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MaterialBERT for natural language processing of materials science 

texts 

A BERT (Bidirectional Encoder Representations from Transformers) model, 

which we named “MaterialBERT,” has been generated using scientific papers in 

wide area of material science as a corpus. A new vocabulary list for tokenizer 

was generated using material science corpus. Two BERT models with different 

vocabulary lists for the tokenizer, one with the original one made by Google and 

the other newly made by the authors, were generated. Word vectors embedded 

during the pre-training with the two MaterialBERT models reasonably reflect the 

meanings of materials names in material-class clustering and in the relationship 

between base materials and their compounds or derivatives for not only inorganic 

materials but also organic materials and organometallic compounds. Fine-tuning 

with CoLA (The Corpus of Linguistic Acceptability) using the pre-trained 

MaterialBERT showed a higher score than the original BERT. 
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            Subject classification codes: Databases, data structure, ontology 

1. Introduction 

Informatics techniques have been extensively utilized in the business and industrial 

fields [1-3]. In material science fields, machine learning of numerical data such as 

composition, electrical conductivity, reflective index, solubility, and friction coefficient, 

and that of processing data such as process temperature and pressure, have increasingly 

attracting attention [4-6]. In addition to numerical data, literature data, such as 

comments on SNS (Social Networking Service) and customer claims have been 

vigorously analysed with informatics techniques in business fields [7-10]. Informatics 

techniques on such literature data given in natural languages are called natural language 

processing (NLP) techniques; they have explosively developed and are applied in social 

business fields because of the huge data available from web sites and SNS. Here, to 



apply machine learning techniques to natural language, characters or words are 

converted to numerical data, usually to high-dimensional vectors; this is called 

embedding. Among the many ways of conversion, Word2Vec [11] attracted sensational 

attention since it demonstrated that the embedding reflects the meaning of a word. 

Word2Vec is a simple 1-layer neural network, which does not require many computer 

resources. Many embeddings by Word2Vec method using corpora from different fields, 

such as Japanese language, materials science, and bioscience, were made. Embeddings 

using a corpus from materials science papers, especially focused on inorganic materials, 

have been made named Mat2Vec [12]. Among scientific abstracts in materials science 

taken from Elsevier’s Scopus, Science Direct API, and the Springer Nature API, 

abstracts relevant to inorganic materials science were selected and used as a corpus in 

Mat2Vec. The successful embedding of meanings from materials science viewpoint was 

demonstrated [12]. 

Natural language is data with sequence, and the sequence of words is highly 

important. Therefore, NLP techniques basically use recurrent neural networks (RNNs) 

with embedded words. Word2Vec is a technique for embedding, which uses words 

surrounding a target word so that the context is taken into consideration to some extent, 

but the sequence of words is not considered. Advanced RNN techniques suitable for 

NLP, such as bidirectional LSTM (Long Short Term Memory) [13] have been 

developed, however, complicated RNN-based methods require excessive computational 

resources. Epoch-making methods to simplify the RNN network, transformer, attention, 

and BERT, have been developed [14]. BERT model is revolutionary because after pre-

training (predicting a randomly masked word in two sequential sentences), fine-tuning 

for many tasks such as given in General Language Understanding Evaluation (GLUE) 

[15] can be trained with a small dataset. Examples of tasks in GLUE are Q&A, 



paraphrasing, implicational relation between two sentences, grammatical correctness 

(CoLA), and sentiment judgment. Because of this feature of BERT, it can be used in 

various applications. The original BERT used a dictionary that contained 30M token 

vocabulary and the pre-training corpus consisted of the BooksCorpus (800M words) 

[16] and English Wikipedia (2,500M words). The corpus used contained general words 

that are not specified in a certain area. Therefore, many models using the BERT 

algorithm with a corpus from specific fields have been constructed such as BioBERT 

(bio-medical) [17], MedBERT [18], SciBERT (bio science 82% + computer science 

18%) [19], Japanese BERT [20,21], FinBERT (financial) [22], LeagalBERT [23].  

