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Abstract 

Heterogeneous hardware other than small-core CPU 

such as GPU, FPGA, or many-core CPU is increasingly 

being used. However, heterogeneous hardware usage 

presents high technical skill barriers such as familiarity 

with CUDA. To overcome this challenge, I previously 

proposed environment-adaptive software that enables 

automatic conversion, automatic configuration, and 

high-performance and low-power operation of once-written 

code, in accordance with the hardware to be placed. I also 

previously verified performance improvement of automatic 

GPU and FPGA offloading. In this paper, I verify 

low-power operation with environment adaptation by 

evaluating power utilization after automatic offloading. I 

compare Watt*seconds of existing applications after 

automatic offloading with the case of CPU-only processing. 

Keywords: Environment-Adaptive Software, FPGA, 

Automatic Offloading, Low Power, Evolutionary 

Computation. 

1. Introduction 

As Moore's Law slows down, a central processing 

unit's (CPU's) transistor density cannot be expected to 

double every 1.5 years. To compensate for this, more 

systems are using heterogeneous hardware, such as 

graphics processing units (GPUs), field-programmable gate 

arrays (FPGAs), and so on. For example, Microsoft's search 

engine Bing uses FPGAs (1), and Amazon Web Services 

(AWS) provides GPU and FPGA instances (2) using cloud 

technologies (3)-(10). Systems with Internet of Things 

(IoT) devices are also increasing (11)-(20). 

However, to properly utilize devices other than 

small-core CPUs in these systems, configurations and 

programs must be made that consider device characteristics, 

such as Open Multi-Processing (OpenMP) (21), Open 

Computing Language (OpenCL) (22), and Compute 

Unified Device Architecture (CUDA) (23). In addition, 

programmers need to be sufficiently skilled at using 

embedded software to precisely control IoT devices. 

Therefore, for most programmers, the skill barriers are 

high.  

In short, the expectations for applications using 

heterogeneous hardware are becoming higher, but the skill 

hurdles for using them are currently high. To surmount 

these hurdles, application programmers should only need to 

write logics to be processed, and then software should adapt 

to the environments with heterogeneous hardware to make 

it easy to use such hardware.  

Java (24), which appeared in 1995, caused a paradigm 

shift in environment adaptation that enables software 

written once to run on another CPU machine. However, no 

consideration was given to the application performance and 

power consumption at the porting destination. Therefore, I 

previously proposed environment-adaptive software that 

effectively runs once-written applications with high 

performances and low power by automatically converting 

and configuring code so that GPUs, FPGAs, many-core 

CPUs, and so on can be appropriately used in deployment 

environments. For an elemental technology for 

environment-adaptive software, I also proposed a method 

for automatically offloading loop statements and function 

blocks of applications to GPUs or FPGAs and improved 

performances (25)(26)(27). However, only processing time 

after offloading has been evaluated, and power 

consumption after offloading has not been evaluated so far.  

This paper proposes a method that takes power 

consumption into consideration when offloading a normal 

CPU program to a device such as an FPGA to improve its 

performance, and verifies the reduction of power 

consumption after offloading of existing applications. I also 

propose a method to automatically select an appropriate 

offload destination in consideration of the power  



 
Fig. 1.  Processing flow of environment-adaptive software 

 

consumption when offloading is tried in a mixed 

environment such as a GPU and FPGA.  

The rest of this paper is organized as follows. In 

Section 2, I review technologies on the market and our 

previous proposals. In Section 3, I propose an automatic 

offloading method for GPUs and FPGAs that takes power 

consumption into consideration. In Section 4, I evaluate the 

power consumption during automatic FPGA offload with 

the existing application. In Section 5, I conclude the paper. 

2. Existing Technologies 

2.1 Technologies on the market 

Java is one example of environment-adaptive software. 

In Java, by using a virtual execution environment called 

Java Virtual Machine, written software can run even on 

machines that use different operating systems (OSes) 

without more compiling (Write Once, Run Anywhere). 

However, whether the expected performance could be 

attained at the porting destination was not considered, and 

too much effort was involved in performance tuning and 

debugging at the porting destination (Write Once, Debug 

Everywhere).  

CUDA is a major development environment for 

general-purpose GPUs (GPGPUs (28) that use GPU 

computational power for more than just graphics processing. 

To control heterogeneous hardware such as FPGA and GPU 

uniformly, the OpenCL specification and its software 

development kit (SDK) are widely used (29). CUDA and 

OpenCL require not only C language extension but also 

additional descriptions such as memory copy between 

devices and CPUs. Because of these programming 

difficulties, there are few CUDA and OpenCL 

programmers. 

