has already been evaluated (33). In this

paper, when determining the evaluation value of the

measurement pattern on the basis of the implementation of

the previous papers, offloading is performed by modifying

the implementation to increase the evaluation value of

lower power consumption. I will show that the processing

time and the power consumption are both reduced by

offloading.

4.1 Evaluation Condition

(a) Evaluated application

Evaluated application for FPGA offloading is magnetic

resonance imaging (MRI) image processing of MRI-Q. This

is used in many cases.

MRI-Q (36) computes a matrix Q, representing the

scanner configuration for calibration, used in 3D MRI

reconstruction algorithms in non-Cartesian space. In an IoT

environment, image processing is often necessary for

automatic monitoring from camera videos, and performance

enhancements are requested in many cases. During

application performance measurement, MRI-Q executes 3D

MRI image processing to measure processing time using

64*64*64 size sample data. MRI-Q is an application

written by C language. It is processed on CPU on the basis

of C language logic and processed on FPGA on the basis of

OpenCL logic converted from C language codes.

(b) Evaluation method

In the experiment, we enter the code of the evaluation

application and the implementation tries to offload the loop

statement recognized by an analysis library such as Clang

(37) to FPGA. For FPGA offloading, the arithmetic

intensity and other values are used to narrow down the

measurement patterns to four. At the time of trial, the

processing time and power consumption are measured. For

the finally determined offload pattern, the time change of

the power consumption is acquired, and the improvement of

the power consumption compared with the case where all

the processing is performed by the normal CPU without

offload is confirmed.

Number of processable loop statements. 16 for MRI-Q.

Evaluation value: (Processing time)$^{-1/2}$*(Power

consumption)$^{-1/2}$. When processing time and power

consumption become smaller, the evaluation value becomes

larger. If the performance measurement does not complete

in 3 minutes, a timeout is issued, and processing time is set

to 1,000 seconds to calculate evaluation value.

(c) Experiment environment

I used physical machines with Intel PAC with an Intel

Arria10 GX FPGA for offloading verification and Intel

Acceleration Stack Version 1.2 (38) for FPGA control.

Regarding power consumption, ipmitool (39) of IPMI

(Intelligent Platform Management Interface) equipped with

Dell PowerEdge R740 acquired power consumption of a

whole server. Figure 4 shows the experimental environment

and specifications.

4.2 Results

Figure 5 shows Watt and time when MRI-Q was

offloaded to FPGA. From the figure, the processing time

has been shortened from 14 to 2 seconds compared with the

case where all CPU processing is performed. It is also

found that the power has been changed from about 121

Watt with only CPU to 111 Watt with CPU and FPGA. As a

result, Watt*sec changed from 1,690 Watt*sec when

processing only the CPU to 223 Watt*sec when offloaded

to the FPGA.

As an application expected to be used by many users, I

confirmed the speedup and power reduction of MRI-Q for

image processing. When offloaded to the FPGA, the Watt

of the whole devices with CPU and FPGA is reduced

slightly, which is combined with the shortening of the

processing time, resulting in a significant reduction in

power consumption. The amount of power consumption

during GPU offload is not measured this time, but in a GPU

and FPGA mixed environment, an appropriate offload

destination is selected from the measured performance and

power.

5. Conclusions

In this paper, I proposed and evaluated an offload

method that considers power consumption as an element of

environment-adaptive software for operating applications

with high performance and low power.

When actually measuring in the verification

environment during automatic GPU and FPGA offloading

trials, the power consumption is acquired along with the

processing time, and the short-time and low-power pattern

is made highly suitable to reduce the power for automatic

code conversion. When GPU, FPGA, or so on are mixed,

automatic selection is performed by trying migration to a

single migration destination and selecting a migration

destination with low power consumption and high

performance. Through the automatic FPGA offloading of

MRI-Q, I demonstrated the high performance and low

power consumption and verified the effectiveness of the

method.