A BERT model specific to wide area of materials science (inorganic, organic, 

composite, metal-organic, etc.) was desired for our work to produce a kind of 

knowledge graph on material property relationships [24, 25]. Therefore, we started 

generating a BERT model specific to ‘wide area of materials science’ (MaterialBERT) 

and reported at a conference [26]. At the moment, we pre-trained using an original 

BERT except a corpus, which were scientific articles in materials science journals. 

However, despite huge technical terms specific to a materials science filed, the original 

vocabulary list released with the original BERT (“vocab.txt” file) contains only very 

general ones because it was made from the corpus used to pre-train the original BERT. 

Therefore, we built a vocabulary list specific to materials science from scientific articles 

in materials science journals and started generating another MaterialBERT using the 

newly made vocabulary list. Meanwhile, MatSciBERT [27], which is a kind of transfer 

learning of SciBERT using scientific papers in inorganic materials field (inorganic 

classes and ceramics, bulk metallic glasses, alloys, and cement and concrete) was 

posted. Then, MatBERT [28] was posted, which is a variant pre-training BERT in 

inorganic materials field (both solid state dataset and doping dataset were taken from 



inorganic materials science and gold nanoparticle dataset). Both MatSciBERT and 

MatBERT are considered domain-specific to “inorganic materials science”. 

It was reported [29] that there were no significant differences among BioBERT, 

SciBERT and MatSciBERT for their sentence classification task of polymer science 

texts, which is out of inorganic material science. Therefore, it would be useful to 

generate models specific to materials science in general, not limited to inorganic 

materials science. Moreover, recently, materials, which cannot be classified by 

traditional material classes such as inorganic or organic materials, have emerged 

(composite materials, perovskite solar cell materials, metal organic frameworks, etc.). 

Due to this situation, not only for our work on knowledge graph, a BERT model that is 

domain-specific to “wide materials science” could be useful for material-class-

interdisciplinary works. If one focuses on phenomena such as fracture and refraction, 

the scientific principles of the phenomena is common among all classes of materials. In 

many materials R&D, researchers search materials that satisfy a specific functional 

characteristic which is based on the corresponding phenomena. Especially in the era of 

SDGs (Sustainable Development Goals), the replacement of current functional materials 

with those better fit SDGs is required. Such replacement often occurs beyond the 

traditional material classes. Furthermore, our MaterialBERT could be used as a starting 

point for generating a narrower domain-specific BERT model in materials science field 

by transfer learning. 

 

2. Method 

We downloaded and used the original BERT code to train MaterialBERT on our 

corpus with the same configuration and size as BERT-Base-uncased (12-layer, hidden 

layer dimension=768, Total Parameters = 110M) [14]. Sentence lengths up to 512 



tokens were used for pre-training. In addition to the difference of a corpus from the 

original BERT, a variation in vocabulary list was made. One vocabulary list is the same 

as that the original BERT used (“vocab.txt file in the github [30], we refer to Original 

Vocab). The other vocabulary list was made in the following way: first, a vocabulary 

list was made in the same way as the authors of SciBERT [19] did except the 

vocabulary size, where the vocabulary list was made during the training of a tokenizer 

with SentencePiece [31] using our material science corpus. Then, this vocabulary list 

was added to the original BERT vocabulary list (vocab.txt) and used as a second 

vocabulary list (we refer to Sentence Vocab). Sentence Vocab contains material-specific 

words such as bond‐containing, radiation‐absorbed, isothermal, mesoporosity, 

chromatography, amide‐, acetate‐methanol, alkaline‐metal, α‐methyl‐α‐

phenyl, etc. Two MaterialBERT were generated, one with Original Vocab and the other 

with Sentence Vocab, both with the architecture as the original BERT and with our 

materials science corpus. The Original Vocab contains about 30 K words and Sentence 

Vocab contains 140 K words. The embedded words vectors had 200 dimensions. 