For easy heterogeneous hardware programming, there 

are technologies that specify parallel processing areas by 

specified directives, and compilers transform these 

specified parts into device-oriented codes on the basis of 

the specified directives. Open accelerators (OpenACC) (30) 

and OpenMP are examples of directive-based specifications, 

and the Portland Group Inc. (PGI) compiler (31) and gcc 

are examples of compilers that support these directives. 

In this way, CUDA, OpenCL, OpenACC, OpenMP, 

and others support GPU, FPGA, or many-core CPU offload 

processing. Although processing on devices can be done, 

sufficient application performance and power reduction are 

difficult to attain. For example, when users use an 

automatic parallelization technology, such as the Intel 

compiler (32) for multi-core CPUs, possible areas of 

parallel processing such as "for" loop statements are 

extracted. However, naive parallel execution performances 

with devices are not high because of overheads of CPU and 

device memory data transfer. To achieve high application 

performance with devices, CUDA, OpenCL, or so on need 

to be tuned by highly skilled programmers, or an 

appropriate offloading area needs to be searched for by 

using the OpenACC compiler or other technologies.  

Therefore, users without skills in using GPU, FPGA, or 

many-core CPU will have difficulty attaining high 

application performance and power reduction. Moreover, if 

users use automatic parallelization technologies to obtain 

high performance, much effort is needed to determine 

whether each loop statement is parallelized. 

2.2 Previous proposals 

On the basis of the above background, to adapt 

software to an environment, I previously proposed 

environment-adaptive software (26), the processing flow of 

which is shown in Figure 1. The environment-adaptive 

software is achieved with an environment-adaptation 

function, test-case database (DB), code-pattern DB, 

facility-resource DB, verification environment, and 

production environment. 

Step 1: Code analysis 

Step 2: Offloadable-part extraction 

Step 3: Search for suitable offload parts 

Step 4: Resource-amount adjustment 

Step 5: Placement-location adjustment 

Step 6: Execution-file placement and operation 

verification 

Step 7: In-operation reconfiguration 

Because most offloading to heterogeneous devices is 

currently done manually, I proposed the concept of 

environment-adaptive software and automatic offloading to  



 

Fig. 2.  Automatic GPU offload method considering power 

consumption 

 

heterogeneous devices. For automation, I also have 

proposed a method using evolutionary computation to 

search for appropriate parallel processing parts when 

offloading to a GPU. However, the previous paper only 

evaluated the shortening of the processing time and not the 

reduction of power consumption. Therefore, in this paper, I 

evaluate the reduction of power consumption when 

automatically offloading to an offload device such as 

FPGA. 

3. Automatic GPU and FPGA Offload 
Considering Power Consumption 

To embody the concept of environment-adaptive 

software, I have so far proposed automatic GPU and FPGA 

offload of program loop statements, automatic offload of 

program functional blocks, and multilingual and mixed 

environments offload. Based on these elemental 

technologies, in subsections 3.1 and 3.2, I propose 

automatic GPU and FPGA offload technology for loop 

statements that take power consumption into consideration. 

In 3.3, I propose an appropriate offload destination 

selection technology in a mixed environment of migration 

destinations. 

3.1 Automatic GPU offload of loop statements 

For automatic GPU offloading of loop statements, I 

proposed a method and evaluated processing time 

improvement (33). 

First, as a basic problem, the compiler can find the 

limitation that this loop statement cannot be processed in 

parallel on the GPU, but it is difficult to find out whether 

this loop statement is suitable for parallel processing on the 

GPU. Loop statements with a large number of loops are 

generally said to be more suitable, but it is difficult to 

predict the performance and power consumption by 

offloading to the GPU without actually measuring them. 

Therefore, it is often the case that the instruction to offload 

this loop to the GPU is manually given and the performance 

measurement is tried. On the basis of that, (33) proposed 

automatically finding an appropriate loop statement that is 

offloaded to the GPU with a genetic algorithm (GA) (34), 

which is an evolutionary computation method. From a 

general-purpose program for normal CPUs, the proposed 

method first checks the parallelizable loop statements. Then 

for the parallelizable loop statements, it sets 1 for GPU 

execution and 0 for CPU execution. The value is set and 

geneticized, and the performance verification trial is 

repeated in the verification environment to search for an 

appropriate area. Here, the pattern that can be processed in 

a short time in the verification environment measurement is 

regarded as a gene with high goodness of fit. In this paper, 

the power consumption is also measured in the verification 

environment measurement, and a new process is added to 

make the high goodness of fit for the low power 

consumption pattern. For example, (Processing 

time)$^{-1/2}$*(Power consumption)$^{-1/2}$ is set to 

increase goodness of fit value for short processing time and 

low power consumption (Figure 2). 