In the future, I will verify the reduction of power

consumption with more applications for both FPGA and

GPU. In addition, the evaluation formulas for shortening

the processing time and reducing the power consumption

will be examined with reference to specific examples of the

cost structure of the business operator.

References

(1) A. Putnam, et al., "A reconfigurable fabric for

accelerating large-scale datacenter services," ISCA'14,

pp.13-24, 2014.

(2) AWS EC2 web site,

https://aws.amazon.com/ec2/instance-types/

(3) O. Sefraoui, et al., "OpenStack: toward an open-source

solution for cloud computing," International Journal of

Computer Applications, Vol.55, 2012.

(4) Y. Yamato, "Automatic system test technology of

virtual machine software patch on IaaS cloud," IEEJ

Transactions on Electrical and Electronic Engineering,

Vol.10, Issue.S1, pp.165-167, Oct. 2015.

(5) Y. Yamato, "Server Structure Proposal and Automatic

Verification Technology on IaaS Cloud of Plural Type

Servers," International Conference on Internet Studies

(NETs2015), July 2015.

(6) Y. Yamato, "Proposal of Optimum Application

Deployment Technology for Heterogeneous IaaS

Cloud," 2016 6th International Workshop on Computer

Science and Engineering (WCSE 2016), pp.34-37,

June 2016.

(7) Y. Yamato, "Use case study of HDD-SSD hybrid

storage, distributed storage and HDD storage on

OpenStack," 19th International Database Engineering

& Applications Symposium (IDEAS15), pp.228-229,

July 2015.

(8) Y. Yamato, "Automatic verification technology of

software patches for user virtual environments on IaaS

cloud," Journal of Cloud Computing, Springer, 2015,

4:4, DOI: 10.1186/s13677-015-0028-6, Feb. 2015.

(9) Y. Yamato, "Automatic verification for plural virtual

machines patches," 7th International Conference on

Ubiquitous and Future Networks (ICUFN 2015),

pp.837-838, July 2015.

(10) Y. Yamato, et al., "Fast and Reliable Restoration

Method of Virtual Resources on OpenStack," IEEE

Transactions on Cloud Computing, DOI:

10.1109/TCC.2015.2481392, Sep. 2015.

(11) M. Hermann, et al., "Design Principles for Industrie 4.0

Scenarios," Rechnische Universitat Dortmund. 2015.

(12) Y. Yamato, et al., "Proposal of Shoplifting Prevention

Service Using Image Analysis and ERP Check," IEEJ

Transactions on Electrical and Electronic Engineering,

Vol.12, Issue.S1, pp.141-145, June 2017.

(13) Y. Yamato, et al., "Proposal of Real Time Predictive

Maintenance Platform with 3D Printer for Business

Vehicles," International Journal of Information and

Electronics Engineering, Vol.6, No.5, pp.289-293, Sep.

2016.

(14) Y. Yamato, "Proposal of Vital Data Analysis Platform

using Wearable Sensor," 5th IIAE International

Conference on Industrial Application Engineering 2017

(ICIAE2017), pp.138-143, Mar. 2017.

(15) Y. Yamato, et al., "Security Camera Movie and ERP

Data Matching System to Prevent Theft," IEEE

Consumer Communications and Networking

Conference (CCNC 2017), pp.1021-1022, Jan. 2017.

(16) Y. Yamato, et al., "Analyzing Machine Noise for Real

Time Maintenance," 2016 8th International Conference

on Graphic and Image Processing (ICGIP 2016), Oct.

2016.

(17) Y. Yamato and M. Takemoto, "Method of Service

Template Generation on a Service Coordination

Framework," 2nd International Symposium on

Ubiquitous Computing Systems (UCS 2004), Nov.

2004.

(18) Y. Yamato, "Ubiquitous Service Composition

Technology for Ubiquitous Network Environments,"

IPSJ Journal, Vol.48, No.2, pp.562-577, Feb. 2007.

(19) Y. Yamato, "Experiments of posture estimation on

vehicles using wearable acceleration sensors," The 3rd

IEEE International Conference on Big Data Security

on Cloud (BigDataSecurity 2017), pp.14-17, May

2017.