 The corpus we used was taken from scientific articles our institute (NIMS) 

purchased in XML format from nine publishers (ACS, AIP, APS, ELSEVIER, IOP, 

JJAP, RSC, SPRINGER, WILEY), and most of them were published between 2005 to 

2019. Our corpus contains scientific articles not only in inorganic materials but also in 

organic materials and composite materials. It also includes articles from journals that 

offer physical and/or chemical basis to phenomena in materials science (often cited in 

articles on a material papers). The list of the names of the journals, ISSNs and 

publication years used is provided in the appendix. Materials Science is a very board 

field and expanding further year by year. Therefore, the authors did not feel reasonable 

to use established criteria for choosing articles. Rather the authors rely on the decision 



of each journal (manuscripts that are not the criteria of the journal are not accepted). We 

confirmed that the journals listed in the appendix are materials science related and used 

all published articles within the specified journal, since BERT need huge corpus. We 

exclude articles that contained only abstracts (without the main body). Approximately 

750,000 articles were included in this study. Only abstract and body sections from 

article texts were extracted as a cleansing process because parts such as affiliation, 

acknowledgement, and references become noise in the NLP in our case. Chemical 

formulae and mathematical expressions (they are not natural language) in the articles 

were eliminated from the article texts for pre-training. The estimated number of words 

for approximately 750,000 articles was roughly 3000 M, which is comparable to the 

original BERT. Each model was trained on two NVIDIA Tesla V100 GPUs and took 

about three months to complete. 

 

3. Results and Discussion 

3.1. Pre-training 

3.1.1. Learning curves 

Figure 1 shows the learning curve during the pre-training. Learning using the original 

vocabulary list (Original Vocab) for the tokenizer is shown in (a), and that using the 

vocabulary list made from our corpus (Sentence Vocab) is shown in (b). Because the 

size of the Sentence Vocab (140M words) is more than four times larger than the 

Original Vocab (30M words), the time required for one iteration for (b) is much longer 

and the iteration end is taken for a much smaller iteration of 143,000 (b) instead of 

410,000 (a). Because of the smaller number of iterations, the final loss was larger for 

(b). If the iterations continued until the numbers were similar to (a), the final loss for (b) 

would be similar to that of (a). 



3.1.2. Embedding of meaning 

The results of the evaluation of word embeddings are presented below. The 200-

dimension word vectors of material names were subject of principal component analysis 

and projected onto a plane with two main components. The results of two sets of word 

vectors embedded using the two different dictionaries were compared. 

3.1.2.1 Clustering of materials 

Names of materials such as iron, aluminum, silicon, zinc selenide, zinc oxide, boron 

nitride, polystyrene, polyvinyl chloride were used for the analysis. Material names such 

as micelle, supramolecule, which are not classified in usual material classes, were also 

included as “others”. Words used are listed in Table1 with a class assigned by 

clustering. The clustering of word vectors of different types of material names is shown 

in Fig. 2. The word vectors make well-separated clusters according to well-established 

material classes, such as metals, semiconductors, and polymers [32, 33, 34]. The 

positions of the clusters themselves do not have a meaning and depend on the 

vocabulary list used for the tokenizer. This shows that words are well-embedded in both 

MaterialBERT models constructed using the Original Vocab (Fig. 2a) and Sentence 

Vocab (Fig.2b). 

 

3.1.2.2. Inorganic materials 

Word vectors for four typical elements, and their oxides, carbides, and chlorides were 

subject to principal component analysis, and the vectors were projected onto a plane 

with two main components. The results are shown in Fig. 3. For both models using 

different dictionaries, elements, oxides, carbides, and chlorides formed clusters. 

Accordingly, the vectors of oxide formation (oxide of), carbide formation (carbide of), 

and chloride formation (chloride of) are similar for all four elements. There is a slight 



difference in the oxide formation vectors between (a) and (b). However, as the vectors 

are well separated, the difference is not meaningful. 

To examine more elements, word vectors for aluminum, calcium, iron, lithium, 

magnesium, molybdenum, nickel, silicon, sodium, tantalum, titanium, zinc, and 

zirconium and their oxides, carbides, and chlorides were also analysed in the same way 

as described above and shown in Fig. 4. For both MaterialBERT models, elements, 

oxides, carbides, and chlorides formed clusters, as shown in Fig. 3. 