(33) also proposed a method for transferring variables 

efficiently. Regarding the variables used in the nested loop 

statement, when the loop statement is offloaded to the GPU, 

the variables that have no problems even if CPU-GPU 

transfer is performed at the upper level are summarized at 

the upper level. In addition, for not only nesting but also 

variables defined in multiple files, GPU processing and 

CPU processing are not nested, and for variables where 

CPU processing and GPU processing are separated, the 

proposed method specifies to transfer them in a batch. 

In summary, I propose an evolutionary computation 

method that includes power consumption in the goodness of 

fit and a reduction in CPU-GPU transfer. By using them, 

the speed is increased and the power is reduced 

automatically. 

3.2 Automatic FPGA offload of loop statements 

I have also proposed a method for offloading loop 

statements to FPGA to improve performance (26).  

When considering offloading a specific loop statement 

that takes a long time to speed up to FPGA, it is difficult to 

predict which loop should be offloaded to speed up. 

Therefore, it is proposed that the performance measurement 

be performed automatically in the verification environment 

similar to GPU offload case. However, since it takes several  



 

Fig. 3.  Automatic FPGA offload method considering 

power consumption 

 

hours or more for an FPGA to compile OpenCL and operate 

it on an actual machine, it takes a huge amount of 

processing time to repeatedly measure the performance 

using GA like automatic GPU offload.  

Therefore, after narrowing down the candidate loop 

statements to be offloaded to the FPGA, the performance 

measurement trial is performed. Specifically, first, for the 

found loop statement, a loop statement with high arithmetic 

intensity is extracted using an arithmetic intensity analysis 

tool such as the ROSE framework (35). Furthermore, loop 

statements with a large number of loops are also extracted 

using a profiling tool such as gcov or gprof. OpenCL codes 

are created using candidate loop statements with a large 

number of arithmetic intensity and loops. At the time of 

OpenCL creation, the CPU processing program is divided 

into the kernel (FPGA) and the host (CPU) in accordance 

with the OpenCL syntax. For offload candidate loop 

statements with a large number of arithmetic intensity and 

loops, our method precompiles the created OpenCL to find 

a loop statement with high resource efficiency. This is 

because the resources such as Flip Flop and Lookup Table 

to be created are known in the middle of compilation, so the 

loop statements that use a sufficiently small amount of 

resources are further narrowed down. Since some candidate 

loop statements remain, our method measures the 

performance and power consumption using them.  

Our method compiles and measures the selected 

single-loop statement so that it works on the actual FPGA. 

For a single-loop statement that can be further speeded up, 

a pattern of the combination is also created and the second 

measurement is performed. Among the multiple patterns 

measured in the verification environment, a short-time and 

low-power pattern is selected as the final solution. For short 

time and low power, our method uses the similar evaluation 

value as for GPU (Figure 3).  

In summary, after narrowing down the candidate loop 

statements using the arithmetic intensity, the number of 

loops, and the resource efficiency, the measurement is 

performed in the verification environment to increase the 

evaluation value of the low-power pattern. With them, the 

speed is increased and the power is reduced automatically. 

3.3 Automatic offload to mixed environments 

I also studied a technology to select an appropriate 

migration destination while GPU, FPGA, and many-core 

CPU are mixed as migration destinations.  

I propose the following order of verification with three 

offloads: many-core CPU loop statement offload, GPU loop 

statement offload, and FPGA loop statement offload. With 

automatic offload, pattern search is expected to be as quick 

as possible. Therefore, FPGA verification that takes a long 

time is the last, and if a pattern that sufficiently satisfies the 

user requirements is found in the previous stage, FPGA 

verification will not be performed. There is no big 

difference in price and verification time between GPU and 

many-core CPU, but the difference between many-core 

CPU and normal CPU is smaller than that of GPU with 

different memory and different devices. Therefore, the 

verification order is to start with the many-core CPU, and if 

a pattern that sufficiently satisfies the user requirements is 

found in the many-core CPU, GPU verification will not be 

performed.  

Here, the previous method is to verify the three 

migration destinations and automatically select the 

high-speed migration destination. However, in this paper, 

not only the short processing time but also the low-power 

migration destination is automatically selected through the 

actual measurement in the verification environment. For 

example, (Processing time)$^{-1/2}$*(Power 

consumption)$^{-1/2}$ is set to increase evaluation value 

for short processing time and low power consumption. 

As a typical data center cost, the initial cost such as 

hardware and development cost is 1/3 of the total cost, the 

operation cost such as power and maintenance is 1/3, and 

the other cost such as service order is 1/3. In this case, for 

example, the processing time will be reduced to 1/5, and the 

initial cost will be reduced if the number of hardware is 

halved even if the CPU and GPU are combined. Half the 

power consumption also leads to a reduction in operation 

cost. However, operation costs have many factors other 

than electric power, and halving the power consumption  



 

Fig. 4.  Experiment environment 

 

 

Fig. 5.  Power consumption with FPGA offloading 

(MRI-Q) 

 

does not halve the operation costs. In addition, the hardware 

price also varies depending on the operator, such as volume 

discount depending on the number of GPUs and FPGA 

servers to be installed. Therefore, the evaluation formula 

needs to be set differently for each business operator.  