(20) P. C. Evans and M. Annunziata, "Industrial Internet:

Pushing the Boundaries of Minds and Machines,"

Technical report of General Electric (GE), Nov. 2012.

(21) T. Sterling, et al., "High performance computing :

modern systems and practices," Cambridge, MA :

Morgan Kaufmann, ISBN 9780124202153, 2018.

(22) J. E. Stone, et al., "OpenCL: A parallel programming

standard for heterogeneous computing systems,"

Computing in science & engineering, Vol.12, pp.66-73,

2010.

(23) J. Sanders and E. Kandrot, "CUDA by example : an

introduction to general-purpose GPU programming,"

Addison-Wesley, 2011

(24) J. Gosling, et al., "The Java language specification,

third edition," Addison-Wesley, 2005. ISBN

0-321-24678-0.

(25) Y. Yamato, "Automatic Offloading Method of Loop

Statements of Software to FPGA," International

Journal of Parallel, Emergent and Distributed Systems,

Taylor and Francis, DOI:

10.1080/17445760.2021.1916020, Apr. 2021.

(26) Y. Yamato, "Improvement Proposal of Automatic GPU

Offloading Technology," The 8th International

Conference on Information and Education Technology

(ICIET 2020), pp.242-246, Mar. 2020.

(27) Y. Yamato, et al., "Automatic GPU Offloading

Technology for Open IoT Environment," IEEE Internet

of Things Journal, DOI: 10.1109/JIOT.2018.2872545,

Sep. 2018.

(28) J. Fung and M. Steve, "Computer vision signal

processing on graphics processing units," 2004 IEEE

International Conference on Acoustics, Speech, and

Signal Processing, Vol. 5, pp.93-96, 2004.

(29) Xilinx SDK web site,

https://japan.xilinx.com/html_docs/xilinx2017_4/sdacc

el_doc/lyx1504034296578.html

(30) S. Wienke, et al., "OpenACC-first experiences with

real-world applications," Euro-Par Parallel Processing,

2012.

(31) M. Wolfe, "Implementing the PGI accelerator model,"

ACM the 3rd Workshop on General-Purpose

Computation on Graphics Processing Units, pp.43-50,

Mar. 2010.

(32) E. Su, et al., "Compiler support of the workqueuing

execution model for Intel SMP architectures," In

Fourth European Workshop on OpenMP, Sep. 2002.

(33) Y. Yamato, "Study of parallel processing area

extraction and data transfer number reduction for

automatic GPU offloading of IoT applications," Journal

of Intelligent Information Systems, Springer,

DOI:10.1007/s10844-019-00575-8, Aug. 2019.

(34) J. H. Holland, "Genetic algorithms," Scientific

american, Vol.267, No.1, pp.66-73, 1992.

(35) Rose compiler framework web site,

http://rosecompiler.org/

(36) MRI-Q website,

http://impact.crhc.illinois.edu/parboil/parboil.aspx

(37) Clang website, http://llvm.org/

(38) Intel Acceleration Stack for FPGAs website,

https://www.intel.com/content/www/us/en/products/det

ails/fpga/platforms/pac/platform-software.html

(39) Dell IPMI tool web site,

https://www.dell.com/downloads/global/power/ps4q04-

20040204-murphy.pdf

	名称未設定

	Title: Power Saving Evaluation with Automatic Offloading
	Citation: The 8th IIAE International Conference on Intelligent Systems and Image Processing 2021 (ICISIP 2021), pp. 135-141
	Publisher: The Institute of Industrial Applications Engineers, Japan
	Note:
	yyyy: 2021
	mm: 9
	dd: 6
	version(English): [Author Accepted Manuscript(AAM)]
	version(Japanese): [(受理済)著者最終稿(AAM)]
	_: ‘I‘ð“à—e1
	__: Off
	Author(s): Yoji Yamato
	DOI: https;//doi.org/10.12792/icisip2021.024