 

3.1.2.3. Organic materials 

Word vectors of names of organic compounds were analysed using the principal 

component analysis method. The vectors of organic compounds with different 

functional groups, alkanes, carboxylic acids, and amines are plotted in Fig. 5. The 

vectors of decane, ethane, heptane, hexane, octane, pentane, and propane, as well as 

their carboxylic acid derivatives and amine derivatives are plotted. Similar to inorganic 

compounds, different functional groups form a cluster with each other, and changes in 

the functional groups for the above seven alkanes can be represented as similar vectors, 

although the variance is larger than with inorganic materials, possibly because of a large 

number of similar names in organic compounds in various papers used as a corpus. 

 

3.1.1..3 Organometallics 

In Fig. 6, word vectors of organometallics are plotted after principal component analysis 

for R-metal-carbonyl (acetylcobalt tetracarbonyl, acetylmanganese pentacarbonyl, 

benzene chromium tricarbonyl, butadiene iron tricarbonyl, dicobalt octarbonyl, 

dimanganese decacarbonyl, ethyl cobalt tetracarbonyl, hexamethyl benzene chromium 

tricarbonyl, hexamethylborazine chromium tricarbonyl, methyl manganese 



pentacarbonyl), alkyl-metal (diethylmagnesium, diethylzinc, dimethyl cadmium, 

dimethyl mercury, dimethyl zinc, methylcopper, tetramethyltin, trimethylgallium, 

triphenylgallium), and R-lithium (benzyl-lithium, butyl-lithium, ethyl-lithium, methyl-

lithium, phenyl-lithium, vinyl-lithium), where R is an abbreviation for any group in 

which a hydrocarbon chain is attached to the rest of the molecule. Here, for alkyl-metal, 

“metal” is not lithium but magnesium, cadmium, mercury, zinc, copper, tin, and 

gallium. The scattering of vectors is similar to that of organic materials in Fig. 5, 

suggesting that the word embeddings with meanings as reasonable as in organic 

materials are achieved for inorganic-organic complex compounds. Despite a vast variety 

of materials in organometallics, various R and various metals are possible, listing the 

names of organometallics appearing in scientific papers (in the corpus) is difficult. 

Therefore, only a limited number of organometallic compounds were used for the 

evaluation. 

 

3.2. Fine-tuning 

Among GLUE, only CoLA [35] (grammatical correctness of sentences) can be used for 

the evaluation of MaterialBERT fine-tuning, because grammar does not depend on a 

specific field but others do depend on fields of texts used for the evaluation. Therefore, 

fine-tuning was preformed using CoLA. The score of the MaterialBERT model with the 

original vocabulary list (Original Vocab) was 62.5 %, and that with the newly made 

vocabulary list from our corpus (Sentence Vocab) was 66.2%, which is much higher 

than the score of the original BERTBASE (corresponding to our model) 52.1 % [14]. The 

score of the original BERTLARGE (deeper neural network used) was reported 60.5 % 

[14], which is still lower than both MaterialBERTs. It is unknown why MaterialBERTs 

showed higher score with CoLA, which is nothing to do with materials science. One 



speculation is that the quality of the corpus used for the pre-training in our corpus, 

scientific articles were collected from selected scientific journals, which means that the 

articles are English-corrected and peer-reviewed so that the grammatical correctness of 

the sentences is high. However, there is no method to characterize a corpus and a 

evaluation dataset and to measure a kind of distance between them. It is difficult to 

specify the reason of the higher score. 

     Various different domain-specific BERTs have been generated since fine-tuning 

results are supposedly related to the overlap of the domain of corpus used for pre-

training and that of the evaluation dataset. Results of fine-tuning using datasets and 

tasks of author’s pick-up are often given as examples, but they do not logically indicate 

that users would obtain the similar score for their tasks with their datasets. Possibly due 

to this, FinBERT does not give the score of fine-tuning results of their tasks but offers 

web-based fine-tuning for sentiment predictions of uploaded users’ text [38].  