In this way, in this paper, the appropriate offload 

destination is automatically selected in consideration of not 

only the processing time but also the power consumption. 

4. Evaluation 

The automatic offloading to GPU and FPGA of the 

loop statement has already been evaluated (33). In this 

paper, when determining the evaluation value of the 

measurement pattern on the basis of the implementation of 

the previous papers, offloading is performed by modifying 

the implementation to increase the evaluation value of 

lower power consumption. I will show that the processing 

time and the power consumption are both reduced by 

offloading. 

4.1 Evaluation Condition  

(a) Evaluated application 

Evaluated application for FPGA offloading is magnetic 

resonance imaging (MRI) image processing of MRI-Q. This 

is used in many cases. 

MRI-Q (36) computes a matrix Q, representing the 

scanner configuration for calibration, used in 3D MRI 

reconstruction algorithms in non-Cartesian space. In an IoT 

environment, image processing is often necessary for 

automatic monitoring from camera videos, and performance 

enhancements are requested in many cases. During 

application performance measurement, MRI-Q executes 3D 

MRI image processing to measure processing time using 

64*64*64 size sample data. MRI-Q is an application 

written by C language. It is processed on CPU on the basis 

of C language logic and processed on FPGA on the basis of 

OpenCL logic converted from C language codes. 

(b) Evaluation method 

In the experiment, we enter the code of the evaluation 

application and the implementation tries to offload the loop 

statement recognized by an analysis library such as Clang 

(37) to FPGA. For FPGA offloading, the arithmetic 

intensity and other values are used to narrow down the 

measurement patterns to four. At the time of trial, the 

processing time and power consumption are measured. For 

the finally determined offload pattern, the time change of 

the power consumption is acquired, and the improvement of 

the power consumption compared with the case where all 

the processing is performed by the normal CPU without 

offload is confirmed.  

Number of processable loop statements. 16 for MRI-Q. 

Evaluation value: (Processing time)$^{-1/2}$*(Power 

consumption)$^{-1/2}$. When processing time and power 

consumption become smaller, the evaluation value becomes 

larger. If the performance measurement does not complete 

in 3 minutes, a timeout is issued, and processing time is set 

to 1,000 seconds to calculate evaluation value. 

(c) Experiment environment 

I used physical machines with Intel PAC with an Intel 

Arria10 GX FPGA for offloading verification and Intel 

Acceleration Stack Version 1.2 (38) for FPGA control. 

Regarding power consumption, ipmitool (39) of IPMI 

(Intelligent Platform Management Interface) equipped with 

Dell PowerEdge R740 acquired power consumption of a 

whole server. Figure 4 shows the experimental environment 

and specifications. 

4.2 Results  

Figure 5 shows Watt and time when MRI-Q was 

offloaded to FPGA. From the figure, the processing time 

has been shortened from 14 to 2 seconds compared with the 

case where all CPU processing is performed. It is also 

found that the power has been changed from about 121 



Watt with only CPU to 111 Watt with CPU and FPGA. As a 

result, Watt*sec changed from 1,690 Watt*sec when 

processing only the CPU to 223 Watt*sec when offloaded 

to the FPGA.  

As an application expected to be used by many users, I 

confirmed the speedup and power reduction of MRI-Q for 

image processing. When offloaded to the FPGA, the Watt 

of the whole devices with CPU and FPGA is reduced 

slightly, which is combined with the shortening of the 

processing time, resulting in a significant reduction in 

power consumption. The amount of power consumption 

during GPU offload is not measured this time, but in a GPU 

and FPGA mixed environment, an appropriate offload 

destination is selected from the measured performance and 

power. 

5. Conclusions 

In this paper, I proposed and evaluated an offload 

method that considers power consumption as an element of 

environment-adaptive software for operating applications 

with high performance and low power.  

When actually measuring in the verification 

environment during automatic GPU and FPGA offloading 

trials, the power consumption is acquired along with the 

processing time, and the short-time and low-power pattern 

is made highly suitable to reduce the power for automatic 

code conversion. When GPU, FPGA, or so on are mixed, 

automatic selection is performed by trying migration to a 

single migration destination and selecting a migration 

destination with low power consumption and high 

performance. Through the automatic FPGA offloading of 

MRI-Q, I demonstrated the high performance and low 

power consumption and verified the effectiveness of the 

method.  

In the future, I will verify the reduction of power 

consumption with more applications for both FPGA and 

GPU. In addition, the evaluation formulas for shortening 

the processing time and reducing the power consumption 

will be examined with reference to specific examples of the 

cost structure of the business operator. 
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