 In materials science domain, MatSciBERT and MatBERT, both being pre-trained 

using corpuses that are domain-specific to materials (in close examination materials out 

of inorganic materials are not included), used inorganic materials datasets for 

evaluations [28, 36, 37]. MatSciBERT [27] reported approximately 8% better results on 

glass vs. non-glass topics classification task using in-house dataset (not disclosed) with 

their MatSciBERT than SciBERT. On the other hand, for sentence classification tasks 

of polymer science texts, no differences among BioBERT, SciBERT and MatSciBERT 

was reported [29], although MatSciBERT having material texts as a corpus is expected 

to have some advantages over BioBERT and SciBERT. With the development of tools 

such as HuggingFace Transformer [39], pre-training models begin to be used by users 

who want to do some text-mining tasks of their interests but are familiar to neither NLP 

nor machine learning. In such new circumstances, there are risks that high scores in 



authors’ fine-tuning examples give misleading information to users that high scores 

should be obtained by the model for users’ tasks with users’ datasets, which is not 

guaranteed. 

With the above reasons, the authors intend to let users assess the fine-tuning 

effects for their specific tasks by making the present MaterialBERT models publicly 

available upon the publication of this article. 

MaterialBERT should be useful for material science domains out of inorganic 

materials, and especially for NLP tasks that handle items regardless of material types 

such as inorganic, organic, or composite. Furthermore, MaterialBERT could be used as 

a starting point for transfer learning to generate a narrower domain-specific BERT 

model in materials science field such as “phase diagram”, “fracture”, “liquid crystal”, 

“plasma”, etc. 

 

4. Conclusions 

Pre-trained BERT models with wide range of materials science corpus have been 

successfully developed using the architecture of the original BERT. A new vocabulary 

list has been made from materials science corpus. Two MaterialBERT models were 

generated: one with the vocabulary list that the original BERT used and the other with 

the newly made vocabulary list. It was shown for both MaterialBERT models that word 

vectors embedded during the pre-training reasonably reflect the meanings of materials 

names in material-class clustering and in the relationship between base materials and 

their compounds or derivatives for not only inorganic materials but also organic 

materials and organometallic compounds. Fine-tuning using CoLA (sentence 

classification by grammatical correctness) marked a score much higher than the original 



BERT, which would reflect the grammatical quality of the corpus used for 

MaterialBERT models.  

The developed MaterialBERT models cover wide range of materials science, not 

only inorganic materials. Because of this wideness, an appropriate evaluation of fine-

tuning from a viewpoint of material science is impossible due to the lack of suitable 

evaluation datasets. However, there is no comparable pre-trained BERT model for 

widely covered materials science. Furthermore, MaterialBERT models can be used as a 

starting point for transfer learning to generate a narrower domain-specific BERT model 

in materials science field such as “phase diagram”, “resin”, “liquid crystal”, etc. 

Because results on fine-tuning are strongly depend on the similarity between a corpus 

used for the pre-training and that for fine-tuning, the authors intend to let users assess 

the fine-tuning effects for their specific tasks by making the present MaterialBERT 

models publicly available upon the publication of this article. The models and the newly 

developed vocabulary list will be uploaded to the material data repository at NIMS [40] 

upon the publication of this article so that all users can use it freely. 
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Table 1. List of words used for material class clustering with a class assigned by 

clustering. 

Figure 1. Learning curve for pre-training with the original dictionary (a) and the newly 

made dictionary from our corpus (b). 

Figure 2. Material class captured by word embeddings: two-dimensional projection of 

the word vectors in the plane with the first and second principal components for 79 

materials from different material classes using the original dictionary (a) and the newly 

made dictionary from our corpus (b). Others are materials such as metal-organic 

framework and composite material. 

Figure 3. Word embeddings for magnesium, aluminum, silicon, iron, their principal 

oxides, carbides and chlorides projected onto two dimensions using principal 

component analysis and represented as points in space. (a) is obtained using the original 

dictionary and (b) using the newly made dictionary from our corpus. The projected 

space between (a) and (b) is slightly different but in both space the relative positioning 

of the words encodes materials science relationships, such that there exist consistent 

vector operations between words that represent concepts such as ‘oxide of’, ‘carbide of’ 

and ‘chloride of’. 

Figure 4. Word embeddings for 13 elements (lithium, sodium, magnesium, aluminium, 

silicon, calcium, titanium, iron, nickel, zinc, zirconium, molybdenum, tantalum, and 

their principal oxides, carbides and chlorides projected onto two dimensions using 

principal component analysis and represented as points in space. (a) is obtained using 

the original dictionary and (b) using the newly made dictionary from our corpus. 

Figure 5. Word embeddings for 7 alkanes, and their carboxylic acid, and amine 

derivatives projected onto two dimensions using principal component analysis and 

represented as points in space. (a) is obtained using the original dictionary and (b) using 

the newly made dictionary from our corpus. 

Figure 6. Word embeddings for organometallics (R-metal-carbonyl, alkyl-metal, and R-

lithium, where R means an abbreviation for any group in which a hydrocarbon chain is 

attached to the rest of the molecule) projected onto two dimensions using principal 



component analysis and represented as points in space. (a) is obtained using the original 

dictionary and (b) using the newly made dictionary from our corpus. 

  



 

Table 1. List of words used for material class clustering with a class assigned by 

clustering. 

 

metals ceramics semiconductors polymers others

iron aluminum oxide silicon polyethylene metal complex 

aluminum silicon carbide germanium polypropylene metal organic framework 

copper tungsten carbide gallium arsenide polystyrene composite material 

titanium Yttria-stabilized zirconia gallium phosphide polyvinyl chloride clathrate 

gold zinc oxide indium phosphide synthetic rubber methane hydrate 

platinum zirconia silicon carbide phenol formaldehyde resin supramolecule 

chromium boron nitride zinc selenide neoprene crown ether 

nickel Sialon cadmium sulfide nylon cyclodextrin 

cobalt silicon nitride gallium nitride polyacrylonitrile liposome 

tungsten titanium carbide gallium oxide PVB micelle

palladium glass diamond cellulose 

steel barium black phosphorus starch 

high-speed steel titanate fullerene chitin 

superalloys hydroxyapatite carbon nanotube protein 

inconel ferrite lignin 

duralumin calcium fluoride silicone 

bronze celluloid

amalgam 

alumel 

chromel 

intermetallics 

intermetallic compound 

metallic glass
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Figure 1. Learning curve for pre-training with the original dictionary (a) and the newly made 

dictionary from our corpus (b).
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Figure 2. Material class captured by word embeddings: two-dimensional projection of the 

word vectors in the plane with the first and second principal components for 79 materials 

from different material classes using the original dictionary (a) and the newly made 

dictionary from our corpus (b). Others are materials such as metal-organic framework and 

composite material.
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Figure 3. Word embeddings for magnesium, aluminum, silicon, iron, their principal oxides, 

carbides and chlorides projected onto two dimensions using principal component analysis 

and represented as points in space. (a) is obtained using the original dictionary and (b) using 

the newly made dictionary from our corpus. The projected space between (a) and (b) is 

slightly different but in both space the relative positioning of the words encodes materials 

science relationships, such that there exist consistent vector operations between words that 

represent concepts such as ‘oxide of’, ‘carbide of’ and ‘chloride of’.
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Figure 4. Word embeddings for 13 elements (lithium, sodium, magnesium, aluminium, 

silicon, calcium, titanium, iron, nickel, zinc, zirconium, molybdenum, tantalum, and their 

principal oxides, carbides and chlorides projected onto two dimensions using principal 

component analysis and represented as points in space. (a) is obtained using the original 

dictionary and (b) using the newly made dictionary from our corpus.
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Figure 5. Word embeddings for 7 alkanes, and their carboxylic acid, and amine derivatives 

projected onto two dimensions using principal component analysis and represented as points 

in space. (a) is obtained using the original dictionary and (b) using the newly made dictionary 

from our corpus.
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Figure 6. Word embeddings for organometallics (R-metal-carbonyl, alkyl-metal, and R-

lithium, where R means an abbreviation for any group in which a hydrocarbon chain is 

attached to the rest of the molecule) projected onto two dimensions using principal 

component analysis and represented as points in space. (a) is obtained using the original 

dictionary and (b) using the newly made dictionary from our corpus.
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